xref: /openbmc/linux/arch/x86/xen/mmu.c (revision 4f139972b489f8bc2c821aa25ac65018d92af3f7)
1 /*
2  * Xen mmu operations
3  *
4  * This file contains the various mmu fetch and update operations.
5  * The most important job they must perform is the mapping between the
6  * domain's pfn and the overall machine mfns.
7  *
8  * Xen allows guests to directly update the pagetable, in a controlled
9  * fashion.  In other words, the guest modifies the same pagetable
10  * that the CPU actually uses, which eliminates the overhead of having
11  * a separate shadow pagetable.
12  *
13  * In order to allow this, it falls on the guest domain to map its
14  * notion of a "physical" pfn - which is just a domain-local linear
15  * address - into a real "machine address" which the CPU's MMU can
16  * use.
17  *
18  * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19  * inserted directly into the pagetable.  When creating a new
20  * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
21  * when reading the content back with __(pgd|pmd|pte)_val, it converts
22  * the mfn back into a pfn.
23  *
24  * The other constraint is that all pages which make up a pagetable
25  * must be mapped read-only in the guest.  This prevents uncontrolled
26  * guest updates to the pagetable.  Xen strictly enforces this, and
27  * will disallow any pagetable update which will end up mapping a
28  * pagetable page RW, and will disallow using any writable page as a
29  * pagetable.
30  *
31  * Naively, when loading %cr3 with the base of a new pagetable, Xen
32  * would need to validate the whole pagetable before going on.
33  * Naturally, this is quite slow.  The solution is to "pin" a
34  * pagetable, which enforces all the constraints on the pagetable even
35  * when it is not actively in use.  This menas that Xen can be assured
36  * that it is still valid when you do load it into %cr3, and doesn't
37  * need to revalidate it.
38  *
39  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40  */
41 #include <linux/sched/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/export.h>
47 #include <linux/init.h>
48 #include <linux/gfp.h>
49 #include <linux/memblock.h>
50 #include <linux/seq_file.h>
51 #include <linux/crash_dump.h>
52 
53 #include <trace/events/xen.h>
54 
55 #include <asm/pgtable.h>
56 #include <asm/tlbflush.h>
57 #include <asm/fixmap.h>
58 #include <asm/mmu_context.h>
59 #include <asm/setup.h>
60 #include <asm/paravirt.h>
61 #include <asm/e820.h>
62 #include <asm/linkage.h>
63 #include <asm/page.h>
64 #include <asm/init.h>
65 #include <asm/pat.h>
66 #include <asm/smp.h>
67 
68 #include <asm/xen/hypercall.h>
69 #include <asm/xen/hypervisor.h>
70 
71 #include <xen/xen.h>
72 #include <xen/page.h>
73 #include <xen/interface/xen.h>
74 #include <xen/interface/hvm/hvm_op.h>
75 #include <xen/interface/version.h>
76 #include <xen/interface/memory.h>
77 #include <xen/hvc-console.h>
78 
79 #include "multicalls.h"
80 #include "mmu.h"
81 #include "debugfs.h"
82 
83 /*
84  * Protects atomic reservation decrease/increase against concurrent increases.
85  * Also protects non-atomic updates of current_pages and balloon lists.
86  */
87 DEFINE_SPINLOCK(xen_reservation_lock);
88 
89 #ifdef CONFIG_X86_32
90 /*
91  * Identity map, in addition to plain kernel map.  This needs to be
92  * large enough to allocate page table pages to allocate the rest.
93  * Each page can map 2MB.
94  */
95 #define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4)
96 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
97 #endif
98 #ifdef CONFIG_X86_64
99 /* l3 pud for userspace vsyscall mapping */
100 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
101 #endif /* CONFIG_X86_64 */
102 
103 /*
104  * Note about cr3 (pagetable base) values:
105  *
106  * xen_cr3 contains the current logical cr3 value; it contains the
107  * last set cr3.  This may not be the current effective cr3, because
108  * its update may be being lazily deferred.  However, a vcpu looking
109  * at its own cr3 can use this value knowing that it everything will
110  * be self-consistent.
111  *
112  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
113  * hypercall to set the vcpu cr3 is complete (so it may be a little
114  * out of date, but it will never be set early).  If one vcpu is
115  * looking at another vcpu's cr3 value, it should use this variable.
116  */
117 DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
118 DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
119 
120 static phys_addr_t xen_pt_base, xen_pt_size __initdata;
121 
122 /*
123  * Just beyond the highest usermode address.  STACK_TOP_MAX has a
124  * redzone above it, so round it up to a PGD boundary.
125  */
126 #define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
127 
128 unsigned long arbitrary_virt_to_mfn(void *vaddr)
129 {
130 	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
131 
132 	return PFN_DOWN(maddr.maddr);
133 }
134 
135 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
136 {
137 	unsigned long address = (unsigned long)vaddr;
138 	unsigned int level;
139 	pte_t *pte;
140 	unsigned offset;
141 
142 	/*
143 	 * if the PFN is in the linear mapped vaddr range, we can just use
144 	 * the (quick) virt_to_machine() p2m lookup
145 	 */
146 	if (virt_addr_valid(vaddr))
147 		return virt_to_machine(vaddr);
148 
149 	/* otherwise we have to do a (slower) full page-table walk */
150 
151 	pte = lookup_address(address, &level);
152 	BUG_ON(pte == NULL);
153 	offset = address & ~PAGE_MASK;
154 	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
155 }
156 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
157 
158 void make_lowmem_page_readonly(void *vaddr)
159 {
160 	pte_t *pte, ptev;
161 	unsigned long address = (unsigned long)vaddr;
162 	unsigned int level;
163 
164 	pte = lookup_address(address, &level);
165 	if (pte == NULL)
166 		return;		/* vaddr missing */
167 
168 	ptev = pte_wrprotect(*pte);
169 
170 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
171 		BUG();
172 }
173 
174 void make_lowmem_page_readwrite(void *vaddr)
175 {
176 	pte_t *pte, ptev;
177 	unsigned long address = (unsigned long)vaddr;
178 	unsigned int level;
179 
180 	pte = lookup_address(address, &level);
181 	if (pte == NULL)
182 		return;		/* vaddr missing */
183 
184 	ptev = pte_mkwrite(*pte);
185 
186 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
187 		BUG();
188 }
189 
190 
191 static bool xen_page_pinned(void *ptr)
192 {
193 	struct page *page = virt_to_page(ptr);
194 
195 	return PagePinned(page);
196 }
197 
198 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
199 {
200 	struct multicall_space mcs;
201 	struct mmu_update *u;
202 
203 	trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
204 
205 	mcs = xen_mc_entry(sizeof(*u));
206 	u = mcs.args;
207 
208 	/* ptep might be kmapped when using 32-bit HIGHPTE */
209 	u->ptr = virt_to_machine(ptep).maddr;
210 	u->val = pte_val_ma(pteval);
211 
212 	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
213 
214 	xen_mc_issue(PARAVIRT_LAZY_MMU);
215 }
216 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
217 
218 static void xen_extend_mmu_update(const struct mmu_update *update)
219 {
220 	struct multicall_space mcs;
221 	struct mmu_update *u;
222 
223 	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
224 
225 	if (mcs.mc != NULL) {
226 		mcs.mc->args[1]++;
227 	} else {
228 		mcs = __xen_mc_entry(sizeof(*u));
229 		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
230 	}
231 
232 	u = mcs.args;
233 	*u = *update;
234 }
235 
236 static void xen_extend_mmuext_op(const struct mmuext_op *op)
237 {
238 	struct multicall_space mcs;
239 	struct mmuext_op *u;
240 
241 	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
242 
243 	if (mcs.mc != NULL) {
244 		mcs.mc->args[1]++;
245 	} else {
246 		mcs = __xen_mc_entry(sizeof(*u));
247 		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
248 	}
249 
250 	u = mcs.args;
251 	*u = *op;
252 }
253 
254 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
255 {
256 	struct mmu_update u;
257 
258 	preempt_disable();
259 
260 	xen_mc_batch();
261 
262 	/* ptr may be ioremapped for 64-bit pagetable setup */
263 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
264 	u.val = pmd_val_ma(val);
265 	xen_extend_mmu_update(&u);
266 
267 	xen_mc_issue(PARAVIRT_LAZY_MMU);
268 
269 	preempt_enable();
270 }
271 
272 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
273 {
274 	trace_xen_mmu_set_pmd(ptr, val);
275 
276 	/* If page is not pinned, we can just update the entry
277 	   directly */
278 	if (!xen_page_pinned(ptr)) {
279 		*ptr = val;
280 		return;
281 	}
282 
283 	xen_set_pmd_hyper(ptr, val);
284 }
285 
286 /*
287  * Associate a virtual page frame with a given physical page frame
288  * and protection flags for that frame.
289  */
290 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
291 {
292 	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
293 }
294 
295 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
296 {
297 	struct mmu_update u;
298 
299 	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
300 		return false;
301 
302 	xen_mc_batch();
303 
304 	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
305 	u.val = pte_val_ma(pteval);
306 	xen_extend_mmu_update(&u);
307 
308 	xen_mc_issue(PARAVIRT_LAZY_MMU);
309 
310 	return true;
311 }
312 
313 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
314 {
315 	if (!xen_batched_set_pte(ptep, pteval)) {
316 		/*
317 		 * Could call native_set_pte() here and trap and
318 		 * emulate the PTE write but with 32-bit guests this
319 		 * needs two traps (one for each of the two 32-bit
320 		 * words in the PTE) so do one hypercall directly
321 		 * instead.
322 		 */
323 		struct mmu_update u;
324 
325 		u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
326 		u.val = pte_val_ma(pteval);
327 		HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
328 	}
329 }
330 
331 static void xen_set_pte(pte_t *ptep, pte_t pteval)
332 {
333 	trace_xen_mmu_set_pte(ptep, pteval);
334 	__xen_set_pte(ptep, pteval);
335 }
336 
337 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
338 		    pte_t *ptep, pte_t pteval)
339 {
340 	trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
341 	__xen_set_pte(ptep, pteval);
342 }
343 
344 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
345 				 unsigned long addr, pte_t *ptep)
346 {
347 	/* Just return the pte as-is.  We preserve the bits on commit */
348 	trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
349 	return *ptep;
350 }
351 
352 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
353 				 pte_t *ptep, pte_t pte)
354 {
355 	struct mmu_update u;
356 
357 	trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
358 	xen_mc_batch();
359 
360 	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
361 	u.val = pte_val_ma(pte);
362 	xen_extend_mmu_update(&u);
363 
364 	xen_mc_issue(PARAVIRT_LAZY_MMU);
365 }
366 
367 /* Assume pteval_t is equivalent to all the other *val_t types. */
368 static pteval_t pte_mfn_to_pfn(pteval_t val)
369 {
370 	if (val & _PAGE_PRESENT) {
371 		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
372 		unsigned long pfn = mfn_to_pfn(mfn);
373 
374 		pteval_t flags = val & PTE_FLAGS_MASK;
375 		if (unlikely(pfn == ~0))
376 			val = flags & ~_PAGE_PRESENT;
377 		else
378 			val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
379 	}
380 
381 	return val;
382 }
383 
384 static pteval_t pte_pfn_to_mfn(pteval_t val)
385 {
386 	if (val & _PAGE_PRESENT) {
387 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
388 		pteval_t flags = val & PTE_FLAGS_MASK;
389 		unsigned long mfn;
390 
391 		if (!xen_feature(XENFEAT_auto_translated_physmap))
392 			mfn = __pfn_to_mfn(pfn);
393 		else
394 			mfn = pfn;
395 		/*
396 		 * If there's no mfn for the pfn, then just create an
397 		 * empty non-present pte.  Unfortunately this loses
398 		 * information about the original pfn, so
399 		 * pte_mfn_to_pfn is asymmetric.
400 		 */
401 		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
402 			mfn = 0;
403 			flags = 0;
404 		} else
405 			mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
406 		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
407 	}
408 
409 	return val;
410 }
411 
412 __visible pteval_t xen_pte_val(pte_t pte)
413 {
414 	pteval_t pteval = pte.pte;
415 
416 	return pte_mfn_to_pfn(pteval);
417 }
418 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
419 
420 __visible pgdval_t xen_pgd_val(pgd_t pgd)
421 {
422 	return pte_mfn_to_pfn(pgd.pgd);
423 }
424 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
425 
426 __visible pte_t xen_make_pte(pteval_t pte)
427 {
428 	pte = pte_pfn_to_mfn(pte);
429 
430 	return native_make_pte(pte);
431 }
432 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
433 
434 __visible pgd_t xen_make_pgd(pgdval_t pgd)
435 {
436 	pgd = pte_pfn_to_mfn(pgd);
437 	return native_make_pgd(pgd);
438 }
439 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
440 
441 __visible pmdval_t xen_pmd_val(pmd_t pmd)
442 {
443 	return pte_mfn_to_pfn(pmd.pmd);
444 }
445 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
446 
447 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
448 {
449 	struct mmu_update u;
450 
451 	preempt_disable();
452 
453 	xen_mc_batch();
454 
455 	/* ptr may be ioremapped for 64-bit pagetable setup */
456 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
457 	u.val = pud_val_ma(val);
458 	xen_extend_mmu_update(&u);
459 
460 	xen_mc_issue(PARAVIRT_LAZY_MMU);
461 
462 	preempt_enable();
463 }
464 
465 static void xen_set_pud(pud_t *ptr, pud_t val)
466 {
467 	trace_xen_mmu_set_pud(ptr, val);
468 
469 	/* If page is not pinned, we can just update the entry
470 	   directly */
471 	if (!xen_page_pinned(ptr)) {
472 		*ptr = val;
473 		return;
474 	}
475 
476 	xen_set_pud_hyper(ptr, val);
477 }
478 
479 #ifdef CONFIG_X86_PAE
480 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
481 {
482 	trace_xen_mmu_set_pte_atomic(ptep, pte);
483 	set_64bit((u64 *)ptep, native_pte_val(pte));
484 }
485 
486 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
487 {
488 	trace_xen_mmu_pte_clear(mm, addr, ptep);
489 	if (!xen_batched_set_pte(ptep, native_make_pte(0)))
490 		native_pte_clear(mm, addr, ptep);
491 }
492 
493 static void xen_pmd_clear(pmd_t *pmdp)
494 {
495 	trace_xen_mmu_pmd_clear(pmdp);
496 	set_pmd(pmdp, __pmd(0));
497 }
498 #endif	/* CONFIG_X86_PAE */
499 
500 __visible pmd_t xen_make_pmd(pmdval_t pmd)
501 {
502 	pmd = pte_pfn_to_mfn(pmd);
503 	return native_make_pmd(pmd);
504 }
505 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
506 
507 #if CONFIG_PGTABLE_LEVELS == 4
508 __visible pudval_t xen_pud_val(pud_t pud)
509 {
510 	return pte_mfn_to_pfn(pud.pud);
511 }
512 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
513 
514 __visible pud_t xen_make_pud(pudval_t pud)
515 {
516 	pud = pte_pfn_to_mfn(pud);
517 
518 	return native_make_pud(pud);
519 }
520 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
521 
522 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
523 {
524 	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
525 	unsigned offset = pgd - pgd_page;
526 	pgd_t *user_ptr = NULL;
527 
528 	if (offset < pgd_index(USER_LIMIT)) {
529 		struct page *page = virt_to_page(pgd_page);
530 		user_ptr = (pgd_t *)page->private;
531 		if (user_ptr)
532 			user_ptr += offset;
533 	}
534 
535 	return user_ptr;
536 }
537 
538 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
539 {
540 	struct mmu_update u;
541 
542 	u.ptr = virt_to_machine(ptr).maddr;
543 	u.val = pgd_val_ma(val);
544 	xen_extend_mmu_update(&u);
545 }
546 
547 /*
548  * Raw hypercall-based set_pgd, intended for in early boot before
549  * there's a page structure.  This implies:
550  *  1. The only existing pagetable is the kernel's
551  *  2. It is always pinned
552  *  3. It has no user pagetable attached to it
553  */
554 static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
555 {
556 	preempt_disable();
557 
558 	xen_mc_batch();
559 
560 	__xen_set_pgd_hyper(ptr, val);
561 
562 	xen_mc_issue(PARAVIRT_LAZY_MMU);
563 
564 	preempt_enable();
565 }
566 
567 static void xen_set_pgd(pgd_t *ptr, pgd_t val)
568 {
569 	pgd_t *user_ptr = xen_get_user_pgd(ptr);
570 
571 	trace_xen_mmu_set_pgd(ptr, user_ptr, val);
572 
573 	/* If page is not pinned, we can just update the entry
574 	   directly */
575 	if (!xen_page_pinned(ptr)) {
576 		*ptr = val;
577 		if (user_ptr) {
578 			WARN_ON(xen_page_pinned(user_ptr));
579 			*user_ptr = val;
580 		}
581 		return;
582 	}
583 
584 	/* If it's pinned, then we can at least batch the kernel and
585 	   user updates together. */
586 	xen_mc_batch();
587 
588 	__xen_set_pgd_hyper(ptr, val);
589 	if (user_ptr)
590 		__xen_set_pgd_hyper(user_ptr, val);
591 
592 	xen_mc_issue(PARAVIRT_LAZY_MMU);
593 }
594 #endif	/* CONFIG_PGTABLE_LEVELS == 4 */
595 
596 /*
597  * (Yet another) pagetable walker.  This one is intended for pinning a
598  * pagetable.  This means that it walks a pagetable and calls the
599  * callback function on each page it finds making up the page table,
600  * at every level.  It walks the entire pagetable, but it only bothers
601  * pinning pte pages which are below limit.  In the normal case this
602  * will be STACK_TOP_MAX, but at boot we need to pin up to
603  * FIXADDR_TOP.
604  *
605  * For 32-bit the important bit is that we don't pin beyond there,
606  * because then we start getting into Xen's ptes.
607  *
608  * For 64-bit, we must skip the Xen hole in the middle of the address
609  * space, just after the big x86-64 virtual hole.
610  */
611 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
612 			  int (*func)(struct mm_struct *mm, struct page *,
613 				      enum pt_level),
614 			  unsigned long limit)
615 {
616 	int flush = 0;
617 	unsigned hole_low, hole_high;
618 	unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
619 	unsigned pgdidx, pudidx, pmdidx;
620 
621 	/* The limit is the last byte to be touched */
622 	limit--;
623 	BUG_ON(limit >= FIXADDR_TOP);
624 
625 	if (xen_feature(XENFEAT_auto_translated_physmap))
626 		return 0;
627 
628 	/*
629 	 * 64-bit has a great big hole in the middle of the address
630 	 * space, which contains the Xen mappings.  On 32-bit these
631 	 * will end up making a zero-sized hole and so is a no-op.
632 	 */
633 	hole_low = pgd_index(USER_LIMIT);
634 	hole_high = pgd_index(PAGE_OFFSET);
635 
636 	pgdidx_limit = pgd_index(limit);
637 #if PTRS_PER_PUD > 1
638 	pudidx_limit = pud_index(limit);
639 #else
640 	pudidx_limit = 0;
641 #endif
642 #if PTRS_PER_PMD > 1
643 	pmdidx_limit = pmd_index(limit);
644 #else
645 	pmdidx_limit = 0;
646 #endif
647 
648 	for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
649 		pud_t *pud;
650 
651 		if (pgdidx >= hole_low && pgdidx < hole_high)
652 			continue;
653 
654 		if (!pgd_val(pgd[pgdidx]))
655 			continue;
656 
657 		pud = pud_offset(&pgd[pgdidx], 0);
658 
659 		if (PTRS_PER_PUD > 1) /* not folded */
660 			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
661 
662 		for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
663 			pmd_t *pmd;
664 
665 			if (pgdidx == pgdidx_limit &&
666 			    pudidx > pudidx_limit)
667 				goto out;
668 
669 			if (pud_none(pud[pudidx]))
670 				continue;
671 
672 			pmd = pmd_offset(&pud[pudidx], 0);
673 
674 			if (PTRS_PER_PMD > 1) /* not folded */
675 				flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
676 
677 			for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
678 				struct page *pte;
679 
680 				if (pgdidx == pgdidx_limit &&
681 				    pudidx == pudidx_limit &&
682 				    pmdidx > pmdidx_limit)
683 					goto out;
684 
685 				if (pmd_none(pmd[pmdidx]))
686 					continue;
687 
688 				pte = pmd_page(pmd[pmdidx]);
689 				flush |= (*func)(mm, pte, PT_PTE);
690 			}
691 		}
692 	}
693 
694 out:
695 	/* Do the top level last, so that the callbacks can use it as
696 	   a cue to do final things like tlb flushes. */
697 	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
698 
699 	return flush;
700 }
701 
702 static int xen_pgd_walk(struct mm_struct *mm,
703 			int (*func)(struct mm_struct *mm, struct page *,
704 				    enum pt_level),
705 			unsigned long limit)
706 {
707 	return __xen_pgd_walk(mm, mm->pgd, func, limit);
708 }
709 
710 /* If we're using split pte locks, then take the page's lock and
711    return a pointer to it.  Otherwise return NULL. */
712 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
713 {
714 	spinlock_t *ptl = NULL;
715 
716 #if USE_SPLIT_PTE_PTLOCKS
717 	ptl = ptlock_ptr(page);
718 	spin_lock_nest_lock(ptl, &mm->page_table_lock);
719 #endif
720 
721 	return ptl;
722 }
723 
724 static void xen_pte_unlock(void *v)
725 {
726 	spinlock_t *ptl = v;
727 	spin_unlock(ptl);
728 }
729 
730 static void xen_do_pin(unsigned level, unsigned long pfn)
731 {
732 	struct mmuext_op op;
733 
734 	op.cmd = level;
735 	op.arg1.mfn = pfn_to_mfn(pfn);
736 
737 	xen_extend_mmuext_op(&op);
738 }
739 
740 static int xen_pin_page(struct mm_struct *mm, struct page *page,
741 			enum pt_level level)
742 {
743 	unsigned pgfl = TestSetPagePinned(page);
744 	int flush;
745 
746 	if (pgfl)
747 		flush = 0;		/* already pinned */
748 	else if (PageHighMem(page))
749 		/* kmaps need flushing if we found an unpinned
750 		   highpage */
751 		flush = 1;
752 	else {
753 		void *pt = lowmem_page_address(page);
754 		unsigned long pfn = page_to_pfn(page);
755 		struct multicall_space mcs = __xen_mc_entry(0);
756 		spinlock_t *ptl;
757 
758 		flush = 0;
759 
760 		/*
761 		 * We need to hold the pagetable lock between the time
762 		 * we make the pagetable RO and when we actually pin
763 		 * it.  If we don't, then other users may come in and
764 		 * attempt to update the pagetable by writing it,
765 		 * which will fail because the memory is RO but not
766 		 * pinned, so Xen won't do the trap'n'emulate.
767 		 *
768 		 * If we're using split pte locks, we can't hold the
769 		 * entire pagetable's worth of locks during the
770 		 * traverse, because we may wrap the preempt count (8
771 		 * bits).  The solution is to mark RO and pin each PTE
772 		 * page while holding the lock.  This means the number
773 		 * of locks we end up holding is never more than a
774 		 * batch size (~32 entries, at present).
775 		 *
776 		 * If we're not using split pte locks, we needn't pin
777 		 * the PTE pages independently, because we're
778 		 * protected by the overall pagetable lock.
779 		 */
780 		ptl = NULL;
781 		if (level == PT_PTE)
782 			ptl = xen_pte_lock(page, mm);
783 
784 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
785 					pfn_pte(pfn, PAGE_KERNEL_RO),
786 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
787 
788 		if (ptl) {
789 			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
790 
791 			/* Queue a deferred unlock for when this batch
792 			   is completed. */
793 			xen_mc_callback(xen_pte_unlock, ptl);
794 		}
795 	}
796 
797 	return flush;
798 }
799 
800 /* This is called just after a mm has been created, but it has not
801    been used yet.  We need to make sure that its pagetable is all
802    read-only, and can be pinned. */
803 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
804 {
805 	trace_xen_mmu_pgd_pin(mm, pgd);
806 
807 	xen_mc_batch();
808 
809 	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
810 		/* re-enable interrupts for flushing */
811 		xen_mc_issue(0);
812 
813 		kmap_flush_unused();
814 
815 		xen_mc_batch();
816 	}
817 
818 #ifdef CONFIG_X86_64
819 	{
820 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
821 
822 		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
823 
824 		if (user_pgd) {
825 			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
826 			xen_do_pin(MMUEXT_PIN_L4_TABLE,
827 				   PFN_DOWN(__pa(user_pgd)));
828 		}
829 	}
830 #else /* CONFIG_X86_32 */
831 #ifdef CONFIG_X86_PAE
832 	/* Need to make sure unshared kernel PMD is pinnable */
833 	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
834 		     PT_PMD);
835 #endif
836 	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
837 #endif /* CONFIG_X86_64 */
838 	xen_mc_issue(0);
839 }
840 
841 static void xen_pgd_pin(struct mm_struct *mm)
842 {
843 	__xen_pgd_pin(mm, mm->pgd);
844 }
845 
846 /*
847  * On save, we need to pin all pagetables to make sure they get their
848  * mfns turned into pfns.  Search the list for any unpinned pgds and pin
849  * them (unpinned pgds are not currently in use, probably because the
850  * process is under construction or destruction).
851  *
852  * Expected to be called in stop_machine() ("equivalent to taking
853  * every spinlock in the system"), so the locking doesn't really
854  * matter all that much.
855  */
856 void xen_mm_pin_all(void)
857 {
858 	struct page *page;
859 
860 	spin_lock(&pgd_lock);
861 
862 	list_for_each_entry(page, &pgd_list, lru) {
863 		if (!PagePinned(page)) {
864 			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
865 			SetPageSavePinned(page);
866 		}
867 	}
868 
869 	spin_unlock(&pgd_lock);
870 }
871 
872 /*
873  * The init_mm pagetable is really pinned as soon as its created, but
874  * that's before we have page structures to store the bits.  So do all
875  * the book-keeping now.
876  */
877 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
878 				  enum pt_level level)
879 {
880 	SetPagePinned(page);
881 	return 0;
882 }
883 
884 static void __init xen_mark_init_mm_pinned(void)
885 {
886 	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
887 }
888 
889 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
890 			  enum pt_level level)
891 {
892 	unsigned pgfl = TestClearPagePinned(page);
893 
894 	if (pgfl && !PageHighMem(page)) {
895 		void *pt = lowmem_page_address(page);
896 		unsigned long pfn = page_to_pfn(page);
897 		spinlock_t *ptl = NULL;
898 		struct multicall_space mcs;
899 
900 		/*
901 		 * Do the converse to pin_page.  If we're using split
902 		 * pte locks, we must be holding the lock for while
903 		 * the pte page is unpinned but still RO to prevent
904 		 * concurrent updates from seeing it in this
905 		 * partially-pinned state.
906 		 */
907 		if (level == PT_PTE) {
908 			ptl = xen_pte_lock(page, mm);
909 
910 			if (ptl)
911 				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
912 		}
913 
914 		mcs = __xen_mc_entry(0);
915 
916 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
917 					pfn_pte(pfn, PAGE_KERNEL),
918 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
919 
920 		if (ptl) {
921 			/* unlock when batch completed */
922 			xen_mc_callback(xen_pte_unlock, ptl);
923 		}
924 	}
925 
926 	return 0;		/* never need to flush on unpin */
927 }
928 
929 /* Release a pagetables pages back as normal RW */
930 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
931 {
932 	trace_xen_mmu_pgd_unpin(mm, pgd);
933 
934 	xen_mc_batch();
935 
936 	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
937 
938 #ifdef CONFIG_X86_64
939 	{
940 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
941 
942 		if (user_pgd) {
943 			xen_do_pin(MMUEXT_UNPIN_TABLE,
944 				   PFN_DOWN(__pa(user_pgd)));
945 			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
946 		}
947 	}
948 #endif
949 
950 #ifdef CONFIG_X86_PAE
951 	/* Need to make sure unshared kernel PMD is unpinned */
952 	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
953 		       PT_PMD);
954 #endif
955 
956 	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
957 
958 	xen_mc_issue(0);
959 }
960 
961 static void xen_pgd_unpin(struct mm_struct *mm)
962 {
963 	__xen_pgd_unpin(mm, mm->pgd);
964 }
965 
966 /*
967  * On resume, undo any pinning done at save, so that the rest of the
968  * kernel doesn't see any unexpected pinned pagetables.
969  */
970 void xen_mm_unpin_all(void)
971 {
972 	struct page *page;
973 
974 	spin_lock(&pgd_lock);
975 
976 	list_for_each_entry(page, &pgd_list, lru) {
977 		if (PageSavePinned(page)) {
978 			BUG_ON(!PagePinned(page));
979 			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
980 			ClearPageSavePinned(page);
981 		}
982 	}
983 
984 	spin_unlock(&pgd_lock);
985 }
986 
987 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
988 {
989 	spin_lock(&next->page_table_lock);
990 	xen_pgd_pin(next);
991 	spin_unlock(&next->page_table_lock);
992 }
993 
994 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
995 {
996 	spin_lock(&mm->page_table_lock);
997 	xen_pgd_pin(mm);
998 	spin_unlock(&mm->page_table_lock);
999 }
1000 
1001 
1002 #ifdef CONFIG_SMP
1003 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1004    we need to repoint it somewhere else before we can unpin it. */
1005 static void drop_other_mm_ref(void *info)
1006 {
1007 	struct mm_struct *mm = info;
1008 	struct mm_struct *active_mm;
1009 
1010 	active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1011 
1012 	if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1013 		leave_mm(smp_processor_id());
1014 
1015 	/* If this cpu still has a stale cr3 reference, then make sure
1016 	   it has been flushed. */
1017 	if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1018 		load_cr3(swapper_pg_dir);
1019 }
1020 
1021 static void xen_drop_mm_ref(struct mm_struct *mm)
1022 {
1023 	cpumask_var_t mask;
1024 	unsigned cpu;
1025 
1026 	if (current->active_mm == mm) {
1027 		if (current->mm == mm)
1028 			load_cr3(swapper_pg_dir);
1029 		else
1030 			leave_mm(smp_processor_id());
1031 	}
1032 
1033 	/* Get the "official" set of cpus referring to our pagetable. */
1034 	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1035 		for_each_online_cpu(cpu) {
1036 			if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1037 			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1038 				continue;
1039 			smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1040 		}
1041 		return;
1042 	}
1043 	cpumask_copy(mask, mm_cpumask(mm));
1044 
1045 	/* It's possible that a vcpu may have a stale reference to our
1046 	   cr3, because its in lazy mode, and it hasn't yet flushed
1047 	   its set of pending hypercalls yet.  In this case, we can
1048 	   look at its actual current cr3 value, and force it to flush
1049 	   if needed. */
1050 	for_each_online_cpu(cpu) {
1051 		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1052 			cpumask_set_cpu(cpu, mask);
1053 	}
1054 
1055 	if (!cpumask_empty(mask))
1056 		smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1057 	free_cpumask_var(mask);
1058 }
1059 #else
1060 static void xen_drop_mm_ref(struct mm_struct *mm)
1061 {
1062 	if (current->active_mm == mm)
1063 		load_cr3(swapper_pg_dir);
1064 }
1065 #endif
1066 
1067 /*
1068  * While a process runs, Xen pins its pagetables, which means that the
1069  * hypervisor forces it to be read-only, and it controls all updates
1070  * to it.  This means that all pagetable updates have to go via the
1071  * hypervisor, which is moderately expensive.
1072  *
1073  * Since we're pulling the pagetable down, we switch to use init_mm,
1074  * unpin old process pagetable and mark it all read-write, which
1075  * allows further operations on it to be simple memory accesses.
1076  *
1077  * The only subtle point is that another CPU may be still using the
1078  * pagetable because of lazy tlb flushing.  This means we need need to
1079  * switch all CPUs off this pagetable before we can unpin it.
1080  */
1081 static void xen_exit_mmap(struct mm_struct *mm)
1082 {
1083 	get_cpu();		/* make sure we don't move around */
1084 	xen_drop_mm_ref(mm);
1085 	put_cpu();
1086 
1087 	spin_lock(&mm->page_table_lock);
1088 
1089 	/* pgd may not be pinned in the error exit path of execve */
1090 	if (xen_page_pinned(mm->pgd))
1091 		xen_pgd_unpin(mm);
1092 
1093 	spin_unlock(&mm->page_table_lock);
1094 }
1095 
1096 static void xen_post_allocator_init(void);
1097 
1098 static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1099 {
1100 	struct mmuext_op op;
1101 
1102 	op.cmd = cmd;
1103 	op.arg1.mfn = pfn_to_mfn(pfn);
1104 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1105 		BUG();
1106 }
1107 
1108 #ifdef CONFIG_X86_64
1109 static void __init xen_cleanhighmap(unsigned long vaddr,
1110 				    unsigned long vaddr_end)
1111 {
1112 	unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1113 	pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1114 
1115 	/* NOTE: The loop is more greedy than the cleanup_highmap variant.
1116 	 * We include the PMD passed in on _both_ boundaries. */
1117 	for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1118 			pmd++, vaddr += PMD_SIZE) {
1119 		if (pmd_none(*pmd))
1120 			continue;
1121 		if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1122 			set_pmd(pmd, __pmd(0));
1123 	}
1124 	/* In case we did something silly, we should crash in this function
1125 	 * instead of somewhere later and be confusing. */
1126 	xen_mc_flush();
1127 }
1128 
1129 /*
1130  * Make a page range writeable and free it.
1131  */
1132 static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1133 {
1134 	void *vaddr = __va(paddr);
1135 	void *vaddr_end = vaddr + size;
1136 
1137 	for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1138 		make_lowmem_page_readwrite(vaddr);
1139 
1140 	memblock_free(paddr, size);
1141 }
1142 
1143 static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1144 {
1145 	unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1146 
1147 	if (unpin)
1148 		pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1149 	ClearPagePinned(virt_to_page(__va(pa)));
1150 	xen_free_ro_pages(pa, PAGE_SIZE);
1151 }
1152 
1153 /*
1154  * Since it is well isolated we can (and since it is perhaps large we should)
1155  * also free the page tables mapping the initial P->M table.
1156  */
1157 static void __init xen_cleanmfnmap(unsigned long vaddr)
1158 {
1159 	unsigned long va = vaddr & PMD_MASK;
1160 	unsigned long pa;
1161 	pgd_t *pgd = pgd_offset_k(va);
1162 	pud_t *pud_page = pud_offset(pgd, 0);
1163 	pud_t *pud;
1164 	pmd_t *pmd;
1165 	pte_t *pte;
1166 	unsigned int i;
1167 	bool unpin;
1168 
1169 	unpin = (vaddr == 2 * PGDIR_SIZE);
1170 	set_pgd(pgd, __pgd(0));
1171 	do {
1172 		pud = pud_page + pud_index(va);
1173 		if (pud_none(*pud)) {
1174 			va += PUD_SIZE;
1175 		} else if (pud_large(*pud)) {
1176 			pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1177 			xen_free_ro_pages(pa, PUD_SIZE);
1178 			va += PUD_SIZE;
1179 		} else {
1180 			pmd = pmd_offset(pud, va);
1181 			if (pmd_large(*pmd)) {
1182 				pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1183 				xen_free_ro_pages(pa, PMD_SIZE);
1184 			} else if (!pmd_none(*pmd)) {
1185 				pte = pte_offset_kernel(pmd, va);
1186 				set_pmd(pmd, __pmd(0));
1187 				for (i = 0; i < PTRS_PER_PTE; ++i) {
1188 					if (pte_none(pte[i]))
1189 						break;
1190 					pa = pte_pfn(pte[i]) << PAGE_SHIFT;
1191 					xen_free_ro_pages(pa, PAGE_SIZE);
1192 				}
1193 				xen_cleanmfnmap_free_pgtbl(pte, unpin);
1194 			}
1195 			va += PMD_SIZE;
1196 			if (pmd_index(va))
1197 				continue;
1198 			set_pud(pud, __pud(0));
1199 			xen_cleanmfnmap_free_pgtbl(pmd, unpin);
1200 		}
1201 
1202 	} while (pud_index(va) || pmd_index(va));
1203 	xen_cleanmfnmap_free_pgtbl(pud_page, unpin);
1204 }
1205 
1206 static void __init xen_pagetable_p2m_free(void)
1207 {
1208 	unsigned long size;
1209 	unsigned long addr;
1210 
1211 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1212 
1213 	/* No memory or already called. */
1214 	if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1215 		return;
1216 
1217 	/* using __ka address and sticking INVALID_P2M_ENTRY! */
1218 	memset((void *)xen_start_info->mfn_list, 0xff, size);
1219 
1220 	addr = xen_start_info->mfn_list;
1221 	/*
1222 	 * We could be in __ka space.
1223 	 * We roundup to the PMD, which means that if anybody at this stage is
1224 	 * using the __ka address of xen_start_info or
1225 	 * xen_start_info->shared_info they are in going to crash. Fortunatly
1226 	 * we have already revectored in xen_setup_kernel_pagetable and in
1227 	 * xen_setup_shared_info.
1228 	 */
1229 	size = roundup(size, PMD_SIZE);
1230 
1231 	if (addr >= __START_KERNEL_map) {
1232 		xen_cleanhighmap(addr, addr + size);
1233 		size = PAGE_ALIGN(xen_start_info->nr_pages *
1234 				  sizeof(unsigned long));
1235 		memblock_free(__pa(addr), size);
1236 	} else {
1237 		xen_cleanmfnmap(addr);
1238 	}
1239 }
1240 
1241 static void __init xen_pagetable_cleanhighmap(void)
1242 {
1243 	unsigned long size;
1244 	unsigned long addr;
1245 
1246 	/* At this stage, cleanup_highmap has already cleaned __ka space
1247 	 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1248 	 * the ramdisk). We continue on, erasing PMD entries that point to page
1249 	 * tables - do note that they are accessible at this stage via __va.
1250 	 * For good measure we also round up to the PMD - which means that if
1251 	 * anybody is using __ka address to the initial boot-stack - and try
1252 	 * to use it - they are going to crash. The xen_start_info has been
1253 	 * taken care of already in xen_setup_kernel_pagetable. */
1254 	addr = xen_start_info->pt_base;
1255 	size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1256 
1257 	xen_cleanhighmap(addr, addr + size);
1258 	xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1259 #ifdef DEBUG
1260 	/* This is superfluous and is not necessary, but you know what
1261 	 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1262 	 * anything at this stage. */
1263 	xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1264 #endif
1265 }
1266 #endif
1267 
1268 static void __init xen_pagetable_p2m_setup(void)
1269 {
1270 	if (xen_feature(XENFEAT_auto_translated_physmap))
1271 		return;
1272 
1273 	xen_vmalloc_p2m_tree();
1274 
1275 #ifdef CONFIG_X86_64
1276 	xen_pagetable_p2m_free();
1277 
1278 	xen_pagetable_cleanhighmap();
1279 #endif
1280 	/* And revector! Bye bye old array */
1281 	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1282 }
1283 
1284 static void __init xen_pagetable_init(void)
1285 {
1286 	paging_init();
1287 	xen_post_allocator_init();
1288 
1289 	xen_pagetable_p2m_setup();
1290 
1291 	/* Allocate and initialize top and mid mfn levels for p2m structure */
1292 	xen_build_mfn_list_list();
1293 
1294 	/* Remap memory freed due to conflicts with E820 map */
1295 	if (!xen_feature(XENFEAT_auto_translated_physmap))
1296 		xen_remap_memory();
1297 
1298 	xen_setup_shared_info();
1299 }
1300 static void xen_write_cr2(unsigned long cr2)
1301 {
1302 	this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1303 }
1304 
1305 static unsigned long xen_read_cr2(void)
1306 {
1307 	return this_cpu_read(xen_vcpu)->arch.cr2;
1308 }
1309 
1310 unsigned long xen_read_cr2_direct(void)
1311 {
1312 	return this_cpu_read(xen_vcpu_info.arch.cr2);
1313 }
1314 
1315 void xen_flush_tlb_all(void)
1316 {
1317 	struct mmuext_op *op;
1318 	struct multicall_space mcs;
1319 
1320 	trace_xen_mmu_flush_tlb_all(0);
1321 
1322 	preempt_disable();
1323 
1324 	mcs = xen_mc_entry(sizeof(*op));
1325 
1326 	op = mcs.args;
1327 	op->cmd = MMUEXT_TLB_FLUSH_ALL;
1328 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1329 
1330 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1331 
1332 	preempt_enable();
1333 }
1334 static void xen_flush_tlb(void)
1335 {
1336 	struct mmuext_op *op;
1337 	struct multicall_space mcs;
1338 
1339 	trace_xen_mmu_flush_tlb(0);
1340 
1341 	preempt_disable();
1342 
1343 	mcs = xen_mc_entry(sizeof(*op));
1344 
1345 	op = mcs.args;
1346 	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1347 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1348 
1349 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1350 
1351 	preempt_enable();
1352 }
1353 
1354 static void xen_flush_tlb_single(unsigned long addr)
1355 {
1356 	struct mmuext_op *op;
1357 	struct multicall_space mcs;
1358 
1359 	trace_xen_mmu_flush_tlb_single(addr);
1360 
1361 	preempt_disable();
1362 
1363 	mcs = xen_mc_entry(sizeof(*op));
1364 	op = mcs.args;
1365 	op->cmd = MMUEXT_INVLPG_LOCAL;
1366 	op->arg1.linear_addr = addr & PAGE_MASK;
1367 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1368 
1369 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1370 
1371 	preempt_enable();
1372 }
1373 
1374 static void xen_flush_tlb_others(const struct cpumask *cpus,
1375 				 struct mm_struct *mm, unsigned long start,
1376 				 unsigned long end)
1377 {
1378 	struct {
1379 		struct mmuext_op op;
1380 #ifdef CONFIG_SMP
1381 		DECLARE_BITMAP(mask, num_processors);
1382 #else
1383 		DECLARE_BITMAP(mask, NR_CPUS);
1384 #endif
1385 	} *args;
1386 	struct multicall_space mcs;
1387 
1388 	trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1389 
1390 	if (cpumask_empty(cpus))
1391 		return;		/* nothing to do */
1392 
1393 	mcs = xen_mc_entry(sizeof(*args));
1394 	args = mcs.args;
1395 	args->op.arg2.vcpumask = to_cpumask(args->mask);
1396 
1397 	/* Remove us, and any offline CPUS. */
1398 	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1399 	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1400 
1401 	args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1402 	if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1403 		args->op.cmd = MMUEXT_INVLPG_MULTI;
1404 		args->op.arg1.linear_addr = start;
1405 	}
1406 
1407 	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1408 
1409 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1410 }
1411 
1412 static unsigned long xen_read_cr3(void)
1413 {
1414 	return this_cpu_read(xen_cr3);
1415 }
1416 
1417 static void set_current_cr3(void *v)
1418 {
1419 	this_cpu_write(xen_current_cr3, (unsigned long)v);
1420 }
1421 
1422 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1423 {
1424 	struct mmuext_op op;
1425 	unsigned long mfn;
1426 
1427 	trace_xen_mmu_write_cr3(kernel, cr3);
1428 
1429 	if (cr3)
1430 		mfn = pfn_to_mfn(PFN_DOWN(cr3));
1431 	else
1432 		mfn = 0;
1433 
1434 	WARN_ON(mfn == 0 && kernel);
1435 
1436 	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1437 	op.arg1.mfn = mfn;
1438 
1439 	xen_extend_mmuext_op(&op);
1440 
1441 	if (kernel) {
1442 		this_cpu_write(xen_cr3, cr3);
1443 
1444 		/* Update xen_current_cr3 once the batch has actually
1445 		   been submitted. */
1446 		xen_mc_callback(set_current_cr3, (void *)cr3);
1447 	}
1448 }
1449 static void xen_write_cr3(unsigned long cr3)
1450 {
1451 	BUG_ON(preemptible());
1452 
1453 	xen_mc_batch();  /* disables interrupts */
1454 
1455 	/* Update while interrupts are disabled, so its atomic with
1456 	   respect to ipis */
1457 	this_cpu_write(xen_cr3, cr3);
1458 
1459 	__xen_write_cr3(true, cr3);
1460 
1461 #ifdef CONFIG_X86_64
1462 	{
1463 		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1464 		if (user_pgd)
1465 			__xen_write_cr3(false, __pa(user_pgd));
1466 		else
1467 			__xen_write_cr3(false, 0);
1468 	}
1469 #endif
1470 
1471 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1472 }
1473 
1474 #ifdef CONFIG_X86_64
1475 /*
1476  * At the start of the day - when Xen launches a guest, it has already
1477  * built pagetables for the guest. We diligently look over them
1478  * in xen_setup_kernel_pagetable and graft as appropriate them in the
1479  * init_level4_pgt and its friends. Then when we are happy we load
1480  * the new init_level4_pgt - and continue on.
1481  *
1482  * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1483  * up the rest of the pagetables. When it has completed it loads the cr3.
1484  * N.B. that baremetal would start at 'start_kernel' (and the early
1485  * #PF handler would create bootstrap pagetables) - so we are running
1486  * with the same assumptions as what to do when write_cr3 is executed
1487  * at this point.
1488  *
1489  * Since there are no user-page tables at all, we have two variants
1490  * of xen_write_cr3 - the early bootup (this one), and the late one
1491  * (xen_write_cr3). The reason we have to do that is that in 64-bit
1492  * the Linux kernel and user-space are both in ring 3 while the
1493  * hypervisor is in ring 0.
1494  */
1495 static void __init xen_write_cr3_init(unsigned long cr3)
1496 {
1497 	BUG_ON(preemptible());
1498 
1499 	xen_mc_batch();  /* disables interrupts */
1500 
1501 	/* Update while interrupts are disabled, so its atomic with
1502 	   respect to ipis */
1503 	this_cpu_write(xen_cr3, cr3);
1504 
1505 	__xen_write_cr3(true, cr3);
1506 
1507 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1508 }
1509 #endif
1510 
1511 static int xen_pgd_alloc(struct mm_struct *mm)
1512 {
1513 	pgd_t *pgd = mm->pgd;
1514 	int ret = 0;
1515 
1516 	BUG_ON(PagePinned(virt_to_page(pgd)));
1517 
1518 #ifdef CONFIG_X86_64
1519 	{
1520 		struct page *page = virt_to_page(pgd);
1521 		pgd_t *user_pgd;
1522 
1523 		BUG_ON(page->private != 0);
1524 
1525 		ret = -ENOMEM;
1526 
1527 		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1528 		page->private = (unsigned long)user_pgd;
1529 
1530 		if (user_pgd != NULL) {
1531 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1532 			user_pgd[pgd_index(VSYSCALL_ADDR)] =
1533 				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1534 #endif
1535 			ret = 0;
1536 		}
1537 
1538 		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1539 	}
1540 #endif
1541 
1542 	return ret;
1543 }
1544 
1545 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1546 {
1547 #ifdef CONFIG_X86_64
1548 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
1549 
1550 	if (user_pgd)
1551 		free_page((unsigned long)user_pgd);
1552 #endif
1553 }
1554 
1555 /*
1556  * Init-time set_pte while constructing initial pagetables, which
1557  * doesn't allow RO page table pages to be remapped RW.
1558  *
1559  * If there is no MFN for this PFN then this page is initially
1560  * ballooned out so clear the PTE (as in decrease_reservation() in
1561  * drivers/xen/balloon.c).
1562  *
1563  * Many of these PTE updates are done on unpinned and writable pages
1564  * and doing a hypercall for these is unnecessary and expensive.  At
1565  * this point it is not possible to tell if a page is pinned or not,
1566  * so always write the PTE directly and rely on Xen trapping and
1567  * emulating any updates as necessary.
1568  */
1569 __visible pte_t xen_make_pte_init(pteval_t pte)
1570 {
1571 #ifdef CONFIG_X86_64
1572 	unsigned long pfn;
1573 
1574 	/*
1575 	 * Pages belonging to the initial p2m list mapped outside the default
1576 	 * address range must be mapped read-only. This region contains the
1577 	 * page tables for mapping the p2m list, too, and page tables MUST be
1578 	 * mapped read-only.
1579 	 */
1580 	pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
1581 	if (xen_start_info->mfn_list < __START_KERNEL_map &&
1582 	    pfn >= xen_start_info->first_p2m_pfn &&
1583 	    pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1584 		pte &= ~_PAGE_RW;
1585 #endif
1586 	pte = pte_pfn_to_mfn(pte);
1587 	return native_make_pte(pte);
1588 }
1589 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
1590 
1591 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1592 {
1593 #ifdef CONFIG_X86_32
1594 	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
1595 	if (pte_mfn(pte) != INVALID_P2M_ENTRY
1596 	    && pte_val_ma(*ptep) & _PAGE_PRESENT)
1597 		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1598 			       pte_val_ma(pte));
1599 #endif
1600 	native_set_pte(ptep, pte);
1601 }
1602 
1603 /* Early in boot, while setting up the initial pagetable, assume
1604    everything is pinned. */
1605 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1606 {
1607 #ifdef CONFIG_FLATMEM
1608 	BUG_ON(mem_map);	/* should only be used early */
1609 #endif
1610 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1611 	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1612 }
1613 
1614 /* Used for pmd and pud */
1615 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1616 {
1617 #ifdef CONFIG_FLATMEM
1618 	BUG_ON(mem_map);	/* should only be used early */
1619 #endif
1620 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1621 }
1622 
1623 /* Early release_pte assumes that all pts are pinned, since there's
1624    only init_mm and anything attached to that is pinned. */
1625 static void __init xen_release_pte_init(unsigned long pfn)
1626 {
1627 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1628 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1629 }
1630 
1631 static void __init xen_release_pmd_init(unsigned long pfn)
1632 {
1633 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1634 }
1635 
1636 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1637 {
1638 	struct multicall_space mcs;
1639 	struct mmuext_op *op;
1640 
1641 	mcs = __xen_mc_entry(sizeof(*op));
1642 	op = mcs.args;
1643 	op->cmd = cmd;
1644 	op->arg1.mfn = pfn_to_mfn(pfn);
1645 
1646 	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1647 }
1648 
1649 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1650 {
1651 	struct multicall_space mcs;
1652 	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1653 
1654 	mcs = __xen_mc_entry(0);
1655 	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1656 				pfn_pte(pfn, prot), 0);
1657 }
1658 
1659 /* This needs to make sure the new pte page is pinned iff its being
1660    attached to a pinned pagetable. */
1661 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1662 				    unsigned level)
1663 {
1664 	bool pinned = PagePinned(virt_to_page(mm->pgd));
1665 
1666 	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1667 
1668 	if (pinned) {
1669 		struct page *page = pfn_to_page(pfn);
1670 
1671 		SetPagePinned(page);
1672 
1673 		if (!PageHighMem(page)) {
1674 			xen_mc_batch();
1675 
1676 			__set_pfn_prot(pfn, PAGE_KERNEL_RO);
1677 
1678 			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1679 				__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1680 
1681 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1682 		} else {
1683 			/* make sure there are no stray mappings of
1684 			   this page */
1685 			kmap_flush_unused();
1686 		}
1687 	}
1688 }
1689 
1690 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1691 {
1692 	xen_alloc_ptpage(mm, pfn, PT_PTE);
1693 }
1694 
1695 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1696 {
1697 	xen_alloc_ptpage(mm, pfn, PT_PMD);
1698 }
1699 
1700 /* This should never happen until we're OK to use struct page */
1701 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1702 {
1703 	struct page *page = pfn_to_page(pfn);
1704 	bool pinned = PagePinned(page);
1705 
1706 	trace_xen_mmu_release_ptpage(pfn, level, pinned);
1707 
1708 	if (pinned) {
1709 		if (!PageHighMem(page)) {
1710 			xen_mc_batch();
1711 
1712 			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1713 				__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1714 
1715 			__set_pfn_prot(pfn, PAGE_KERNEL);
1716 
1717 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1718 		}
1719 		ClearPagePinned(page);
1720 	}
1721 }
1722 
1723 static void xen_release_pte(unsigned long pfn)
1724 {
1725 	xen_release_ptpage(pfn, PT_PTE);
1726 }
1727 
1728 static void xen_release_pmd(unsigned long pfn)
1729 {
1730 	xen_release_ptpage(pfn, PT_PMD);
1731 }
1732 
1733 #if CONFIG_PGTABLE_LEVELS == 4
1734 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1735 {
1736 	xen_alloc_ptpage(mm, pfn, PT_PUD);
1737 }
1738 
1739 static void xen_release_pud(unsigned long pfn)
1740 {
1741 	xen_release_ptpage(pfn, PT_PUD);
1742 }
1743 #endif
1744 
1745 void __init xen_reserve_top(void)
1746 {
1747 #ifdef CONFIG_X86_32
1748 	unsigned long top = HYPERVISOR_VIRT_START;
1749 	struct xen_platform_parameters pp;
1750 
1751 	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1752 		top = pp.virt_start;
1753 
1754 	reserve_top_address(-top);
1755 #endif	/* CONFIG_X86_32 */
1756 }
1757 
1758 /*
1759  * Like __va(), but returns address in the kernel mapping (which is
1760  * all we have until the physical memory mapping has been set up.
1761  */
1762 static void * __init __ka(phys_addr_t paddr)
1763 {
1764 #ifdef CONFIG_X86_64
1765 	return (void *)(paddr + __START_KERNEL_map);
1766 #else
1767 	return __va(paddr);
1768 #endif
1769 }
1770 
1771 /* Convert a machine address to physical address */
1772 static unsigned long __init m2p(phys_addr_t maddr)
1773 {
1774 	phys_addr_t paddr;
1775 
1776 	maddr &= PTE_PFN_MASK;
1777 	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1778 
1779 	return paddr;
1780 }
1781 
1782 /* Convert a machine address to kernel virtual */
1783 static void * __init m2v(phys_addr_t maddr)
1784 {
1785 	return __ka(m2p(maddr));
1786 }
1787 
1788 /* Set the page permissions on an identity-mapped pages */
1789 static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1790 				       unsigned long flags)
1791 {
1792 	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1793 	pte_t pte = pfn_pte(pfn, prot);
1794 
1795 	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1796 		BUG();
1797 }
1798 static void __init set_page_prot(void *addr, pgprot_t prot)
1799 {
1800 	return set_page_prot_flags(addr, prot, UVMF_NONE);
1801 }
1802 #ifdef CONFIG_X86_32
1803 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1804 {
1805 	unsigned pmdidx, pteidx;
1806 	unsigned ident_pte;
1807 	unsigned long pfn;
1808 
1809 	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1810 				      PAGE_SIZE);
1811 
1812 	ident_pte = 0;
1813 	pfn = 0;
1814 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1815 		pte_t *pte_page;
1816 
1817 		/* Reuse or allocate a page of ptes */
1818 		if (pmd_present(pmd[pmdidx]))
1819 			pte_page = m2v(pmd[pmdidx].pmd);
1820 		else {
1821 			/* Check for free pte pages */
1822 			if (ident_pte == LEVEL1_IDENT_ENTRIES)
1823 				break;
1824 
1825 			pte_page = &level1_ident_pgt[ident_pte];
1826 			ident_pte += PTRS_PER_PTE;
1827 
1828 			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1829 		}
1830 
1831 		/* Install mappings */
1832 		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1833 			pte_t pte;
1834 
1835 			if (pfn > max_pfn_mapped)
1836 				max_pfn_mapped = pfn;
1837 
1838 			if (!pte_none(pte_page[pteidx]))
1839 				continue;
1840 
1841 			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1842 			pte_page[pteidx] = pte;
1843 		}
1844 	}
1845 
1846 	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1847 		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1848 
1849 	set_page_prot(pmd, PAGE_KERNEL_RO);
1850 }
1851 #endif
1852 void __init xen_setup_machphys_mapping(void)
1853 {
1854 	struct xen_machphys_mapping mapping;
1855 
1856 	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1857 		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1858 		machine_to_phys_nr = mapping.max_mfn + 1;
1859 	} else {
1860 		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1861 	}
1862 #ifdef CONFIG_X86_32
1863 	WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1864 		< machine_to_phys_mapping);
1865 #endif
1866 }
1867 
1868 #ifdef CONFIG_X86_64
1869 static void __init convert_pfn_mfn(void *v)
1870 {
1871 	pte_t *pte = v;
1872 	int i;
1873 
1874 	/* All levels are converted the same way, so just treat them
1875 	   as ptes. */
1876 	for (i = 0; i < PTRS_PER_PTE; i++)
1877 		pte[i] = xen_make_pte(pte[i].pte);
1878 }
1879 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1880 				 unsigned long addr)
1881 {
1882 	if (*pt_base == PFN_DOWN(__pa(addr))) {
1883 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1884 		clear_page((void *)addr);
1885 		(*pt_base)++;
1886 	}
1887 	if (*pt_end == PFN_DOWN(__pa(addr))) {
1888 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1889 		clear_page((void *)addr);
1890 		(*pt_end)--;
1891 	}
1892 }
1893 /*
1894  * Set up the initial kernel pagetable.
1895  *
1896  * We can construct this by grafting the Xen provided pagetable into
1897  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1898  * level2_ident_pgt, and level2_kernel_pgt.  This means that only the
1899  * kernel has a physical mapping to start with - but that's enough to
1900  * get __va working.  We need to fill in the rest of the physical
1901  * mapping once some sort of allocator has been set up.
1902  */
1903 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1904 {
1905 	pud_t *l3;
1906 	pmd_t *l2;
1907 	unsigned long addr[3];
1908 	unsigned long pt_base, pt_end;
1909 	unsigned i;
1910 
1911 	/* max_pfn_mapped is the last pfn mapped in the initial memory
1912 	 * mappings. Considering that on Xen after the kernel mappings we
1913 	 * have the mappings of some pages that don't exist in pfn space, we
1914 	 * set max_pfn_mapped to the last real pfn mapped. */
1915 	if (xen_start_info->mfn_list < __START_KERNEL_map)
1916 		max_pfn_mapped = xen_start_info->first_p2m_pfn;
1917 	else
1918 		max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1919 
1920 	pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1921 	pt_end = pt_base + xen_start_info->nr_pt_frames;
1922 
1923 	/* Zap identity mapping */
1924 	init_level4_pgt[0] = __pgd(0);
1925 
1926 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1927 		/* Pre-constructed entries are in pfn, so convert to mfn */
1928 		/* L4[272] -> level3_ident_pgt
1929 		 * L4[511] -> level3_kernel_pgt */
1930 		convert_pfn_mfn(init_level4_pgt);
1931 
1932 		/* L3_i[0] -> level2_ident_pgt */
1933 		convert_pfn_mfn(level3_ident_pgt);
1934 		/* L3_k[510] -> level2_kernel_pgt
1935 		 * L3_k[511] -> level2_fixmap_pgt */
1936 		convert_pfn_mfn(level3_kernel_pgt);
1937 
1938 		/* L3_k[511][506] -> level1_fixmap_pgt */
1939 		convert_pfn_mfn(level2_fixmap_pgt);
1940 	}
1941 	/* We get [511][511] and have Xen's version of level2_kernel_pgt */
1942 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1943 	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1944 
1945 	addr[0] = (unsigned long)pgd;
1946 	addr[1] = (unsigned long)l3;
1947 	addr[2] = (unsigned long)l2;
1948 	/* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1949 	 * Both L4[272][0] and L4[511][510] have entries that point to the same
1950 	 * L2 (PMD) tables. Meaning that if you modify it in __va space
1951 	 * it will be also modified in the __ka space! (But if you just
1952 	 * modify the PMD table to point to other PTE's or none, then you
1953 	 * are OK - which is what cleanup_highmap does) */
1954 	copy_page(level2_ident_pgt, l2);
1955 	/* Graft it onto L4[511][510] */
1956 	copy_page(level2_kernel_pgt, l2);
1957 
1958 	/* Copy the initial P->M table mappings if necessary. */
1959 	i = pgd_index(xen_start_info->mfn_list);
1960 	if (i && i < pgd_index(__START_KERNEL_map))
1961 		init_level4_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
1962 
1963 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1964 		/* Make pagetable pieces RO */
1965 		set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1966 		set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1967 		set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1968 		set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1969 		set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1970 		set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1971 		set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1972 		set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO);
1973 
1974 		/* Pin down new L4 */
1975 		pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1976 				  PFN_DOWN(__pa_symbol(init_level4_pgt)));
1977 
1978 		/* Unpin Xen-provided one */
1979 		pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1980 
1981 		/*
1982 		 * At this stage there can be no user pgd, and no page
1983 		 * structure to attach it to, so make sure we just set kernel
1984 		 * pgd.
1985 		 */
1986 		xen_mc_batch();
1987 		__xen_write_cr3(true, __pa(init_level4_pgt));
1988 		xen_mc_issue(PARAVIRT_LAZY_CPU);
1989 	} else
1990 		native_write_cr3(__pa(init_level4_pgt));
1991 
1992 	/* We can't that easily rip out L3 and L2, as the Xen pagetables are
1993 	 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
1994 	 * the initial domain. For guests using the toolstack, they are in:
1995 	 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1996 	 * rip out the [L4] (pgd), but for guests we shave off three pages.
1997 	 */
1998 	for (i = 0; i < ARRAY_SIZE(addr); i++)
1999 		check_pt_base(&pt_base, &pt_end, addr[i]);
2000 
2001 	/* Our (by three pages) smaller Xen pagetable that we are using */
2002 	xen_pt_base = PFN_PHYS(pt_base);
2003 	xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
2004 	memblock_reserve(xen_pt_base, xen_pt_size);
2005 
2006 	/* Revector the xen_start_info */
2007 	xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
2008 }
2009 
2010 /*
2011  * Read a value from a physical address.
2012  */
2013 static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
2014 {
2015 	unsigned long *vaddr;
2016 	unsigned long val;
2017 
2018 	vaddr = early_memremap_ro(addr, sizeof(val));
2019 	val = *vaddr;
2020 	early_memunmap(vaddr, sizeof(val));
2021 	return val;
2022 }
2023 
2024 /*
2025  * Translate a virtual address to a physical one without relying on mapped
2026  * page tables.
2027  */
2028 static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
2029 {
2030 	phys_addr_t pa;
2031 	pgd_t pgd;
2032 	pud_t pud;
2033 	pmd_t pmd;
2034 	pte_t pte;
2035 
2036 	pa = read_cr3();
2037 	pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
2038 						       sizeof(pgd)));
2039 	if (!pgd_present(pgd))
2040 		return 0;
2041 
2042 	pa = pgd_val(pgd) & PTE_PFN_MASK;
2043 	pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
2044 						       sizeof(pud)));
2045 	if (!pud_present(pud))
2046 		return 0;
2047 	pa = pud_pfn(pud) << PAGE_SHIFT;
2048 	if (pud_large(pud))
2049 		return pa + (vaddr & ~PUD_MASK);
2050 
2051 	pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
2052 						       sizeof(pmd)));
2053 	if (!pmd_present(pmd))
2054 		return 0;
2055 	pa = pmd_pfn(pmd) << PAGE_SHIFT;
2056 	if (pmd_large(pmd))
2057 		return pa + (vaddr & ~PMD_MASK);
2058 
2059 	pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
2060 						       sizeof(pte)));
2061 	if (!pte_present(pte))
2062 		return 0;
2063 	pa = pte_pfn(pte) << PAGE_SHIFT;
2064 
2065 	return pa | (vaddr & ~PAGE_MASK);
2066 }
2067 
2068 /*
2069  * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
2070  * this area.
2071  */
2072 void __init xen_relocate_p2m(void)
2073 {
2074 	phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys;
2075 	unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
2076 	int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud;
2077 	pte_t *pt;
2078 	pmd_t *pmd;
2079 	pud_t *pud;
2080 	pgd_t *pgd;
2081 	unsigned long *new_p2m;
2082 
2083 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
2084 	n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
2085 	n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
2086 	n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
2087 	n_pud = roundup(size, PGDIR_SIZE) >> PGDIR_SHIFT;
2088 	n_frames = n_pte + n_pt + n_pmd + n_pud;
2089 
2090 	new_area = xen_find_free_area(PFN_PHYS(n_frames));
2091 	if (!new_area) {
2092 		xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
2093 		BUG();
2094 	}
2095 
2096 	/*
2097 	 * Setup the page tables for addressing the new p2m list.
2098 	 * We have asked the hypervisor to map the p2m list at the user address
2099 	 * PUD_SIZE. It may have done so, or it may have used a kernel space
2100 	 * address depending on the Xen version.
2101 	 * To avoid any possible virtual address collision, just use
2102 	 * 2 * PUD_SIZE for the new area.
2103 	 */
2104 	pud_phys = new_area;
2105 	pmd_phys = pud_phys + PFN_PHYS(n_pud);
2106 	pt_phys = pmd_phys + PFN_PHYS(n_pmd);
2107 	p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
2108 
2109 	pgd = __va(read_cr3());
2110 	new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
2111 	for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
2112 		pud = early_memremap(pud_phys, PAGE_SIZE);
2113 		clear_page(pud);
2114 		for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
2115 		     idx_pmd++) {
2116 			pmd = early_memremap(pmd_phys, PAGE_SIZE);
2117 			clear_page(pmd);
2118 			for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
2119 			     idx_pt++) {
2120 				pt = early_memremap(pt_phys, PAGE_SIZE);
2121 				clear_page(pt);
2122 				for (idx_pte = 0;
2123 				     idx_pte < min(n_pte, PTRS_PER_PTE);
2124 				     idx_pte++) {
2125 					set_pte(pt + idx_pte,
2126 						pfn_pte(p2m_pfn, PAGE_KERNEL));
2127 					p2m_pfn++;
2128 				}
2129 				n_pte -= PTRS_PER_PTE;
2130 				early_memunmap(pt, PAGE_SIZE);
2131 				make_lowmem_page_readonly(__va(pt_phys));
2132 				pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
2133 						  PFN_DOWN(pt_phys));
2134 				set_pmd(pmd + idx_pt,
2135 					__pmd(_PAGE_TABLE | pt_phys));
2136 				pt_phys += PAGE_SIZE;
2137 			}
2138 			n_pt -= PTRS_PER_PMD;
2139 			early_memunmap(pmd, PAGE_SIZE);
2140 			make_lowmem_page_readonly(__va(pmd_phys));
2141 			pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
2142 					  PFN_DOWN(pmd_phys));
2143 			set_pud(pud + idx_pmd, __pud(_PAGE_TABLE | pmd_phys));
2144 			pmd_phys += PAGE_SIZE;
2145 		}
2146 		n_pmd -= PTRS_PER_PUD;
2147 		early_memunmap(pud, PAGE_SIZE);
2148 		make_lowmem_page_readonly(__va(pud_phys));
2149 		pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
2150 		set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
2151 		pud_phys += PAGE_SIZE;
2152 	}
2153 
2154 	/* Now copy the old p2m info to the new area. */
2155 	memcpy(new_p2m, xen_p2m_addr, size);
2156 	xen_p2m_addr = new_p2m;
2157 
2158 	/* Release the old p2m list and set new list info. */
2159 	p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
2160 	BUG_ON(!p2m_pfn);
2161 	p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
2162 
2163 	if (xen_start_info->mfn_list < __START_KERNEL_map) {
2164 		pfn = xen_start_info->first_p2m_pfn;
2165 		pfn_end = xen_start_info->first_p2m_pfn +
2166 			  xen_start_info->nr_p2m_frames;
2167 		set_pgd(pgd + 1, __pgd(0));
2168 	} else {
2169 		pfn = p2m_pfn;
2170 		pfn_end = p2m_pfn_end;
2171 	}
2172 
2173 	memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
2174 	while (pfn < pfn_end) {
2175 		if (pfn == p2m_pfn) {
2176 			pfn = p2m_pfn_end;
2177 			continue;
2178 		}
2179 		make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
2180 		pfn++;
2181 	}
2182 
2183 	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
2184 	xen_start_info->first_p2m_pfn =  PFN_DOWN(new_area);
2185 	xen_start_info->nr_p2m_frames = n_frames;
2186 }
2187 
2188 #else	/* !CONFIG_X86_64 */
2189 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
2190 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
2191 
2192 static void __init xen_write_cr3_init(unsigned long cr3)
2193 {
2194 	unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
2195 
2196 	BUG_ON(read_cr3() != __pa(initial_page_table));
2197 	BUG_ON(cr3 != __pa(swapper_pg_dir));
2198 
2199 	/*
2200 	 * We are switching to swapper_pg_dir for the first time (from
2201 	 * initial_page_table) and therefore need to mark that page
2202 	 * read-only and then pin it.
2203 	 *
2204 	 * Xen disallows sharing of kernel PMDs for PAE
2205 	 * guests. Therefore we must copy the kernel PMD from
2206 	 * initial_page_table into a new kernel PMD to be used in
2207 	 * swapper_pg_dir.
2208 	 */
2209 	swapper_kernel_pmd =
2210 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2211 	copy_page(swapper_kernel_pmd, initial_kernel_pmd);
2212 	swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
2213 		__pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
2214 	set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
2215 
2216 	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
2217 	xen_write_cr3(cr3);
2218 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
2219 
2220 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
2221 			  PFN_DOWN(__pa(initial_page_table)));
2222 	set_page_prot(initial_page_table, PAGE_KERNEL);
2223 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
2224 
2225 	pv_mmu_ops.write_cr3 = &xen_write_cr3;
2226 }
2227 
2228 /*
2229  * For 32 bit domains xen_start_info->pt_base is the pgd address which might be
2230  * not the first page table in the page table pool.
2231  * Iterate through the initial page tables to find the real page table base.
2232  */
2233 static phys_addr_t xen_find_pt_base(pmd_t *pmd)
2234 {
2235 	phys_addr_t pt_base, paddr;
2236 	unsigned pmdidx;
2237 
2238 	pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd));
2239 
2240 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++)
2241 		if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) {
2242 			paddr = m2p(pmd[pmdidx].pmd);
2243 			pt_base = min(pt_base, paddr);
2244 		}
2245 
2246 	return pt_base;
2247 }
2248 
2249 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
2250 {
2251 	pmd_t *kernel_pmd;
2252 
2253 	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2254 
2255 	xen_pt_base = xen_find_pt_base(kernel_pmd);
2256 	xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE;
2257 
2258 	initial_kernel_pmd =
2259 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2260 
2261 	max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024);
2262 
2263 	copy_page(initial_kernel_pmd, kernel_pmd);
2264 
2265 	xen_map_identity_early(initial_kernel_pmd, max_pfn);
2266 
2267 	copy_page(initial_page_table, pgd);
2268 	initial_page_table[KERNEL_PGD_BOUNDARY] =
2269 		__pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2270 
2271 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2272 	set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2273 	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2274 
2275 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2276 
2277 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2278 			  PFN_DOWN(__pa(initial_page_table)));
2279 	xen_write_cr3(__pa(initial_page_table));
2280 
2281 	memblock_reserve(xen_pt_base, xen_pt_size);
2282 }
2283 #endif	/* CONFIG_X86_64 */
2284 
2285 void __init xen_reserve_special_pages(void)
2286 {
2287 	phys_addr_t paddr;
2288 
2289 	memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2290 	if (xen_start_info->store_mfn) {
2291 		paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2292 		memblock_reserve(paddr, PAGE_SIZE);
2293 	}
2294 	if (!xen_initial_domain()) {
2295 		paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2296 		memblock_reserve(paddr, PAGE_SIZE);
2297 	}
2298 }
2299 
2300 void __init xen_pt_check_e820(void)
2301 {
2302 	if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
2303 		xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2304 		BUG();
2305 	}
2306 }
2307 
2308 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2309 
2310 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2311 {
2312 	pte_t pte;
2313 
2314 	phys >>= PAGE_SHIFT;
2315 
2316 	switch (idx) {
2317 	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2318 	case FIX_RO_IDT:
2319 #ifdef CONFIG_X86_32
2320 	case FIX_WP_TEST:
2321 # ifdef CONFIG_HIGHMEM
2322 	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2323 # endif
2324 #elif defined(CONFIG_X86_VSYSCALL_EMULATION)
2325 	case VSYSCALL_PAGE:
2326 #endif
2327 	case FIX_TEXT_POKE0:
2328 	case FIX_TEXT_POKE1:
2329 		/* All local page mappings */
2330 		pte = pfn_pte(phys, prot);
2331 		break;
2332 
2333 #ifdef CONFIG_X86_LOCAL_APIC
2334 	case FIX_APIC_BASE:	/* maps dummy local APIC */
2335 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2336 		break;
2337 #endif
2338 
2339 #ifdef CONFIG_X86_IO_APIC
2340 	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2341 		/*
2342 		 * We just don't map the IO APIC - all access is via
2343 		 * hypercalls.  Keep the address in the pte for reference.
2344 		 */
2345 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2346 		break;
2347 #endif
2348 
2349 	case FIX_PARAVIRT_BOOTMAP:
2350 		/* This is an MFN, but it isn't an IO mapping from the
2351 		   IO domain */
2352 		pte = mfn_pte(phys, prot);
2353 		break;
2354 
2355 	default:
2356 		/* By default, set_fixmap is used for hardware mappings */
2357 		pte = mfn_pte(phys, prot);
2358 		break;
2359 	}
2360 
2361 	__native_set_fixmap(idx, pte);
2362 
2363 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2364 	/* Replicate changes to map the vsyscall page into the user
2365 	   pagetable vsyscall mapping. */
2366 	if (idx == VSYSCALL_PAGE) {
2367 		unsigned long vaddr = __fix_to_virt(idx);
2368 		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2369 	}
2370 #endif
2371 }
2372 
2373 static void __init xen_post_allocator_init(void)
2374 {
2375 	if (xen_feature(XENFEAT_auto_translated_physmap))
2376 		return;
2377 
2378 	pv_mmu_ops.set_pte = xen_set_pte;
2379 	pv_mmu_ops.set_pmd = xen_set_pmd;
2380 	pv_mmu_ops.set_pud = xen_set_pud;
2381 #if CONFIG_PGTABLE_LEVELS == 4
2382 	pv_mmu_ops.set_pgd = xen_set_pgd;
2383 #endif
2384 
2385 	/* This will work as long as patching hasn't happened yet
2386 	   (which it hasn't) */
2387 	pv_mmu_ops.alloc_pte = xen_alloc_pte;
2388 	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2389 	pv_mmu_ops.release_pte = xen_release_pte;
2390 	pv_mmu_ops.release_pmd = xen_release_pmd;
2391 #if CONFIG_PGTABLE_LEVELS == 4
2392 	pv_mmu_ops.alloc_pud = xen_alloc_pud;
2393 	pv_mmu_ops.release_pud = xen_release_pud;
2394 #endif
2395 	pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte);
2396 
2397 #ifdef CONFIG_X86_64
2398 	pv_mmu_ops.write_cr3 = &xen_write_cr3;
2399 	SetPagePinned(virt_to_page(level3_user_vsyscall));
2400 #endif
2401 	xen_mark_init_mm_pinned();
2402 }
2403 
2404 static void xen_leave_lazy_mmu(void)
2405 {
2406 	preempt_disable();
2407 	xen_mc_flush();
2408 	paravirt_leave_lazy_mmu();
2409 	preempt_enable();
2410 }
2411 
2412 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2413 	.read_cr2 = xen_read_cr2,
2414 	.write_cr2 = xen_write_cr2,
2415 
2416 	.read_cr3 = xen_read_cr3,
2417 	.write_cr3 = xen_write_cr3_init,
2418 
2419 	.flush_tlb_user = xen_flush_tlb,
2420 	.flush_tlb_kernel = xen_flush_tlb,
2421 	.flush_tlb_single = xen_flush_tlb_single,
2422 	.flush_tlb_others = xen_flush_tlb_others,
2423 
2424 	.pte_update = paravirt_nop,
2425 
2426 	.pgd_alloc = xen_pgd_alloc,
2427 	.pgd_free = xen_pgd_free,
2428 
2429 	.alloc_pte = xen_alloc_pte_init,
2430 	.release_pte = xen_release_pte_init,
2431 	.alloc_pmd = xen_alloc_pmd_init,
2432 	.release_pmd = xen_release_pmd_init,
2433 
2434 	.set_pte = xen_set_pte_init,
2435 	.set_pte_at = xen_set_pte_at,
2436 	.set_pmd = xen_set_pmd_hyper,
2437 
2438 	.ptep_modify_prot_start = __ptep_modify_prot_start,
2439 	.ptep_modify_prot_commit = __ptep_modify_prot_commit,
2440 
2441 	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
2442 	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2443 
2444 	.make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
2445 	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2446 
2447 #ifdef CONFIG_X86_PAE
2448 	.set_pte_atomic = xen_set_pte_atomic,
2449 	.pte_clear = xen_pte_clear,
2450 	.pmd_clear = xen_pmd_clear,
2451 #endif	/* CONFIG_X86_PAE */
2452 	.set_pud = xen_set_pud_hyper,
2453 
2454 	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2455 	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2456 
2457 #if CONFIG_PGTABLE_LEVELS == 4
2458 	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
2459 	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2460 	.set_pgd = xen_set_pgd_hyper,
2461 
2462 	.alloc_pud = xen_alloc_pmd_init,
2463 	.release_pud = xen_release_pmd_init,
2464 #endif	/* CONFIG_PGTABLE_LEVELS == 4 */
2465 
2466 	.activate_mm = xen_activate_mm,
2467 	.dup_mmap = xen_dup_mmap,
2468 	.exit_mmap = xen_exit_mmap,
2469 
2470 	.lazy_mode = {
2471 		.enter = paravirt_enter_lazy_mmu,
2472 		.leave = xen_leave_lazy_mmu,
2473 		.flush = paravirt_flush_lazy_mmu,
2474 	},
2475 
2476 	.set_fixmap = xen_set_fixmap,
2477 };
2478 
2479 void __init xen_init_mmu_ops(void)
2480 {
2481 	x86_init.paging.pagetable_init = xen_pagetable_init;
2482 
2483 	if (xen_feature(XENFEAT_auto_translated_physmap))
2484 		return;
2485 
2486 	pv_mmu_ops = xen_mmu_ops;
2487 
2488 	memset(dummy_mapping, 0xff, PAGE_SIZE);
2489 }
2490 
2491 /* Protected by xen_reservation_lock. */
2492 #define MAX_CONTIG_ORDER 9 /* 2MB */
2493 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2494 
2495 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2496 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2497 				unsigned long *in_frames,
2498 				unsigned long *out_frames)
2499 {
2500 	int i;
2501 	struct multicall_space mcs;
2502 
2503 	xen_mc_batch();
2504 	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2505 		mcs = __xen_mc_entry(0);
2506 
2507 		if (in_frames)
2508 			in_frames[i] = virt_to_mfn(vaddr);
2509 
2510 		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2511 		__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2512 
2513 		if (out_frames)
2514 			out_frames[i] = virt_to_pfn(vaddr);
2515 	}
2516 	xen_mc_issue(0);
2517 }
2518 
2519 /*
2520  * Update the pfn-to-mfn mappings for a virtual address range, either to
2521  * point to an array of mfns, or contiguously from a single starting
2522  * mfn.
2523  */
2524 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2525 				     unsigned long *mfns,
2526 				     unsigned long first_mfn)
2527 {
2528 	unsigned i, limit;
2529 	unsigned long mfn;
2530 
2531 	xen_mc_batch();
2532 
2533 	limit = 1u << order;
2534 	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2535 		struct multicall_space mcs;
2536 		unsigned flags;
2537 
2538 		mcs = __xen_mc_entry(0);
2539 		if (mfns)
2540 			mfn = mfns[i];
2541 		else
2542 			mfn = first_mfn + i;
2543 
2544 		if (i < (limit - 1))
2545 			flags = 0;
2546 		else {
2547 			if (order == 0)
2548 				flags = UVMF_INVLPG | UVMF_ALL;
2549 			else
2550 				flags = UVMF_TLB_FLUSH | UVMF_ALL;
2551 		}
2552 
2553 		MULTI_update_va_mapping(mcs.mc, vaddr,
2554 				mfn_pte(mfn, PAGE_KERNEL), flags);
2555 
2556 		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2557 	}
2558 
2559 	xen_mc_issue(0);
2560 }
2561 
2562 /*
2563  * Perform the hypercall to exchange a region of our pfns to point to
2564  * memory with the required contiguous alignment.  Takes the pfns as
2565  * input, and populates mfns as output.
2566  *
2567  * Returns a success code indicating whether the hypervisor was able to
2568  * satisfy the request or not.
2569  */
2570 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2571 			       unsigned long *pfns_in,
2572 			       unsigned long extents_out,
2573 			       unsigned int order_out,
2574 			       unsigned long *mfns_out,
2575 			       unsigned int address_bits)
2576 {
2577 	long rc;
2578 	int success;
2579 
2580 	struct xen_memory_exchange exchange = {
2581 		.in = {
2582 			.nr_extents   = extents_in,
2583 			.extent_order = order_in,
2584 			.extent_start = pfns_in,
2585 			.domid        = DOMID_SELF
2586 		},
2587 		.out = {
2588 			.nr_extents   = extents_out,
2589 			.extent_order = order_out,
2590 			.extent_start = mfns_out,
2591 			.address_bits = address_bits,
2592 			.domid        = DOMID_SELF
2593 		}
2594 	};
2595 
2596 	BUG_ON(extents_in << order_in != extents_out << order_out);
2597 
2598 	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2599 	success = (exchange.nr_exchanged == extents_in);
2600 
2601 	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2602 	BUG_ON(success && (rc != 0));
2603 
2604 	return success;
2605 }
2606 
2607 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2608 				 unsigned int address_bits,
2609 				 dma_addr_t *dma_handle)
2610 {
2611 	unsigned long *in_frames = discontig_frames, out_frame;
2612 	unsigned long  flags;
2613 	int            success;
2614 	unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2615 
2616 	/*
2617 	 * Currently an auto-translated guest will not perform I/O, nor will
2618 	 * it require PAE page directories below 4GB. Therefore any calls to
2619 	 * this function are redundant and can be ignored.
2620 	 */
2621 
2622 	if (xen_feature(XENFEAT_auto_translated_physmap))
2623 		return 0;
2624 
2625 	if (unlikely(order > MAX_CONTIG_ORDER))
2626 		return -ENOMEM;
2627 
2628 	memset((void *) vstart, 0, PAGE_SIZE << order);
2629 
2630 	spin_lock_irqsave(&xen_reservation_lock, flags);
2631 
2632 	/* 1. Zap current PTEs, remembering MFNs. */
2633 	xen_zap_pfn_range(vstart, order, in_frames, NULL);
2634 
2635 	/* 2. Get a new contiguous memory extent. */
2636 	out_frame = virt_to_pfn(vstart);
2637 	success = xen_exchange_memory(1UL << order, 0, in_frames,
2638 				      1, order, &out_frame,
2639 				      address_bits);
2640 
2641 	/* 3. Map the new extent in place of old pages. */
2642 	if (success)
2643 		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2644 	else
2645 		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2646 
2647 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2648 
2649 	*dma_handle = virt_to_machine(vstart).maddr;
2650 	return success ? 0 : -ENOMEM;
2651 }
2652 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2653 
2654 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2655 {
2656 	unsigned long *out_frames = discontig_frames, in_frame;
2657 	unsigned long  flags;
2658 	int success;
2659 	unsigned long vstart;
2660 
2661 	if (xen_feature(XENFEAT_auto_translated_physmap))
2662 		return;
2663 
2664 	if (unlikely(order > MAX_CONTIG_ORDER))
2665 		return;
2666 
2667 	vstart = (unsigned long)phys_to_virt(pstart);
2668 	memset((void *) vstart, 0, PAGE_SIZE << order);
2669 
2670 	spin_lock_irqsave(&xen_reservation_lock, flags);
2671 
2672 	/* 1. Find start MFN of contiguous extent. */
2673 	in_frame = virt_to_mfn(vstart);
2674 
2675 	/* 2. Zap current PTEs. */
2676 	xen_zap_pfn_range(vstart, order, NULL, out_frames);
2677 
2678 	/* 3. Do the exchange for non-contiguous MFNs. */
2679 	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2680 					0, out_frames, 0);
2681 
2682 	/* 4. Map new pages in place of old pages. */
2683 	if (success)
2684 		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2685 	else
2686 		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2687 
2688 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2689 }
2690 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2691 
2692 #ifdef CONFIG_XEN_PVHVM
2693 #ifdef CONFIG_PROC_VMCORE
2694 /*
2695  * This function is used in two contexts:
2696  * - the kdump kernel has to check whether a pfn of the crashed kernel
2697  *   was a ballooned page. vmcore is using this function to decide
2698  *   whether to access a pfn of the crashed kernel.
2699  * - the kexec kernel has to check whether a pfn was ballooned by the
2700  *   previous kernel. If the pfn is ballooned, handle it properly.
2701  * Returns 0 if the pfn is not backed by a RAM page, the caller may
2702  * handle the pfn special in this case.
2703  */
2704 static int xen_oldmem_pfn_is_ram(unsigned long pfn)
2705 {
2706 	struct xen_hvm_get_mem_type a = {
2707 		.domid = DOMID_SELF,
2708 		.pfn = pfn,
2709 	};
2710 	int ram;
2711 
2712 	if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a))
2713 		return -ENXIO;
2714 
2715 	switch (a.mem_type) {
2716 		case HVMMEM_mmio_dm:
2717 			ram = 0;
2718 			break;
2719 		case HVMMEM_ram_rw:
2720 		case HVMMEM_ram_ro:
2721 		default:
2722 			ram = 1;
2723 			break;
2724 	}
2725 
2726 	return ram;
2727 }
2728 #endif
2729 
2730 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2731 {
2732 	struct xen_hvm_pagetable_dying a;
2733 	int rc;
2734 
2735 	a.domid = DOMID_SELF;
2736 	a.gpa = __pa(mm->pgd);
2737 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2738 	WARN_ON_ONCE(rc < 0);
2739 }
2740 
2741 static int is_pagetable_dying_supported(void)
2742 {
2743 	struct xen_hvm_pagetable_dying a;
2744 	int rc = 0;
2745 
2746 	a.domid = DOMID_SELF;
2747 	a.gpa = 0x00;
2748 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2749 	if (rc < 0) {
2750 		printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2751 		return 0;
2752 	}
2753 	return 1;
2754 }
2755 
2756 void __init xen_hvm_init_mmu_ops(void)
2757 {
2758 	if (is_pagetable_dying_supported())
2759 		pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2760 #ifdef CONFIG_PROC_VMCORE
2761 	register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram);
2762 #endif
2763 }
2764 #endif
2765 
2766 #define REMAP_BATCH_SIZE 16
2767 
2768 struct remap_data {
2769 	xen_pfn_t *mfn;
2770 	bool contiguous;
2771 	pgprot_t prot;
2772 	struct mmu_update *mmu_update;
2773 };
2774 
2775 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2776 				 unsigned long addr, void *data)
2777 {
2778 	struct remap_data *rmd = data;
2779 	pte_t pte = pte_mkspecial(mfn_pte(*rmd->mfn, rmd->prot));
2780 
2781 	/* If we have a contiguous range, just update the mfn itself,
2782 	   else update pointer to be "next mfn". */
2783 	if (rmd->contiguous)
2784 		(*rmd->mfn)++;
2785 	else
2786 		rmd->mfn++;
2787 
2788 	rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2789 	rmd->mmu_update->val = pte_val_ma(pte);
2790 	rmd->mmu_update++;
2791 
2792 	return 0;
2793 }
2794 
2795 static int do_remap_gfn(struct vm_area_struct *vma,
2796 			unsigned long addr,
2797 			xen_pfn_t *gfn, int nr,
2798 			int *err_ptr, pgprot_t prot,
2799 			unsigned domid,
2800 			struct page **pages)
2801 {
2802 	int err = 0;
2803 	struct remap_data rmd;
2804 	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2805 	unsigned long range;
2806 	int mapped = 0;
2807 
2808 	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2809 
2810 	rmd.mfn = gfn;
2811 	rmd.prot = prot;
2812 	/* We use the err_ptr to indicate if there we are doing a contiguous
2813 	 * mapping or a discontigious mapping. */
2814 	rmd.contiguous = !err_ptr;
2815 
2816 	while (nr) {
2817 		int index = 0;
2818 		int done = 0;
2819 		int batch = min(REMAP_BATCH_SIZE, nr);
2820 		int batch_left = batch;
2821 		range = (unsigned long)batch << PAGE_SHIFT;
2822 
2823 		rmd.mmu_update = mmu_update;
2824 		err = apply_to_page_range(vma->vm_mm, addr, range,
2825 					  remap_area_mfn_pte_fn, &rmd);
2826 		if (err)
2827 			goto out;
2828 
2829 		/* We record the error for each page that gives an error, but
2830 		 * continue mapping until the whole set is done */
2831 		do {
2832 			int i;
2833 
2834 			err = HYPERVISOR_mmu_update(&mmu_update[index],
2835 						    batch_left, &done, domid);
2836 
2837 			/*
2838 			 * @err_ptr may be the same buffer as @gfn, so
2839 			 * only clear it after each chunk of @gfn is
2840 			 * used.
2841 			 */
2842 			if (err_ptr) {
2843 				for (i = index; i < index + done; i++)
2844 					err_ptr[i] = 0;
2845 			}
2846 			if (err < 0) {
2847 				if (!err_ptr)
2848 					goto out;
2849 				err_ptr[i] = err;
2850 				done++; /* Skip failed frame. */
2851 			} else
2852 				mapped += done;
2853 			batch_left -= done;
2854 			index += done;
2855 		} while (batch_left);
2856 
2857 		nr -= batch;
2858 		addr += range;
2859 		if (err_ptr)
2860 			err_ptr += batch;
2861 		cond_resched();
2862 	}
2863 out:
2864 
2865 	xen_flush_tlb_all();
2866 
2867 	return err < 0 ? err : mapped;
2868 }
2869 
2870 int xen_remap_domain_gfn_range(struct vm_area_struct *vma,
2871 			       unsigned long addr,
2872 			       xen_pfn_t gfn, int nr,
2873 			       pgprot_t prot, unsigned domid,
2874 			       struct page **pages)
2875 {
2876 	return do_remap_gfn(vma, addr, &gfn, nr, NULL, prot, domid, pages);
2877 }
2878 EXPORT_SYMBOL_GPL(xen_remap_domain_gfn_range);
2879 
2880 int xen_remap_domain_gfn_array(struct vm_area_struct *vma,
2881 			       unsigned long addr,
2882 			       xen_pfn_t *gfn, int nr,
2883 			       int *err_ptr, pgprot_t prot,
2884 			       unsigned domid, struct page **pages)
2885 {
2886 	/* We BUG_ON because it's a programmer error to pass a NULL err_ptr,
2887 	 * and the consequences later is quite hard to detect what the actual
2888 	 * cause of "wrong memory was mapped in".
2889 	 */
2890 	BUG_ON(err_ptr == NULL);
2891 	return do_remap_gfn(vma, addr, gfn, nr, err_ptr, prot, domid, pages);
2892 }
2893 EXPORT_SYMBOL_GPL(xen_remap_domain_gfn_array);
2894 
2895 
2896 /* Returns: 0 success */
2897 int xen_unmap_domain_gfn_range(struct vm_area_struct *vma,
2898 			       int numpgs, struct page **pages)
2899 {
2900 	if (!pages || !xen_feature(XENFEAT_auto_translated_physmap))
2901 		return 0;
2902 
2903 	return -EINVAL;
2904 }
2905 EXPORT_SYMBOL_GPL(xen_unmap_domain_gfn_range);
2906