1 /* 2 * Xen mmu operations 3 * 4 * This file contains the various mmu fetch and update operations. 5 * The most important job they must perform is the mapping between the 6 * domain's pfn and the overall machine mfns. 7 * 8 * Xen allows guests to directly update the pagetable, in a controlled 9 * fashion. In other words, the guest modifies the same pagetable 10 * that the CPU actually uses, which eliminates the overhead of having 11 * a separate shadow pagetable. 12 * 13 * In order to allow this, it falls on the guest domain to map its 14 * notion of a "physical" pfn - which is just a domain-local linear 15 * address - into a real "machine address" which the CPU's MMU can 16 * use. 17 * 18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be 19 * inserted directly into the pagetable. When creating a new 20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely, 21 * when reading the content back with __(pgd|pmd|pte)_val, it converts 22 * the mfn back into a pfn. 23 * 24 * The other constraint is that all pages which make up a pagetable 25 * must be mapped read-only in the guest. This prevents uncontrolled 26 * guest updates to the pagetable. Xen strictly enforces this, and 27 * will disallow any pagetable update which will end up mapping a 28 * pagetable page RW, and will disallow using any writable page as a 29 * pagetable. 30 * 31 * Naively, when loading %cr3 with the base of a new pagetable, Xen 32 * would need to validate the whole pagetable before going on. 33 * Naturally, this is quite slow. The solution is to "pin" a 34 * pagetable, which enforces all the constraints on the pagetable even 35 * when it is not actively in use. This menas that Xen can be assured 36 * that it is still valid when you do load it into %cr3, and doesn't 37 * need to revalidate it. 38 * 39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 40 */ 41 #include <linux/sched.h> 42 #include <linux/highmem.h> 43 #include <linux/debugfs.h> 44 #include <linux/bug.h> 45 #include <linux/vmalloc.h> 46 #include <linux/module.h> 47 #include <linux/gfp.h> 48 #include <linux/memblock.h> 49 #include <linux/seq_file.h> 50 51 #include <trace/events/xen.h> 52 53 #include <asm/pgtable.h> 54 #include <asm/tlbflush.h> 55 #include <asm/fixmap.h> 56 #include <asm/mmu_context.h> 57 #include <asm/setup.h> 58 #include <asm/paravirt.h> 59 #include <asm/e820.h> 60 #include <asm/linkage.h> 61 #include <asm/page.h> 62 #include <asm/init.h> 63 #include <asm/pat.h> 64 #include <asm/smp.h> 65 66 #include <asm/xen/hypercall.h> 67 #include <asm/xen/hypervisor.h> 68 69 #include <xen/xen.h> 70 #include <xen/page.h> 71 #include <xen/interface/xen.h> 72 #include <xen/interface/hvm/hvm_op.h> 73 #include <xen/interface/version.h> 74 #include <xen/interface/memory.h> 75 #include <xen/hvc-console.h> 76 77 #include "multicalls.h" 78 #include "mmu.h" 79 #include "debugfs.h" 80 81 /* 82 * Protects atomic reservation decrease/increase against concurrent increases. 83 * Also protects non-atomic updates of current_pages and balloon lists. 84 */ 85 DEFINE_SPINLOCK(xen_reservation_lock); 86 87 /* 88 * Identity map, in addition to plain kernel map. This needs to be 89 * large enough to allocate page table pages to allocate the rest. 90 * Each page can map 2MB. 91 */ 92 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4) 93 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES); 94 95 #ifdef CONFIG_X86_64 96 /* l3 pud for userspace vsyscall mapping */ 97 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss; 98 #endif /* CONFIG_X86_64 */ 99 100 /* 101 * Note about cr3 (pagetable base) values: 102 * 103 * xen_cr3 contains the current logical cr3 value; it contains the 104 * last set cr3. This may not be the current effective cr3, because 105 * its update may be being lazily deferred. However, a vcpu looking 106 * at its own cr3 can use this value knowing that it everything will 107 * be self-consistent. 108 * 109 * xen_current_cr3 contains the actual vcpu cr3; it is set once the 110 * hypercall to set the vcpu cr3 is complete (so it may be a little 111 * out of date, but it will never be set early). If one vcpu is 112 * looking at another vcpu's cr3 value, it should use this variable. 113 */ 114 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */ 115 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */ 116 117 118 /* 119 * Just beyond the highest usermode address. STACK_TOP_MAX has a 120 * redzone above it, so round it up to a PGD boundary. 121 */ 122 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK) 123 124 unsigned long arbitrary_virt_to_mfn(void *vaddr) 125 { 126 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr); 127 128 return PFN_DOWN(maddr.maddr); 129 } 130 131 xmaddr_t arbitrary_virt_to_machine(void *vaddr) 132 { 133 unsigned long address = (unsigned long)vaddr; 134 unsigned int level; 135 pte_t *pte; 136 unsigned offset; 137 138 /* 139 * if the PFN is in the linear mapped vaddr range, we can just use 140 * the (quick) virt_to_machine() p2m lookup 141 */ 142 if (virt_addr_valid(vaddr)) 143 return virt_to_machine(vaddr); 144 145 /* otherwise we have to do a (slower) full page-table walk */ 146 147 pte = lookup_address(address, &level); 148 BUG_ON(pte == NULL); 149 offset = address & ~PAGE_MASK; 150 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset); 151 } 152 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine); 153 154 void make_lowmem_page_readonly(void *vaddr) 155 { 156 pte_t *pte, ptev; 157 unsigned long address = (unsigned long)vaddr; 158 unsigned int level; 159 160 pte = lookup_address(address, &level); 161 if (pte == NULL) 162 return; /* vaddr missing */ 163 164 ptev = pte_wrprotect(*pte); 165 166 if (HYPERVISOR_update_va_mapping(address, ptev, 0)) 167 BUG(); 168 } 169 170 void make_lowmem_page_readwrite(void *vaddr) 171 { 172 pte_t *pte, ptev; 173 unsigned long address = (unsigned long)vaddr; 174 unsigned int level; 175 176 pte = lookup_address(address, &level); 177 if (pte == NULL) 178 return; /* vaddr missing */ 179 180 ptev = pte_mkwrite(*pte); 181 182 if (HYPERVISOR_update_va_mapping(address, ptev, 0)) 183 BUG(); 184 } 185 186 187 static bool xen_page_pinned(void *ptr) 188 { 189 struct page *page = virt_to_page(ptr); 190 191 return PagePinned(page); 192 } 193 194 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid) 195 { 196 struct multicall_space mcs; 197 struct mmu_update *u; 198 199 trace_xen_mmu_set_domain_pte(ptep, pteval, domid); 200 201 mcs = xen_mc_entry(sizeof(*u)); 202 u = mcs.args; 203 204 /* ptep might be kmapped when using 32-bit HIGHPTE */ 205 u->ptr = virt_to_machine(ptep).maddr; 206 u->val = pte_val_ma(pteval); 207 208 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid); 209 210 xen_mc_issue(PARAVIRT_LAZY_MMU); 211 } 212 EXPORT_SYMBOL_GPL(xen_set_domain_pte); 213 214 static void xen_extend_mmu_update(const struct mmu_update *update) 215 { 216 struct multicall_space mcs; 217 struct mmu_update *u; 218 219 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u)); 220 221 if (mcs.mc != NULL) { 222 mcs.mc->args[1]++; 223 } else { 224 mcs = __xen_mc_entry(sizeof(*u)); 225 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 226 } 227 228 u = mcs.args; 229 *u = *update; 230 } 231 232 static void xen_extend_mmuext_op(const struct mmuext_op *op) 233 { 234 struct multicall_space mcs; 235 struct mmuext_op *u; 236 237 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u)); 238 239 if (mcs.mc != NULL) { 240 mcs.mc->args[1]++; 241 } else { 242 mcs = __xen_mc_entry(sizeof(*u)); 243 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 244 } 245 246 u = mcs.args; 247 *u = *op; 248 } 249 250 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val) 251 { 252 struct mmu_update u; 253 254 preempt_disable(); 255 256 xen_mc_batch(); 257 258 /* ptr may be ioremapped for 64-bit pagetable setup */ 259 u.ptr = arbitrary_virt_to_machine(ptr).maddr; 260 u.val = pmd_val_ma(val); 261 xen_extend_mmu_update(&u); 262 263 xen_mc_issue(PARAVIRT_LAZY_MMU); 264 265 preempt_enable(); 266 } 267 268 static void xen_set_pmd(pmd_t *ptr, pmd_t val) 269 { 270 trace_xen_mmu_set_pmd(ptr, val); 271 272 /* If page is not pinned, we can just update the entry 273 directly */ 274 if (!xen_page_pinned(ptr)) { 275 *ptr = val; 276 return; 277 } 278 279 xen_set_pmd_hyper(ptr, val); 280 } 281 282 /* 283 * Associate a virtual page frame with a given physical page frame 284 * and protection flags for that frame. 285 */ 286 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags) 287 { 288 set_pte_vaddr(vaddr, mfn_pte(mfn, flags)); 289 } 290 291 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval) 292 { 293 struct mmu_update u; 294 295 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) 296 return false; 297 298 xen_mc_batch(); 299 300 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; 301 u.val = pte_val_ma(pteval); 302 xen_extend_mmu_update(&u); 303 304 xen_mc_issue(PARAVIRT_LAZY_MMU); 305 306 return true; 307 } 308 309 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval) 310 { 311 if (!xen_batched_set_pte(ptep, pteval)) 312 native_set_pte(ptep, pteval); 313 } 314 315 static void xen_set_pte(pte_t *ptep, pte_t pteval) 316 { 317 trace_xen_mmu_set_pte(ptep, pteval); 318 __xen_set_pte(ptep, pteval); 319 } 320 321 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr, 322 pte_t *ptep, pte_t pteval) 323 { 324 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval); 325 __xen_set_pte(ptep, pteval); 326 } 327 328 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, 329 unsigned long addr, pte_t *ptep) 330 { 331 /* Just return the pte as-is. We preserve the bits on commit */ 332 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep); 333 return *ptep; 334 } 335 336 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr, 337 pte_t *ptep, pte_t pte) 338 { 339 struct mmu_update u; 340 341 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte); 342 xen_mc_batch(); 343 344 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD; 345 u.val = pte_val_ma(pte); 346 xen_extend_mmu_update(&u); 347 348 xen_mc_issue(PARAVIRT_LAZY_MMU); 349 } 350 351 /* Assume pteval_t is equivalent to all the other *val_t types. */ 352 static pteval_t pte_mfn_to_pfn(pteval_t val) 353 { 354 if (val & _PAGE_PRESENT) { 355 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; 356 unsigned long pfn = mfn_to_pfn(mfn); 357 358 pteval_t flags = val & PTE_FLAGS_MASK; 359 if (unlikely(pfn == ~0)) 360 val = flags & ~_PAGE_PRESENT; 361 else 362 val = ((pteval_t)pfn << PAGE_SHIFT) | flags; 363 } 364 365 return val; 366 } 367 368 static pteval_t pte_pfn_to_mfn(pteval_t val) 369 { 370 if (val & _PAGE_PRESENT) { 371 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; 372 pteval_t flags = val & PTE_FLAGS_MASK; 373 unsigned long mfn; 374 375 if (!xen_feature(XENFEAT_auto_translated_physmap)) 376 mfn = get_phys_to_machine(pfn); 377 else 378 mfn = pfn; 379 /* 380 * If there's no mfn for the pfn, then just create an 381 * empty non-present pte. Unfortunately this loses 382 * information about the original pfn, so 383 * pte_mfn_to_pfn is asymmetric. 384 */ 385 if (unlikely(mfn == INVALID_P2M_ENTRY)) { 386 mfn = 0; 387 flags = 0; 388 } else { 389 /* 390 * Paramount to do this test _after_ the 391 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY & 392 * IDENTITY_FRAME_BIT resolves to true. 393 */ 394 mfn &= ~FOREIGN_FRAME_BIT; 395 if (mfn & IDENTITY_FRAME_BIT) { 396 mfn &= ~IDENTITY_FRAME_BIT; 397 flags |= _PAGE_IOMAP; 398 } 399 } 400 val = ((pteval_t)mfn << PAGE_SHIFT) | flags; 401 } 402 403 return val; 404 } 405 406 static pteval_t iomap_pte(pteval_t val) 407 { 408 if (val & _PAGE_PRESENT) { 409 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; 410 pteval_t flags = val & PTE_FLAGS_MASK; 411 412 /* We assume the pte frame number is a MFN, so 413 just use it as-is. */ 414 val = ((pteval_t)pfn << PAGE_SHIFT) | flags; 415 } 416 417 return val; 418 } 419 420 static pteval_t xen_pte_val(pte_t pte) 421 { 422 pteval_t pteval = pte.pte; 423 #if 0 424 /* If this is a WC pte, convert back from Xen WC to Linux WC */ 425 if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) { 426 WARN_ON(!pat_enabled); 427 pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT; 428 } 429 #endif 430 if (xen_initial_domain() && (pteval & _PAGE_IOMAP)) 431 return pteval; 432 433 return pte_mfn_to_pfn(pteval); 434 } 435 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val); 436 437 static pgdval_t xen_pgd_val(pgd_t pgd) 438 { 439 return pte_mfn_to_pfn(pgd.pgd); 440 } 441 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val); 442 443 /* 444 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7 445 * are reserved for now, to correspond to the Intel-reserved PAT 446 * types. 447 * 448 * We expect Linux's PAT set as follows: 449 * 450 * Idx PTE flags Linux Xen Default 451 * 0 WB WB WB 452 * 1 PWT WC WT WT 453 * 2 PCD UC- UC- UC- 454 * 3 PCD PWT UC UC UC 455 * 4 PAT WB WC WB 456 * 5 PAT PWT WC WP WT 457 * 6 PAT PCD UC- UC UC- 458 * 7 PAT PCD PWT UC UC UC 459 */ 460 461 void xen_set_pat(u64 pat) 462 { 463 /* We expect Linux to use a PAT setting of 464 * UC UC- WC WB (ignoring the PAT flag) */ 465 WARN_ON(pat != 0x0007010600070106ull); 466 } 467 468 static pte_t xen_make_pte(pteval_t pte) 469 { 470 phys_addr_t addr = (pte & PTE_PFN_MASK); 471 #if 0 472 /* If Linux is trying to set a WC pte, then map to the Xen WC. 473 * If _PAGE_PAT is set, then it probably means it is really 474 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope 475 * things work out OK... 476 * 477 * (We should never see kernel mappings with _PAGE_PSE set, 478 * but we could see hugetlbfs mappings, I think.). 479 */ 480 if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) { 481 if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT) 482 pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT; 483 } 484 #endif 485 /* 486 * Unprivileged domains are allowed to do IOMAPpings for 487 * PCI passthrough, but not map ISA space. The ISA 488 * mappings are just dummy local mappings to keep other 489 * parts of the kernel happy. 490 */ 491 if (unlikely(pte & _PAGE_IOMAP) && 492 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) { 493 pte = iomap_pte(pte); 494 } else { 495 pte &= ~_PAGE_IOMAP; 496 pte = pte_pfn_to_mfn(pte); 497 } 498 499 return native_make_pte(pte); 500 } 501 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte); 502 503 static pgd_t xen_make_pgd(pgdval_t pgd) 504 { 505 pgd = pte_pfn_to_mfn(pgd); 506 return native_make_pgd(pgd); 507 } 508 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd); 509 510 static pmdval_t xen_pmd_val(pmd_t pmd) 511 { 512 return pte_mfn_to_pfn(pmd.pmd); 513 } 514 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val); 515 516 static void xen_set_pud_hyper(pud_t *ptr, pud_t val) 517 { 518 struct mmu_update u; 519 520 preempt_disable(); 521 522 xen_mc_batch(); 523 524 /* ptr may be ioremapped for 64-bit pagetable setup */ 525 u.ptr = arbitrary_virt_to_machine(ptr).maddr; 526 u.val = pud_val_ma(val); 527 xen_extend_mmu_update(&u); 528 529 xen_mc_issue(PARAVIRT_LAZY_MMU); 530 531 preempt_enable(); 532 } 533 534 static void xen_set_pud(pud_t *ptr, pud_t val) 535 { 536 trace_xen_mmu_set_pud(ptr, val); 537 538 /* If page is not pinned, we can just update the entry 539 directly */ 540 if (!xen_page_pinned(ptr)) { 541 *ptr = val; 542 return; 543 } 544 545 xen_set_pud_hyper(ptr, val); 546 } 547 548 #ifdef CONFIG_X86_PAE 549 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte) 550 { 551 trace_xen_mmu_set_pte_atomic(ptep, pte); 552 set_64bit((u64 *)ptep, native_pte_val(pte)); 553 } 554 555 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 556 { 557 trace_xen_mmu_pte_clear(mm, addr, ptep); 558 if (!xen_batched_set_pte(ptep, native_make_pte(0))) 559 native_pte_clear(mm, addr, ptep); 560 } 561 562 static void xen_pmd_clear(pmd_t *pmdp) 563 { 564 trace_xen_mmu_pmd_clear(pmdp); 565 set_pmd(pmdp, __pmd(0)); 566 } 567 #endif /* CONFIG_X86_PAE */ 568 569 static pmd_t xen_make_pmd(pmdval_t pmd) 570 { 571 pmd = pte_pfn_to_mfn(pmd); 572 return native_make_pmd(pmd); 573 } 574 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd); 575 576 #if PAGETABLE_LEVELS == 4 577 static pudval_t xen_pud_val(pud_t pud) 578 { 579 return pte_mfn_to_pfn(pud.pud); 580 } 581 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val); 582 583 static pud_t xen_make_pud(pudval_t pud) 584 { 585 pud = pte_pfn_to_mfn(pud); 586 587 return native_make_pud(pud); 588 } 589 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud); 590 591 static pgd_t *xen_get_user_pgd(pgd_t *pgd) 592 { 593 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK); 594 unsigned offset = pgd - pgd_page; 595 pgd_t *user_ptr = NULL; 596 597 if (offset < pgd_index(USER_LIMIT)) { 598 struct page *page = virt_to_page(pgd_page); 599 user_ptr = (pgd_t *)page->private; 600 if (user_ptr) 601 user_ptr += offset; 602 } 603 604 return user_ptr; 605 } 606 607 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val) 608 { 609 struct mmu_update u; 610 611 u.ptr = virt_to_machine(ptr).maddr; 612 u.val = pgd_val_ma(val); 613 xen_extend_mmu_update(&u); 614 } 615 616 /* 617 * Raw hypercall-based set_pgd, intended for in early boot before 618 * there's a page structure. This implies: 619 * 1. The only existing pagetable is the kernel's 620 * 2. It is always pinned 621 * 3. It has no user pagetable attached to it 622 */ 623 static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val) 624 { 625 preempt_disable(); 626 627 xen_mc_batch(); 628 629 __xen_set_pgd_hyper(ptr, val); 630 631 xen_mc_issue(PARAVIRT_LAZY_MMU); 632 633 preempt_enable(); 634 } 635 636 static void xen_set_pgd(pgd_t *ptr, pgd_t val) 637 { 638 pgd_t *user_ptr = xen_get_user_pgd(ptr); 639 640 trace_xen_mmu_set_pgd(ptr, user_ptr, val); 641 642 /* If page is not pinned, we can just update the entry 643 directly */ 644 if (!xen_page_pinned(ptr)) { 645 *ptr = val; 646 if (user_ptr) { 647 WARN_ON(xen_page_pinned(user_ptr)); 648 *user_ptr = val; 649 } 650 return; 651 } 652 653 /* If it's pinned, then we can at least batch the kernel and 654 user updates together. */ 655 xen_mc_batch(); 656 657 __xen_set_pgd_hyper(ptr, val); 658 if (user_ptr) 659 __xen_set_pgd_hyper(user_ptr, val); 660 661 xen_mc_issue(PARAVIRT_LAZY_MMU); 662 } 663 #endif /* PAGETABLE_LEVELS == 4 */ 664 665 /* 666 * (Yet another) pagetable walker. This one is intended for pinning a 667 * pagetable. This means that it walks a pagetable and calls the 668 * callback function on each page it finds making up the page table, 669 * at every level. It walks the entire pagetable, but it only bothers 670 * pinning pte pages which are below limit. In the normal case this 671 * will be STACK_TOP_MAX, but at boot we need to pin up to 672 * FIXADDR_TOP. 673 * 674 * For 32-bit the important bit is that we don't pin beyond there, 675 * because then we start getting into Xen's ptes. 676 * 677 * For 64-bit, we must skip the Xen hole in the middle of the address 678 * space, just after the big x86-64 virtual hole. 679 */ 680 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd, 681 int (*func)(struct mm_struct *mm, struct page *, 682 enum pt_level), 683 unsigned long limit) 684 { 685 int flush = 0; 686 unsigned hole_low, hole_high; 687 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit; 688 unsigned pgdidx, pudidx, pmdidx; 689 690 /* The limit is the last byte to be touched */ 691 limit--; 692 BUG_ON(limit >= FIXADDR_TOP); 693 694 if (xen_feature(XENFEAT_auto_translated_physmap)) 695 return 0; 696 697 /* 698 * 64-bit has a great big hole in the middle of the address 699 * space, which contains the Xen mappings. On 32-bit these 700 * will end up making a zero-sized hole and so is a no-op. 701 */ 702 hole_low = pgd_index(USER_LIMIT); 703 hole_high = pgd_index(PAGE_OFFSET); 704 705 pgdidx_limit = pgd_index(limit); 706 #if PTRS_PER_PUD > 1 707 pudidx_limit = pud_index(limit); 708 #else 709 pudidx_limit = 0; 710 #endif 711 #if PTRS_PER_PMD > 1 712 pmdidx_limit = pmd_index(limit); 713 #else 714 pmdidx_limit = 0; 715 #endif 716 717 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) { 718 pud_t *pud; 719 720 if (pgdidx >= hole_low && pgdidx < hole_high) 721 continue; 722 723 if (!pgd_val(pgd[pgdidx])) 724 continue; 725 726 pud = pud_offset(&pgd[pgdidx], 0); 727 728 if (PTRS_PER_PUD > 1) /* not folded */ 729 flush |= (*func)(mm, virt_to_page(pud), PT_PUD); 730 731 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) { 732 pmd_t *pmd; 733 734 if (pgdidx == pgdidx_limit && 735 pudidx > pudidx_limit) 736 goto out; 737 738 if (pud_none(pud[pudidx])) 739 continue; 740 741 pmd = pmd_offset(&pud[pudidx], 0); 742 743 if (PTRS_PER_PMD > 1) /* not folded */ 744 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD); 745 746 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) { 747 struct page *pte; 748 749 if (pgdidx == pgdidx_limit && 750 pudidx == pudidx_limit && 751 pmdidx > pmdidx_limit) 752 goto out; 753 754 if (pmd_none(pmd[pmdidx])) 755 continue; 756 757 pte = pmd_page(pmd[pmdidx]); 758 flush |= (*func)(mm, pte, PT_PTE); 759 } 760 } 761 } 762 763 out: 764 /* Do the top level last, so that the callbacks can use it as 765 a cue to do final things like tlb flushes. */ 766 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD); 767 768 return flush; 769 } 770 771 static int xen_pgd_walk(struct mm_struct *mm, 772 int (*func)(struct mm_struct *mm, struct page *, 773 enum pt_level), 774 unsigned long limit) 775 { 776 return __xen_pgd_walk(mm, mm->pgd, func, limit); 777 } 778 779 /* If we're using split pte locks, then take the page's lock and 780 return a pointer to it. Otherwise return NULL. */ 781 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm) 782 { 783 spinlock_t *ptl = NULL; 784 785 #if USE_SPLIT_PTLOCKS 786 ptl = __pte_lockptr(page); 787 spin_lock_nest_lock(ptl, &mm->page_table_lock); 788 #endif 789 790 return ptl; 791 } 792 793 static void xen_pte_unlock(void *v) 794 { 795 spinlock_t *ptl = v; 796 spin_unlock(ptl); 797 } 798 799 static void xen_do_pin(unsigned level, unsigned long pfn) 800 { 801 struct mmuext_op op; 802 803 op.cmd = level; 804 op.arg1.mfn = pfn_to_mfn(pfn); 805 806 xen_extend_mmuext_op(&op); 807 } 808 809 static int xen_pin_page(struct mm_struct *mm, struct page *page, 810 enum pt_level level) 811 { 812 unsigned pgfl = TestSetPagePinned(page); 813 int flush; 814 815 if (pgfl) 816 flush = 0; /* already pinned */ 817 else if (PageHighMem(page)) 818 /* kmaps need flushing if we found an unpinned 819 highpage */ 820 flush = 1; 821 else { 822 void *pt = lowmem_page_address(page); 823 unsigned long pfn = page_to_pfn(page); 824 struct multicall_space mcs = __xen_mc_entry(0); 825 spinlock_t *ptl; 826 827 flush = 0; 828 829 /* 830 * We need to hold the pagetable lock between the time 831 * we make the pagetable RO and when we actually pin 832 * it. If we don't, then other users may come in and 833 * attempt to update the pagetable by writing it, 834 * which will fail because the memory is RO but not 835 * pinned, so Xen won't do the trap'n'emulate. 836 * 837 * If we're using split pte locks, we can't hold the 838 * entire pagetable's worth of locks during the 839 * traverse, because we may wrap the preempt count (8 840 * bits). The solution is to mark RO and pin each PTE 841 * page while holding the lock. This means the number 842 * of locks we end up holding is never more than a 843 * batch size (~32 entries, at present). 844 * 845 * If we're not using split pte locks, we needn't pin 846 * the PTE pages independently, because we're 847 * protected by the overall pagetable lock. 848 */ 849 ptl = NULL; 850 if (level == PT_PTE) 851 ptl = xen_pte_lock(page, mm); 852 853 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, 854 pfn_pte(pfn, PAGE_KERNEL_RO), 855 level == PT_PGD ? UVMF_TLB_FLUSH : 0); 856 857 if (ptl) { 858 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn); 859 860 /* Queue a deferred unlock for when this batch 861 is completed. */ 862 xen_mc_callback(xen_pte_unlock, ptl); 863 } 864 } 865 866 return flush; 867 } 868 869 /* This is called just after a mm has been created, but it has not 870 been used yet. We need to make sure that its pagetable is all 871 read-only, and can be pinned. */ 872 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd) 873 { 874 trace_xen_mmu_pgd_pin(mm, pgd); 875 876 xen_mc_batch(); 877 878 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) { 879 /* re-enable interrupts for flushing */ 880 xen_mc_issue(0); 881 882 kmap_flush_unused(); 883 884 xen_mc_batch(); 885 } 886 887 #ifdef CONFIG_X86_64 888 { 889 pgd_t *user_pgd = xen_get_user_pgd(pgd); 890 891 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd))); 892 893 if (user_pgd) { 894 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD); 895 xen_do_pin(MMUEXT_PIN_L4_TABLE, 896 PFN_DOWN(__pa(user_pgd))); 897 } 898 } 899 #else /* CONFIG_X86_32 */ 900 #ifdef CONFIG_X86_PAE 901 /* Need to make sure unshared kernel PMD is pinnable */ 902 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), 903 PT_PMD); 904 #endif 905 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd))); 906 #endif /* CONFIG_X86_64 */ 907 xen_mc_issue(0); 908 } 909 910 static void xen_pgd_pin(struct mm_struct *mm) 911 { 912 __xen_pgd_pin(mm, mm->pgd); 913 } 914 915 /* 916 * On save, we need to pin all pagetables to make sure they get their 917 * mfns turned into pfns. Search the list for any unpinned pgds and pin 918 * them (unpinned pgds are not currently in use, probably because the 919 * process is under construction or destruction). 920 * 921 * Expected to be called in stop_machine() ("equivalent to taking 922 * every spinlock in the system"), so the locking doesn't really 923 * matter all that much. 924 */ 925 void xen_mm_pin_all(void) 926 { 927 struct page *page; 928 929 spin_lock(&pgd_lock); 930 931 list_for_each_entry(page, &pgd_list, lru) { 932 if (!PagePinned(page)) { 933 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page)); 934 SetPageSavePinned(page); 935 } 936 } 937 938 spin_unlock(&pgd_lock); 939 } 940 941 /* 942 * The init_mm pagetable is really pinned as soon as its created, but 943 * that's before we have page structures to store the bits. So do all 944 * the book-keeping now. 945 */ 946 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page, 947 enum pt_level level) 948 { 949 SetPagePinned(page); 950 return 0; 951 } 952 953 static void __init xen_mark_init_mm_pinned(void) 954 { 955 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP); 956 } 957 958 static int xen_unpin_page(struct mm_struct *mm, struct page *page, 959 enum pt_level level) 960 { 961 unsigned pgfl = TestClearPagePinned(page); 962 963 if (pgfl && !PageHighMem(page)) { 964 void *pt = lowmem_page_address(page); 965 unsigned long pfn = page_to_pfn(page); 966 spinlock_t *ptl = NULL; 967 struct multicall_space mcs; 968 969 /* 970 * Do the converse to pin_page. If we're using split 971 * pte locks, we must be holding the lock for while 972 * the pte page is unpinned but still RO to prevent 973 * concurrent updates from seeing it in this 974 * partially-pinned state. 975 */ 976 if (level == PT_PTE) { 977 ptl = xen_pte_lock(page, mm); 978 979 if (ptl) 980 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn); 981 } 982 983 mcs = __xen_mc_entry(0); 984 985 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, 986 pfn_pte(pfn, PAGE_KERNEL), 987 level == PT_PGD ? UVMF_TLB_FLUSH : 0); 988 989 if (ptl) { 990 /* unlock when batch completed */ 991 xen_mc_callback(xen_pte_unlock, ptl); 992 } 993 } 994 995 return 0; /* never need to flush on unpin */ 996 } 997 998 /* Release a pagetables pages back as normal RW */ 999 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd) 1000 { 1001 trace_xen_mmu_pgd_unpin(mm, pgd); 1002 1003 xen_mc_batch(); 1004 1005 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 1006 1007 #ifdef CONFIG_X86_64 1008 { 1009 pgd_t *user_pgd = xen_get_user_pgd(pgd); 1010 1011 if (user_pgd) { 1012 xen_do_pin(MMUEXT_UNPIN_TABLE, 1013 PFN_DOWN(__pa(user_pgd))); 1014 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD); 1015 } 1016 } 1017 #endif 1018 1019 #ifdef CONFIG_X86_PAE 1020 /* Need to make sure unshared kernel PMD is unpinned */ 1021 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), 1022 PT_PMD); 1023 #endif 1024 1025 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT); 1026 1027 xen_mc_issue(0); 1028 } 1029 1030 static void xen_pgd_unpin(struct mm_struct *mm) 1031 { 1032 __xen_pgd_unpin(mm, mm->pgd); 1033 } 1034 1035 /* 1036 * On resume, undo any pinning done at save, so that the rest of the 1037 * kernel doesn't see any unexpected pinned pagetables. 1038 */ 1039 void xen_mm_unpin_all(void) 1040 { 1041 struct page *page; 1042 1043 spin_lock(&pgd_lock); 1044 1045 list_for_each_entry(page, &pgd_list, lru) { 1046 if (PageSavePinned(page)) { 1047 BUG_ON(!PagePinned(page)); 1048 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page)); 1049 ClearPageSavePinned(page); 1050 } 1051 } 1052 1053 spin_unlock(&pgd_lock); 1054 } 1055 1056 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next) 1057 { 1058 spin_lock(&next->page_table_lock); 1059 xen_pgd_pin(next); 1060 spin_unlock(&next->page_table_lock); 1061 } 1062 1063 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) 1064 { 1065 spin_lock(&mm->page_table_lock); 1066 xen_pgd_pin(mm); 1067 spin_unlock(&mm->page_table_lock); 1068 } 1069 1070 1071 #ifdef CONFIG_SMP 1072 /* Another cpu may still have their %cr3 pointing at the pagetable, so 1073 we need to repoint it somewhere else before we can unpin it. */ 1074 static void drop_other_mm_ref(void *info) 1075 { 1076 struct mm_struct *mm = info; 1077 struct mm_struct *active_mm; 1078 1079 active_mm = this_cpu_read(cpu_tlbstate.active_mm); 1080 1081 if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK) 1082 leave_mm(smp_processor_id()); 1083 1084 /* If this cpu still has a stale cr3 reference, then make sure 1085 it has been flushed. */ 1086 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd)) 1087 load_cr3(swapper_pg_dir); 1088 } 1089 1090 static void xen_drop_mm_ref(struct mm_struct *mm) 1091 { 1092 cpumask_var_t mask; 1093 unsigned cpu; 1094 1095 if (current->active_mm == mm) { 1096 if (current->mm == mm) 1097 load_cr3(swapper_pg_dir); 1098 else 1099 leave_mm(smp_processor_id()); 1100 } 1101 1102 /* Get the "official" set of cpus referring to our pagetable. */ 1103 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) { 1104 for_each_online_cpu(cpu) { 1105 if (!cpumask_test_cpu(cpu, mm_cpumask(mm)) 1106 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd)) 1107 continue; 1108 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1); 1109 } 1110 return; 1111 } 1112 cpumask_copy(mask, mm_cpumask(mm)); 1113 1114 /* It's possible that a vcpu may have a stale reference to our 1115 cr3, because its in lazy mode, and it hasn't yet flushed 1116 its set of pending hypercalls yet. In this case, we can 1117 look at its actual current cr3 value, and force it to flush 1118 if needed. */ 1119 for_each_online_cpu(cpu) { 1120 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd)) 1121 cpumask_set_cpu(cpu, mask); 1122 } 1123 1124 if (!cpumask_empty(mask)) 1125 smp_call_function_many(mask, drop_other_mm_ref, mm, 1); 1126 free_cpumask_var(mask); 1127 } 1128 #else 1129 static void xen_drop_mm_ref(struct mm_struct *mm) 1130 { 1131 if (current->active_mm == mm) 1132 load_cr3(swapper_pg_dir); 1133 } 1134 #endif 1135 1136 /* 1137 * While a process runs, Xen pins its pagetables, which means that the 1138 * hypervisor forces it to be read-only, and it controls all updates 1139 * to it. This means that all pagetable updates have to go via the 1140 * hypervisor, which is moderately expensive. 1141 * 1142 * Since we're pulling the pagetable down, we switch to use init_mm, 1143 * unpin old process pagetable and mark it all read-write, which 1144 * allows further operations on it to be simple memory accesses. 1145 * 1146 * The only subtle point is that another CPU may be still using the 1147 * pagetable because of lazy tlb flushing. This means we need need to 1148 * switch all CPUs off this pagetable before we can unpin it. 1149 */ 1150 static void xen_exit_mmap(struct mm_struct *mm) 1151 { 1152 get_cpu(); /* make sure we don't move around */ 1153 xen_drop_mm_ref(mm); 1154 put_cpu(); 1155 1156 spin_lock(&mm->page_table_lock); 1157 1158 /* pgd may not be pinned in the error exit path of execve */ 1159 if (xen_page_pinned(mm->pgd)) 1160 xen_pgd_unpin(mm); 1161 1162 spin_unlock(&mm->page_table_lock); 1163 } 1164 1165 static void __init xen_pagetable_setup_start(pgd_t *base) 1166 { 1167 } 1168 1169 static __init void xen_mapping_pagetable_reserve(u64 start, u64 end) 1170 { 1171 /* reserve the range used */ 1172 native_pagetable_reserve(start, end); 1173 1174 /* set as RW the rest */ 1175 printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n", end, 1176 PFN_PHYS(pgt_buf_top)); 1177 while (end < PFN_PHYS(pgt_buf_top)) { 1178 make_lowmem_page_readwrite(__va(end)); 1179 end += PAGE_SIZE; 1180 } 1181 } 1182 1183 static void xen_post_allocator_init(void); 1184 1185 static void __init xen_pagetable_setup_done(pgd_t *base) 1186 { 1187 xen_setup_shared_info(); 1188 xen_post_allocator_init(); 1189 } 1190 1191 static void xen_write_cr2(unsigned long cr2) 1192 { 1193 this_cpu_read(xen_vcpu)->arch.cr2 = cr2; 1194 } 1195 1196 static unsigned long xen_read_cr2(void) 1197 { 1198 return this_cpu_read(xen_vcpu)->arch.cr2; 1199 } 1200 1201 unsigned long xen_read_cr2_direct(void) 1202 { 1203 return this_cpu_read(xen_vcpu_info.arch.cr2); 1204 } 1205 1206 static void xen_flush_tlb(void) 1207 { 1208 struct mmuext_op *op; 1209 struct multicall_space mcs; 1210 1211 trace_xen_mmu_flush_tlb(0); 1212 1213 preempt_disable(); 1214 1215 mcs = xen_mc_entry(sizeof(*op)); 1216 1217 op = mcs.args; 1218 op->cmd = MMUEXT_TLB_FLUSH_LOCAL; 1219 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1220 1221 xen_mc_issue(PARAVIRT_LAZY_MMU); 1222 1223 preempt_enable(); 1224 } 1225 1226 static void xen_flush_tlb_single(unsigned long addr) 1227 { 1228 struct mmuext_op *op; 1229 struct multicall_space mcs; 1230 1231 trace_xen_mmu_flush_tlb_single(addr); 1232 1233 preempt_disable(); 1234 1235 mcs = xen_mc_entry(sizeof(*op)); 1236 op = mcs.args; 1237 op->cmd = MMUEXT_INVLPG_LOCAL; 1238 op->arg1.linear_addr = addr & PAGE_MASK; 1239 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1240 1241 xen_mc_issue(PARAVIRT_LAZY_MMU); 1242 1243 preempt_enable(); 1244 } 1245 1246 static void xen_flush_tlb_others(const struct cpumask *cpus, 1247 struct mm_struct *mm, unsigned long va) 1248 { 1249 struct { 1250 struct mmuext_op op; 1251 #ifdef CONFIG_SMP 1252 DECLARE_BITMAP(mask, num_processors); 1253 #else 1254 DECLARE_BITMAP(mask, NR_CPUS); 1255 #endif 1256 } *args; 1257 struct multicall_space mcs; 1258 1259 trace_xen_mmu_flush_tlb_others(cpus, mm, va); 1260 1261 if (cpumask_empty(cpus)) 1262 return; /* nothing to do */ 1263 1264 mcs = xen_mc_entry(sizeof(*args)); 1265 args = mcs.args; 1266 args->op.arg2.vcpumask = to_cpumask(args->mask); 1267 1268 /* Remove us, and any offline CPUS. */ 1269 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask); 1270 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask)); 1271 1272 if (va == TLB_FLUSH_ALL) { 1273 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; 1274 } else { 1275 args->op.cmd = MMUEXT_INVLPG_MULTI; 1276 args->op.arg1.linear_addr = va; 1277 } 1278 1279 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); 1280 1281 xen_mc_issue(PARAVIRT_LAZY_MMU); 1282 } 1283 1284 static unsigned long xen_read_cr3(void) 1285 { 1286 return this_cpu_read(xen_cr3); 1287 } 1288 1289 static void set_current_cr3(void *v) 1290 { 1291 this_cpu_write(xen_current_cr3, (unsigned long)v); 1292 } 1293 1294 static void __xen_write_cr3(bool kernel, unsigned long cr3) 1295 { 1296 struct mmuext_op op; 1297 unsigned long mfn; 1298 1299 trace_xen_mmu_write_cr3(kernel, cr3); 1300 1301 if (cr3) 1302 mfn = pfn_to_mfn(PFN_DOWN(cr3)); 1303 else 1304 mfn = 0; 1305 1306 WARN_ON(mfn == 0 && kernel); 1307 1308 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR; 1309 op.arg1.mfn = mfn; 1310 1311 xen_extend_mmuext_op(&op); 1312 1313 if (kernel) { 1314 this_cpu_write(xen_cr3, cr3); 1315 1316 /* Update xen_current_cr3 once the batch has actually 1317 been submitted. */ 1318 xen_mc_callback(set_current_cr3, (void *)cr3); 1319 } 1320 } 1321 1322 static void xen_write_cr3(unsigned long cr3) 1323 { 1324 BUG_ON(preemptible()); 1325 1326 xen_mc_batch(); /* disables interrupts */ 1327 1328 /* Update while interrupts are disabled, so its atomic with 1329 respect to ipis */ 1330 this_cpu_write(xen_cr3, cr3); 1331 1332 __xen_write_cr3(true, cr3); 1333 1334 #ifdef CONFIG_X86_64 1335 { 1336 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3)); 1337 if (user_pgd) 1338 __xen_write_cr3(false, __pa(user_pgd)); 1339 else 1340 __xen_write_cr3(false, 0); 1341 } 1342 #endif 1343 1344 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ 1345 } 1346 1347 static int xen_pgd_alloc(struct mm_struct *mm) 1348 { 1349 pgd_t *pgd = mm->pgd; 1350 int ret = 0; 1351 1352 BUG_ON(PagePinned(virt_to_page(pgd))); 1353 1354 #ifdef CONFIG_X86_64 1355 { 1356 struct page *page = virt_to_page(pgd); 1357 pgd_t *user_pgd; 1358 1359 BUG_ON(page->private != 0); 1360 1361 ret = -ENOMEM; 1362 1363 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); 1364 page->private = (unsigned long)user_pgd; 1365 1366 if (user_pgd != NULL) { 1367 user_pgd[pgd_index(VSYSCALL_START)] = 1368 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE); 1369 ret = 0; 1370 } 1371 1372 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd)))); 1373 } 1374 #endif 1375 1376 return ret; 1377 } 1378 1379 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd) 1380 { 1381 #ifdef CONFIG_X86_64 1382 pgd_t *user_pgd = xen_get_user_pgd(pgd); 1383 1384 if (user_pgd) 1385 free_page((unsigned long)user_pgd); 1386 #endif 1387 } 1388 1389 #ifdef CONFIG_X86_32 1390 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte) 1391 { 1392 /* If there's an existing pte, then don't allow _PAGE_RW to be set */ 1393 if (pte_val_ma(*ptep) & _PAGE_PRESENT) 1394 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) & 1395 pte_val_ma(pte)); 1396 1397 return pte; 1398 } 1399 #else /* CONFIG_X86_64 */ 1400 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte) 1401 { 1402 unsigned long pfn = pte_pfn(pte); 1403 1404 /* 1405 * If the new pfn is within the range of the newly allocated 1406 * kernel pagetable, and it isn't being mapped into an 1407 * early_ioremap fixmap slot as a freshly allocated page, make sure 1408 * it is RO. 1409 */ 1410 if (((!is_early_ioremap_ptep(ptep) && 1411 pfn >= pgt_buf_start && pfn < pgt_buf_top)) || 1412 (is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1))) 1413 pte = pte_wrprotect(pte); 1414 1415 return pte; 1416 } 1417 #endif /* CONFIG_X86_64 */ 1418 1419 /* Init-time set_pte while constructing initial pagetables, which 1420 doesn't allow RO pagetable pages to be remapped RW */ 1421 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte) 1422 { 1423 pte = mask_rw_pte(ptep, pte); 1424 1425 xen_set_pte(ptep, pte); 1426 } 1427 1428 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn) 1429 { 1430 struct mmuext_op op; 1431 op.cmd = cmd; 1432 op.arg1.mfn = pfn_to_mfn(pfn); 1433 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) 1434 BUG(); 1435 } 1436 1437 /* Early in boot, while setting up the initial pagetable, assume 1438 everything is pinned. */ 1439 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn) 1440 { 1441 #ifdef CONFIG_FLATMEM 1442 BUG_ON(mem_map); /* should only be used early */ 1443 #endif 1444 make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); 1445 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); 1446 } 1447 1448 /* Used for pmd and pud */ 1449 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn) 1450 { 1451 #ifdef CONFIG_FLATMEM 1452 BUG_ON(mem_map); /* should only be used early */ 1453 #endif 1454 make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); 1455 } 1456 1457 /* Early release_pte assumes that all pts are pinned, since there's 1458 only init_mm and anything attached to that is pinned. */ 1459 static void __init xen_release_pte_init(unsigned long pfn) 1460 { 1461 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); 1462 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1463 } 1464 1465 static void __init xen_release_pmd_init(unsigned long pfn) 1466 { 1467 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1468 } 1469 1470 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn) 1471 { 1472 struct multicall_space mcs; 1473 struct mmuext_op *op; 1474 1475 mcs = __xen_mc_entry(sizeof(*op)); 1476 op = mcs.args; 1477 op->cmd = cmd; 1478 op->arg1.mfn = pfn_to_mfn(pfn); 1479 1480 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 1481 } 1482 1483 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot) 1484 { 1485 struct multicall_space mcs; 1486 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT); 1487 1488 mcs = __xen_mc_entry(0); 1489 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr, 1490 pfn_pte(pfn, prot), 0); 1491 } 1492 1493 /* This needs to make sure the new pte page is pinned iff its being 1494 attached to a pinned pagetable. */ 1495 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, 1496 unsigned level) 1497 { 1498 bool pinned = PagePinned(virt_to_page(mm->pgd)); 1499 1500 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned); 1501 1502 if (pinned) { 1503 struct page *page = pfn_to_page(pfn); 1504 1505 SetPagePinned(page); 1506 1507 if (!PageHighMem(page)) { 1508 xen_mc_batch(); 1509 1510 __set_pfn_prot(pfn, PAGE_KERNEL_RO); 1511 1512 if (level == PT_PTE && USE_SPLIT_PTLOCKS) 1513 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); 1514 1515 xen_mc_issue(PARAVIRT_LAZY_MMU); 1516 } else { 1517 /* make sure there are no stray mappings of 1518 this page */ 1519 kmap_flush_unused(); 1520 } 1521 } 1522 } 1523 1524 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn) 1525 { 1526 xen_alloc_ptpage(mm, pfn, PT_PTE); 1527 } 1528 1529 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn) 1530 { 1531 xen_alloc_ptpage(mm, pfn, PT_PMD); 1532 } 1533 1534 /* This should never happen until we're OK to use struct page */ 1535 static inline void xen_release_ptpage(unsigned long pfn, unsigned level) 1536 { 1537 struct page *page = pfn_to_page(pfn); 1538 bool pinned = PagePinned(page); 1539 1540 trace_xen_mmu_release_ptpage(pfn, level, pinned); 1541 1542 if (pinned) { 1543 if (!PageHighMem(page)) { 1544 xen_mc_batch(); 1545 1546 if (level == PT_PTE && USE_SPLIT_PTLOCKS) 1547 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); 1548 1549 __set_pfn_prot(pfn, PAGE_KERNEL); 1550 1551 xen_mc_issue(PARAVIRT_LAZY_MMU); 1552 } 1553 ClearPagePinned(page); 1554 } 1555 } 1556 1557 static void xen_release_pte(unsigned long pfn) 1558 { 1559 xen_release_ptpage(pfn, PT_PTE); 1560 } 1561 1562 static void xen_release_pmd(unsigned long pfn) 1563 { 1564 xen_release_ptpage(pfn, PT_PMD); 1565 } 1566 1567 #if PAGETABLE_LEVELS == 4 1568 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn) 1569 { 1570 xen_alloc_ptpage(mm, pfn, PT_PUD); 1571 } 1572 1573 static void xen_release_pud(unsigned long pfn) 1574 { 1575 xen_release_ptpage(pfn, PT_PUD); 1576 } 1577 #endif 1578 1579 void __init xen_reserve_top(void) 1580 { 1581 #ifdef CONFIG_X86_32 1582 unsigned long top = HYPERVISOR_VIRT_START; 1583 struct xen_platform_parameters pp; 1584 1585 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0) 1586 top = pp.virt_start; 1587 1588 reserve_top_address(-top); 1589 #endif /* CONFIG_X86_32 */ 1590 } 1591 1592 /* 1593 * Like __va(), but returns address in the kernel mapping (which is 1594 * all we have until the physical memory mapping has been set up. 1595 */ 1596 static void *__ka(phys_addr_t paddr) 1597 { 1598 #ifdef CONFIG_X86_64 1599 return (void *)(paddr + __START_KERNEL_map); 1600 #else 1601 return __va(paddr); 1602 #endif 1603 } 1604 1605 /* Convert a machine address to physical address */ 1606 static unsigned long m2p(phys_addr_t maddr) 1607 { 1608 phys_addr_t paddr; 1609 1610 maddr &= PTE_PFN_MASK; 1611 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT; 1612 1613 return paddr; 1614 } 1615 1616 /* Convert a machine address to kernel virtual */ 1617 static void *m2v(phys_addr_t maddr) 1618 { 1619 return __ka(m2p(maddr)); 1620 } 1621 1622 /* Set the page permissions on an identity-mapped pages */ 1623 static void set_page_prot(void *addr, pgprot_t prot) 1624 { 1625 unsigned long pfn = __pa(addr) >> PAGE_SHIFT; 1626 pte_t pte = pfn_pte(pfn, prot); 1627 1628 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0)) 1629 BUG(); 1630 } 1631 1632 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn) 1633 { 1634 unsigned pmdidx, pteidx; 1635 unsigned ident_pte; 1636 unsigned long pfn; 1637 1638 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES, 1639 PAGE_SIZE); 1640 1641 ident_pte = 0; 1642 pfn = 0; 1643 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) { 1644 pte_t *pte_page; 1645 1646 /* Reuse or allocate a page of ptes */ 1647 if (pmd_present(pmd[pmdidx])) 1648 pte_page = m2v(pmd[pmdidx].pmd); 1649 else { 1650 /* Check for free pte pages */ 1651 if (ident_pte == LEVEL1_IDENT_ENTRIES) 1652 break; 1653 1654 pte_page = &level1_ident_pgt[ident_pte]; 1655 ident_pte += PTRS_PER_PTE; 1656 1657 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE); 1658 } 1659 1660 /* Install mappings */ 1661 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) { 1662 pte_t pte; 1663 1664 #ifdef CONFIG_X86_32 1665 if (pfn > max_pfn_mapped) 1666 max_pfn_mapped = pfn; 1667 #endif 1668 1669 if (!pte_none(pte_page[pteidx])) 1670 continue; 1671 1672 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC); 1673 pte_page[pteidx] = pte; 1674 } 1675 } 1676 1677 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE) 1678 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO); 1679 1680 set_page_prot(pmd, PAGE_KERNEL_RO); 1681 } 1682 1683 void __init xen_setup_machphys_mapping(void) 1684 { 1685 struct xen_machphys_mapping mapping; 1686 1687 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) { 1688 machine_to_phys_mapping = (unsigned long *)mapping.v_start; 1689 machine_to_phys_nr = mapping.max_mfn + 1; 1690 } else { 1691 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES; 1692 } 1693 #ifdef CONFIG_X86_32 1694 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1)) 1695 < machine_to_phys_mapping); 1696 #endif 1697 } 1698 1699 #ifdef CONFIG_X86_64 1700 static void convert_pfn_mfn(void *v) 1701 { 1702 pte_t *pte = v; 1703 int i; 1704 1705 /* All levels are converted the same way, so just treat them 1706 as ptes. */ 1707 for (i = 0; i < PTRS_PER_PTE; i++) 1708 pte[i] = xen_make_pte(pte[i].pte); 1709 } 1710 1711 /* 1712 * Set up the initial kernel pagetable. 1713 * 1714 * We can construct this by grafting the Xen provided pagetable into 1715 * head_64.S's preconstructed pagetables. We copy the Xen L2's into 1716 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This 1717 * means that only the kernel has a physical mapping to start with - 1718 * but that's enough to get __va working. We need to fill in the rest 1719 * of the physical mapping once some sort of allocator has been set 1720 * up. 1721 */ 1722 pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd, 1723 unsigned long max_pfn) 1724 { 1725 pud_t *l3; 1726 pmd_t *l2; 1727 1728 /* max_pfn_mapped is the last pfn mapped in the initial memory 1729 * mappings. Considering that on Xen after the kernel mappings we 1730 * have the mappings of some pages that don't exist in pfn space, we 1731 * set max_pfn_mapped to the last real pfn mapped. */ 1732 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list)); 1733 1734 /* Zap identity mapping */ 1735 init_level4_pgt[0] = __pgd(0); 1736 1737 /* Pre-constructed entries are in pfn, so convert to mfn */ 1738 convert_pfn_mfn(init_level4_pgt); 1739 convert_pfn_mfn(level3_ident_pgt); 1740 convert_pfn_mfn(level3_kernel_pgt); 1741 1742 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd); 1743 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud); 1744 1745 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); 1746 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); 1747 1748 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd); 1749 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud); 1750 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); 1751 1752 /* Set up identity map */ 1753 xen_map_identity_early(level2_ident_pgt, max_pfn); 1754 1755 /* Make pagetable pieces RO */ 1756 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO); 1757 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO); 1758 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO); 1759 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO); 1760 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); 1761 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO); 1762 1763 /* Pin down new L4 */ 1764 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, 1765 PFN_DOWN(__pa_symbol(init_level4_pgt))); 1766 1767 /* Unpin Xen-provided one */ 1768 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 1769 1770 /* Switch over */ 1771 pgd = init_level4_pgt; 1772 1773 /* 1774 * At this stage there can be no user pgd, and no page 1775 * structure to attach it to, so make sure we just set kernel 1776 * pgd. 1777 */ 1778 xen_mc_batch(); 1779 __xen_write_cr3(true, __pa(pgd)); 1780 xen_mc_issue(PARAVIRT_LAZY_CPU); 1781 1782 memblock_reserve(__pa(xen_start_info->pt_base), 1783 xen_start_info->nr_pt_frames * PAGE_SIZE); 1784 1785 return pgd; 1786 } 1787 #else /* !CONFIG_X86_64 */ 1788 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD); 1789 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD); 1790 1791 static void __init xen_write_cr3_init(unsigned long cr3) 1792 { 1793 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir)); 1794 1795 BUG_ON(read_cr3() != __pa(initial_page_table)); 1796 BUG_ON(cr3 != __pa(swapper_pg_dir)); 1797 1798 /* 1799 * We are switching to swapper_pg_dir for the first time (from 1800 * initial_page_table) and therefore need to mark that page 1801 * read-only and then pin it. 1802 * 1803 * Xen disallows sharing of kernel PMDs for PAE 1804 * guests. Therefore we must copy the kernel PMD from 1805 * initial_page_table into a new kernel PMD to be used in 1806 * swapper_pg_dir. 1807 */ 1808 swapper_kernel_pmd = 1809 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); 1810 memcpy(swapper_kernel_pmd, initial_kernel_pmd, 1811 sizeof(pmd_t) * PTRS_PER_PMD); 1812 swapper_pg_dir[KERNEL_PGD_BOUNDARY] = 1813 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT); 1814 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO); 1815 1816 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO); 1817 xen_write_cr3(cr3); 1818 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn); 1819 1820 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, 1821 PFN_DOWN(__pa(initial_page_table))); 1822 set_page_prot(initial_page_table, PAGE_KERNEL); 1823 set_page_prot(initial_kernel_pmd, PAGE_KERNEL); 1824 1825 pv_mmu_ops.write_cr3 = &xen_write_cr3; 1826 } 1827 1828 pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd, 1829 unsigned long max_pfn) 1830 { 1831 pmd_t *kernel_pmd; 1832 1833 initial_kernel_pmd = 1834 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); 1835 1836 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) + 1837 xen_start_info->nr_pt_frames * PAGE_SIZE + 1838 512*1024); 1839 1840 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd); 1841 memcpy(initial_kernel_pmd, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD); 1842 1843 xen_map_identity_early(initial_kernel_pmd, max_pfn); 1844 1845 memcpy(initial_page_table, pgd, sizeof(pgd_t) * PTRS_PER_PGD); 1846 initial_page_table[KERNEL_PGD_BOUNDARY] = 1847 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT); 1848 1849 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO); 1850 set_page_prot(initial_page_table, PAGE_KERNEL_RO); 1851 set_page_prot(empty_zero_page, PAGE_KERNEL_RO); 1852 1853 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 1854 1855 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, 1856 PFN_DOWN(__pa(initial_page_table))); 1857 xen_write_cr3(__pa(initial_page_table)); 1858 1859 memblock_reserve(__pa(xen_start_info->pt_base), 1860 xen_start_info->nr_pt_frames * PAGE_SIZE); 1861 1862 return initial_page_table; 1863 } 1864 #endif /* CONFIG_X86_64 */ 1865 1866 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss; 1867 static unsigned char fake_ioapic_mapping[PAGE_SIZE] __page_aligned_bss; 1868 1869 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot) 1870 { 1871 pte_t pte; 1872 1873 phys >>= PAGE_SHIFT; 1874 1875 switch (idx) { 1876 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN: 1877 #ifdef CONFIG_X86_F00F_BUG 1878 case FIX_F00F_IDT: 1879 #endif 1880 #ifdef CONFIG_X86_32 1881 case FIX_WP_TEST: 1882 case FIX_VDSO: 1883 # ifdef CONFIG_HIGHMEM 1884 case FIX_KMAP_BEGIN ... FIX_KMAP_END: 1885 # endif 1886 #else 1887 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE: 1888 case VVAR_PAGE: 1889 #endif 1890 case FIX_TEXT_POKE0: 1891 case FIX_TEXT_POKE1: 1892 /* All local page mappings */ 1893 pte = pfn_pte(phys, prot); 1894 break; 1895 1896 #ifdef CONFIG_X86_LOCAL_APIC 1897 case FIX_APIC_BASE: /* maps dummy local APIC */ 1898 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); 1899 break; 1900 #endif 1901 1902 #ifdef CONFIG_X86_IO_APIC 1903 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END: 1904 /* 1905 * We just don't map the IO APIC - all access is via 1906 * hypercalls. Keep the address in the pte for reference. 1907 */ 1908 pte = pfn_pte(PFN_DOWN(__pa(fake_ioapic_mapping)), PAGE_KERNEL); 1909 break; 1910 #endif 1911 1912 case FIX_PARAVIRT_BOOTMAP: 1913 /* This is an MFN, but it isn't an IO mapping from the 1914 IO domain */ 1915 pte = mfn_pte(phys, prot); 1916 break; 1917 1918 default: 1919 /* By default, set_fixmap is used for hardware mappings */ 1920 pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP)); 1921 break; 1922 } 1923 1924 __native_set_fixmap(idx, pte); 1925 1926 #ifdef CONFIG_X86_64 1927 /* Replicate changes to map the vsyscall page into the user 1928 pagetable vsyscall mapping. */ 1929 if ((idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) || 1930 idx == VVAR_PAGE) { 1931 unsigned long vaddr = __fix_to_virt(idx); 1932 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte); 1933 } 1934 #endif 1935 } 1936 1937 void __init xen_ident_map_ISA(void) 1938 { 1939 unsigned long pa; 1940 1941 /* 1942 * If we're dom0, then linear map the ISA machine addresses into 1943 * the kernel's address space. 1944 */ 1945 if (!xen_initial_domain()) 1946 return; 1947 1948 xen_raw_printk("Xen: setup ISA identity maps\n"); 1949 1950 for (pa = ISA_START_ADDRESS; pa < ISA_END_ADDRESS; pa += PAGE_SIZE) { 1951 pte_t pte = mfn_pte(PFN_DOWN(pa), PAGE_KERNEL_IO); 1952 1953 if (HYPERVISOR_update_va_mapping(PAGE_OFFSET + pa, pte, 0)) 1954 BUG(); 1955 } 1956 1957 xen_flush_tlb(); 1958 } 1959 1960 static void __init xen_post_allocator_init(void) 1961 { 1962 pv_mmu_ops.set_pte = xen_set_pte; 1963 pv_mmu_ops.set_pmd = xen_set_pmd; 1964 pv_mmu_ops.set_pud = xen_set_pud; 1965 #if PAGETABLE_LEVELS == 4 1966 pv_mmu_ops.set_pgd = xen_set_pgd; 1967 #endif 1968 1969 /* This will work as long as patching hasn't happened yet 1970 (which it hasn't) */ 1971 pv_mmu_ops.alloc_pte = xen_alloc_pte; 1972 pv_mmu_ops.alloc_pmd = xen_alloc_pmd; 1973 pv_mmu_ops.release_pte = xen_release_pte; 1974 pv_mmu_ops.release_pmd = xen_release_pmd; 1975 #if PAGETABLE_LEVELS == 4 1976 pv_mmu_ops.alloc_pud = xen_alloc_pud; 1977 pv_mmu_ops.release_pud = xen_release_pud; 1978 #endif 1979 1980 #ifdef CONFIG_X86_64 1981 SetPagePinned(virt_to_page(level3_user_vsyscall)); 1982 #endif 1983 xen_mark_init_mm_pinned(); 1984 } 1985 1986 static void xen_leave_lazy_mmu(void) 1987 { 1988 preempt_disable(); 1989 xen_mc_flush(); 1990 paravirt_leave_lazy_mmu(); 1991 preempt_enable(); 1992 } 1993 1994 static const struct pv_mmu_ops xen_mmu_ops __initconst = { 1995 .read_cr2 = xen_read_cr2, 1996 .write_cr2 = xen_write_cr2, 1997 1998 .read_cr3 = xen_read_cr3, 1999 #ifdef CONFIG_X86_32 2000 .write_cr3 = xen_write_cr3_init, 2001 #else 2002 .write_cr3 = xen_write_cr3, 2003 #endif 2004 2005 .flush_tlb_user = xen_flush_tlb, 2006 .flush_tlb_kernel = xen_flush_tlb, 2007 .flush_tlb_single = xen_flush_tlb_single, 2008 .flush_tlb_others = xen_flush_tlb_others, 2009 2010 .pte_update = paravirt_nop, 2011 .pte_update_defer = paravirt_nop, 2012 2013 .pgd_alloc = xen_pgd_alloc, 2014 .pgd_free = xen_pgd_free, 2015 2016 .alloc_pte = xen_alloc_pte_init, 2017 .release_pte = xen_release_pte_init, 2018 .alloc_pmd = xen_alloc_pmd_init, 2019 .release_pmd = xen_release_pmd_init, 2020 2021 .set_pte = xen_set_pte_init, 2022 .set_pte_at = xen_set_pte_at, 2023 .set_pmd = xen_set_pmd_hyper, 2024 2025 .ptep_modify_prot_start = __ptep_modify_prot_start, 2026 .ptep_modify_prot_commit = __ptep_modify_prot_commit, 2027 2028 .pte_val = PV_CALLEE_SAVE(xen_pte_val), 2029 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val), 2030 2031 .make_pte = PV_CALLEE_SAVE(xen_make_pte), 2032 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd), 2033 2034 #ifdef CONFIG_X86_PAE 2035 .set_pte_atomic = xen_set_pte_atomic, 2036 .pte_clear = xen_pte_clear, 2037 .pmd_clear = xen_pmd_clear, 2038 #endif /* CONFIG_X86_PAE */ 2039 .set_pud = xen_set_pud_hyper, 2040 2041 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd), 2042 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val), 2043 2044 #if PAGETABLE_LEVELS == 4 2045 .pud_val = PV_CALLEE_SAVE(xen_pud_val), 2046 .make_pud = PV_CALLEE_SAVE(xen_make_pud), 2047 .set_pgd = xen_set_pgd_hyper, 2048 2049 .alloc_pud = xen_alloc_pmd_init, 2050 .release_pud = xen_release_pmd_init, 2051 #endif /* PAGETABLE_LEVELS == 4 */ 2052 2053 .activate_mm = xen_activate_mm, 2054 .dup_mmap = xen_dup_mmap, 2055 .exit_mmap = xen_exit_mmap, 2056 2057 .lazy_mode = { 2058 .enter = paravirt_enter_lazy_mmu, 2059 .leave = xen_leave_lazy_mmu, 2060 }, 2061 2062 .set_fixmap = xen_set_fixmap, 2063 }; 2064 2065 void __init xen_init_mmu_ops(void) 2066 { 2067 x86_init.mapping.pagetable_reserve = xen_mapping_pagetable_reserve; 2068 x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start; 2069 x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done; 2070 pv_mmu_ops = xen_mmu_ops; 2071 2072 memset(dummy_mapping, 0xff, PAGE_SIZE); 2073 memset(fake_ioapic_mapping, 0xfd, PAGE_SIZE); 2074 } 2075 2076 /* Protected by xen_reservation_lock. */ 2077 #define MAX_CONTIG_ORDER 9 /* 2MB */ 2078 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER]; 2079 2080 #define VOID_PTE (mfn_pte(0, __pgprot(0))) 2081 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order, 2082 unsigned long *in_frames, 2083 unsigned long *out_frames) 2084 { 2085 int i; 2086 struct multicall_space mcs; 2087 2088 xen_mc_batch(); 2089 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) { 2090 mcs = __xen_mc_entry(0); 2091 2092 if (in_frames) 2093 in_frames[i] = virt_to_mfn(vaddr); 2094 2095 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0); 2096 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY); 2097 2098 if (out_frames) 2099 out_frames[i] = virt_to_pfn(vaddr); 2100 } 2101 xen_mc_issue(0); 2102 } 2103 2104 /* 2105 * Update the pfn-to-mfn mappings for a virtual address range, either to 2106 * point to an array of mfns, or contiguously from a single starting 2107 * mfn. 2108 */ 2109 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order, 2110 unsigned long *mfns, 2111 unsigned long first_mfn) 2112 { 2113 unsigned i, limit; 2114 unsigned long mfn; 2115 2116 xen_mc_batch(); 2117 2118 limit = 1u << order; 2119 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) { 2120 struct multicall_space mcs; 2121 unsigned flags; 2122 2123 mcs = __xen_mc_entry(0); 2124 if (mfns) 2125 mfn = mfns[i]; 2126 else 2127 mfn = first_mfn + i; 2128 2129 if (i < (limit - 1)) 2130 flags = 0; 2131 else { 2132 if (order == 0) 2133 flags = UVMF_INVLPG | UVMF_ALL; 2134 else 2135 flags = UVMF_TLB_FLUSH | UVMF_ALL; 2136 } 2137 2138 MULTI_update_va_mapping(mcs.mc, vaddr, 2139 mfn_pte(mfn, PAGE_KERNEL), flags); 2140 2141 set_phys_to_machine(virt_to_pfn(vaddr), mfn); 2142 } 2143 2144 xen_mc_issue(0); 2145 } 2146 2147 /* 2148 * Perform the hypercall to exchange a region of our pfns to point to 2149 * memory with the required contiguous alignment. Takes the pfns as 2150 * input, and populates mfns as output. 2151 * 2152 * Returns a success code indicating whether the hypervisor was able to 2153 * satisfy the request or not. 2154 */ 2155 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in, 2156 unsigned long *pfns_in, 2157 unsigned long extents_out, 2158 unsigned int order_out, 2159 unsigned long *mfns_out, 2160 unsigned int address_bits) 2161 { 2162 long rc; 2163 int success; 2164 2165 struct xen_memory_exchange exchange = { 2166 .in = { 2167 .nr_extents = extents_in, 2168 .extent_order = order_in, 2169 .extent_start = pfns_in, 2170 .domid = DOMID_SELF 2171 }, 2172 .out = { 2173 .nr_extents = extents_out, 2174 .extent_order = order_out, 2175 .extent_start = mfns_out, 2176 .address_bits = address_bits, 2177 .domid = DOMID_SELF 2178 } 2179 }; 2180 2181 BUG_ON(extents_in << order_in != extents_out << order_out); 2182 2183 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange); 2184 success = (exchange.nr_exchanged == extents_in); 2185 2186 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0))); 2187 BUG_ON(success && (rc != 0)); 2188 2189 return success; 2190 } 2191 2192 int xen_create_contiguous_region(unsigned long vstart, unsigned int order, 2193 unsigned int address_bits) 2194 { 2195 unsigned long *in_frames = discontig_frames, out_frame; 2196 unsigned long flags; 2197 int success; 2198 2199 /* 2200 * Currently an auto-translated guest will not perform I/O, nor will 2201 * it require PAE page directories below 4GB. Therefore any calls to 2202 * this function are redundant and can be ignored. 2203 */ 2204 2205 if (xen_feature(XENFEAT_auto_translated_physmap)) 2206 return 0; 2207 2208 if (unlikely(order > MAX_CONTIG_ORDER)) 2209 return -ENOMEM; 2210 2211 memset((void *) vstart, 0, PAGE_SIZE << order); 2212 2213 spin_lock_irqsave(&xen_reservation_lock, flags); 2214 2215 /* 1. Zap current PTEs, remembering MFNs. */ 2216 xen_zap_pfn_range(vstart, order, in_frames, NULL); 2217 2218 /* 2. Get a new contiguous memory extent. */ 2219 out_frame = virt_to_pfn(vstart); 2220 success = xen_exchange_memory(1UL << order, 0, in_frames, 2221 1, order, &out_frame, 2222 address_bits); 2223 2224 /* 3. Map the new extent in place of old pages. */ 2225 if (success) 2226 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame); 2227 else 2228 xen_remap_exchanged_ptes(vstart, order, in_frames, 0); 2229 2230 spin_unlock_irqrestore(&xen_reservation_lock, flags); 2231 2232 return success ? 0 : -ENOMEM; 2233 } 2234 EXPORT_SYMBOL_GPL(xen_create_contiguous_region); 2235 2236 void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order) 2237 { 2238 unsigned long *out_frames = discontig_frames, in_frame; 2239 unsigned long flags; 2240 int success; 2241 2242 if (xen_feature(XENFEAT_auto_translated_physmap)) 2243 return; 2244 2245 if (unlikely(order > MAX_CONTIG_ORDER)) 2246 return; 2247 2248 memset((void *) vstart, 0, PAGE_SIZE << order); 2249 2250 spin_lock_irqsave(&xen_reservation_lock, flags); 2251 2252 /* 1. Find start MFN of contiguous extent. */ 2253 in_frame = virt_to_mfn(vstart); 2254 2255 /* 2. Zap current PTEs. */ 2256 xen_zap_pfn_range(vstart, order, NULL, out_frames); 2257 2258 /* 3. Do the exchange for non-contiguous MFNs. */ 2259 success = xen_exchange_memory(1, order, &in_frame, 1UL << order, 2260 0, out_frames, 0); 2261 2262 /* 4. Map new pages in place of old pages. */ 2263 if (success) 2264 xen_remap_exchanged_ptes(vstart, order, out_frames, 0); 2265 else 2266 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame); 2267 2268 spin_unlock_irqrestore(&xen_reservation_lock, flags); 2269 } 2270 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region); 2271 2272 #ifdef CONFIG_XEN_PVHVM 2273 static void xen_hvm_exit_mmap(struct mm_struct *mm) 2274 { 2275 struct xen_hvm_pagetable_dying a; 2276 int rc; 2277 2278 a.domid = DOMID_SELF; 2279 a.gpa = __pa(mm->pgd); 2280 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a); 2281 WARN_ON_ONCE(rc < 0); 2282 } 2283 2284 static int is_pagetable_dying_supported(void) 2285 { 2286 struct xen_hvm_pagetable_dying a; 2287 int rc = 0; 2288 2289 a.domid = DOMID_SELF; 2290 a.gpa = 0x00; 2291 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a); 2292 if (rc < 0) { 2293 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n"); 2294 return 0; 2295 } 2296 return 1; 2297 } 2298 2299 void __init xen_hvm_init_mmu_ops(void) 2300 { 2301 if (is_pagetable_dying_supported()) 2302 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap; 2303 } 2304 #endif 2305 2306 #define REMAP_BATCH_SIZE 16 2307 2308 struct remap_data { 2309 unsigned long mfn; 2310 pgprot_t prot; 2311 struct mmu_update *mmu_update; 2312 }; 2313 2314 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token, 2315 unsigned long addr, void *data) 2316 { 2317 struct remap_data *rmd = data; 2318 pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot)); 2319 2320 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr; 2321 rmd->mmu_update->val = pte_val_ma(pte); 2322 rmd->mmu_update++; 2323 2324 return 0; 2325 } 2326 2327 int xen_remap_domain_mfn_range(struct vm_area_struct *vma, 2328 unsigned long addr, 2329 unsigned long mfn, int nr, 2330 pgprot_t prot, unsigned domid) 2331 { 2332 struct remap_data rmd; 2333 struct mmu_update mmu_update[REMAP_BATCH_SIZE]; 2334 int batch; 2335 unsigned long range; 2336 int err = 0; 2337 2338 prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP); 2339 2340 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) == 2341 (VM_PFNMAP | VM_RESERVED | VM_IO))); 2342 2343 rmd.mfn = mfn; 2344 rmd.prot = prot; 2345 2346 while (nr) { 2347 batch = min(REMAP_BATCH_SIZE, nr); 2348 range = (unsigned long)batch << PAGE_SHIFT; 2349 2350 rmd.mmu_update = mmu_update; 2351 err = apply_to_page_range(vma->vm_mm, addr, range, 2352 remap_area_mfn_pte_fn, &rmd); 2353 if (err) 2354 goto out; 2355 2356 err = -EFAULT; 2357 if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0) 2358 goto out; 2359 2360 nr -= batch; 2361 addr += range; 2362 } 2363 2364 err = 0; 2365 out: 2366 2367 flush_tlb_all(); 2368 2369 return err; 2370 } 2371 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range); 2372