xref: /openbmc/linux/arch/x86/xen/mmu.c (revision 600a711c)
1 /*
2  * Xen mmu operations
3  *
4  * This file contains the various mmu fetch and update operations.
5  * The most important job they must perform is the mapping between the
6  * domain's pfn and the overall machine mfns.
7  *
8  * Xen allows guests to directly update the pagetable, in a controlled
9  * fashion.  In other words, the guest modifies the same pagetable
10  * that the CPU actually uses, which eliminates the overhead of having
11  * a separate shadow pagetable.
12  *
13  * In order to allow this, it falls on the guest domain to map its
14  * notion of a "physical" pfn - which is just a domain-local linear
15  * address - into a real "machine address" which the CPU's MMU can
16  * use.
17  *
18  * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19  * inserted directly into the pagetable.  When creating a new
20  * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
21  * when reading the content back with __(pgd|pmd|pte)_val, it converts
22  * the mfn back into a pfn.
23  *
24  * The other constraint is that all pages which make up a pagetable
25  * must be mapped read-only in the guest.  This prevents uncontrolled
26  * guest updates to the pagetable.  Xen strictly enforces this, and
27  * will disallow any pagetable update which will end up mapping a
28  * pagetable page RW, and will disallow using any writable page as a
29  * pagetable.
30  *
31  * Naively, when loading %cr3 with the base of a new pagetable, Xen
32  * would need to validate the whole pagetable before going on.
33  * Naturally, this is quite slow.  The solution is to "pin" a
34  * pagetable, which enforces all the constraints on the pagetable even
35  * when it is not actively in use.  This menas that Xen can be assured
36  * that it is still valid when you do load it into %cr3, and doesn't
37  * need to revalidate it.
38  *
39  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40  */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49 #include <linux/seq_file.h>
50 
51 #include <trace/events/xen.h>
52 
53 #include <asm/pgtable.h>
54 #include <asm/tlbflush.h>
55 #include <asm/fixmap.h>
56 #include <asm/mmu_context.h>
57 #include <asm/setup.h>
58 #include <asm/paravirt.h>
59 #include <asm/e820.h>
60 #include <asm/linkage.h>
61 #include <asm/page.h>
62 #include <asm/init.h>
63 #include <asm/pat.h>
64 #include <asm/smp.h>
65 
66 #include <asm/xen/hypercall.h>
67 #include <asm/xen/hypervisor.h>
68 
69 #include <xen/xen.h>
70 #include <xen/page.h>
71 #include <xen/interface/xen.h>
72 #include <xen/interface/hvm/hvm_op.h>
73 #include <xen/interface/version.h>
74 #include <xen/interface/memory.h>
75 #include <xen/hvc-console.h>
76 
77 #include "multicalls.h"
78 #include "mmu.h"
79 #include "debugfs.h"
80 
81 /*
82  * Protects atomic reservation decrease/increase against concurrent increases.
83  * Also protects non-atomic updates of current_pages and balloon lists.
84  */
85 DEFINE_SPINLOCK(xen_reservation_lock);
86 
87 #ifdef CONFIG_X86_32
88 /*
89  * Identity map, in addition to plain kernel map.  This needs to be
90  * large enough to allocate page table pages to allocate the rest.
91  * Each page can map 2MB.
92  */
93 #define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4)
94 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
95 #endif
96 #ifdef CONFIG_X86_64
97 /* l3 pud for userspace vsyscall mapping */
98 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
99 #endif /* CONFIG_X86_64 */
100 
101 /*
102  * Note about cr3 (pagetable base) values:
103  *
104  * xen_cr3 contains the current logical cr3 value; it contains the
105  * last set cr3.  This may not be the current effective cr3, because
106  * its update may be being lazily deferred.  However, a vcpu looking
107  * at its own cr3 can use this value knowing that it everything will
108  * be self-consistent.
109  *
110  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
111  * hypercall to set the vcpu cr3 is complete (so it may be a little
112  * out of date, but it will never be set early).  If one vcpu is
113  * looking at another vcpu's cr3 value, it should use this variable.
114  */
115 DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
116 DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
117 
118 
119 /*
120  * Just beyond the highest usermode address.  STACK_TOP_MAX has a
121  * redzone above it, so round it up to a PGD boundary.
122  */
123 #define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
124 
125 unsigned long arbitrary_virt_to_mfn(void *vaddr)
126 {
127 	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
128 
129 	return PFN_DOWN(maddr.maddr);
130 }
131 
132 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
133 {
134 	unsigned long address = (unsigned long)vaddr;
135 	unsigned int level;
136 	pte_t *pte;
137 	unsigned offset;
138 
139 	/*
140 	 * if the PFN is in the linear mapped vaddr range, we can just use
141 	 * the (quick) virt_to_machine() p2m lookup
142 	 */
143 	if (virt_addr_valid(vaddr))
144 		return virt_to_machine(vaddr);
145 
146 	/* otherwise we have to do a (slower) full page-table walk */
147 
148 	pte = lookup_address(address, &level);
149 	BUG_ON(pte == NULL);
150 	offset = address & ~PAGE_MASK;
151 	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
152 }
153 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
154 
155 void make_lowmem_page_readonly(void *vaddr)
156 {
157 	pte_t *pte, ptev;
158 	unsigned long address = (unsigned long)vaddr;
159 	unsigned int level;
160 
161 	pte = lookup_address(address, &level);
162 	if (pte == NULL)
163 		return;		/* vaddr missing */
164 
165 	ptev = pte_wrprotect(*pte);
166 
167 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
168 		BUG();
169 }
170 
171 void make_lowmem_page_readwrite(void *vaddr)
172 {
173 	pte_t *pte, ptev;
174 	unsigned long address = (unsigned long)vaddr;
175 	unsigned int level;
176 
177 	pte = lookup_address(address, &level);
178 	if (pte == NULL)
179 		return;		/* vaddr missing */
180 
181 	ptev = pte_mkwrite(*pte);
182 
183 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
184 		BUG();
185 }
186 
187 
188 static bool xen_page_pinned(void *ptr)
189 {
190 	struct page *page = virt_to_page(ptr);
191 
192 	return PagePinned(page);
193 }
194 
195 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
196 {
197 	struct multicall_space mcs;
198 	struct mmu_update *u;
199 
200 	trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
201 
202 	mcs = xen_mc_entry(sizeof(*u));
203 	u = mcs.args;
204 
205 	/* ptep might be kmapped when using 32-bit HIGHPTE */
206 	u->ptr = virt_to_machine(ptep).maddr;
207 	u->val = pte_val_ma(pteval);
208 
209 	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
210 
211 	xen_mc_issue(PARAVIRT_LAZY_MMU);
212 }
213 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
214 
215 static void xen_extend_mmu_update(const struct mmu_update *update)
216 {
217 	struct multicall_space mcs;
218 	struct mmu_update *u;
219 
220 	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
221 
222 	if (mcs.mc != NULL) {
223 		mcs.mc->args[1]++;
224 	} else {
225 		mcs = __xen_mc_entry(sizeof(*u));
226 		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
227 	}
228 
229 	u = mcs.args;
230 	*u = *update;
231 }
232 
233 static void xen_extend_mmuext_op(const struct mmuext_op *op)
234 {
235 	struct multicall_space mcs;
236 	struct mmuext_op *u;
237 
238 	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
239 
240 	if (mcs.mc != NULL) {
241 		mcs.mc->args[1]++;
242 	} else {
243 		mcs = __xen_mc_entry(sizeof(*u));
244 		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
245 	}
246 
247 	u = mcs.args;
248 	*u = *op;
249 }
250 
251 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
252 {
253 	struct mmu_update u;
254 
255 	preempt_disable();
256 
257 	xen_mc_batch();
258 
259 	/* ptr may be ioremapped for 64-bit pagetable setup */
260 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
261 	u.val = pmd_val_ma(val);
262 	xen_extend_mmu_update(&u);
263 
264 	xen_mc_issue(PARAVIRT_LAZY_MMU);
265 
266 	preempt_enable();
267 }
268 
269 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
270 {
271 	trace_xen_mmu_set_pmd(ptr, val);
272 
273 	/* If page is not pinned, we can just update the entry
274 	   directly */
275 	if (!xen_page_pinned(ptr)) {
276 		*ptr = val;
277 		return;
278 	}
279 
280 	xen_set_pmd_hyper(ptr, val);
281 }
282 
283 /*
284  * Associate a virtual page frame with a given physical page frame
285  * and protection flags for that frame.
286  */
287 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
288 {
289 	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
290 }
291 
292 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
293 {
294 	struct mmu_update u;
295 
296 	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
297 		return false;
298 
299 	xen_mc_batch();
300 
301 	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
302 	u.val = pte_val_ma(pteval);
303 	xen_extend_mmu_update(&u);
304 
305 	xen_mc_issue(PARAVIRT_LAZY_MMU);
306 
307 	return true;
308 }
309 
310 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
311 {
312 	if (!xen_batched_set_pte(ptep, pteval)) {
313 		/*
314 		 * Could call native_set_pte() here and trap and
315 		 * emulate the PTE write but with 32-bit guests this
316 		 * needs two traps (one for each of the two 32-bit
317 		 * words in the PTE) so do one hypercall directly
318 		 * instead.
319 		 */
320 		struct mmu_update u;
321 
322 		u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
323 		u.val = pte_val_ma(pteval);
324 		HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
325 	}
326 }
327 
328 static void xen_set_pte(pte_t *ptep, pte_t pteval)
329 {
330 	trace_xen_mmu_set_pte(ptep, pteval);
331 	__xen_set_pte(ptep, pteval);
332 }
333 
334 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
335 		    pte_t *ptep, pte_t pteval)
336 {
337 	trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
338 	__xen_set_pte(ptep, pteval);
339 }
340 
341 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
342 				 unsigned long addr, pte_t *ptep)
343 {
344 	/* Just return the pte as-is.  We preserve the bits on commit */
345 	trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
346 	return *ptep;
347 }
348 
349 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
350 				 pte_t *ptep, pte_t pte)
351 {
352 	struct mmu_update u;
353 
354 	trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
355 	xen_mc_batch();
356 
357 	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
358 	u.val = pte_val_ma(pte);
359 	xen_extend_mmu_update(&u);
360 
361 	xen_mc_issue(PARAVIRT_LAZY_MMU);
362 }
363 
364 /* Assume pteval_t is equivalent to all the other *val_t types. */
365 static pteval_t pte_mfn_to_pfn(pteval_t val)
366 {
367 	if (val & _PAGE_PRESENT) {
368 		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
369 		unsigned long pfn = mfn_to_pfn(mfn);
370 
371 		pteval_t flags = val & PTE_FLAGS_MASK;
372 		if (unlikely(pfn == ~0))
373 			val = flags & ~_PAGE_PRESENT;
374 		else
375 			val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
376 	}
377 
378 	return val;
379 }
380 
381 static pteval_t pte_pfn_to_mfn(pteval_t val)
382 {
383 	if (val & _PAGE_PRESENT) {
384 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
385 		pteval_t flags = val & PTE_FLAGS_MASK;
386 		unsigned long mfn;
387 
388 		if (!xen_feature(XENFEAT_auto_translated_physmap))
389 			mfn = get_phys_to_machine(pfn);
390 		else
391 			mfn = pfn;
392 		/*
393 		 * If there's no mfn for the pfn, then just create an
394 		 * empty non-present pte.  Unfortunately this loses
395 		 * information about the original pfn, so
396 		 * pte_mfn_to_pfn is asymmetric.
397 		 */
398 		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
399 			mfn = 0;
400 			flags = 0;
401 		} else {
402 			/*
403 			 * Paramount to do this test _after_ the
404 			 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
405 			 * IDENTITY_FRAME_BIT resolves to true.
406 			 */
407 			mfn &= ~FOREIGN_FRAME_BIT;
408 			if (mfn & IDENTITY_FRAME_BIT) {
409 				mfn &= ~IDENTITY_FRAME_BIT;
410 				flags |= _PAGE_IOMAP;
411 			}
412 		}
413 		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
414 	}
415 
416 	return val;
417 }
418 
419 static pteval_t iomap_pte(pteval_t val)
420 {
421 	if (val & _PAGE_PRESENT) {
422 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
423 		pteval_t flags = val & PTE_FLAGS_MASK;
424 
425 		/* We assume the pte frame number is a MFN, so
426 		   just use it as-is. */
427 		val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
428 	}
429 
430 	return val;
431 }
432 
433 static pteval_t xen_pte_val(pte_t pte)
434 {
435 	pteval_t pteval = pte.pte;
436 #if 0
437 	/* If this is a WC pte, convert back from Xen WC to Linux WC */
438 	if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
439 		WARN_ON(!pat_enabled);
440 		pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
441 	}
442 #endif
443 	if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
444 		return pteval;
445 
446 	return pte_mfn_to_pfn(pteval);
447 }
448 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
449 
450 static pgdval_t xen_pgd_val(pgd_t pgd)
451 {
452 	return pte_mfn_to_pfn(pgd.pgd);
453 }
454 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
455 
456 /*
457  * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
458  * are reserved for now, to correspond to the Intel-reserved PAT
459  * types.
460  *
461  * We expect Linux's PAT set as follows:
462  *
463  * Idx  PTE flags        Linux    Xen    Default
464  * 0                     WB       WB     WB
465  * 1            PWT      WC       WT     WT
466  * 2        PCD          UC-      UC-    UC-
467  * 3        PCD PWT      UC       UC     UC
468  * 4    PAT              WB       WC     WB
469  * 5    PAT     PWT      WC       WP     WT
470  * 6    PAT PCD          UC-      UC     UC-
471  * 7    PAT PCD PWT      UC       UC     UC
472  */
473 
474 void xen_set_pat(u64 pat)
475 {
476 	/* We expect Linux to use a PAT setting of
477 	 * UC UC- WC WB (ignoring the PAT flag) */
478 	WARN_ON(pat != 0x0007010600070106ull);
479 }
480 
481 static pte_t xen_make_pte(pteval_t pte)
482 {
483 	phys_addr_t addr = (pte & PTE_PFN_MASK);
484 #if 0
485 	/* If Linux is trying to set a WC pte, then map to the Xen WC.
486 	 * If _PAGE_PAT is set, then it probably means it is really
487 	 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
488 	 * things work out OK...
489 	 *
490 	 * (We should never see kernel mappings with _PAGE_PSE set,
491 	 * but we could see hugetlbfs mappings, I think.).
492 	 */
493 	if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
494 		if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
495 			pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
496 	}
497 #endif
498 	/*
499 	 * Unprivileged domains are allowed to do IOMAPpings for
500 	 * PCI passthrough, but not map ISA space.  The ISA
501 	 * mappings are just dummy local mappings to keep other
502 	 * parts of the kernel happy.
503 	 */
504 	if (unlikely(pte & _PAGE_IOMAP) &&
505 	    (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
506 		pte = iomap_pte(pte);
507 	} else {
508 		pte &= ~_PAGE_IOMAP;
509 		pte = pte_pfn_to_mfn(pte);
510 	}
511 
512 	return native_make_pte(pte);
513 }
514 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
515 
516 static pgd_t xen_make_pgd(pgdval_t pgd)
517 {
518 	pgd = pte_pfn_to_mfn(pgd);
519 	return native_make_pgd(pgd);
520 }
521 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
522 
523 static pmdval_t xen_pmd_val(pmd_t pmd)
524 {
525 	return pte_mfn_to_pfn(pmd.pmd);
526 }
527 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
528 
529 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
530 {
531 	struct mmu_update u;
532 
533 	preempt_disable();
534 
535 	xen_mc_batch();
536 
537 	/* ptr may be ioremapped for 64-bit pagetable setup */
538 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
539 	u.val = pud_val_ma(val);
540 	xen_extend_mmu_update(&u);
541 
542 	xen_mc_issue(PARAVIRT_LAZY_MMU);
543 
544 	preempt_enable();
545 }
546 
547 static void xen_set_pud(pud_t *ptr, pud_t val)
548 {
549 	trace_xen_mmu_set_pud(ptr, val);
550 
551 	/* If page is not pinned, we can just update the entry
552 	   directly */
553 	if (!xen_page_pinned(ptr)) {
554 		*ptr = val;
555 		return;
556 	}
557 
558 	xen_set_pud_hyper(ptr, val);
559 }
560 
561 #ifdef CONFIG_X86_PAE
562 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
563 {
564 	trace_xen_mmu_set_pte_atomic(ptep, pte);
565 	set_64bit((u64 *)ptep, native_pte_val(pte));
566 }
567 
568 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
569 {
570 	trace_xen_mmu_pte_clear(mm, addr, ptep);
571 	if (!xen_batched_set_pte(ptep, native_make_pte(0)))
572 		native_pte_clear(mm, addr, ptep);
573 }
574 
575 static void xen_pmd_clear(pmd_t *pmdp)
576 {
577 	trace_xen_mmu_pmd_clear(pmdp);
578 	set_pmd(pmdp, __pmd(0));
579 }
580 #endif	/* CONFIG_X86_PAE */
581 
582 static pmd_t xen_make_pmd(pmdval_t pmd)
583 {
584 	pmd = pte_pfn_to_mfn(pmd);
585 	return native_make_pmd(pmd);
586 }
587 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
588 
589 #if PAGETABLE_LEVELS == 4
590 static pudval_t xen_pud_val(pud_t pud)
591 {
592 	return pte_mfn_to_pfn(pud.pud);
593 }
594 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
595 
596 static pud_t xen_make_pud(pudval_t pud)
597 {
598 	pud = pte_pfn_to_mfn(pud);
599 
600 	return native_make_pud(pud);
601 }
602 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
603 
604 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
605 {
606 	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
607 	unsigned offset = pgd - pgd_page;
608 	pgd_t *user_ptr = NULL;
609 
610 	if (offset < pgd_index(USER_LIMIT)) {
611 		struct page *page = virt_to_page(pgd_page);
612 		user_ptr = (pgd_t *)page->private;
613 		if (user_ptr)
614 			user_ptr += offset;
615 	}
616 
617 	return user_ptr;
618 }
619 
620 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
621 {
622 	struct mmu_update u;
623 
624 	u.ptr = virt_to_machine(ptr).maddr;
625 	u.val = pgd_val_ma(val);
626 	xen_extend_mmu_update(&u);
627 }
628 
629 /*
630  * Raw hypercall-based set_pgd, intended for in early boot before
631  * there's a page structure.  This implies:
632  *  1. The only existing pagetable is the kernel's
633  *  2. It is always pinned
634  *  3. It has no user pagetable attached to it
635  */
636 static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
637 {
638 	preempt_disable();
639 
640 	xen_mc_batch();
641 
642 	__xen_set_pgd_hyper(ptr, val);
643 
644 	xen_mc_issue(PARAVIRT_LAZY_MMU);
645 
646 	preempt_enable();
647 }
648 
649 static void xen_set_pgd(pgd_t *ptr, pgd_t val)
650 {
651 	pgd_t *user_ptr = xen_get_user_pgd(ptr);
652 
653 	trace_xen_mmu_set_pgd(ptr, user_ptr, val);
654 
655 	/* If page is not pinned, we can just update the entry
656 	   directly */
657 	if (!xen_page_pinned(ptr)) {
658 		*ptr = val;
659 		if (user_ptr) {
660 			WARN_ON(xen_page_pinned(user_ptr));
661 			*user_ptr = val;
662 		}
663 		return;
664 	}
665 
666 	/* If it's pinned, then we can at least batch the kernel and
667 	   user updates together. */
668 	xen_mc_batch();
669 
670 	__xen_set_pgd_hyper(ptr, val);
671 	if (user_ptr)
672 		__xen_set_pgd_hyper(user_ptr, val);
673 
674 	xen_mc_issue(PARAVIRT_LAZY_MMU);
675 }
676 #endif	/* PAGETABLE_LEVELS == 4 */
677 
678 /*
679  * (Yet another) pagetable walker.  This one is intended for pinning a
680  * pagetable.  This means that it walks a pagetable and calls the
681  * callback function on each page it finds making up the page table,
682  * at every level.  It walks the entire pagetable, but it only bothers
683  * pinning pte pages which are below limit.  In the normal case this
684  * will be STACK_TOP_MAX, but at boot we need to pin up to
685  * FIXADDR_TOP.
686  *
687  * For 32-bit the important bit is that we don't pin beyond there,
688  * because then we start getting into Xen's ptes.
689  *
690  * For 64-bit, we must skip the Xen hole in the middle of the address
691  * space, just after the big x86-64 virtual hole.
692  */
693 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
694 			  int (*func)(struct mm_struct *mm, struct page *,
695 				      enum pt_level),
696 			  unsigned long limit)
697 {
698 	int flush = 0;
699 	unsigned hole_low, hole_high;
700 	unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
701 	unsigned pgdidx, pudidx, pmdidx;
702 
703 	/* The limit is the last byte to be touched */
704 	limit--;
705 	BUG_ON(limit >= FIXADDR_TOP);
706 
707 	if (xen_feature(XENFEAT_auto_translated_physmap))
708 		return 0;
709 
710 	/*
711 	 * 64-bit has a great big hole in the middle of the address
712 	 * space, which contains the Xen mappings.  On 32-bit these
713 	 * will end up making a zero-sized hole and so is a no-op.
714 	 */
715 	hole_low = pgd_index(USER_LIMIT);
716 	hole_high = pgd_index(PAGE_OFFSET);
717 
718 	pgdidx_limit = pgd_index(limit);
719 #if PTRS_PER_PUD > 1
720 	pudidx_limit = pud_index(limit);
721 #else
722 	pudidx_limit = 0;
723 #endif
724 #if PTRS_PER_PMD > 1
725 	pmdidx_limit = pmd_index(limit);
726 #else
727 	pmdidx_limit = 0;
728 #endif
729 
730 	for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
731 		pud_t *pud;
732 
733 		if (pgdidx >= hole_low && pgdidx < hole_high)
734 			continue;
735 
736 		if (!pgd_val(pgd[pgdidx]))
737 			continue;
738 
739 		pud = pud_offset(&pgd[pgdidx], 0);
740 
741 		if (PTRS_PER_PUD > 1) /* not folded */
742 			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
743 
744 		for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
745 			pmd_t *pmd;
746 
747 			if (pgdidx == pgdidx_limit &&
748 			    pudidx > pudidx_limit)
749 				goto out;
750 
751 			if (pud_none(pud[pudidx]))
752 				continue;
753 
754 			pmd = pmd_offset(&pud[pudidx], 0);
755 
756 			if (PTRS_PER_PMD > 1) /* not folded */
757 				flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
758 
759 			for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
760 				struct page *pte;
761 
762 				if (pgdidx == pgdidx_limit &&
763 				    pudidx == pudidx_limit &&
764 				    pmdidx > pmdidx_limit)
765 					goto out;
766 
767 				if (pmd_none(pmd[pmdidx]))
768 					continue;
769 
770 				pte = pmd_page(pmd[pmdidx]);
771 				flush |= (*func)(mm, pte, PT_PTE);
772 			}
773 		}
774 	}
775 
776 out:
777 	/* Do the top level last, so that the callbacks can use it as
778 	   a cue to do final things like tlb flushes. */
779 	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
780 
781 	return flush;
782 }
783 
784 static int xen_pgd_walk(struct mm_struct *mm,
785 			int (*func)(struct mm_struct *mm, struct page *,
786 				    enum pt_level),
787 			unsigned long limit)
788 {
789 	return __xen_pgd_walk(mm, mm->pgd, func, limit);
790 }
791 
792 /* If we're using split pte locks, then take the page's lock and
793    return a pointer to it.  Otherwise return NULL. */
794 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
795 {
796 	spinlock_t *ptl = NULL;
797 
798 #if USE_SPLIT_PTLOCKS
799 	ptl = __pte_lockptr(page);
800 	spin_lock_nest_lock(ptl, &mm->page_table_lock);
801 #endif
802 
803 	return ptl;
804 }
805 
806 static void xen_pte_unlock(void *v)
807 {
808 	spinlock_t *ptl = v;
809 	spin_unlock(ptl);
810 }
811 
812 static void xen_do_pin(unsigned level, unsigned long pfn)
813 {
814 	struct mmuext_op op;
815 
816 	op.cmd = level;
817 	op.arg1.mfn = pfn_to_mfn(pfn);
818 
819 	xen_extend_mmuext_op(&op);
820 }
821 
822 static int xen_pin_page(struct mm_struct *mm, struct page *page,
823 			enum pt_level level)
824 {
825 	unsigned pgfl = TestSetPagePinned(page);
826 	int flush;
827 
828 	if (pgfl)
829 		flush = 0;		/* already pinned */
830 	else if (PageHighMem(page))
831 		/* kmaps need flushing if we found an unpinned
832 		   highpage */
833 		flush = 1;
834 	else {
835 		void *pt = lowmem_page_address(page);
836 		unsigned long pfn = page_to_pfn(page);
837 		struct multicall_space mcs = __xen_mc_entry(0);
838 		spinlock_t *ptl;
839 
840 		flush = 0;
841 
842 		/*
843 		 * We need to hold the pagetable lock between the time
844 		 * we make the pagetable RO and when we actually pin
845 		 * it.  If we don't, then other users may come in and
846 		 * attempt to update the pagetable by writing it,
847 		 * which will fail because the memory is RO but not
848 		 * pinned, so Xen won't do the trap'n'emulate.
849 		 *
850 		 * If we're using split pte locks, we can't hold the
851 		 * entire pagetable's worth of locks during the
852 		 * traverse, because we may wrap the preempt count (8
853 		 * bits).  The solution is to mark RO and pin each PTE
854 		 * page while holding the lock.  This means the number
855 		 * of locks we end up holding is never more than a
856 		 * batch size (~32 entries, at present).
857 		 *
858 		 * If we're not using split pte locks, we needn't pin
859 		 * the PTE pages independently, because we're
860 		 * protected by the overall pagetable lock.
861 		 */
862 		ptl = NULL;
863 		if (level == PT_PTE)
864 			ptl = xen_pte_lock(page, mm);
865 
866 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
867 					pfn_pte(pfn, PAGE_KERNEL_RO),
868 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
869 
870 		if (ptl) {
871 			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
872 
873 			/* Queue a deferred unlock for when this batch
874 			   is completed. */
875 			xen_mc_callback(xen_pte_unlock, ptl);
876 		}
877 	}
878 
879 	return flush;
880 }
881 
882 /* This is called just after a mm has been created, but it has not
883    been used yet.  We need to make sure that its pagetable is all
884    read-only, and can be pinned. */
885 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
886 {
887 	trace_xen_mmu_pgd_pin(mm, pgd);
888 
889 	xen_mc_batch();
890 
891 	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
892 		/* re-enable interrupts for flushing */
893 		xen_mc_issue(0);
894 
895 		kmap_flush_unused();
896 
897 		xen_mc_batch();
898 	}
899 
900 #ifdef CONFIG_X86_64
901 	{
902 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
903 
904 		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
905 
906 		if (user_pgd) {
907 			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
908 			xen_do_pin(MMUEXT_PIN_L4_TABLE,
909 				   PFN_DOWN(__pa(user_pgd)));
910 		}
911 	}
912 #else /* CONFIG_X86_32 */
913 #ifdef CONFIG_X86_PAE
914 	/* Need to make sure unshared kernel PMD is pinnable */
915 	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
916 		     PT_PMD);
917 #endif
918 	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
919 #endif /* CONFIG_X86_64 */
920 	xen_mc_issue(0);
921 }
922 
923 static void xen_pgd_pin(struct mm_struct *mm)
924 {
925 	__xen_pgd_pin(mm, mm->pgd);
926 }
927 
928 /*
929  * On save, we need to pin all pagetables to make sure they get their
930  * mfns turned into pfns.  Search the list for any unpinned pgds and pin
931  * them (unpinned pgds are not currently in use, probably because the
932  * process is under construction or destruction).
933  *
934  * Expected to be called in stop_machine() ("equivalent to taking
935  * every spinlock in the system"), so the locking doesn't really
936  * matter all that much.
937  */
938 void xen_mm_pin_all(void)
939 {
940 	struct page *page;
941 
942 	spin_lock(&pgd_lock);
943 
944 	list_for_each_entry(page, &pgd_list, lru) {
945 		if (!PagePinned(page)) {
946 			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
947 			SetPageSavePinned(page);
948 		}
949 	}
950 
951 	spin_unlock(&pgd_lock);
952 }
953 
954 /*
955  * The init_mm pagetable is really pinned as soon as its created, but
956  * that's before we have page structures to store the bits.  So do all
957  * the book-keeping now.
958  */
959 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
960 				  enum pt_level level)
961 {
962 	SetPagePinned(page);
963 	return 0;
964 }
965 
966 static void __init xen_mark_init_mm_pinned(void)
967 {
968 	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
969 }
970 
971 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
972 			  enum pt_level level)
973 {
974 	unsigned pgfl = TestClearPagePinned(page);
975 
976 	if (pgfl && !PageHighMem(page)) {
977 		void *pt = lowmem_page_address(page);
978 		unsigned long pfn = page_to_pfn(page);
979 		spinlock_t *ptl = NULL;
980 		struct multicall_space mcs;
981 
982 		/*
983 		 * Do the converse to pin_page.  If we're using split
984 		 * pte locks, we must be holding the lock for while
985 		 * the pte page is unpinned but still RO to prevent
986 		 * concurrent updates from seeing it in this
987 		 * partially-pinned state.
988 		 */
989 		if (level == PT_PTE) {
990 			ptl = xen_pte_lock(page, mm);
991 
992 			if (ptl)
993 				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
994 		}
995 
996 		mcs = __xen_mc_entry(0);
997 
998 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
999 					pfn_pte(pfn, PAGE_KERNEL),
1000 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1001 
1002 		if (ptl) {
1003 			/* unlock when batch completed */
1004 			xen_mc_callback(xen_pte_unlock, ptl);
1005 		}
1006 	}
1007 
1008 	return 0;		/* never need to flush on unpin */
1009 }
1010 
1011 /* Release a pagetables pages back as normal RW */
1012 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1013 {
1014 	trace_xen_mmu_pgd_unpin(mm, pgd);
1015 
1016 	xen_mc_batch();
1017 
1018 	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1019 
1020 #ifdef CONFIG_X86_64
1021 	{
1022 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
1023 
1024 		if (user_pgd) {
1025 			xen_do_pin(MMUEXT_UNPIN_TABLE,
1026 				   PFN_DOWN(__pa(user_pgd)));
1027 			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1028 		}
1029 	}
1030 #endif
1031 
1032 #ifdef CONFIG_X86_PAE
1033 	/* Need to make sure unshared kernel PMD is unpinned */
1034 	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1035 		       PT_PMD);
1036 #endif
1037 
1038 	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1039 
1040 	xen_mc_issue(0);
1041 }
1042 
1043 static void xen_pgd_unpin(struct mm_struct *mm)
1044 {
1045 	__xen_pgd_unpin(mm, mm->pgd);
1046 }
1047 
1048 /*
1049  * On resume, undo any pinning done at save, so that the rest of the
1050  * kernel doesn't see any unexpected pinned pagetables.
1051  */
1052 void xen_mm_unpin_all(void)
1053 {
1054 	struct page *page;
1055 
1056 	spin_lock(&pgd_lock);
1057 
1058 	list_for_each_entry(page, &pgd_list, lru) {
1059 		if (PageSavePinned(page)) {
1060 			BUG_ON(!PagePinned(page));
1061 			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1062 			ClearPageSavePinned(page);
1063 		}
1064 	}
1065 
1066 	spin_unlock(&pgd_lock);
1067 }
1068 
1069 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1070 {
1071 	spin_lock(&next->page_table_lock);
1072 	xen_pgd_pin(next);
1073 	spin_unlock(&next->page_table_lock);
1074 }
1075 
1076 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1077 {
1078 	spin_lock(&mm->page_table_lock);
1079 	xen_pgd_pin(mm);
1080 	spin_unlock(&mm->page_table_lock);
1081 }
1082 
1083 
1084 #ifdef CONFIG_SMP
1085 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1086    we need to repoint it somewhere else before we can unpin it. */
1087 static void drop_other_mm_ref(void *info)
1088 {
1089 	struct mm_struct *mm = info;
1090 	struct mm_struct *active_mm;
1091 
1092 	active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1093 
1094 	if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1095 		leave_mm(smp_processor_id());
1096 
1097 	/* If this cpu still has a stale cr3 reference, then make sure
1098 	   it has been flushed. */
1099 	if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1100 		load_cr3(swapper_pg_dir);
1101 }
1102 
1103 static void xen_drop_mm_ref(struct mm_struct *mm)
1104 {
1105 	cpumask_var_t mask;
1106 	unsigned cpu;
1107 
1108 	if (current->active_mm == mm) {
1109 		if (current->mm == mm)
1110 			load_cr3(swapper_pg_dir);
1111 		else
1112 			leave_mm(smp_processor_id());
1113 	}
1114 
1115 	/* Get the "official" set of cpus referring to our pagetable. */
1116 	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1117 		for_each_online_cpu(cpu) {
1118 			if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1119 			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1120 				continue;
1121 			smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1122 		}
1123 		return;
1124 	}
1125 	cpumask_copy(mask, mm_cpumask(mm));
1126 
1127 	/* It's possible that a vcpu may have a stale reference to our
1128 	   cr3, because its in lazy mode, and it hasn't yet flushed
1129 	   its set of pending hypercalls yet.  In this case, we can
1130 	   look at its actual current cr3 value, and force it to flush
1131 	   if needed. */
1132 	for_each_online_cpu(cpu) {
1133 		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1134 			cpumask_set_cpu(cpu, mask);
1135 	}
1136 
1137 	if (!cpumask_empty(mask))
1138 		smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1139 	free_cpumask_var(mask);
1140 }
1141 #else
1142 static void xen_drop_mm_ref(struct mm_struct *mm)
1143 {
1144 	if (current->active_mm == mm)
1145 		load_cr3(swapper_pg_dir);
1146 }
1147 #endif
1148 
1149 /*
1150  * While a process runs, Xen pins its pagetables, which means that the
1151  * hypervisor forces it to be read-only, and it controls all updates
1152  * to it.  This means that all pagetable updates have to go via the
1153  * hypervisor, which is moderately expensive.
1154  *
1155  * Since we're pulling the pagetable down, we switch to use init_mm,
1156  * unpin old process pagetable and mark it all read-write, which
1157  * allows further operations on it to be simple memory accesses.
1158  *
1159  * The only subtle point is that another CPU may be still using the
1160  * pagetable because of lazy tlb flushing.  This means we need need to
1161  * switch all CPUs off this pagetable before we can unpin it.
1162  */
1163 static void xen_exit_mmap(struct mm_struct *mm)
1164 {
1165 	get_cpu();		/* make sure we don't move around */
1166 	xen_drop_mm_ref(mm);
1167 	put_cpu();
1168 
1169 	spin_lock(&mm->page_table_lock);
1170 
1171 	/* pgd may not be pinned in the error exit path of execve */
1172 	if (xen_page_pinned(mm->pgd))
1173 		xen_pgd_unpin(mm);
1174 
1175 	spin_unlock(&mm->page_table_lock);
1176 }
1177 
1178 static void xen_post_allocator_init(void);
1179 
1180 static __init void xen_mapping_pagetable_reserve(u64 start, u64 end)
1181 {
1182 	/* reserve the range used */
1183 	native_pagetable_reserve(start, end);
1184 
1185 	/* set as RW the rest */
1186 	printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n", end,
1187 			PFN_PHYS(pgt_buf_top));
1188 	while (end < PFN_PHYS(pgt_buf_top)) {
1189 		make_lowmem_page_readwrite(__va(end));
1190 		end += PAGE_SIZE;
1191 	}
1192 }
1193 
1194 #ifdef CONFIG_X86_64
1195 static void __init xen_cleanhighmap(unsigned long vaddr,
1196 				    unsigned long vaddr_end)
1197 {
1198 	unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1199 	pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1200 
1201 	/* NOTE: The loop is more greedy than the cleanup_highmap variant.
1202 	 * We include the PMD passed in on _both_ boundaries. */
1203 	for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PAGE_SIZE));
1204 			pmd++, vaddr += PMD_SIZE) {
1205 		if (pmd_none(*pmd))
1206 			continue;
1207 		if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1208 			set_pmd(pmd, __pmd(0));
1209 	}
1210 	/* In case we did something silly, we should crash in this function
1211 	 * instead of somewhere later and be confusing. */
1212 	xen_mc_flush();
1213 }
1214 #endif
1215 static void __init xen_pagetable_init(void)
1216 {
1217 #ifdef CONFIG_X86_64
1218 	unsigned long size;
1219 	unsigned long addr;
1220 #endif
1221 	paging_init();
1222 	xen_setup_shared_info();
1223 #ifdef CONFIG_X86_64
1224 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1225 		unsigned long new_mfn_list;
1226 
1227 		size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1228 
1229 		/* On 32-bit, we get zero so this never gets executed. */
1230 		new_mfn_list = xen_revector_p2m_tree();
1231 		if (new_mfn_list && new_mfn_list != xen_start_info->mfn_list) {
1232 			/* using __ka address and sticking INVALID_P2M_ENTRY! */
1233 			memset((void *)xen_start_info->mfn_list, 0xff, size);
1234 
1235 			/* We should be in __ka space. */
1236 			BUG_ON(xen_start_info->mfn_list < __START_KERNEL_map);
1237 			addr = xen_start_info->mfn_list;
1238 			/* We roundup to the PMD, which means that if anybody at this stage is
1239 			 * using the __ka address of xen_start_info or xen_start_info->shared_info
1240 			 * they are in going to crash. Fortunatly we have already revectored
1241 			 * in xen_setup_kernel_pagetable and in xen_setup_shared_info. */
1242 			size = roundup(size, PMD_SIZE);
1243 			xen_cleanhighmap(addr, addr + size);
1244 
1245 			size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1246 			memblock_free(__pa(xen_start_info->mfn_list), size);
1247 			/* And revector! Bye bye old array */
1248 			xen_start_info->mfn_list = new_mfn_list;
1249 		} else
1250 			goto skip;
1251 	}
1252 	/* At this stage, cleanup_highmap has already cleaned __ka space
1253 	 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1254 	 * the ramdisk). We continue on, erasing PMD entries that point to page
1255 	 * tables - do note that they are accessible at this stage via __va.
1256 	 * For good measure we also round up to the PMD - which means that if
1257 	 * anybody is using __ka address to the initial boot-stack - and try
1258 	 * to use it - they are going to crash. The xen_start_info has been
1259 	 * taken care of already in xen_setup_kernel_pagetable. */
1260 	addr = xen_start_info->pt_base;
1261 	size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1262 
1263 	xen_cleanhighmap(addr, addr + size);
1264 	xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1265 #ifdef DEBUG
1266 	/* This is superflous and is not neccessary, but you know what
1267 	 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1268 	 * anything at this stage. */
1269 	xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1270 #endif
1271 skip:
1272 #endif
1273 	xen_post_allocator_init();
1274 }
1275 static void xen_write_cr2(unsigned long cr2)
1276 {
1277 	this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1278 }
1279 
1280 static unsigned long xen_read_cr2(void)
1281 {
1282 	return this_cpu_read(xen_vcpu)->arch.cr2;
1283 }
1284 
1285 unsigned long xen_read_cr2_direct(void)
1286 {
1287 	return this_cpu_read(xen_vcpu_info.arch.cr2);
1288 }
1289 
1290 static void xen_flush_tlb(void)
1291 {
1292 	struct mmuext_op *op;
1293 	struct multicall_space mcs;
1294 
1295 	trace_xen_mmu_flush_tlb(0);
1296 
1297 	preempt_disable();
1298 
1299 	mcs = xen_mc_entry(sizeof(*op));
1300 
1301 	op = mcs.args;
1302 	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1303 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1304 
1305 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1306 
1307 	preempt_enable();
1308 }
1309 
1310 static void xen_flush_tlb_single(unsigned long addr)
1311 {
1312 	struct mmuext_op *op;
1313 	struct multicall_space mcs;
1314 
1315 	trace_xen_mmu_flush_tlb_single(addr);
1316 
1317 	preempt_disable();
1318 
1319 	mcs = xen_mc_entry(sizeof(*op));
1320 	op = mcs.args;
1321 	op->cmd = MMUEXT_INVLPG_LOCAL;
1322 	op->arg1.linear_addr = addr & PAGE_MASK;
1323 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1324 
1325 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1326 
1327 	preempt_enable();
1328 }
1329 
1330 static void xen_flush_tlb_others(const struct cpumask *cpus,
1331 				 struct mm_struct *mm, unsigned long start,
1332 				 unsigned long end)
1333 {
1334 	struct {
1335 		struct mmuext_op op;
1336 #ifdef CONFIG_SMP
1337 		DECLARE_BITMAP(mask, num_processors);
1338 #else
1339 		DECLARE_BITMAP(mask, NR_CPUS);
1340 #endif
1341 	} *args;
1342 	struct multicall_space mcs;
1343 
1344 	trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1345 
1346 	if (cpumask_empty(cpus))
1347 		return;		/* nothing to do */
1348 
1349 	mcs = xen_mc_entry(sizeof(*args));
1350 	args = mcs.args;
1351 	args->op.arg2.vcpumask = to_cpumask(args->mask);
1352 
1353 	/* Remove us, and any offline CPUS. */
1354 	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1355 	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1356 
1357 	args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1358 	if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1359 		args->op.cmd = MMUEXT_INVLPG_MULTI;
1360 		args->op.arg1.linear_addr = start;
1361 	}
1362 
1363 	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1364 
1365 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1366 }
1367 
1368 static unsigned long xen_read_cr3(void)
1369 {
1370 	return this_cpu_read(xen_cr3);
1371 }
1372 
1373 static void set_current_cr3(void *v)
1374 {
1375 	this_cpu_write(xen_current_cr3, (unsigned long)v);
1376 }
1377 
1378 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1379 {
1380 	struct mmuext_op op;
1381 	unsigned long mfn;
1382 
1383 	trace_xen_mmu_write_cr3(kernel, cr3);
1384 
1385 	if (cr3)
1386 		mfn = pfn_to_mfn(PFN_DOWN(cr3));
1387 	else
1388 		mfn = 0;
1389 
1390 	WARN_ON(mfn == 0 && kernel);
1391 
1392 	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1393 	op.arg1.mfn = mfn;
1394 
1395 	xen_extend_mmuext_op(&op);
1396 
1397 	if (kernel) {
1398 		this_cpu_write(xen_cr3, cr3);
1399 
1400 		/* Update xen_current_cr3 once the batch has actually
1401 		   been submitted. */
1402 		xen_mc_callback(set_current_cr3, (void *)cr3);
1403 	}
1404 }
1405 
1406 static void xen_write_cr3(unsigned long cr3)
1407 {
1408 	BUG_ON(preemptible());
1409 
1410 	xen_mc_batch();  /* disables interrupts */
1411 
1412 	/* Update while interrupts are disabled, so its atomic with
1413 	   respect to ipis */
1414 	this_cpu_write(xen_cr3, cr3);
1415 
1416 	__xen_write_cr3(true, cr3);
1417 
1418 #ifdef CONFIG_X86_64
1419 	{
1420 		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1421 		if (user_pgd)
1422 			__xen_write_cr3(false, __pa(user_pgd));
1423 		else
1424 			__xen_write_cr3(false, 0);
1425 	}
1426 #endif
1427 
1428 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1429 }
1430 
1431 static int xen_pgd_alloc(struct mm_struct *mm)
1432 {
1433 	pgd_t *pgd = mm->pgd;
1434 	int ret = 0;
1435 
1436 	BUG_ON(PagePinned(virt_to_page(pgd)));
1437 
1438 #ifdef CONFIG_X86_64
1439 	{
1440 		struct page *page = virt_to_page(pgd);
1441 		pgd_t *user_pgd;
1442 
1443 		BUG_ON(page->private != 0);
1444 
1445 		ret = -ENOMEM;
1446 
1447 		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1448 		page->private = (unsigned long)user_pgd;
1449 
1450 		if (user_pgd != NULL) {
1451 			user_pgd[pgd_index(VSYSCALL_START)] =
1452 				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1453 			ret = 0;
1454 		}
1455 
1456 		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1457 	}
1458 #endif
1459 
1460 	return ret;
1461 }
1462 
1463 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1464 {
1465 #ifdef CONFIG_X86_64
1466 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
1467 
1468 	if (user_pgd)
1469 		free_page((unsigned long)user_pgd);
1470 #endif
1471 }
1472 
1473 #ifdef CONFIG_X86_32
1474 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1475 {
1476 	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
1477 	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1478 		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1479 			       pte_val_ma(pte));
1480 
1481 	return pte;
1482 }
1483 #else /* CONFIG_X86_64 */
1484 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1485 {
1486 	unsigned long pfn = pte_pfn(pte);
1487 
1488 	/*
1489 	 * If the new pfn is within the range of the newly allocated
1490 	 * kernel pagetable, and it isn't being mapped into an
1491 	 * early_ioremap fixmap slot as a freshly allocated page, make sure
1492 	 * it is RO.
1493 	 */
1494 	if (((!is_early_ioremap_ptep(ptep) &&
1495 			pfn >= pgt_buf_start && pfn < pgt_buf_top)) ||
1496 			(is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1)))
1497 		pte = pte_wrprotect(pte);
1498 
1499 	return pte;
1500 }
1501 #endif /* CONFIG_X86_64 */
1502 
1503 /*
1504  * Init-time set_pte while constructing initial pagetables, which
1505  * doesn't allow RO page table pages to be remapped RW.
1506  *
1507  * If there is no MFN for this PFN then this page is initially
1508  * ballooned out so clear the PTE (as in decrease_reservation() in
1509  * drivers/xen/balloon.c).
1510  *
1511  * Many of these PTE updates are done on unpinned and writable pages
1512  * and doing a hypercall for these is unnecessary and expensive.  At
1513  * this point it is not possible to tell if a page is pinned or not,
1514  * so always write the PTE directly and rely on Xen trapping and
1515  * emulating any updates as necessary.
1516  */
1517 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1518 {
1519 	if (pte_mfn(pte) != INVALID_P2M_ENTRY)
1520 		pte = mask_rw_pte(ptep, pte);
1521 	else
1522 		pte = __pte_ma(0);
1523 
1524 	native_set_pte(ptep, pte);
1525 }
1526 
1527 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1528 {
1529 	struct mmuext_op op;
1530 	op.cmd = cmd;
1531 	op.arg1.mfn = pfn_to_mfn(pfn);
1532 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1533 		BUG();
1534 }
1535 
1536 /* Early in boot, while setting up the initial pagetable, assume
1537    everything is pinned. */
1538 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1539 {
1540 #ifdef CONFIG_FLATMEM
1541 	BUG_ON(mem_map);	/* should only be used early */
1542 #endif
1543 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1544 	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1545 }
1546 
1547 /* Used for pmd and pud */
1548 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1549 {
1550 #ifdef CONFIG_FLATMEM
1551 	BUG_ON(mem_map);	/* should only be used early */
1552 #endif
1553 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1554 }
1555 
1556 /* Early release_pte assumes that all pts are pinned, since there's
1557    only init_mm and anything attached to that is pinned. */
1558 static void __init xen_release_pte_init(unsigned long pfn)
1559 {
1560 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1561 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1562 }
1563 
1564 static void __init xen_release_pmd_init(unsigned long pfn)
1565 {
1566 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1567 }
1568 
1569 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1570 {
1571 	struct multicall_space mcs;
1572 	struct mmuext_op *op;
1573 
1574 	mcs = __xen_mc_entry(sizeof(*op));
1575 	op = mcs.args;
1576 	op->cmd = cmd;
1577 	op->arg1.mfn = pfn_to_mfn(pfn);
1578 
1579 	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1580 }
1581 
1582 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1583 {
1584 	struct multicall_space mcs;
1585 	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1586 
1587 	mcs = __xen_mc_entry(0);
1588 	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1589 				pfn_pte(pfn, prot), 0);
1590 }
1591 
1592 /* This needs to make sure the new pte page is pinned iff its being
1593    attached to a pinned pagetable. */
1594 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1595 				    unsigned level)
1596 {
1597 	bool pinned = PagePinned(virt_to_page(mm->pgd));
1598 
1599 	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1600 
1601 	if (pinned) {
1602 		struct page *page = pfn_to_page(pfn);
1603 
1604 		SetPagePinned(page);
1605 
1606 		if (!PageHighMem(page)) {
1607 			xen_mc_batch();
1608 
1609 			__set_pfn_prot(pfn, PAGE_KERNEL_RO);
1610 
1611 			if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1612 				__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1613 
1614 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1615 		} else {
1616 			/* make sure there are no stray mappings of
1617 			   this page */
1618 			kmap_flush_unused();
1619 		}
1620 	}
1621 }
1622 
1623 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1624 {
1625 	xen_alloc_ptpage(mm, pfn, PT_PTE);
1626 }
1627 
1628 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1629 {
1630 	xen_alloc_ptpage(mm, pfn, PT_PMD);
1631 }
1632 
1633 /* This should never happen until we're OK to use struct page */
1634 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1635 {
1636 	struct page *page = pfn_to_page(pfn);
1637 	bool pinned = PagePinned(page);
1638 
1639 	trace_xen_mmu_release_ptpage(pfn, level, pinned);
1640 
1641 	if (pinned) {
1642 		if (!PageHighMem(page)) {
1643 			xen_mc_batch();
1644 
1645 			if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1646 				__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1647 
1648 			__set_pfn_prot(pfn, PAGE_KERNEL);
1649 
1650 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1651 		}
1652 		ClearPagePinned(page);
1653 	}
1654 }
1655 
1656 static void xen_release_pte(unsigned long pfn)
1657 {
1658 	xen_release_ptpage(pfn, PT_PTE);
1659 }
1660 
1661 static void xen_release_pmd(unsigned long pfn)
1662 {
1663 	xen_release_ptpage(pfn, PT_PMD);
1664 }
1665 
1666 #if PAGETABLE_LEVELS == 4
1667 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1668 {
1669 	xen_alloc_ptpage(mm, pfn, PT_PUD);
1670 }
1671 
1672 static void xen_release_pud(unsigned long pfn)
1673 {
1674 	xen_release_ptpage(pfn, PT_PUD);
1675 }
1676 #endif
1677 
1678 void __init xen_reserve_top(void)
1679 {
1680 #ifdef CONFIG_X86_32
1681 	unsigned long top = HYPERVISOR_VIRT_START;
1682 	struct xen_platform_parameters pp;
1683 
1684 	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1685 		top = pp.virt_start;
1686 
1687 	reserve_top_address(-top);
1688 #endif	/* CONFIG_X86_32 */
1689 }
1690 
1691 /*
1692  * Like __va(), but returns address in the kernel mapping (which is
1693  * all we have until the physical memory mapping has been set up.
1694  */
1695 static void *__ka(phys_addr_t paddr)
1696 {
1697 #ifdef CONFIG_X86_64
1698 	return (void *)(paddr + __START_KERNEL_map);
1699 #else
1700 	return __va(paddr);
1701 #endif
1702 }
1703 
1704 /* Convert a machine address to physical address */
1705 static unsigned long m2p(phys_addr_t maddr)
1706 {
1707 	phys_addr_t paddr;
1708 
1709 	maddr &= PTE_PFN_MASK;
1710 	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1711 
1712 	return paddr;
1713 }
1714 
1715 /* Convert a machine address to kernel virtual */
1716 static void *m2v(phys_addr_t maddr)
1717 {
1718 	return __ka(m2p(maddr));
1719 }
1720 
1721 /* Set the page permissions on an identity-mapped pages */
1722 static void set_page_prot(void *addr, pgprot_t prot)
1723 {
1724 	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1725 	pte_t pte = pfn_pte(pfn, prot);
1726 
1727 	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1728 		BUG();
1729 }
1730 #ifdef CONFIG_X86_32
1731 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1732 {
1733 	unsigned pmdidx, pteidx;
1734 	unsigned ident_pte;
1735 	unsigned long pfn;
1736 
1737 	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1738 				      PAGE_SIZE);
1739 
1740 	ident_pte = 0;
1741 	pfn = 0;
1742 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1743 		pte_t *pte_page;
1744 
1745 		/* Reuse or allocate a page of ptes */
1746 		if (pmd_present(pmd[pmdidx]))
1747 			pte_page = m2v(pmd[pmdidx].pmd);
1748 		else {
1749 			/* Check for free pte pages */
1750 			if (ident_pte == LEVEL1_IDENT_ENTRIES)
1751 				break;
1752 
1753 			pte_page = &level1_ident_pgt[ident_pte];
1754 			ident_pte += PTRS_PER_PTE;
1755 
1756 			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1757 		}
1758 
1759 		/* Install mappings */
1760 		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1761 			pte_t pte;
1762 
1763 #ifdef CONFIG_X86_32
1764 			if (pfn > max_pfn_mapped)
1765 				max_pfn_mapped = pfn;
1766 #endif
1767 
1768 			if (!pte_none(pte_page[pteidx]))
1769 				continue;
1770 
1771 			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1772 			pte_page[pteidx] = pte;
1773 		}
1774 	}
1775 
1776 	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1777 		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1778 
1779 	set_page_prot(pmd, PAGE_KERNEL_RO);
1780 }
1781 #endif
1782 void __init xen_setup_machphys_mapping(void)
1783 {
1784 	struct xen_machphys_mapping mapping;
1785 
1786 	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1787 		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1788 		machine_to_phys_nr = mapping.max_mfn + 1;
1789 	} else {
1790 		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1791 	}
1792 #ifdef CONFIG_X86_32
1793 	WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1794 		< machine_to_phys_mapping);
1795 #endif
1796 }
1797 
1798 #ifdef CONFIG_X86_64
1799 static void convert_pfn_mfn(void *v)
1800 {
1801 	pte_t *pte = v;
1802 	int i;
1803 
1804 	/* All levels are converted the same way, so just treat them
1805 	   as ptes. */
1806 	for (i = 0; i < PTRS_PER_PTE; i++)
1807 		pte[i] = xen_make_pte(pte[i].pte);
1808 }
1809 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1810 				 unsigned long addr)
1811 {
1812 	if (*pt_base == PFN_DOWN(__pa(addr))) {
1813 		set_page_prot((void *)addr, PAGE_KERNEL);
1814 		clear_page((void *)addr);
1815 		(*pt_base)++;
1816 	}
1817 	if (*pt_end == PFN_DOWN(__pa(addr))) {
1818 		set_page_prot((void *)addr, PAGE_KERNEL);
1819 		clear_page((void *)addr);
1820 		(*pt_end)--;
1821 	}
1822 }
1823 /*
1824  * Set up the initial kernel pagetable.
1825  *
1826  * We can construct this by grafting the Xen provided pagetable into
1827  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1828  * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
1829  * means that only the kernel has a physical mapping to start with -
1830  * but that's enough to get __va working.  We need to fill in the rest
1831  * of the physical mapping once some sort of allocator has been set
1832  * up.
1833  */
1834 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1835 {
1836 	pud_t *l3;
1837 	pmd_t *l2;
1838 	unsigned long addr[3];
1839 	unsigned long pt_base, pt_end;
1840 	unsigned i;
1841 
1842 	/* max_pfn_mapped is the last pfn mapped in the initial memory
1843 	 * mappings. Considering that on Xen after the kernel mappings we
1844 	 * have the mappings of some pages that don't exist in pfn space, we
1845 	 * set max_pfn_mapped to the last real pfn mapped. */
1846 	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1847 
1848 	pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1849 	pt_end = pt_base + xen_start_info->nr_pt_frames;
1850 
1851 	/* Zap identity mapping */
1852 	init_level4_pgt[0] = __pgd(0);
1853 
1854 	/* Pre-constructed entries are in pfn, so convert to mfn */
1855 	/* L4[272] -> level3_ident_pgt
1856 	 * L4[511] -> level3_kernel_pgt */
1857 	convert_pfn_mfn(init_level4_pgt);
1858 
1859 	/* L3_i[0] -> level2_ident_pgt */
1860 	convert_pfn_mfn(level3_ident_pgt);
1861 	/* L3_k[510] -> level2_kernel_pgt
1862 	 * L3_i[511] -> level2_fixmap_pgt */
1863 	convert_pfn_mfn(level3_kernel_pgt);
1864 
1865 	/* We get [511][511] and have Xen's version of level2_kernel_pgt */
1866 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1867 	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1868 
1869 	addr[0] = (unsigned long)pgd;
1870 	addr[1] = (unsigned long)l3;
1871 	addr[2] = (unsigned long)l2;
1872 	/* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1873 	 * Both L4[272][0] and L4[511][511] have entries that point to the same
1874 	 * L2 (PMD) tables. Meaning that if you modify it in __va space
1875 	 * it will be also modified in the __ka space! (But if you just
1876 	 * modify the PMD table to point to other PTE's or none, then you
1877 	 * are OK - which is what cleanup_highmap does) */
1878 	copy_page(level2_ident_pgt, l2);
1879 	/* Graft it onto L4[511][511] */
1880 	copy_page(level2_kernel_pgt, l2);
1881 
1882 	/* Get [511][510] and graft that in level2_fixmap_pgt */
1883 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1884 	l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1885 	copy_page(level2_fixmap_pgt, l2);
1886 	/* Note that we don't do anything with level1_fixmap_pgt which
1887 	 * we don't need. */
1888 
1889 	/* Make pagetable pieces RO */
1890 	set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1891 	set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1892 	set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1893 	set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1894 	set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1895 	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1896 	set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1897 
1898 	/* Pin down new L4 */
1899 	pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1900 			  PFN_DOWN(__pa_symbol(init_level4_pgt)));
1901 
1902 	/* Unpin Xen-provided one */
1903 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1904 
1905 	/*
1906 	 * At this stage there can be no user pgd, and no page
1907 	 * structure to attach it to, so make sure we just set kernel
1908 	 * pgd.
1909 	 */
1910 	xen_mc_batch();
1911 	__xen_write_cr3(true, __pa(init_level4_pgt));
1912 	xen_mc_issue(PARAVIRT_LAZY_CPU);
1913 
1914 	/* We can't that easily rip out L3 and L2, as the Xen pagetables are
1915 	 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
1916 	 * the initial domain. For guests using the toolstack, they are in:
1917 	 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1918 	 * rip out the [L4] (pgd), but for guests we shave off three pages.
1919 	 */
1920 	for (i = 0; i < ARRAY_SIZE(addr); i++)
1921 		check_pt_base(&pt_base, &pt_end, addr[i]);
1922 
1923 	/* Our (by three pages) smaller Xen pagetable that we are using */
1924 	memblock_reserve(PFN_PHYS(pt_base), (pt_end - pt_base) * PAGE_SIZE);
1925 	/* Revector the xen_start_info */
1926 	xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1927 }
1928 #else	/* !CONFIG_X86_64 */
1929 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1930 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1931 
1932 static void __init xen_write_cr3_init(unsigned long cr3)
1933 {
1934 	unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1935 
1936 	BUG_ON(read_cr3() != __pa(initial_page_table));
1937 	BUG_ON(cr3 != __pa(swapper_pg_dir));
1938 
1939 	/*
1940 	 * We are switching to swapper_pg_dir for the first time (from
1941 	 * initial_page_table) and therefore need to mark that page
1942 	 * read-only and then pin it.
1943 	 *
1944 	 * Xen disallows sharing of kernel PMDs for PAE
1945 	 * guests. Therefore we must copy the kernel PMD from
1946 	 * initial_page_table into a new kernel PMD to be used in
1947 	 * swapper_pg_dir.
1948 	 */
1949 	swapper_kernel_pmd =
1950 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1951 	copy_page(swapper_kernel_pmd, initial_kernel_pmd);
1952 	swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1953 		__pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1954 	set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1955 
1956 	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1957 	xen_write_cr3(cr3);
1958 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1959 
1960 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1961 			  PFN_DOWN(__pa(initial_page_table)));
1962 	set_page_prot(initial_page_table, PAGE_KERNEL);
1963 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1964 
1965 	pv_mmu_ops.write_cr3 = &xen_write_cr3;
1966 }
1967 
1968 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1969 {
1970 	pmd_t *kernel_pmd;
1971 
1972 	initial_kernel_pmd =
1973 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1974 
1975 	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1976 				  xen_start_info->nr_pt_frames * PAGE_SIZE +
1977 				  512*1024);
1978 
1979 	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1980 	copy_page(initial_kernel_pmd, kernel_pmd);
1981 
1982 	xen_map_identity_early(initial_kernel_pmd, max_pfn);
1983 
1984 	copy_page(initial_page_table, pgd);
1985 	initial_page_table[KERNEL_PGD_BOUNDARY] =
1986 		__pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
1987 
1988 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
1989 	set_page_prot(initial_page_table, PAGE_KERNEL_RO);
1990 	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1991 
1992 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1993 
1994 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1995 			  PFN_DOWN(__pa(initial_page_table)));
1996 	xen_write_cr3(__pa(initial_page_table));
1997 
1998 	memblock_reserve(__pa(xen_start_info->pt_base),
1999 			 xen_start_info->nr_pt_frames * PAGE_SIZE);
2000 }
2001 #endif	/* CONFIG_X86_64 */
2002 
2003 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2004 
2005 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2006 {
2007 	pte_t pte;
2008 
2009 	phys >>= PAGE_SHIFT;
2010 
2011 	switch (idx) {
2012 	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2013 #ifdef CONFIG_X86_F00F_BUG
2014 	case FIX_F00F_IDT:
2015 #endif
2016 #ifdef CONFIG_X86_32
2017 	case FIX_WP_TEST:
2018 	case FIX_VDSO:
2019 # ifdef CONFIG_HIGHMEM
2020 	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2021 # endif
2022 #else
2023 	case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
2024 	case VVAR_PAGE:
2025 #endif
2026 	case FIX_TEXT_POKE0:
2027 	case FIX_TEXT_POKE1:
2028 		/* All local page mappings */
2029 		pte = pfn_pte(phys, prot);
2030 		break;
2031 
2032 #ifdef CONFIG_X86_LOCAL_APIC
2033 	case FIX_APIC_BASE:	/* maps dummy local APIC */
2034 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2035 		break;
2036 #endif
2037 
2038 #ifdef CONFIG_X86_IO_APIC
2039 	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2040 		/*
2041 		 * We just don't map the IO APIC - all access is via
2042 		 * hypercalls.  Keep the address in the pte for reference.
2043 		 */
2044 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2045 		break;
2046 #endif
2047 
2048 	case FIX_PARAVIRT_BOOTMAP:
2049 		/* This is an MFN, but it isn't an IO mapping from the
2050 		   IO domain */
2051 		pte = mfn_pte(phys, prot);
2052 		break;
2053 
2054 	default:
2055 		/* By default, set_fixmap is used for hardware mappings */
2056 		pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
2057 		break;
2058 	}
2059 
2060 	__native_set_fixmap(idx, pte);
2061 
2062 #ifdef CONFIG_X86_64
2063 	/* Replicate changes to map the vsyscall page into the user
2064 	   pagetable vsyscall mapping. */
2065 	if ((idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) ||
2066 	    idx == VVAR_PAGE) {
2067 		unsigned long vaddr = __fix_to_virt(idx);
2068 		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2069 	}
2070 #endif
2071 }
2072 
2073 static void __init xen_post_allocator_init(void)
2074 {
2075 	pv_mmu_ops.set_pte = xen_set_pte;
2076 	pv_mmu_ops.set_pmd = xen_set_pmd;
2077 	pv_mmu_ops.set_pud = xen_set_pud;
2078 #if PAGETABLE_LEVELS == 4
2079 	pv_mmu_ops.set_pgd = xen_set_pgd;
2080 #endif
2081 
2082 	/* This will work as long as patching hasn't happened yet
2083 	   (which it hasn't) */
2084 	pv_mmu_ops.alloc_pte = xen_alloc_pte;
2085 	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2086 	pv_mmu_ops.release_pte = xen_release_pte;
2087 	pv_mmu_ops.release_pmd = xen_release_pmd;
2088 #if PAGETABLE_LEVELS == 4
2089 	pv_mmu_ops.alloc_pud = xen_alloc_pud;
2090 	pv_mmu_ops.release_pud = xen_release_pud;
2091 #endif
2092 
2093 #ifdef CONFIG_X86_64
2094 	SetPagePinned(virt_to_page(level3_user_vsyscall));
2095 #endif
2096 	xen_mark_init_mm_pinned();
2097 }
2098 
2099 static void xen_leave_lazy_mmu(void)
2100 {
2101 	preempt_disable();
2102 	xen_mc_flush();
2103 	paravirt_leave_lazy_mmu();
2104 	preempt_enable();
2105 }
2106 
2107 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2108 	.read_cr2 = xen_read_cr2,
2109 	.write_cr2 = xen_write_cr2,
2110 
2111 	.read_cr3 = xen_read_cr3,
2112 #ifdef CONFIG_X86_32
2113 	.write_cr3 = xen_write_cr3_init,
2114 #else
2115 	.write_cr3 = xen_write_cr3,
2116 #endif
2117 
2118 	.flush_tlb_user = xen_flush_tlb,
2119 	.flush_tlb_kernel = xen_flush_tlb,
2120 	.flush_tlb_single = xen_flush_tlb_single,
2121 	.flush_tlb_others = xen_flush_tlb_others,
2122 
2123 	.pte_update = paravirt_nop,
2124 	.pte_update_defer = paravirt_nop,
2125 
2126 	.pgd_alloc = xen_pgd_alloc,
2127 	.pgd_free = xen_pgd_free,
2128 
2129 	.alloc_pte = xen_alloc_pte_init,
2130 	.release_pte = xen_release_pte_init,
2131 	.alloc_pmd = xen_alloc_pmd_init,
2132 	.release_pmd = xen_release_pmd_init,
2133 
2134 	.set_pte = xen_set_pte_init,
2135 	.set_pte_at = xen_set_pte_at,
2136 	.set_pmd = xen_set_pmd_hyper,
2137 
2138 	.ptep_modify_prot_start = __ptep_modify_prot_start,
2139 	.ptep_modify_prot_commit = __ptep_modify_prot_commit,
2140 
2141 	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
2142 	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2143 
2144 	.make_pte = PV_CALLEE_SAVE(xen_make_pte),
2145 	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2146 
2147 #ifdef CONFIG_X86_PAE
2148 	.set_pte_atomic = xen_set_pte_atomic,
2149 	.pte_clear = xen_pte_clear,
2150 	.pmd_clear = xen_pmd_clear,
2151 #endif	/* CONFIG_X86_PAE */
2152 	.set_pud = xen_set_pud_hyper,
2153 
2154 	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2155 	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2156 
2157 #if PAGETABLE_LEVELS == 4
2158 	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
2159 	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2160 	.set_pgd = xen_set_pgd_hyper,
2161 
2162 	.alloc_pud = xen_alloc_pmd_init,
2163 	.release_pud = xen_release_pmd_init,
2164 #endif	/* PAGETABLE_LEVELS == 4 */
2165 
2166 	.activate_mm = xen_activate_mm,
2167 	.dup_mmap = xen_dup_mmap,
2168 	.exit_mmap = xen_exit_mmap,
2169 
2170 	.lazy_mode = {
2171 		.enter = paravirt_enter_lazy_mmu,
2172 		.leave = xen_leave_lazy_mmu,
2173 	},
2174 
2175 	.set_fixmap = xen_set_fixmap,
2176 };
2177 
2178 void __init xen_init_mmu_ops(void)
2179 {
2180 	x86_init.mapping.pagetable_reserve = xen_mapping_pagetable_reserve;
2181 	x86_init.paging.pagetable_init = xen_pagetable_init;
2182 	pv_mmu_ops = xen_mmu_ops;
2183 
2184 	memset(dummy_mapping, 0xff, PAGE_SIZE);
2185 }
2186 
2187 /* Protected by xen_reservation_lock. */
2188 #define MAX_CONTIG_ORDER 9 /* 2MB */
2189 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2190 
2191 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2192 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2193 				unsigned long *in_frames,
2194 				unsigned long *out_frames)
2195 {
2196 	int i;
2197 	struct multicall_space mcs;
2198 
2199 	xen_mc_batch();
2200 	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2201 		mcs = __xen_mc_entry(0);
2202 
2203 		if (in_frames)
2204 			in_frames[i] = virt_to_mfn(vaddr);
2205 
2206 		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2207 		__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2208 
2209 		if (out_frames)
2210 			out_frames[i] = virt_to_pfn(vaddr);
2211 	}
2212 	xen_mc_issue(0);
2213 }
2214 
2215 /*
2216  * Update the pfn-to-mfn mappings for a virtual address range, either to
2217  * point to an array of mfns, or contiguously from a single starting
2218  * mfn.
2219  */
2220 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2221 				     unsigned long *mfns,
2222 				     unsigned long first_mfn)
2223 {
2224 	unsigned i, limit;
2225 	unsigned long mfn;
2226 
2227 	xen_mc_batch();
2228 
2229 	limit = 1u << order;
2230 	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2231 		struct multicall_space mcs;
2232 		unsigned flags;
2233 
2234 		mcs = __xen_mc_entry(0);
2235 		if (mfns)
2236 			mfn = mfns[i];
2237 		else
2238 			mfn = first_mfn + i;
2239 
2240 		if (i < (limit - 1))
2241 			flags = 0;
2242 		else {
2243 			if (order == 0)
2244 				flags = UVMF_INVLPG | UVMF_ALL;
2245 			else
2246 				flags = UVMF_TLB_FLUSH | UVMF_ALL;
2247 		}
2248 
2249 		MULTI_update_va_mapping(mcs.mc, vaddr,
2250 				mfn_pte(mfn, PAGE_KERNEL), flags);
2251 
2252 		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2253 	}
2254 
2255 	xen_mc_issue(0);
2256 }
2257 
2258 /*
2259  * Perform the hypercall to exchange a region of our pfns to point to
2260  * memory with the required contiguous alignment.  Takes the pfns as
2261  * input, and populates mfns as output.
2262  *
2263  * Returns a success code indicating whether the hypervisor was able to
2264  * satisfy the request or not.
2265  */
2266 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2267 			       unsigned long *pfns_in,
2268 			       unsigned long extents_out,
2269 			       unsigned int order_out,
2270 			       unsigned long *mfns_out,
2271 			       unsigned int address_bits)
2272 {
2273 	long rc;
2274 	int success;
2275 
2276 	struct xen_memory_exchange exchange = {
2277 		.in = {
2278 			.nr_extents   = extents_in,
2279 			.extent_order = order_in,
2280 			.extent_start = pfns_in,
2281 			.domid        = DOMID_SELF
2282 		},
2283 		.out = {
2284 			.nr_extents   = extents_out,
2285 			.extent_order = order_out,
2286 			.extent_start = mfns_out,
2287 			.address_bits = address_bits,
2288 			.domid        = DOMID_SELF
2289 		}
2290 	};
2291 
2292 	BUG_ON(extents_in << order_in != extents_out << order_out);
2293 
2294 	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2295 	success = (exchange.nr_exchanged == extents_in);
2296 
2297 	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2298 	BUG_ON(success && (rc != 0));
2299 
2300 	return success;
2301 }
2302 
2303 int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2304 				 unsigned int address_bits)
2305 {
2306 	unsigned long *in_frames = discontig_frames, out_frame;
2307 	unsigned long  flags;
2308 	int            success;
2309 
2310 	/*
2311 	 * Currently an auto-translated guest will not perform I/O, nor will
2312 	 * it require PAE page directories below 4GB. Therefore any calls to
2313 	 * this function are redundant and can be ignored.
2314 	 */
2315 
2316 	if (xen_feature(XENFEAT_auto_translated_physmap))
2317 		return 0;
2318 
2319 	if (unlikely(order > MAX_CONTIG_ORDER))
2320 		return -ENOMEM;
2321 
2322 	memset((void *) vstart, 0, PAGE_SIZE << order);
2323 
2324 	spin_lock_irqsave(&xen_reservation_lock, flags);
2325 
2326 	/* 1. Zap current PTEs, remembering MFNs. */
2327 	xen_zap_pfn_range(vstart, order, in_frames, NULL);
2328 
2329 	/* 2. Get a new contiguous memory extent. */
2330 	out_frame = virt_to_pfn(vstart);
2331 	success = xen_exchange_memory(1UL << order, 0, in_frames,
2332 				      1, order, &out_frame,
2333 				      address_bits);
2334 
2335 	/* 3. Map the new extent in place of old pages. */
2336 	if (success)
2337 		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2338 	else
2339 		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2340 
2341 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2342 
2343 	return success ? 0 : -ENOMEM;
2344 }
2345 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2346 
2347 void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2348 {
2349 	unsigned long *out_frames = discontig_frames, in_frame;
2350 	unsigned long  flags;
2351 	int success;
2352 
2353 	if (xen_feature(XENFEAT_auto_translated_physmap))
2354 		return;
2355 
2356 	if (unlikely(order > MAX_CONTIG_ORDER))
2357 		return;
2358 
2359 	memset((void *) vstart, 0, PAGE_SIZE << order);
2360 
2361 	spin_lock_irqsave(&xen_reservation_lock, flags);
2362 
2363 	/* 1. Find start MFN of contiguous extent. */
2364 	in_frame = virt_to_mfn(vstart);
2365 
2366 	/* 2. Zap current PTEs. */
2367 	xen_zap_pfn_range(vstart, order, NULL, out_frames);
2368 
2369 	/* 3. Do the exchange for non-contiguous MFNs. */
2370 	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2371 					0, out_frames, 0);
2372 
2373 	/* 4. Map new pages in place of old pages. */
2374 	if (success)
2375 		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2376 	else
2377 		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2378 
2379 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2380 }
2381 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2382 
2383 #ifdef CONFIG_XEN_PVHVM
2384 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2385 {
2386 	struct xen_hvm_pagetable_dying a;
2387 	int rc;
2388 
2389 	a.domid = DOMID_SELF;
2390 	a.gpa = __pa(mm->pgd);
2391 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2392 	WARN_ON_ONCE(rc < 0);
2393 }
2394 
2395 static int is_pagetable_dying_supported(void)
2396 {
2397 	struct xen_hvm_pagetable_dying a;
2398 	int rc = 0;
2399 
2400 	a.domid = DOMID_SELF;
2401 	a.gpa = 0x00;
2402 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2403 	if (rc < 0) {
2404 		printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2405 		return 0;
2406 	}
2407 	return 1;
2408 }
2409 
2410 void __init xen_hvm_init_mmu_ops(void)
2411 {
2412 	if (is_pagetable_dying_supported())
2413 		pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2414 }
2415 #endif
2416 
2417 #define REMAP_BATCH_SIZE 16
2418 
2419 struct remap_data {
2420 	unsigned long mfn;
2421 	pgprot_t prot;
2422 	struct mmu_update *mmu_update;
2423 };
2424 
2425 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2426 				 unsigned long addr, void *data)
2427 {
2428 	struct remap_data *rmd = data;
2429 	pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2430 
2431 	rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2432 	rmd->mmu_update->val = pte_val_ma(pte);
2433 	rmd->mmu_update++;
2434 
2435 	return 0;
2436 }
2437 
2438 int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2439 			       unsigned long addr,
2440 			       unsigned long mfn, int nr,
2441 			       pgprot_t prot, unsigned domid)
2442 {
2443 	struct remap_data rmd;
2444 	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2445 	int batch;
2446 	unsigned long range;
2447 	int err = 0;
2448 
2449 	if (xen_feature(XENFEAT_auto_translated_physmap))
2450 		return -EINVAL;
2451 
2452 	prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2453 
2454 	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) ==
2455 				(VM_PFNMAP | VM_RESERVED | VM_IO)));
2456 
2457 	rmd.mfn = mfn;
2458 	rmd.prot = prot;
2459 
2460 	while (nr) {
2461 		batch = min(REMAP_BATCH_SIZE, nr);
2462 		range = (unsigned long)batch << PAGE_SHIFT;
2463 
2464 		rmd.mmu_update = mmu_update;
2465 		err = apply_to_page_range(vma->vm_mm, addr, range,
2466 					  remap_area_mfn_pte_fn, &rmd);
2467 		if (err)
2468 			goto out;
2469 
2470 		err = HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid);
2471 		if (err < 0)
2472 			goto out;
2473 
2474 		nr -= batch;
2475 		addr += range;
2476 	}
2477 
2478 	err = 0;
2479 out:
2480 
2481 	flush_tlb_all();
2482 
2483 	return err;
2484 }
2485 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2486