xref: /openbmc/linux/arch/x86/xen/mmu.c (revision 37be287c)
1 /*
2  * Xen mmu operations
3  *
4  * This file contains the various mmu fetch and update operations.
5  * The most important job they must perform is the mapping between the
6  * domain's pfn and the overall machine mfns.
7  *
8  * Xen allows guests to directly update the pagetable, in a controlled
9  * fashion.  In other words, the guest modifies the same pagetable
10  * that the CPU actually uses, which eliminates the overhead of having
11  * a separate shadow pagetable.
12  *
13  * In order to allow this, it falls on the guest domain to map its
14  * notion of a "physical" pfn - which is just a domain-local linear
15  * address - into a real "machine address" which the CPU's MMU can
16  * use.
17  *
18  * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19  * inserted directly into the pagetable.  When creating a new
20  * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
21  * when reading the content back with __(pgd|pmd|pte)_val, it converts
22  * the mfn back into a pfn.
23  *
24  * The other constraint is that all pages which make up a pagetable
25  * must be mapped read-only in the guest.  This prevents uncontrolled
26  * guest updates to the pagetable.  Xen strictly enforces this, and
27  * will disallow any pagetable update which will end up mapping a
28  * pagetable page RW, and will disallow using any writable page as a
29  * pagetable.
30  *
31  * Naively, when loading %cr3 with the base of a new pagetable, Xen
32  * would need to validate the whole pagetable before going on.
33  * Naturally, this is quite slow.  The solution is to "pin" a
34  * pagetable, which enforces all the constraints on the pagetable even
35  * when it is not actively in use.  This menas that Xen can be assured
36  * that it is still valid when you do load it into %cr3, and doesn't
37  * need to revalidate it.
38  *
39  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40  */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49 #include <linux/seq_file.h>
50 #include <linux/crash_dump.h>
51 
52 #include <trace/events/xen.h>
53 
54 #include <asm/pgtable.h>
55 #include <asm/tlbflush.h>
56 #include <asm/fixmap.h>
57 #include <asm/mmu_context.h>
58 #include <asm/setup.h>
59 #include <asm/paravirt.h>
60 #include <asm/e820.h>
61 #include <asm/linkage.h>
62 #include <asm/page.h>
63 #include <asm/init.h>
64 #include <asm/pat.h>
65 #include <asm/smp.h>
66 
67 #include <asm/xen/hypercall.h>
68 #include <asm/xen/hypervisor.h>
69 
70 #include <xen/xen.h>
71 #include <xen/page.h>
72 #include <xen/interface/xen.h>
73 #include <xen/interface/hvm/hvm_op.h>
74 #include <xen/interface/version.h>
75 #include <xen/interface/memory.h>
76 #include <xen/hvc-console.h>
77 
78 #include "multicalls.h"
79 #include "mmu.h"
80 #include "debugfs.h"
81 
82 /*
83  * Protects atomic reservation decrease/increase against concurrent increases.
84  * Also protects non-atomic updates of current_pages and balloon lists.
85  */
86 DEFINE_SPINLOCK(xen_reservation_lock);
87 
88 #ifdef CONFIG_X86_32
89 /*
90  * Identity map, in addition to plain kernel map.  This needs to be
91  * large enough to allocate page table pages to allocate the rest.
92  * Each page can map 2MB.
93  */
94 #define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4)
95 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
96 #endif
97 #ifdef CONFIG_X86_64
98 /* l3 pud for userspace vsyscall mapping */
99 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
100 #endif /* CONFIG_X86_64 */
101 
102 /*
103  * Note about cr3 (pagetable base) values:
104  *
105  * xen_cr3 contains the current logical cr3 value; it contains the
106  * last set cr3.  This may not be the current effective cr3, because
107  * its update may be being lazily deferred.  However, a vcpu looking
108  * at its own cr3 can use this value knowing that it everything will
109  * be self-consistent.
110  *
111  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
112  * hypercall to set the vcpu cr3 is complete (so it may be a little
113  * out of date, but it will never be set early).  If one vcpu is
114  * looking at another vcpu's cr3 value, it should use this variable.
115  */
116 DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
117 DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
118 
119 
120 /*
121  * Just beyond the highest usermode address.  STACK_TOP_MAX has a
122  * redzone above it, so round it up to a PGD boundary.
123  */
124 #define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
125 
126 unsigned long arbitrary_virt_to_mfn(void *vaddr)
127 {
128 	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
129 
130 	return PFN_DOWN(maddr.maddr);
131 }
132 
133 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
134 {
135 	unsigned long address = (unsigned long)vaddr;
136 	unsigned int level;
137 	pte_t *pte;
138 	unsigned offset;
139 
140 	/*
141 	 * if the PFN is in the linear mapped vaddr range, we can just use
142 	 * the (quick) virt_to_machine() p2m lookup
143 	 */
144 	if (virt_addr_valid(vaddr))
145 		return virt_to_machine(vaddr);
146 
147 	/* otherwise we have to do a (slower) full page-table walk */
148 
149 	pte = lookup_address(address, &level);
150 	BUG_ON(pte == NULL);
151 	offset = address & ~PAGE_MASK;
152 	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
153 }
154 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
155 
156 void make_lowmem_page_readonly(void *vaddr)
157 {
158 	pte_t *pte, ptev;
159 	unsigned long address = (unsigned long)vaddr;
160 	unsigned int level;
161 
162 	pte = lookup_address(address, &level);
163 	if (pte == NULL)
164 		return;		/* vaddr missing */
165 
166 	ptev = pte_wrprotect(*pte);
167 
168 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
169 		BUG();
170 }
171 
172 void make_lowmem_page_readwrite(void *vaddr)
173 {
174 	pte_t *pte, ptev;
175 	unsigned long address = (unsigned long)vaddr;
176 	unsigned int level;
177 
178 	pte = lookup_address(address, &level);
179 	if (pte == NULL)
180 		return;		/* vaddr missing */
181 
182 	ptev = pte_mkwrite(*pte);
183 
184 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
185 		BUG();
186 }
187 
188 
189 static bool xen_page_pinned(void *ptr)
190 {
191 	struct page *page = virt_to_page(ptr);
192 
193 	return PagePinned(page);
194 }
195 
196 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
197 {
198 	struct multicall_space mcs;
199 	struct mmu_update *u;
200 
201 	trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
202 
203 	mcs = xen_mc_entry(sizeof(*u));
204 	u = mcs.args;
205 
206 	/* ptep might be kmapped when using 32-bit HIGHPTE */
207 	u->ptr = virt_to_machine(ptep).maddr;
208 	u->val = pte_val_ma(pteval);
209 
210 	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
211 
212 	xen_mc_issue(PARAVIRT_LAZY_MMU);
213 }
214 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
215 
216 static void xen_extend_mmu_update(const struct mmu_update *update)
217 {
218 	struct multicall_space mcs;
219 	struct mmu_update *u;
220 
221 	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
222 
223 	if (mcs.mc != NULL) {
224 		mcs.mc->args[1]++;
225 	} else {
226 		mcs = __xen_mc_entry(sizeof(*u));
227 		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
228 	}
229 
230 	u = mcs.args;
231 	*u = *update;
232 }
233 
234 static void xen_extend_mmuext_op(const struct mmuext_op *op)
235 {
236 	struct multicall_space mcs;
237 	struct mmuext_op *u;
238 
239 	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
240 
241 	if (mcs.mc != NULL) {
242 		mcs.mc->args[1]++;
243 	} else {
244 		mcs = __xen_mc_entry(sizeof(*u));
245 		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
246 	}
247 
248 	u = mcs.args;
249 	*u = *op;
250 }
251 
252 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
253 {
254 	struct mmu_update u;
255 
256 	preempt_disable();
257 
258 	xen_mc_batch();
259 
260 	/* ptr may be ioremapped for 64-bit pagetable setup */
261 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
262 	u.val = pmd_val_ma(val);
263 	xen_extend_mmu_update(&u);
264 
265 	xen_mc_issue(PARAVIRT_LAZY_MMU);
266 
267 	preempt_enable();
268 }
269 
270 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
271 {
272 	trace_xen_mmu_set_pmd(ptr, val);
273 
274 	/* If page is not pinned, we can just update the entry
275 	   directly */
276 	if (!xen_page_pinned(ptr)) {
277 		*ptr = val;
278 		return;
279 	}
280 
281 	xen_set_pmd_hyper(ptr, val);
282 }
283 
284 /*
285  * Associate a virtual page frame with a given physical page frame
286  * and protection flags for that frame.
287  */
288 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
289 {
290 	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
291 }
292 
293 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
294 {
295 	struct mmu_update u;
296 
297 	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
298 		return false;
299 
300 	xen_mc_batch();
301 
302 	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
303 	u.val = pte_val_ma(pteval);
304 	xen_extend_mmu_update(&u);
305 
306 	xen_mc_issue(PARAVIRT_LAZY_MMU);
307 
308 	return true;
309 }
310 
311 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
312 {
313 	if (!xen_batched_set_pte(ptep, pteval)) {
314 		/*
315 		 * Could call native_set_pte() here and trap and
316 		 * emulate the PTE write but with 32-bit guests this
317 		 * needs two traps (one for each of the two 32-bit
318 		 * words in the PTE) so do one hypercall directly
319 		 * instead.
320 		 */
321 		struct mmu_update u;
322 
323 		u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
324 		u.val = pte_val_ma(pteval);
325 		HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
326 	}
327 }
328 
329 static void xen_set_pte(pte_t *ptep, pte_t pteval)
330 {
331 	trace_xen_mmu_set_pte(ptep, pteval);
332 	__xen_set_pte(ptep, pteval);
333 }
334 
335 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
336 		    pte_t *ptep, pte_t pteval)
337 {
338 	trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
339 	__xen_set_pte(ptep, pteval);
340 }
341 
342 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
343 				 unsigned long addr, pte_t *ptep)
344 {
345 	/* Just return the pte as-is.  We preserve the bits on commit */
346 	trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
347 	return *ptep;
348 }
349 
350 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
351 				 pte_t *ptep, pte_t pte)
352 {
353 	struct mmu_update u;
354 
355 	trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
356 	xen_mc_batch();
357 
358 	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
359 	u.val = pte_val_ma(pte);
360 	xen_extend_mmu_update(&u);
361 
362 	xen_mc_issue(PARAVIRT_LAZY_MMU);
363 }
364 
365 /* Assume pteval_t is equivalent to all the other *val_t types. */
366 static pteval_t pte_mfn_to_pfn(pteval_t val)
367 {
368 	if (val & _PAGE_PRESENT) {
369 		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
370 		unsigned long pfn = mfn_to_pfn(mfn);
371 
372 		pteval_t flags = val & PTE_FLAGS_MASK;
373 		if (unlikely(pfn == ~0))
374 			val = flags & ~_PAGE_PRESENT;
375 		else
376 			val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
377 	}
378 
379 	return val;
380 }
381 
382 static pteval_t pte_pfn_to_mfn(pteval_t val)
383 {
384 	if (val & _PAGE_PRESENT) {
385 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
386 		pteval_t flags = val & PTE_FLAGS_MASK;
387 		unsigned long mfn;
388 
389 		if (!xen_feature(XENFEAT_auto_translated_physmap))
390 			mfn = get_phys_to_machine(pfn);
391 		else
392 			mfn = pfn;
393 		/*
394 		 * If there's no mfn for the pfn, then just create an
395 		 * empty non-present pte.  Unfortunately this loses
396 		 * information about the original pfn, so
397 		 * pte_mfn_to_pfn is asymmetric.
398 		 */
399 		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
400 			mfn = 0;
401 			flags = 0;
402 		} else {
403 			/*
404 			 * Paramount to do this test _after_ the
405 			 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
406 			 * IDENTITY_FRAME_BIT resolves to true.
407 			 */
408 			mfn &= ~FOREIGN_FRAME_BIT;
409 			if (mfn & IDENTITY_FRAME_BIT) {
410 				mfn &= ~IDENTITY_FRAME_BIT;
411 				flags |= _PAGE_IOMAP;
412 			}
413 		}
414 		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
415 	}
416 
417 	return val;
418 }
419 
420 static pteval_t iomap_pte(pteval_t val)
421 {
422 	if (val & _PAGE_PRESENT) {
423 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
424 		pteval_t flags = val & PTE_FLAGS_MASK;
425 
426 		/* We assume the pte frame number is a MFN, so
427 		   just use it as-is. */
428 		val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
429 	}
430 
431 	return val;
432 }
433 
434 __visible pteval_t xen_pte_val(pte_t pte)
435 {
436 	pteval_t pteval = pte.pte;
437 #if 0
438 	/* If this is a WC pte, convert back from Xen WC to Linux WC */
439 	if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
440 		WARN_ON(!pat_enabled);
441 		pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
442 	}
443 #endif
444 	if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
445 		return pteval;
446 
447 	return pte_mfn_to_pfn(pteval);
448 }
449 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
450 
451 __visible pgdval_t xen_pgd_val(pgd_t pgd)
452 {
453 	return pte_mfn_to_pfn(pgd.pgd);
454 }
455 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
456 
457 /*
458  * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
459  * are reserved for now, to correspond to the Intel-reserved PAT
460  * types.
461  *
462  * We expect Linux's PAT set as follows:
463  *
464  * Idx  PTE flags        Linux    Xen    Default
465  * 0                     WB       WB     WB
466  * 1            PWT      WC       WT     WT
467  * 2        PCD          UC-      UC-    UC-
468  * 3        PCD PWT      UC       UC     UC
469  * 4    PAT              WB       WC     WB
470  * 5    PAT     PWT      WC       WP     WT
471  * 6    PAT PCD          UC-      rsv    UC-
472  * 7    PAT PCD PWT      UC       rsv    UC
473  */
474 
475 void xen_set_pat(u64 pat)
476 {
477 	/* We expect Linux to use a PAT setting of
478 	 * UC UC- WC WB (ignoring the PAT flag) */
479 	WARN_ON(pat != 0x0007010600070106ull);
480 }
481 
482 __visible pte_t xen_make_pte(pteval_t pte)
483 {
484 	phys_addr_t addr = (pte & PTE_PFN_MASK);
485 #if 0
486 	/* If Linux is trying to set a WC pte, then map to the Xen WC.
487 	 * If _PAGE_PAT is set, then it probably means it is really
488 	 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
489 	 * things work out OK...
490 	 *
491 	 * (We should never see kernel mappings with _PAGE_PSE set,
492 	 * but we could see hugetlbfs mappings, I think.).
493 	 */
494 	if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
495 		if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
496 			pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
497 	}
498 #endif
499 	/*
500 	 * Unprivileged domains are allowed to do IOMAPpings for
501 	 * PCI passthrough, but not map ISA space.  The ISA
502 	 * mappings are just dummy local mappings to keep other
503 	 * parts of the kernel happy.
504 	 */
505 	if (unlikely(pte & _PAGE_IOMAP) &&
506 	    (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
507 		pte = iomap_pte(pte);
508 	} else {
509 		pte &= ~_PAGE_IOMAP;
510 		pte = pte_pfn_to_mfn(pte);
511 	}
512 
513 	return native_make_pte(pte);
514 }
515 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
516 
517 __visible pgd_t xen_make_pgd(pgdval_t pgd)
518 {
519 	pgd = pte_pfn_to_mfn(pgd);
520 	return native_make_pgd(pgd);
521 }
522 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
523 
524 __visible pmdval_t xen_pmd_val(pmd_t pmd)
525 {
526 	return pte_mfn_to_pfn(pmd.pmd);
527 }
528 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
529 
530 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
531 {
532 	struct mmu_update u;
533 
534 	preempt_disable();
535 
536 	xen_mc_batch();
537 
538 	/* ptr may be ioremapped for 64-bit pagetable setup */
539 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
540 	u.val = pud_val_ma(val);
541 	xen_extend_mmu_update(&u);
542 
543 	xen_mc_issue(PARAVIRT_LAZY_MMU);
544 
545 	preempt_enable();
546 }
547 
548 static void xen_set_pud(pud_t *ptr, pud_t val)
549 {
550 	trace_xen_mmu_set_pud(ptr, val);
551 
552 	/* If page is not pinned, we can just update the entry
553 	   directly */
554 	if (!xen_page_pinned(ptr)) {
555 		*ptr = val;
556 		return;
557 	}
558 
559 	xen_set_pud_hyper(ptr, val);
560 }
561 
562 #ifdef CONFIG_X86_PAE
563 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
564 {
565 	trace_xen_mmu_set_pte_atomic(ptep, pte);
566 	set_64bit((u64 *)ptep, native_pte_val(pte));
567 }
568 
569 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
570 {
571 	trace_xen_mmu_pte_clear(mm, addr, ptep);
572 	if (!xen_batched_set_pte(ptep, native_make_pte(0)))
573 		native_pte_clear(mm, addr, ptep);
574 }
575 
576 static void xen_pmd_clear(pmd_t *pmdp)
577 {
578 	trace_xen_mmu_pmd_clear(pmdp);
579 	set_pmd(pmdp, __pmd(0));
580 }
581 #endif	/* CONFIG_X86_PAE */
582 
583 __visible pmd_t xen_make_pmd(pmdval_t pmd)
584 {
585 	pmd = pte_pfn_to_mfn(pmd);
586 	return native_make_pmd(pmd);
587 }
588 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
589 
590 #if PAGETABLE_LEVELS == 4
591 __visible pudval_t xen_pud_val(pud_t pud)
592 {
593 	return pte_mfn_to_pfn(pud.pud);
594 }
595 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
596 
597 __visible pud_t xen_make_pud(pudval_t pud)
598 {
599 	pud = pte_pfn_to_mfn(pud);
600 
601 	return native_make_pud(pud);
602 }
603 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
604 
605 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
606 {
607 	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
608 	unsigned offset = pgd - pgd_page;
609 	pgd_t *user_ptr = NULL;
610 
611 	if (offset < pgd_index(USER_LIMIT)) {
612 		struct page *page = virt_to_page(pgd_page);
613 		user_ptr = (pgd_t *)page->private;
614 		if (user_ptr)
615 			user_ptr += offset;
616 	}
617 
618 	return user_ptr;
619 }
620 
621 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
622 {
623 	struct mmu_update u;
624 
625 	u.ptr = virt_to_machine(ptr).maddr;
626 	u.val = pgd_val_ma(val);
627 	xen_extend_mmu_update(&u);
628 }
629 
630 /*
631  * Raw hypercall-based set_pgd, intended for in early boot before
632  * there's a page structure.  This implies:
633  *  1. The only existing pagetable is the kernel's
634  *  2. It is always pinned
635  *  3. It has no user pagetable attached to it
636  */
637 static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
638 {
639 	preempt_disable();
640 
641 	xen_mc_batch();
642 
643 	__xen_set_pgd_hyper(ptr, val);
644 
645 	xen_mc_issue(PARAVIRT_LAZY_MMU);
646 
647 	preempt_enable();
648 }
649 
650 static void xen_set_pgd(pgd_t *ptr, pgd_t val)
651 {
652 	pgd_t *user_ptr = xen_get_user_pgd(ptr);
653 
654 	trace_xen_mmu_set_pgd(ptr, user_ptr, val);
655 
656 	/* If page is not pinned, we can just update the entry
657 	   directly */
658 	if (!xen_page_pinned(ptr)) {
659 		*ptr = val;
660 		if (user_ptr) {
661 			WARN_ON(xen_page_pinned(user_ptr));
662 			*user_ptr = val;
663 		}
664 		return;
665 	}
666 
667 	/* If it's pinned, then we can at least batch the kernel and
668 	   user updates together. */
669 	xen_mc_batch();
670 
671 	__xen_set_pgd_hyper(ptr, val);
672 	if (user_ptr)
673 		__xen_set_pgd_hyper(user_ptr, val);
674 
675 	xen_mc_issue(PARAVIRT_LAZY_MMU);
676 }
677 #endif	/* PAGETABLE_LEVELS == 4 */
678 
679 /*
680  * (Yet another) pagetable walker.  This one is intended for pinning a
681  * pagetable.  This means that it walks a pagetable and calls the
682  * callback function on each page it finds making up the page table,
683  * at every level.  It walks the entire pagetable, but it only bothers
684  * pinning pte pages which are below limit.  In the normal case this
685  * will be STACK_TOP_MAX, but at boot we need to pin up to
686  * FIXADDR_TOP.
687  *
688  * For 32-bit the important bit is that we don't pin beyond there,
689  * because then we start getting into Xen's ptes.
690  *
691  * For 64-bit, we must skip the Xen hole in the middle of the address
692  * space, just after the big x86-64 virtual hole.
693  */
694 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
695 			  int (*func)(struct mm_struct *mm, struct page *,
696 				      enum pt_level),
697 			  unsigned long limit)
698 {
699 	int flush = 0;
700 	unsigned hole_low, hole_high;
701 	unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
702 	unsigned pgdidx, pudidx, pmdidx;
703 
704 	/* The limit is the last byte to be touched */
705 	limit--;
706 	BUG_ON(limit >= FIXADDR_TOP);
707 
708 	if (xen_feature(XENFEAT_auto_translated_physmap))
709 		return 0;
710 
711 	/*
712 	 * 64-bit has a great big hole in the middle of the address
713 	 * space, which contains the Xen mappings.  On 32-bit these
714 	 * will end up making a zero-sized hole and so is a no-op.
715 	 */
716 	hole_low = pgd_index(USER_LIMIT);
717 	hole_high = pgd_index(PAGE_OFFSET);
718 
719 	pgdidx_limit = pgd_index(limit);
720 #if PTRS_PER_PUD > 1
721 	pudidx_limit = pud_index(limit);
722 #else
723 	pudidx_limit = 0;
724 #endif
725 #if PTRS_PER_PMD > 1
726 	pmdidx_limit = pmd_index(limit);
727 #else
728 	pmdidx_limit = 0;
729 #endif
730 
731 	for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
732 		pud_t *pud;
733 
734 		if (pgdidx >= hole_low && pgdidx < hole_high)
735 			continue;
736 
737 		if (!pgd_val(pgd[pgdidx]))
738 			continue;
739 
740 		pud = pud_offset(&pgd[pgdidx], 0);
741 
742 		if (PTRS_PER_PUD > 1) /* not folded */
743 			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
744 
745 		for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
746 			pmd_t *pmd;
747 
748 			if (pgdidx == pgdidx_limit &&
749 			    pudidx > pudidx_limit)
750 				goto out;
751 
752 			if (pud_none(pud[pudidx]))
753 				continue;
754 
755 			pmd = pmd_offset(&pud[pudidx], 0);
756 
757 			if (PTRS_PER_PMD > 1) /* not folded */
758 				flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
759 
760 			for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
761 				struct page *pte;
762 
763 				if (pgdidx == pgdidx_limit &&
764 				    pudidx == pudidx_limit &&
765 				    pmdidx > pmdidx_limit)
766 					goto out;
767 
768 				if (pmd_none(pmd[pmdidx]))
769 					continue;
770 
771 				pte = pmd_page(pmd[pmdidx]);
772 				flush |= (*func)(mm, pte, PT_PTE);
773 			}
774 		}
775 	}
776 
777 out:
778 	/* Do the top level last, so that the callbacks can use it as
779 	   a cue to do final things like tlb flushes. */
780 	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
781 
782 	return flush;
783 }
784 
785 static int xen_pgd_walk(struct mm_struct *mm,
786 			int (*func)(struct mm_struct *mm, struct page *,
787 				    enum pt_level),
788 			unsigned long limit)
789 {
790 	return __xen_pgd_walk(mm, mm->pgd, func, limit);
791 }
792 
793 /* If we're using split pte locks, then take the page's lock and
794    return a pointer to it.  Otherwise return NULL. */
795 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
796 {
797 	spinlock_t *ptl = NULL;
798 
799 #if USE_SPLIT_PTE_PTLOCKS
800 	ptl = ptlock_ptr(page);
801 	spin_lock_nest_lock(ptl, &mm->page_table_lock);
802 #endif
803 
804 	return ptl;
805 }
806 
807 static void xen_pte_unlock(void *v)
808 {
809 	spinlock_t *ptl = v;
810 	spin_unlock(ptl);
811 }
812 
813 static void xen_do_pin(unsigned level, unsigned long pfn)
814 {
815 	struct mmuext_op op;
816 
817 	op.cmd = level;
818 	op.arg1.mfn = pfn_to_mfn(pfn);
819 
820 	xen_extend_mmuext_op(&op);
821 }
822 
823 static int xen_pin_page(struct mm_struct *mm, struct page *page,
824 			enum pt_level level)
825 {
826 	unsigned pgfl = TestSetPagePinned(page);
827 	int flush;
828 
829 	if (pgfl)
830 		flush = 0;		/* already pinned */
831 	else if (PageHighMem(page))
832 		/* kmaps need flushing if we found an unpinned
833 		   highpage */
834 		flush = 1;
835 	else {
836 		void *pt = lowmem_page_address(page);
837 		unsigned long pfn = page_to_pfn(page);
838 		struct multicall_space mcs = __xen_mc_entry(0);
839 		spinlock_t *ptl;
840 
841 		flush = 0;
842 
843 		/*
844 		 * We need to hold the pagetable lock between the time
845 		 * we make the pagetable RO and when we actually pin
846 		 * it.  If we don't, then other users may come in and
847 		 * attempt to update the pagetable by writing it,
848 		 * which will fail because the memory is RO but not
849 		 * pinned, so Xen won't do the trap'n'emulate.
850 		 *
851 		 * If we're using split pte locks, we can't hold the
852 		 * entire pagetable's worth of locks during the
853 		 * traverse, because we may wrap the preempt count (8
854 		 * bits).  The solution is to mark RO and pin each PTE
855 		 * page while holding the lock.  This means the number
856 		 * of locks we end up holding is never more than a
857 		 * batch size (~32 entries, at present).
858 		 *
859 		 * If we're not using split pte locks, we needn't pin
860 		 * the PTE pages independently, because we're
861 		 * protected by the overall pagetable lock.
862 		 */
863 		ptl = NULL;
864 		if (level == PT_PTE)
865 			ptl = xen_pte_lock(page, mm);
866 
867 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
868 					pfn_pte(pfn, PAGE_KERNEL_RO),
869 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
870 
871 		if (ptl) {
872 			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
873 
874 			/* Queue a deferred unlock for when this batch
875 			   is completed. */
876 			xen_mc_callback(xen_pte_unlock, ptl);
877 		}
878 	}
879 
880 	return flush;
881 }
882 
883 /* This is called just after a mm has been created, but it has not
884    been used yet.  We need to make sure that its pagetable is all
885    read-only, and can be pinned. */
886 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
887 {
888 	trace_xen_mmu_pgd_pin(mm, pgd);
889 
890 	xen_mc_batch();
891 
892 	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
893 		/* re-enable interrupts for flushing */
894 		xen_mc_issue(0);
895 
896 		kmap_flush_unused();
897 
898 		xen_mc_batch();
899 	}
900 
901 #ifdef CONFIG_X86_64
902 	{
903 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
904 
905 		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
906 
907 		if (user_pgd) {
908 			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
909 			xen_do_pin(MMUEXT_PIN_L4_TABLE,
910 				   PFN_DOWN(__pa(user_pgd)));
911 		}
912 	}
913 #else /* CONFIG_X86_32 */
914 #ifdef CONFIG_X86_PAE
915 	/* Need to make sure unshared kernel PMD is pinnable */
916 	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
917 		     PT_PMD);
918 #endif
919 	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
920 #endif /* CONFIG_X86_64 */
921 	xen_mc_issue(0);
922 }
923 
924 static void xen_pgd_pin(struct mm_struct *mm)
925 {
926 	__xen_pgd_pin(mm, mm->pgd);
927 }
928 
929 /*
930  * On save, we need to pin all pagetables to make sure they get their
931  * mfns turned into pfns.  Search the list for any unpinned pgds and pin
932  * them (unpinned pgds are not currently in use, probably because the
933  * process is under construction or destruction).
934  *
935  * Expected to be called in stop_machine() ("equivalent to taking
936  * every spinlock in the system"), so the locking doesn't really
937  * matter all that much.
938  */
939 void xen_mm_pin_all(void)
940 {
941 	struct page *page;
942 
943 	spin_lock(&pgd_lock);
944 
945 	list_for_each_entry(page, &pgd_list, lru) {
946 		if (!PagePinned(page)) {
947 			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
948 			SetPageSavePinned(page);
949 		}
950 	}
951 
952 	spin_unlock(&pgd_lock);
953 }
954 
955 /*
956  * The init_mm pagetable is really pinned as soon as its created, but
957  * that's before we have page structures to store the bits.  So do all
958  * the book-keeping now.
959  */
960 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
961 				  enum pt_level level)
962 {
963 	SetPagePinned(page);
964 	return 0;
965 }
966 
967 static void __init xen_mark_init_mm_pinned(void)
968 {
969 	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
970 }
971 
972 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
973 			  enum pt_level level)
974 {
975 	unsigned pgfl = TestClearPagePinned(page);
976 
977 	if (pgfl && !PageHighMem(page)) {
978 		void *pt = lowmem_page_address(page);
979 		unsigned long pfn = page_to_pfn(page);
980 		spinlock_t *ptl = NULL;
981 		struct multicall_space mcs;
982 
983 		/*
984 		 * Do the converse to pin_page.  If we're using split
985 		 * pte locks, we must be holding the lock for while
986 		 * the pte page is unpinned but still RO to prevent
987 		 * concurrent updates from seeing it in this
988 		 * partially-pinned state.
989 		 */
990 		if (level == PT_PTE) {
991 			ptl = xen_pte_lock(page, mm);
992 
993 			if (ptl)
994 				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
995 		}
996 
997 		mcs = __xen_mc_entry(0);
998 
999 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1000 					pfn_pte(pfn, PAGE_KERNEL),
1001 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1002 
1003 		if (ptl) {
1004 			/* unlock when batch completed */
1005 			xen_mc_callback(xen_pte_unlock, ptl);
1006 		}
1007 	}
1008 
1009 	return 0;		/* never need to flush on unpin */
1010 }
1011 
1012 /* Release a pagetables pages back as normal RW */
1013 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1014 {
1015 	trace_xen_mmu_pgd_unpin(mm, pgd);
1016 
1017 	xen_mc_batch();
1018 
1019 	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1020 
1021 #ifdef CONFIG_X86_64
1022 	{
1023 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
1024 
1025 		if (user_pgd) {
1026 			xen_do_pin(MMUEXT_UNPIN_TABLE,
1027 				   PFN_DOWN(__pa(user_pgd)));
1028 			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1029 		}
1030 	}
1031 #endif
1032 
1033 #ifdef CONFIG_X86_PAE
1034 	/* Need to make sure unshared kernel PMD is unpinned */
1035 	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1036 		       PT_PMD);
1037 #endif
1038 
1039 	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1040 
1041 	xen_mc_issue(0);
1042 }
1043 
1044 static void xen_pgd_unpin(struct mm_struct *mm)
1045 {
1046 	__xen_pgd_unpin(mm, mm->pgd);
1047 }
1048 
1049 /*
1050  * On resume, undo any pinning done at save, so that the rest of the
1051  * kernel doesn't see any unexpected pinned pagetables.
1052  */
1053 void xen_mm_unpin_all(void)
1054 {
1055 	struct page *page;
1056 
1057 	spin_lock(&pgd_lock);
1058 
1059 	list_for_each_entry(page, &pgd_list, lru) {
1060 		if (PageSavePinned(page)) {
1061 			BUG_ON(!PagePinned(page));
1062 			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1063 			ClearPageSavePinned(page);
1064 		}
1065 	}
1066 
1067 	spin_unlock(&pgd_lock);
1068 }
1069 
1070 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1071 {
1072 	spin_lock(&next->page_table_lock);
1073 	xen_pgd_pin(next);
1074 	spin_unlock(&next->page_table_lock);
1075 }
1076 
1077 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1078 {
1079 	spin_lock(&mm->page_table_lock);
1080 	xen_pgd_pin(mm);
1081 	spin_unlock(&mm->page_table_lock);
1082 }
1083 
1084 
1085 #ifdef CONFIG_SMP
1086 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1087    we need to repoint it somewhere else before we can unpin it. */
1088 static void drop_other_mm_ref(void *info)
1089 {
1090 	struct mm_struct *mm = info;
1091 	struct mm_struct *active_mm;
1092 
1093 	active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1094 
1095 	if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1096 		leave_mm(smp_processor_id());
1097 
1098 	/* If this cpu still has a stale cr3 reference, then make sure
1099 	   it has been flushed. */
1100 	if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1101 		load_cr3(swapper_pg_dir);
1102 }
1103 
1104 static void xen_drop_mm_ref(struct mm_struct *mm)
1105 {
1106 	cpumask_var_t mask;
1107 	unsigned cpu;
1108 
1109 	if (current->active_mm == mm) {
1110 		if (current->mm == mm)
1111 			load_cr3(swapper_pg_dir);
1112 		else
1113 			leave_mm(smp_processor_id());
1114 	}
1115 
1116 	/* Get the "official" set of cpus referring to our pagetable. */
1117 	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1118 		for_each_online_cpu(cpu) {
1119 			if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1120 			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1121 				continue;
1122 			smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1123 		}
1124 		return;
1125 	}
1126 	cpumask_copy(mask, mm_cpumask(mm));
1127 
1128 	/* It's possible that a vcpu may have a stale reference to our
1129 	   cr3, because its in lazy mode, and it hasn't yet flushed
1130 	   its set of pending hypercalls yet.  In this case, we can
1131 	   look at its actual current cr3 value, and force it to flush
1132 	   if needed. */
1133 	for_each_online_cpu(cpu) {
1134 		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1135 			cpumask_set_cpu(cpu, mask);
1136 	}
1137 
1138 	if (!cpumask_empty(mask))
1139 		smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1140 	free_cpumask_var(mask);
1141 }
1142 #else
1143 static void xen_drop_mm_ref(struct mm_struct *mm)
1144 {
1145 	if (current->active_mm == mm)
1146 		load_cr3(swapper_pg_dir);
1147 }
1148 #endif
1149 
1150 /*
1151  * While a process runs, Xen pins its pagetables, which means that the
1152  * hypervisor forces it to be read-only, and it controls all updates
1153  * to it.  This means that all pagetable updates have to go via the
1154  * hypervisor, which is moderately expensive.
1155  *
1156  * Since we're pulling the pagetable down, we switch to use init_mm,
1157  * unpin old process pagetable and mark it all read-write, which
1158  * allows further operations on it to be simple memory accesses.
1159  *
1160  * The only subtle point is that another CPU may be still using the
1161  * pagetable because of lazy tlb flushing.  This means we need need to
1162  * switch all CPUs off this pagetable before we can unpin it.
1163  */
1164 static void xen_exit_mmap(struct mm_struct *mm)
1165 {
1166 	get_cpu();		/* make sure we don't move around */
1167 	xen_drop_mm_ref(mm);
1168 	put_cpu();
1169 
1170 	spin_lock(&mm->page_table_lock);
1171 
1172 	/* pgd may not be pinned in the error exit path of execve */
1173 	if (xen_page_pinned(mm->pgd))
1174 		xen_pgd_unpin(mm);
1175 
1176 	spin_unlock(&mm->page_table_lock);
1177 }
1178 
1179 static void xen_post_allocator_init(void);
1180 
1181 #ifdef CONFIG_X86_64
1182 static void __init xen_cleanhighmap(unsigned long vaddr,
1183 				    unsigned long vaddr_end)
1184 {
1185 	unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1186 	pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1187 
1188 	/* NOTE: The loop is more greedy than the cleanup_highmap variant.
1189 	 * We include the PMD passed in on _both_ boundaries. */
1190 	for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PAGE_SIZE));
1191 			pmd++, vaddr += PMD_SIZE) {
1192 		if (pmd_none(*pmd))
1193 			continue;
1194 		if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1195 			set_pmd(pmd, __pmd(0));
1196 	}
1197 	/* In case we did something silly, we should crash in this function
1198 	 * instead of somewhere later and be confusing. */
1199 	xen_mc_flush();
1200 }
1201 static void __init xen_pagetable_p2m_copy(void)
1202 {
1203 	unsigned long size;
1204 	unsigned long addr;
1205 	unsigned long new_mfn_list;
1206 
1207 	if (xen_feature(XENFEAT_auto_translated_physmap))
1208 		return;
1209 
1210 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1211 
1212 	new_mfn_list = xen_revector_p2m_tree();
1213 	/* No memory or already called. */
1214 	if (!new_mfn_list || new_mfn_list == xen_start_info->mfn_list)
1215 		return;
1216 
1217 	/* using __ka address and sticking INVALID_P2M_ENTRY! */
1218 	memset((void *)xen_start_info->mfn_list, 0xff, size);
1219 
1220 	/* We should be in __ka space. */
1221 	BUG_ON(xen_start_info->mfn_list < __START_KERNEL_map);
1222 	addr = xen_start_info->mfn_list;
1223 	/* We roundup to the PMD, which means that if anybody at this stage is
1224 	 * using the __ka address of xen_start_info or xen_start_info->shared_info
1225 	 * they are in going to crash. Fortunatly we have already revectored
1226 	 * in xen_setup_kernel_pagetable and in xen_setup_shared_info. */
1227 	size = roundup(size, PMD_SIZE);
1228 	xen_cleanhighmap(addr, addr + size);
1229 
1230 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1231 	memblock_free(__pa(xen_start_info->mfn_list), size);
1232 	/* And revector! Bye bye old array */
1233 	xen_start_info->mfn_list = new_mfn_list;
1234 
1235 	/* At this stage, cleanup_highmap has already cleaned __ka space
1236 	 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1237 	 * the ramdisk). We continue on, erasing PMD entries that point to page
1238 	 * tables - do note that they are accessible at this stage via __va.
1239 	 * For good measure we also round up to the PMD - which means that if
1240 	 * anybody is using __ka address to the initial boot-stack - and try
1241 	 * to use it - they are going to crash. The xen_start_info has been
1242 	 * taken care of already in xen_setup_kernel_pagetable. */
1243 	addr = xen_start_info->pt_base;
1244 	size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1245 
1246 	xen_cleanhighmap(addr, addr + size);
1247 	xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1248 #ifdef DEBUG
1249 	/* This is superflous and is not neccessary, but you know what
1250 	 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1251 	 * anything at this stage. */
1252 	xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1253 #endif
1254 }
1255 #endif
1256 
1257 static void __init xen_pagetable_init(void)
1258 {
1259 	paging_init();
1260 	xen_setup_shared_info();
1261 #ifdef CONFIG_X86_64
1262 	xen_pagetable_p2m_copy();
1263 #endif
1264 	xen_post_allocator_init();
1265 }
1266 static void xen_write_cr2(unsigned long cr2)
1267 {
1268 	this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1269 }
1270 
1271 static unsigned long xen_read_cr2(void)
1272 {
1273 	return this_cpu_read(xen_vcpu)->arch.cr2;
1274 }
1275 
1276 unsigned long xen_read_cr2_direct(void)
1277 {
1278 	return this_cpu_read(xen_vcpu_info.arch.cr2);
1279 }
1280 
1281 void xen_flush_tlb_all(void)
1282 {
1283 	struct mmuext_op *op;
1284 	struct multicall_space mcs;
1285 
1286 	trace_xen_mmu_flush_tlb_all(0);
1287 
1288 	preempt_disable();
1289 
1290 	mcs = xen_mc_entry(sizeof(*op));
1291 
1292 	op = mcs.args;
1293 	op->cmd = MMUEXT_TLB_FLUSH_ALL;
1294 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1295 
1296 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1297 
1298 	preempt_enable();
1299 }
1300 static void xen_flush_tlb(void)
1301 {
1302 	struct mmuext_op *op;
1303 	struct multicall_space mcs;
1304 
1305 	trace_xen_mmu_flush_tlb(0);
1306 
1307 	preempt_disable();
1308 
1309 	mcs = xen_mc_entry(sizeof(*op));
1310 
1311 	op = mcs.args;
1312 	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1313 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1314 
1315 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1316 
1317 	preempt_enable();
1318 }
1319 
1320 static void xen_flush_tlb_single(unsigned long addr)
1321 {
1322 	struct mmuext_op *op;
1323 	struct multicall_space mcs;
1324 
1325 	trace_xen_mmu_flush_tlb_single(addr);
1326 
1327 	preempt_disable();
1328 
1329 	mcs = xen_mc_entry(sizeof(*op));
1330 	op = mcs.args;
1331 	op->cmd = MMUEXT_INVLPG_LOCAL;
1332 	op->arg1.linear_addr = addr & PAGE_MASK;
1333 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1334 
1335 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1336 
1337 	preempt_enable();
1338 }
1339 
1340 static void xen_flush_tlb_others(const struct cpumask *cpus,
1341 				 struct mm_struct *mm, unsigned long start,
1342 				 unsigned long end)
1343 {
1344 	struct {
1345 		struct mmuext_op op;
1346 #ifdef CONFIG_SMP
1347 		DECLARE_BITMAP(mask, num_processors);
1348 #else
1349 		DECLARE_BITMAP(mask, NR_CPUS);
1350 #endif
1351 	} *args;
1352 	struct multicall_space mcs;
1353 
1354 	trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1355 
1356 	if (cpumask_empty(cpus))
1357 		return;		/* nothing to do */
1358 
1359 	mcs = xen_mc_entry(sizeof(*args));
1360 	args = mcs.args;
1361 	args->op.arg2.vcpumask = to_cpumask(args->mask);
1362 
1363 	/* Remove us, and any offline CPUS. */
1364 	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1365 	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1366 
1367 	args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1368 	if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1369 		args->op.cmd = MMUEXT_INVLPG_MULTI;
1370 		args->op.arg1.linear_addr = start;
1371 	}
1372 
1373 	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1374 
1375 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1376 }
1377 
1378 static unsigned long xen_read_cr3(void)
1379 {
1380 	return this_cpu_read(xen_cr3);
1381 }
1382 
1383 static void set_current_cr3(void *v)
1384 {
1385 	this_cpu_write(xen_current_cr3, (unsigned long)v);
1386 }
1387 
1388 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1389 {
1390 	struct mmuext_op op;
1391 	unsigned long mfn;
1392 
1393 	trace_xen_mmu_write_cr3(kernel, cr3);
1394 
1395 	if (cr3)
1396 		mfn = pfn_to_mfn(PFN_DOWN(cr3));
1397 	else
1398 		mfn = 0;
1399 
1400 	WARN_ON(mfn == 0 && kernel);
1401 
1402 	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1403 	op.arg1.mfn = mfn;
1404 
1405 	xen_extend_mmuext_op(&op);
1406 
1407 	if (kernel) {
1408 		this_cpu_write(xen_cr3, cr3);
1409 
1410 		/* Update xen_current_cr3 once the batch has actually
1411 		   been submitted. */
1412 		xen_mc_callback(set_current_cr3, (void *)cr3);
1413 	}
1414 }
1415 static void xen_write_cr3(unsigned long cr3)
1416 {
1417 	BUG_ON(preemptible());
1418 
1419 	xen_mc_batch();  /* disables interrupts */
1420 
1421 	/* Update while interrupts are disabled, so its atomic with
1422 	   respect to ipis */
1423 	this_cpu_write(xen_cr3, cr3);
1424 
1425 	__xen_write_cr3(true, cr3);
1426 
1427 #ifdef CONFIG_X86_64
1428 	{
1429 		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1430 		if (user_pgd)
1431 			__xen_write_cr3(false, __pa(user_pgd));
1432 		else
1433 			__xen_write_cr3(false, 0);
1434 	}
1435 #endif
1436 
1437 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1438 }
1439 
1440 #ifdef CONFIG_X86_64
1441 /*
1442  * At the start of the day - when Xen launches a guest, it has already
1443  * built pagetables for the guest. We diligently look over them
1444  * in xen_setup_kernel_pagetable and graft as appropiate them in the
1445  * init_level4_pgt and its friends. Then when we are happy we load
1446  * the new init_level4_pgt - and continue on.
1447  *
1448  * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1449  * up the rest of the pagetables. When it has completed it loads the cr3.
1450  * N.B. that baremetal would start at 'start_kernel' (and the early
1451  * #PF handler would create bootstrap pagetables) - so we are running
1452  * with the same assumptions as what to do when write_cr3 is executed
1453  * at this point.
1454  *
1455  * Since there are no user-page tables at all, we have two variants
1456  * of xen_write_cr3 - the early bootup (this one), and the late one
1457  * (xen_write_cr3). The reason we have to do that is that in 64-bit
1458  * the Linux kernel and user-space are both in ring 3 while the
1459  * hypervisor is in ring 0.
1460  */
1461 static void __init xen_write_cr3_init(unsigned long cr3)
1462 {
1463 	BUG_ON(preemptible());
1464 
1465 	xen_mc_batch();  /* disables interrupts */
1466 
1467 	/* Update while interrupts are disabled, so its atomic with
1468 	   respect to ipis */
1469 	this_cpu_write(xen_cr3, cr3);
1470 
1471 	__xen_write_cr3(true, cr3);
1472 
1473 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1474 }
1475 #endif
1476 
1477 static int xen_pgd_alloc(struct mm_struct *mm)
1478 {
1479 	pgd_t *pgd = mm->pgd;
1480 	int ret = 0;
1481 
1482 	BUG_ON(PagePinned(virt_to_page(pgd)));
1483 
1484 #ifdef CONFIG_X86_64
1485 	{
1486 		struct page *page = virt_to_page(pgd);
1487 		pgd_t *user_pgd;
1488 
1489 		BUG_ON(page->private != 0);
1490 
1491 		ret = -ENOMEM;
1492 
1493 		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1494 		page->private = (unsigned long)user_pgd;
1495 
1496 		if (user_pgd != NULL) {
1497 			user_pgd[pgd_index(VSYSCALL_START)] =
1498 				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1499 			ret = 0;
1500 		}
1501 
1502 		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1503 	}
1504 #endif
1505 
1506 	return ret;
1507 }
1508 
1509 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1510 {
1511 #ifdef CONFIG_X86_64
1512 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
1513 
1514 	if (user_pgd)
1515 		free_page((unsigned long)user_pgd);
1516 #endif
1517 }
1518 
1519 #ifdef CONFIG_X86_32
1520 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1521 {
1522 	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
1523 	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1524 		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1525 			       pte_val_ma(pte));
1526 
1527 	return pte;
1528 }
1529 #else /* CONFIG_X86_64 */
1530 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1531 {
1532 	return pte;
1533 }
1534 #endif /* CONFIG_X86_64 */
1535 
1536 /*
1537  * Init-time set_pte while constructing initial pagetables, which
1538  * doesn't allow RO page table pages to be remapped RW.
1539  *
1540  * If there is no MFN for this PFN then this page is initially
1541  * ballooned out so clear the PTE (as in decrease_reservation() in
1542  * drivers/xen/balloon.c).
1543  *
1544  * Many of these PTE updates are done on unpinned and writable pages
1545  * and doing a hypercall for these is unnecessary and expensive.  At
1546  * this point it is not possible to tell if a page is pinned or not,
1547  * so always write the PTE directly and rely on Xen trapping and
1548  * emulating any updates as necessary.
1549  */
1550 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1551 {
1552 	if (pte_mfn(pte) != INVALID_P2M_ENTRY)
1553 		pte = mask_rw_pte(ptep, pte);
1554 	else
1555 		pte = __pte_ma(0);
1556 
1557 	native_set_pte(ptep, pte);
1558 }
1559 
1560 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1561 {
1562 	struct mmuext_op op;
1563 	op.cmd = cmd;
1564 	op.arg1.mfn = pfn_to_mfn(pfn);
1565 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1566 		BUG();
1567 }
1568 
1569 /* Early in boot, while setting up the initial pagetable, assume
1570    everything is pinned. */
1571 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1572 {
1573 #ifdef CONFIG_FLATMEM
1574 	BUG_ON(mem_map);	/* should only be used early */
1575 #endif
1576 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1577 	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1578 }
1579 
1580 /* Used for pmd and pud */
1581 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1582 {
1583 #ifdef CONFIG_FLATMEM
1584 	BUG_ON(mem_map);	/* should only be used early */
1585 #endif
1586 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1587 }
1588 
1589 /* Early release_pte assumes that all pts are pinned, since there's
1590    only init_mm and anything attached to that is pinned. */
1591 static void __init xen_release_pte_init(unsigned long pfn)
1592 {
1593 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1594 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1595 }
1596 
1597 static void __init xen_release_pmd_init(unsigned long pfn)
1598 {
1599 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1600 }
1601 
1602 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1603 {
1604 	struct multicall_space mcs;
1605 	struct mmuext_op *op;
1606 
1607 	mcs = __xen_mc_entry(sizeof(*op));
1608 	op = mcs.args;
1609 	op->cmd = cmd;
1610 	op->arg1.mfn = pfn_to_mfn(pfn);
1611 
1612 	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1613 }
1614 
1615 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1616 {
1617 	struct multicall_space mcs;
1618 	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1619 
1620 	mcs = __xen_mc_entry(0);
1621 	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1622 				pfn_pte(pfn, prot), 0);
1623 }
1624 
1625 /* This needs to make sure the new pte page is pinned iff its being
1626    attached to a pinned pagetable. */
1627 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1628 				    unsigned level)
1629 {
1630 	bool pinned = PagePinned(virt_to_page(mm->pgd));
1631 
1632 	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1633 
1634 	if (pinned) {
1635 		struct page *page = pfn_to_page(pfn);
1636 
1637 		SetPagePinned(page);
1638 
1639 		if (!PageHighMem(page)) {
1640 			xen_mc_batch();
1641 
1642 			__set_pfn_prot(pfn, PAGE_KERNEL_RO);
1643 
1644 			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1645 				__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1646 
1647 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1648 		} else {
1649 			/* make sure there are no stray mappings of
1650 			   this page */
1651 			kmap_flush_unused();
1652 		}
1653 	}
1654 }
1655 
1656 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1657 {
1658 	xen_alloc_ptpage(mm, pfn, PT_PTE);
1659 }
1660 
1661 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1662 {
1663 	xen_alloc_ptpage(mm, pfn, PT_PMD);
1664 }
1665 
1666 /* This should never happen until we're OK to use struct page */
1667 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1668 {
1669 	struct page *page = pfn_to_page(pfn);
1670 	bool pinned = PagePinned(page);
1671 
1672 	trace_xen_mmu_release_ptpage(pfn, level, pinned);
1673 
1674 	if (pinned) {
1675 		if (!PageHighMem(page)) {
1676 			xen_mc_batch();
1677 
1678 			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1679 				__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1680 
1681 			__set_pfn_prot(pfn, PAGE_KERNEL);
1682 
1683 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1684 		}
1685 		ClearPagePinned(page);
1686 	}
1687 }
1688 
1689 static void xen_release_pte(unsigned long pfn)
1690 {
1691 	xen_release_ptpage(pfn, PT_PTE);
1692 }
1693 
1694 static void xen_release_pmd(unsigned long pfn)
1695 {
1696 	xen_release_ptpage(pfn, PT_PMD);
1697 }
1698 
1699 #if PAGETABLE_LEVELS == 4
1700 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1701 {
1702 	xen_alloc_ptpage(mm, pfn, PT_PUD);
1703 }
1704 
1705 static void xen_release_pud(unsigned long pfn)
1706 {
1707 	xen_release_ptpage(pfn, PT_PUD);
1708 }
1709 #endif
1710 
1711 void __init xen_reserve_top(void)
1712 {
1713 #ifdef CONFIG_X86_32
1714 	unsigned long top = HYPERVISOR_VIRT_START;
1715 	struct xen_platform_parameters pp;
1716 
1717 	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1718 		top = pp.virt_start;
1719 
1720 	reserve_top_address(-top);
1721 #endif	/* CONFIG_X86_32 */
1722 }
1723 
1724 /*
1725  * Like __va(), but returns address in the kernel mapping (which is
1726  * all we have until the physical memory mapping has been set up.
1727  */
1728 static void *__ka(phys_addr_t paddr)
1729 {
1730 #ifdef CONFIG_X86_64
1731 	return (void *)(paddr + __START_KERNEL_map);
1732 #else
1733 	return __va(paddr);
1734 #endif
1735 }
1736 
1737 /* Convert a machine address to physical address */
1738 static unsigned long m2p(phys_addr_t maddr)
1739 {
1740 	phys_addr_t paddr;
1741 
1742 	maddr &= PTE_PFN_MASK;
1743 	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1744 
1745 	return paddr;
1746 }
1747 
1748 /* Convert a machine address to kernel virtual */
1749 static void *m2v(phys_addr_t maddr)
1750 {
1751 	return __ka(m2p(maddr));
1752 }
1753 
1754 /* Set the page permissions on an identity-mapped pages */
1755 static void set_page_prot_flags(void *addr, pgprot_t prot, unsigned long flags)
1756 {
1757 	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1758 	pte_t pte = pfn_pte(pfn, prot);
1759 
1760 	/* For PVH no need to set R/O or R/W to pin them or unpin them. */
1761 	if (xen_feature(XENFEAT_auto_translated_physmap))
1762 		return;
1763 
1764 	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1765 		BUG();
1766 }
1767 static void set_page_prot(void *addr, pgprot_t prot)
1768 {
1769 	return set_page_prot_flags(addr, prot, UVMF_NONE);
1770 }
1771 #ifdef CONFIG_X86_32
1772 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1773 {
1774 	unsigned pmdidx, pteidx;
1775 	unsigned ident_pte;
1776 	unsigned long pfn;
1777 
1778 	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1779 				      PAGE_SIZE);
1780 
1781 	ident_pte = 0;
1782 	pfn = 0;
1783 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1784 		pte_t *pte_page;
1785 
1786 		/* Reuse or allocate a page of ptes */
1787 		if (pmd_present(pmd[pmdidx]))
1788 			pte_page = m2v(pmd[pmdidx].pmd);
1789 		else {
1790 			/* Check for free pte pages */
1791 			if (ident_pte == LEVEL1_IDENT_ENTRIES)
1792 				break;
1793 
1794 			pte_page = &level1_ident_pgt[ident_pte];
1795 			ident_pte += PTRS_PER_PTE;
1796 
1797 			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1798 		}
1799 
1800 		/* Install mappings */
1801 		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1802 			pte_t pte;
1803 
1804 #ifdef CONFIG_X86_32
1805 			if (pfn > max_pfn_mapped)
1806 				max_pfn_mapped = pfn;
1807 #endif
1808 
1809 			if (!pte_none(pte_page[pteidx]))
1810 				continue;
1811 
1812 			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1813 			pte_page[pteidx] = pte;
1814 		}
1815 	}
1816 
1817 	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1818 		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1819 
1820 	set_page_prot(pmd, PAGE_KERNEL_RO);
1821 }
1822 #endif
1823 void __init xen_setup_machphys_mapping(void)
1824 {
1825 	struct xen_machphys_mapping mapping;
1826 
1827 	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1828 		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1829 		machine_to_phys_nr = mapping.max_mfn + 1;
1830 	} else {
1831 		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1832 	}
1833 #ifdef CONFIG_X86_32
1834 	WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1835 		< machine_to_phys_mapping);
1836 #endif
1837 }
1838 
1839 #ifdef CONFIG_X86_64
1840 static void convert_pfn_mfn(void *v)
1841 {
1842 	pte_t *pte = v;
1843 	int i;
1844 
1845 	/* All levels are converted the same way, so just treat them
1846 	   as ptes. */
1847 	for (i = 0; i < PTRS_PER_PTE; i++)
1848 		pte[i] = xen_make_pte(pte[i].pte);
1849 }
1850 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1851 				 unsigned long addr)
1852 {
1853 	if (*pt_base == PFN_DOWN(__pa(addr))) {
1854 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1855 		clear_page((void *)addr);
1856 		(*pt_base)++;
1857 	}
1858 	if (*pt_end == PFN_DOWN(__pa(addr))) {
1859 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1860 		clear_page((void *)addr);
1861 		(*pt_end)--;
1862 	}
1863 }
1864 /*
1865  * Set up the initial kernel pagetable.
1866  *
1867  * We can construct this by grafting the Xen provided pagetable into
1868  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1869  * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
1870  * means that only the kernel has a physical mapping to start with -
1871  * but that's enough to get __va working.  We need to fill in the rest
1872  * of the physical mapping once some sort of allocator has been set
1873  * up.
1874  * NOTE: for PVH, the page tables are native.
1875  */
1876 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1877 {
1878 	pud_t *l3;
1879 	pmd_t *l2;
1880 	unsigned long addr[3];
1881 	unsigned long pt_base, pt_end;
1882 	unsigned i;
1883 
1884 	/* max_pfn_mapped is the last pfn mapped in the initial memory
1885 	 * mappings. Considering that on Xen after the kernel mappings we
1886 	 * have the mappings of some pages that don't exist in pfn space, we
1887 	 * set max_pfn_mapped to the last real pfn mapped. */
1888 	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1889 
1890 	pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1891 	pt_end = pt_base + xen_start_info->nr_pt_frames;
1892 
1893 	/* Zap identity mapping */
1894 	init_level4_pgt[0] = __pgd(0);
1895 
1896 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1897 		/* Pre-constructed entries are in pfn, so convert to mfn */
1898 		/* L4[272] -> level3_ident_pgt
1899 		 * L4[511] -> level3_kernel_pgt */
1900 		convert_pfn_mfn(init_level4_pgt);
1901 
1902 		/* L3_i[0] -> level2_ident_pgt */
1903 		convert_pfn_mfn(level3_ident_pgt);
1904 		/* L3_k[510] -> level2_kernel_pgt
1905 		 * L3_i[511] -> level2_fixmap_pgt */
1906 		convert_pfn_mfn(level3_kernel_pgt);
1907 	}
1908 	/* We get [511][511] and have Xen's version of level2_kernel_pgt */
1909 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1910 	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1911 
1912 	addr[0] = (unsigned long)pgd;
1913 	addr[1] = (unsigned long)l3;
1914 	addr[2] = (unsigned long)l2;
1915 	/* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1916 	 * Both L4[272][0] and L4[511][511] have entries that point to the same
1917 	 * L2 (PMD) tables. Meaning that if you modify it in __va space
1918 	 * it will be also modified in the __ka space! (But if you just
1919 	 * modify the PMD table to point to other PTE's or none, then you
1920 	 * are OK - which is what cleanup_highmap does) */
1921 	copy_page(level2_ident_pgt, l2);
1922 	/* Graft it onto L4[511][511] */
1923 	copy_page(level2_kernel_pgt, l2);
1924 
1925 	/* Get [511][510] and graft that in level2_fixmap_pgt */
1926 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1927 	l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1928 	copy_page(level2_fixmap_pgt, l2);
1929 	/* Note that we don't do anything with level1_fixmap_pgt which
1930 	 * we don't need. */
1931 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1932 		/* Make pagetable pieces RO */
1933 		set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1934 		set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1935 		set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1936 		set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1937 		set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1938 		set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1939 		set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1940 
1941 		/* Pin down new L4 */
1942 		pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1943 				  PFN_DOWN(__pa_symbol(init_level4_pgt)));
1944 
1945 		/* Unpin Xen-provided one */
1946 		pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1947 
1948 		/*
1949 		 * At this stage there can be no user pgd, and no page
1950 		 * structure to attach it to, so make sure we just set kernel
1951 		 * pgd.
1952 		 */
1953 		xen_mc_batch();
1954 		__xen_write_cr3(true, __pa(init_level4_pgt));
1955 		xen_mc_issue(PARAVIRT_LAZY_CPU);
1956 	} else
1957 		native_write_cr3(__pa(init_level4_pgt));
1958 
1959 	/* We can't that easily rip out L3 and L2, as the Xen pagetables are
1960 	 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
1961 	 * the initial domain. For guests using the toolstack, they are in:
1962 	 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1963 	 * rip out the [L4] (pgd), but for guests we shave off three pages.
1964 	 */
1965 	for (i = 0; i < ARRAY_SIZE(addr); i++)
1966 		check_pt_base(&pt_base, &pt_end, addr[i]);
1967 
1968 	/* Our (by three pages) smaller Xen pagetable that we are using */
1969 	memblock_reserve(PFN_PHYS(pt_base), (pt_end - pt_base) * PAGE_SIZE);
1970 	/* Revector the xen_start_info */
1971 	xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1972 }
1973 #else	/* !CONFIG_X86_64 */
1974 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1975 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1976 
1977 static void __init xen_write_cr3_init(unsigned long cr3)
1978 {
1979 	unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1980 
1981 	BUG_ON(read_cr3() != __pa(initial_page_table));
1982 	BUG_ON(cr3 != __pa(swapper_pg_dir));
1983 
1984 	/*
1985 	 * We are switching to swapper_pg_dir for the first time (from
1986 	 * initial_page_table) and therefore need to mark that page
1987 	 * read-only and then pin it.
1988 	 *
1989 	 * Xen disallows sharing of kernel PMDs for PAE
1990 	 * guests. Therefore we must copy the kernel PMD from
1991 	 * initial_page_table into a new kernel PMD to be used in
1992 	 * swapper_pg_dir.
1993 	 */
1994 	swapper_kernel_pmd =
1995 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1996 	copy_page(swapper_kernel_pmd, initial_kernel_pmd);
1997 	swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1998 		__pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1999 	set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
2000 
2001 	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
2002 	xen_write_cr3(cr3);
2003 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
2004 
2005 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
2006 			  PFN_DOWN(__pa(initial_page_table)));
2007 	set_page_prot(initial_page_table, PAGE_KERNEL);
2008 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
2009 
2010 	pv_mmu_ops.write_cr3 = &xen_write_cr3;
2011 }
2012 
2013 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
2014 {
2015 	pmd_t *kernel_pmd;
2016 
2017 	initial_kernel_pmd =
2018 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2019 
2020 	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
2021 				  xen_start_info->nr_pt_frames * PAGE_SIZE +
2022 				  512*1024);
2023 
2024 	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2025 	copy_page(initial_kernel_pmd, kernel_pmd);
2026 
2027 	xen_map_identity_early(initial_kernel_pmd, max_pfn);
2028 
2029 	copy_page(initial_page_table, pgd);
2030 	initial_page_table[KERNEL_PGD_BOUNDARY] =
2031 		__pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2032 
2033 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2034 	set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2035 	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2036 
2037 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2038 
2039 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2040 			  PFN_DOWN(__pa(initial_page_table)));
2041 	xen_write_cr3(__pa(initial_page_table));
2042 
2043 	memblock_reserve(__pa(xen_start_info->pt_base),
2044 			 xen_start_info->nr_pt_frames * PAGE_SIZE);
2045 }
2046 #endif	/* CONFIG_X86_64 */
2047 
2048 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2049 
2050 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2051 {
2052 	pte_t pte;
2053 
2054 	phys >>= PAGE_SHIFT;
2055 
2056 	switch (idx) {
2057 	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2058 	case FIX_RO_IDT:
2059 #ifdef CONFIG_X86_32
2060 	case FIX_WP_TEST:
2061 	case FIX_VDSO:
2062 # ifdef CONFIG_HIGHMEM
2063 	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2064 # endif
2065 #else
2066 	case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
2067 	case VVAR_PAGE:
2068 #endif
2069 	case FIX_TEXT_POKE0:
2070 	case FIX_TEXT_POKE1:
2071 		/* All local page mappings */
2072 		pte = pfn_pte(phys, prot);
2073 		break;
2074 
2075 #ifdef CONFIG_X86_LOCAL_APIC
2076 	case FIX_APIC_BASE:	/* maps dummy local APIC */
2077 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2078 		break;
2079 #endif
2080 
2081 #ifdef CONFIG_X86_IO_APIC
2082 	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2083 		/*
2084 		 * We just don't map the IO APIC - all access is via
2085 		 * hypercalls.  Keep the address in the pte for reference.
2086 		 */
2087 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2088 		break;
2089 #endif
2090 
2091 	case FIX_PARAVIRT_BOOTMAP:
2092 		/* This is an MFN, but it isn't an IO mapping from the
2093 		   IO domain */
2094 		pte = mfn_pte(phys, prot);
2095 		break;
2096 
2097 	default:
2098 		/* By default, set_fixmap is used for hardware mappings */
2099 		pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
2100 		break;
2101 	}
2102 
2103 	__native_set_fixmap(idx, pte);
2104 
2105 #ifdef CONFIG_X86_64
2106 	/* Replicate changes to map the vsyscall page into the user
2107 	   pagetable vsyscall mapping. */
2108 	if ((idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) ||
2109 	    idx == VVAR_PAGE) {
2110 		unsigned long vaddr = __fix_to_virt(idx);
2111 		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2112 	}
2113 #endif
2114 }
2115 
2116 static void __init xen_post_allocator_init(void)
2117 {
2118 	if (xen_feature(XENFEAT_auto_translated_physmap))
2119 		return;
2120 
2121 	pv_mmu_ops.set_pte = xen_set_pte;
2122 	pv_mmu_ops.set_pmd = xen_set_pmd;
2123 	pv_mmu_ops.set_pud = xen_set_pud;
2124 #if PAGETABLE_LEVELS == 4
2125 	pv_mmu_ops.set_pgd = xen_set_pgd;
2126 #endif
2127 
2128 	/* This will work as long as patching hasn't happened yet
2129 	   (which it hasn't) */
2130 	pv_mmu_ops.alloc_pte = xen_alloc_pte;
2131 	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2132 	pv_mmu_ops.release_pte = xen_release_pte;
2133 	pv_mmu_ops.release_pmd = xen_release_pmd;
2134 #if PAGETABLE_LEVELS == 4
2135 	pv_mmu_ops.alloc_pud = xen_alloc_pud;
2136 	pv_mmu_ops.release_pud = xen_release_pud;
2137 #endif
2138 
2139 #ifdef CONFIG_X86_64
2140 	pv_mmu_ops.write_cr3 = &xen_write_cr3;
2141 	SetPagePinned(virt_to_page(level3_user_vsyscall));
2142 #endif
2143 	xen_mark_init_mm_pinned();
2144 }
2145 
2146 static void xen_leave_lazy_mmu(void)
2147 {
2148 	preempt_disable();
2149 	xen_mc_flush();
2150 	paravirt_leave_lazy_mmu();
2151 	preempt_enable();
2152 }
2153 
2154 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2155 	.read_cr2 = xen_read_cr2,
2156 	.write_cr2 = xen_write_cr2,
2157 
2158 	.read_cr3 = xen_read_cr3,
2159 	.write_cr3 = xen_write_cr3_init,
2160 
2161 	.flush_tlb_user = xen_flush_tlb,
2162 	.flush_tlb_kernel = xen_flush_tlb,
2163 	.flush_tlb_single = xen_flush_tlb_single,
2164 	.flush_tlb_others = xen_flush_tlb_others,
2165 
2166 	.pte_update = paravirt_nop,
2167 	.pte_update_defer = paravirt_nop,
2168 
2169 	.pgd_alloc = xen_pgd_alloc,
2170 	.pgd_free = xen_pgd_free,
2171 
2172 	.alloc_pte = xen_alloc_pte_init,
2173 	.release_pte = xen_release_pte_init,
2174 	.alloc_pmd = xen_alloc_pmd_init,
2175 	.release_pmd = xen_release_pmd_init,
2176 
2177 	.set_pte = xen_set_pte_init,
2178 	.set_pte_at = xen_set_pte_at,
2179 	.set_pmd = xen_set_pmd_hyper,
2180 
2181 	.ptep_modify_prot_start = __ptep_modify_prot_start,
2182 	.ptep_modify_prot_commit = __ptep_modify_prot_commit,
2183 
2184 	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
2185 	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2186 
2187 	.make_pte = PV_CALLEE_SAVE(xen_make_pte),
2188 	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2189 
2190 #ifdef CONFIG_X86_PAE
2191 	.set_pte_atomic = xen_set_pte_atomic,
2192 	.pte_clear = xen_pte_clear,
2193 	.pmd_clear = xen_pmd_clear,
2194 #endif	/* CONFIG_X86_PAE */
2195 	.set_pud = xen_set_pud_hyper,
2196 
2197 	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2198 	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2199 
2200 #if PAGETABLE_LEVELS == 4
2201 	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
2202 	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2203 	.set_pgd = xen_set_pgd_hyper,
2204 
2205 	.alloc_pud = xen_alloc_pmd_init,
2206 	.release_pud = xen_release_pmd_init,
2207 #endif	/* PAGETABLE_LEVELS == 4 */
2208 
2209 	.activate_mm = xen_activate_mm,
2210 	.dup_mmap = xen_dup_mmap,
2211 	.exit_mmap = xen_exit_mmap,
2212 
2213 	.lazy_mode = {
2214 		.enter = paravirt_enter_lazy_mmu,
2215 		.leave = xen_leave_lazy_mmu,
2216 		.flush = paravirt_flush_lazy_mmu,
2217 	},
2218 
2219 	.set_fixmap = xen_set_fixmap,
2220 };
2221 
2222 void __init xen_init_mmu_ops(void)
2223 {
2224 	x86_init.paging.pagetable_init = xen_pagetable_init;
2225 
2226 	/* Optimization - we can use the HVM one but it has no idea which
2227 	 * VCPUs are descheduled - which means that it will needlessly IPI
2228 	 * them. Xen knows so let it do the job.
2229 	 */
2230 	if (xen_feature(XENFEAT_auto_translated_physmap)) {
2231 		pv_mmu_ops.flush_tlb_others = xen_flush_tlb_others;
2232 		return;
2233 	}
2234 	pv_mmu_ops = xen_mmu_ops;
2235 
2236 	memset(dummy_mapping, 0xff, PAGE_SIZE);
2237 }
2238 
2239 /* Protected by xen_reservation_lock. */
2240 #define MAX_CONTIG_ORDER 9 /* 2MB */
2241 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2242 
2243 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2244 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2245 				unsigned long *in_frames,
2246 				unsigned long *out_frames)
2247 {
2248 	int i;
2249 	struct multicall_space mcs;
2250 
2251 	xen_mc_batch();
2252 	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2253 		mcs = __xen_mc_entry(0);
2254 
2255 		if (in_frames)
2256 			in_frames[i] = virt_to_mfn(vaddr);
2257 
2258 		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2259 		__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2260 
2261 		if (out_frames)
2262 			out_frames[i] = virt_to_pfn(vaddr);
2263 	}
2264 	xen_mc_issue(0);
2265 }
2266 
2267 /*
2268  * Update the pfn-to-mfn mappings for a virtual address range, either to
2269  * point to an array of mfns, or contiguously from a single starting
2270  * mfn.
2271  */
2272 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2273 				     unsigned long *mfns,
2274 				     unsigned long first_mfn)
2275 {
2276 	unsigned i, limit;
2277 	unsigned long mfn;
2278 
2279 	xen_mc_batch();
2280 
2281 	limit = 1u << order;
2282 	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2283 		struct multicall_space mcs;
2284 		unsigned flags;
2285 
2286 		mcs = __xen_mc_entry(0);
2287 		if (mfns)
2288 			mfn = mfns[i];
2289 		else
2290 			mfn = first_mfn + i;
2291 
2292 		if (i < (limit - 1))
2293 			flags = 0;
2294 		else {
2295 			if (order == 0)
2296 				flags = UVMF_INVLPG | UVMF_ALL;
2297 			else
2298 				flags = UVMF_TLB_FLUSH | UVMF_ALL;
2299 		}
2300 
2301 		MULTI_update_va_mapping(mcs.mc, vaddr,
2302 				mfn_pte(mfn, PAGE_KERNEL), flags);
2303 
2304 		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2305 	}
2306 
2307 	xen_mc_issue(0);
2308 }
2309 
2310 /*
2311  * Perform the hypercall to exchange a region of our pfns to point to
2312  * memory with the required contiguous alignment.  Takes the pfns as
2313  * input, and populates mfns as output.
2314  *
2315  * Returns a success code indicating whether the hypervisor was able to
2316  * satisfy the request or not.
2317  */
2318 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2319 			       unsigned long *pfns_in,
2320 			       unsigned long extents_out,
2321 			       unsigned int order_out,
2322 			       unsigned long *mfns_out,
2323 			       unsigned int address_bits)
2324 {
2325 	long rc;
2326 	int success;
2327 
2328 	struct xen_memory_exchange exchange = {
2329 		.in = {
2330 			.nr_extents   = extents_in,
2331 			.extent_order = order_in,
2332 			.extent_start = pfns_in,
2333 			.domid        = DOMID_SELF
2334 		},
2335 		.out = {
2336 			.nr_extents   = extents_out,
2337 			.extent_order = order_out,
2338 			.extent_start = mfns_out,
2339 			.address_bits = address_bits,
2340 			.domid        = DOMID_SELF
2341 		}
2342 	};
2343 
2344 	BUG_ON(extents_in << order_in != extents_out << order_out);
2345 
2346 	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2347 	success = (exchange.nr_exchanged == extents_in);
2348 
2349 	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2350 	BUG_ON(success && (rc != 0));
2351 
2352 	return success;
2353 }
2354 
2355 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2356 				 unsigned int address_bits,
2357 				 dma_addr_t *dma_handle)
2358 {
2359 	unsigned long *in_frames = discontig_frames, out_frame;
2360 	unsigned long  flags;
2361 	int            success;
2362 	unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2363 
2364 	/*
2365 	 * Currently an auto-translated guest will not perform I/O, nor will
2366 	 * it require PAE page directories below 4GB. Therefore any calls to
2367 	 * this function are redundant and can be ignored.
2368 	 */
2369 
2370 	if (xen_feature(XENFEAT_auto_translated_physmap))
2371 		return 0;
2372 
2373 	if (unlikely(order > MAX_CONTIG_ORDER))
2374 		return -ENOMEM;
2375 
2376 	memset((void *) vstart, 0, PAGE_SIZE << order);
2377 
2378 	spin_lock_irqsave(&xen_reservation_lock, flags);
2379 
2380 	/* 1. Zap current PTEs, remembering MFNs. */
2381 	xen_zap_pfn_range(vstart, order, in_frames, NULL);
2382 
2383 	/* 2. Get a new contiguous memory extent. */
2384 	out_frame = virt_to_pfn(vstart);
2385 	success = xen_exchange_memory(1UL << order, 0, in_frames,
2386 				      1, order, &out_frame,
2387 				      address_bits);
2388 
2389 	/* 3. Map the new extent in place of old pages. */
2390 	if (success)
2391 		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2392 	else
2393 		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2394 
2395 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2396 
2397 	*dma_handle = virt_to_machine(vstart).maddr;
2398 	return success ? 0 : -ENOMEM;
2399 }
2400 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2401 
2402 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2403 {
2404 	unsigned long *out_frames = discontig_frames, in_frame;
2405 	unsigned long  flags;
2406 	int success;
2407 	unsigned long vstart;
2408 
2409 	if (xen_feature(XENFEAT_auto_translated_physmap))
2410 		return;
2411 
2412 	if (unlikely(order > MAX_CONTIG_ORDER))
2413 		return;
2414 
2415 	vstart = (unsigned long)phys_to_virt(pstart);
2416 	memset((void *) vstart, 0, PAGE_SIZE << order);
2417 
2418 	spin_lock_irqsave(&xen_reservation_lock, flags);
2419 
2420 	/* 1. Find start MFN of contiguous extent. */
2421 	in_frame = virt_to_mfn(vstart);
2422 
2423 	/* 2. Zap current PTEs. */
2424 	xen_zap_pfn_range(vstart, order, NULL, out_frames);
2425 
2426 	/* 3. Do the exchange for non-contiguous MFNs. */
2427 	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2428 					0, out_frames, 0);
2429 
2430 	/* 4. Map new pages in place of old pages. */
2431 	if (success)
2432 		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2433 	else
2434 		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2435 
2436 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2437 }
2438 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2439 
2440 #ifdef CONFIG_XEN_PVHVM
2441 #ifdef CONFIG_PROC_VMCORE
2442 /*
2443  * This function is used in two contexts:
2444  * - the kdump kernel has to check whether a pfn of the crashed kernel
2445  *   was a ballooned page. vmcore is using this function to decide
2446  *   whether to access a pfn of the crashed kernel.
2447  * - the kexec kernel has to check whether a pfn was ballooned by the
2448  *   previous kernel. If the pfn is ballooned, handle it properly.
2449  * Returns 0 if the pfn is not backed by a RAM page, the caller may
2450  * handle the pfn special in this case.
2451  */
2452 static int xen_oldmem_pfn_is_ram(unsigned long pfn)
2453 {
2454 	struct xen_hvm_get_mem_type a = {
2455 		.domid = DOMID_SELF,
2456 		.pfn = pfn,
2457 	};
2458 	int ram;
2459 
2460 	if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a))
2461 		return -ENXIO;
2462 
2463 	switch (a.mem_type) {
2464 		case HVMMEM_mmio_dm:
2465 			ram = 0;
2466 			break;
2467 		case HVMMEM_ram_rw:
2468 		case HVMMEM_ram_ro:
2469 		default:
2470 			ram = 1;
2471 			break;
2472 	}
2473 
2474 	return ram;
2475 }
2476 #endif
2477 
2478 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2479 {
2480 	struct xen_hvm_pagetable_dying a;
2481 	int rc;
2482 
2483 	a.domid = DOMID_SELF;
2484 	a.gpa = __pa(mm->pgd);
2485 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2486 	WARN_ON_ONCE(rc < 0);
2487 }
2488 
2489 static int is_pagetable_dying_supported(void)
2490 {
2491 	struct xen_hvm_pagetable_dying a;
2492 	int rc = 0;
2493 
2494 	a.domid = DOMID_SELF;
2495 	a.gpa = 0x00;
2496 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2497 	if (rc < 0) {
2498 		printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2499 		return 0;
2500 	}
2501 	return 1;
2502 }
2503 
2504 void __init xen_hvm_init_mmu_ops(void)
2505 {
2506 	if (is_pagetable_dying_supported())
2507 		pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2508 #ifdef CONFIG_PROC_VMCORE
2509 	register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram);
2510 #endif
2511 }
2512 #endif
2513 
2514 #define REMAP_BATCH_SIZE 16
2515 
2516 struct remap_data {
2517 	unsigned long mfn;
2518 	pgprot_t prot;
2519 	struct mmu_update *mmu_update;
2520 };
2521 
2522 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2523 				 unsigned long addr, void *data)
2524 {
2525 	struct remap_data *rmd = data;
2526 	pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2527 
2528 	rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2529 	rmd->mmu_update->val = pte_val_ma(pte);
2530 	rmd->mmu_update++;
2531 
2532 	return 0;
2533 }
2534 
2535 int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2536 			       unsigned long addr,
2537 			       xen_pfn_t mfn, int nr,
2538 			       pgprot_t prot, unsigned domid,
2539 			       struct page **pages)
2540 
2541 {
2542 	struct remap_data rmd;
2543 	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2544 	int batch;
2545 	unsigned long range;
2546 	int err = 0;
2547 
2548 	if (xen_feature(XENFEAT_auto_translated_physmap))
2549 		return -EINVAL;
2550 
2551 	prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2552 
2553 	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2554 
2555 	rmd.mfn = mfn;
2556 	rmd.prot = prot;
2557 
2558 	while (nr) {
2559 		batch = min(REMAP_BATCH_SIZE, nr);
2560 		range = (unsigned long)batch << PAGE_SHIFT;
2561 
2562 		rmd.mmu_update = mmu_update;
2563 		err = apply_to_page_range(vma->vm_mm, addr, range,
2564 					  remap_area_mfn_pte_fn, &rmd);
2565 		if (err)
2566 			goto out;
2567 
2568 		err = HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid);
2569 		if (err < 0)
2570 			goto out;
2571 
2572 		nr -= batch;
2573 		addr += range;
2574 	}
2575 
2576 	err = 0;
2577 out:
2578 
2579 	xen_flush_tlb_all();
2580 
2581 	return err;
2582 }
2583 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2584 
2585 /* Returns: 0 success */
2586 int xen_unmap_domain_mfn_range(struct vm_area_struct *vma,
2587 			       int numpgs, struct page **pages)
2588 {
2589 	if (!pages || !xen_feature(XENFEAT_auto_translated_physmap))
2590 		return 0;
2591 
2592 	return -EINVAL;
2593 }
2594 EXPORT_SYMBOL_GPL(xen_unmap_domain_mfn_range);
2595