xref: /openbmc/linux/arch/x86/xen/mmu.c (revision 367b8112)
1 /*
2  * Xen mmu operations
3  *
4  * This file contains the various mmu fetch and update operations.
5  * The most important job they must perform is the mapping between the
6  * domain's pfn and the overall machine mfns.
7  *
8  * Xen allows guests to directly update the pagetable, in a controlled
9  * fashion.  In other words, the guest modifies the same pagetable
10  * that the CPU actually uses, which eliminates the overhead of having
11  * a separate shadow pagetable.
12  *
13  * In order to allow this, it falls on the guest domain to map its
14  * notion of a "physical" pfn - which is just a domain-local linear
15  * address - into a real "machine address" which the CPU's MMU can
16  * use.
17  *
18  * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19  * inserted directly into the pagetable.  When creating a new
20  * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
21  * when reading the content back with __(pgd|pmd|pte)_val, it converts
22  * the mfn back into a pfn.
23  *
24  * The other constraint is that all pages which make up a pagetable
25  * must be mapped read-only in the guest.  This prevents uncontrolled
26  * guest updates to the pagetable.  Xen strictly enforces this, and
27  * will disallow any pagetable update which will end up mapping a
28  * pagetable page RW, and will disallow using any writable page as a
29  * pagetable.
30  *
31  * Naively, when loading %cr3 with the base of a new pagetable, Xen
32  * would need to validate the whole pagetable before going on.
33  * Naturally, this is quite slow.  The solution is to "pin" a
34  * pagetable, which enforces all the constraints on the pagetable even
35  * when it is not actively in use.  This menas that Xen can be assured
36  * that it is still valid when you do load it into %cr3, and doesn't
37  * need to revalidate it.
38  *
39  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40  */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 
46 #include <asm/pgtable.h>
47 #include <asm/tlbflush.h>
48 #include <asm/fixmap.h>
49 #include <asm/mmu_context.h>
50 #include <asm/paravirt.h>
51 #include <asm/linkage.h>
52 
53 #include <asm/xen/hypercall.h>
54 #include <asm/xen/hypervisor.h>
55 
56 #include <xen/page.h>
57 #include <xen/interface/xen.h>
58 
59 #include "multicalls.h"
60 #include "mmu.h"
61 #include "debugfs.h"
62 
63 #define MMU_UPDATE_HISTO	30
64 
65 #ifdef CONFIG_XEN_DEBUG_FS
66 
67 static struct {
68 	u32 pgd_update;
69 	u32 pgd_update_pinned;
70 	u32 pgd_update_batched;
71 
72 	u32 pud_update;
73 	u32 pud_update_pinned;
74 	u32 pud_update_batched;
75 
76 	u32 pmd_update;
77 	u32 pmd_update_pinned;
78 	u32 pmd_update_batched;
79 
80 	u32 pte_update;
81 	u32 pte_update_pinned;
82 	u32 pte_update_batched;
83 
84 	u32 mmu_update;
85 	u32 mmu_update_extended;
86 	u32 mmu_update_histo[MMU_UPDATE_HISTO];
87 
88 	u32 prot_commit;
89 	u32 prot_commit_batched;
90 
91 	u32 set_pte_at;
92 	u32 set_pte_at_batched;
93 	u32 set_pte_at_pinned;
94 	u32 set_pte_at_current;
95 	u32 set_pte_at_kernel;
96 } mmu_stats;
97 
98 static u8 zero_stats;
99 
100 static inline void check_zero(void)
101 {
102 	if (unlikely(zero_stats)) {
103 		memset(&mmu_stats, 0, sizeof(mmu_stats));
104 		zero_stats = 0;
105 	}
106 }
107 
108 #define ADD_STATS(elem, val)			\
109 	do { check_zero(); mmu_stats.elem += (val); } while(0)
110 
111 #else  /* !CONFIG_XEN_DEBUG_FS */
112 
113 #define ADD_STATS(elem, val)	do { (void)(val); } while(0)
114 
115 #endif /* CONFIG_XEN_DEBUG_FS */
116 
117 /*
118  * Just beyond the highest usermode address.  STACK_TOP_MAX has a
119  * redzone above it, so round it up to a PGD boundary.
120  */
121 #define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
122 
123 
124 #define P2M_ENTRIES_PER_PAGE	(PAGE_SIZE / sizeof(unsigned long))
125 #define TOP_ENTRIES		(MAX_DOMAIN_PAGES / P2M_ENTRIES_PER_PAGE)
126 
127 /* Placeholder for holes in the address space */
128 static unsigned long p2m_missing[P2M_ENTRIES_PER_PAGE] __page_aligned_data =
129 		{ [ 0 ... P2M_ENTRIES_PER_PAGE-1 ] = ~0UL };
130 
131  /* Array of pointers to pages containing p2m entries */
132 static unsigned long *p2m_top[TOP_ENTRIES] __page_aligned_data =
133 		{ [ 0 ... TOP_ENTRIES - 1] = &p2m_missing[0] };
134 
135 /* Arrays of p2m arrays expressed in mfns used for save/restore */
136 static unsigned long p2m_top_mfn[TOP_ENTRIES] __page_aligned_bss;
137 
138 static unsigned long p2m_top_mfn_list[TOP_ENTRIES / P2M_ENTRIES_PER_PAGE]
139 	__page_aligned_bss;
140 
141 static inline unsigned p2m_top_index(unsigned long pfn)
142 {
143 	BUG_ON(pfn >= MAX_DOMAIN_PAGES);
144 	return pfn / P2M_ENTRIES_PER_PAGE;
145 }
146 
147 static inline unsigned p2m_index(unsigned long pfn)
148 {
149 	return pfn % P2M_ENTRIES_PER_PAGE;
150 }
151 
152 /* Build the parallel p2m_top_mfn structures */
153 void xen_setup_mfn_list_list(void)
154 {
155 	unsigned pfn, idx;
156 
157 	for(pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn += P2M_ENTRIES_PER_PAGE) {
158 		unsigned topidx = p2m_top_index(pfn);
159 
160 		p2m_top_mfn[topidx] = virt_to_mfn(p2m_top[topidx]);
161 	}
162 
163 	for(idx = 0; idx < ARRAY_SIZE(p2m_top_mfn_list); idx++) {
164 		unsigned topidx = idx * P2M_ENTRIES_PER_PAGE;
165 		p2m_top_mfn_list[idx] = virt_to_mfn(&p2m_top_mfn[topidx]);
166 	}
167 
168 	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
169 
170 	HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
171 		virt_to_mfn(p2m_top_mfn_list);
172 	HYPERVISOR_shared_info->arch.max_pfn = xen_start_info->nr_pages;
173 }
174 
175 /* Set up p2m_top to point to the domain-builder provided p2m pages */
176 void __init xen_build_dynamic_phys_to_machine(void)
177 {
178 	unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
179 	unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
180 	unsigned pfn;
181 
182 	for(pfn = 0; pfn < max_pfn; pfn += P2M_ENTRIES_PER_PAGE) {
183 		unsigned topidx = p2m_top_index(pfn);
184 
185 		p2m_top[topidx] = &mfn_list[pfn];
186 	}
187 }
188 
189 unsigned long get_phys_to_machine(unsigned long pfn)
190 {
191 	unsigned topidx, idx;
192 
193 	if (unlikely(pfn >= MAX_DOMAIN_PAGES))
194 		return INVALID_P2M_ENTRY;
195 
196 	topidx = p2m_top_index(pfn);
197 	idx = p2m_index(pfn);
198 	return p2m_top[topidx][idx];
199 }
200 EXPORT_SYMBOL_GPL(get_phys_to_machine);
201 
202 static void alloc_p2m(unsigned long **pp, unsigned long *mfnp)
203 {
204 	unsigned long *p;
205 	unsigned i;
206 
207 	p = (void *)__get_free_page(GFP_KERNEL | __GFP_NOFAIL);
208 	BUG_ON(p == NULL);
209 
210 	for(i = 0; i < P2M_ENTRIES_PER_PAGE; i++)
211 		p[i] = INVALID_P2M_ENTRY;
212 
213 	if (cmpxchg(pp, p2m_missing, p) != p2m_missing)
214 		free_page((unsigned long)p);
215 	else
216 		*mfnp = virt_to_mfn(p);
217 }
218 
219 void set_phys_to_machine(unsigned long pfn, unsigned long mfn)
220 {
221 	unsigned topidx, idx;
222 
223 	if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
224 		BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
225 		return;
226 	}
227 
228 	if (unlikely(pfn >= MAX_DOMAIN_PAGES)) {
229 		BUG_ON(mfn != INVALID_P2M_ENTRY);
230 		return;
231 	}
232 
233 	topidx = p2m_top_index(pfn);
234 	if (p2m_top[topidx] == p2m_missing) {
235 		/* no need to allocate a page to store an invalid entry */
236 		if (mfn == INVALID_P2M_ENTRY)
237 			return;
238 		alloc_p2m(&p2m_top[topidx], &p2m_top_mfn[topidx]);
239 	}
240 
241 	idx = p2m_index(pfn);
242 	p2m_top[topidx][idx] = mfn;
243 }
244 
245 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
246 {
247 	unsigned long address = (unsigned long)vaddr;
248 	unsigned int level;
249 	pte_t *pte;
250 	unsigned offset;
251 
252 	/*
253 	 * if the PFN is in the linear mapped vaddr range, we can just use
254 	 * the (quick) virt_to_machine() p2m lookup
255 	 */
256 	if (virt_addr_valid(vaddr))
257 		return virt_to_machine(vaddr);
258 
259 	/* otherwise we have to do a (slower) full page-table walk */
260 
261 	pte = lookup_address(address, &level);
262 	BUG_ON(pte == NULL);
263 	offset = address & ~PAGE_MASK;
264 	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
265 }
266 
267 void make_lowmem_page_readonly(void *vaddr)
268 {
269 	pte_t *pte, ptev;
270 	unsigned long address = (unsigned long)vaddr;
271 	unsigned int level;
272 
273 	pte = lookup_address(address, &level);
274 	BUG_ON(pte == NULL);
275 
276 	ptev = pte_wrprotect(*pte);
277 
278 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
279 		BUG();
280 }
281 
282 void make_lowmem_page_readwrite(void *vaddr)
283 {
284 	pte_t *pte, ptev;
285 	unsigned long address = (unsigned long)vaddr;
286 	unsigned int level;
287 
288 	pte = lookup_address(address, &level);
289 	BUG_ON(pte == NULL);
290 
291 	ptev = pte_mkwrite(*pte);
292 
293 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
294 		BUG();
295 }
296 
297 
298 static bool xen_page_pinned(void *ptr)
299 {
300 	struct page *page = virt_to_page(ptr);
301 
302 	return PagePinned(page);
303 }
304 
305 static void xen_extend_mmu_update(const struct mmu_update *update)
306 {
307 	struct multicall_space mcs;
308 	struct mmu_update *u;
309 
310 	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
311 
312 	if (mcs.mc != NULL) {
313 		ADD_STATS(mmu_update_extended, 1);
314 		ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
315 
316 		mcs.mc->args[1]++;
317 
318 		if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
319 			ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
320 		else
321 			ADD_STATS(mmu_update_histo[0], 1);
322 	} else {
323 		ADD_STATS(mmu_update, 1);
324 		mcs = __xen_mc_entry(sizeof(*u));
325 		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
326 		ADD_STATS(mmu_update_histo[1], 1);
327 	}
328 
329 	u = mcs.args;
330 	*u = *update;
331 }
332 
333 void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
334 {
335 	struct mmu_update u;
336 
337 	preempt_disable();
338 
339 	xen_mc_batch();
340 
341 	/* ptr may be ioremapped for 64-bit pagetable setup */
342 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
343 	u.val = pmd_val_ma(val);
344 	xen_extend_mmu_update(&u);
345 
346 	ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
347 
348 	xen_mc_issue(PARAVIRT_LAZY_MMU);
349 
350 	preempt_enable();
351 }
352 
353 void xen_set_pmd(pmd_t *ptr, pmd_t val)
354 {
355 	ADD_STATS(pmd_update, 1);
356 
357 	/* If page is not pinned, we can just update the entry
358 	   directly */
359 	if (!xen_page_pinned(ptr)) {
360 		*ptr = val;
361 		return;
362 	}
363 
364 	ADD_STATS(pmd_update_pinned, 1);
365 
366 	xen_set_pmd_hyper(ptr, val);
367 }
368 
369 /*
370  * Associate a virtual page frame with a given physical page frame
371  * and protection flags for that frame.
372  */
373 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
374 {
375 	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
376 }
377 
378 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
379 		    pte_t *ptep, pte_t pteval)
380 {
381 	/* updates to init_mm may be done without lock */
382 	if (mm == &init_mm)
383 		preempt_disable();
384 
385 	ADD_STATS(set_pte_at, 1);
386 //	ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
387 	ADD_STATS(set_pte_at_current, mm == current->mm);
388 	ADD_STATS(set_pte_at_kernel, mm == &init_mm);
389 
390 	if (mm == current->mm || mm == &init_mm) {
391 		if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
392 			struct multicall_space mcs;
393 			mcs = xen_mc_entry(0);
394 
395 			MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
396 			ADD_STATS(set_pte_at_batched, 1);
397 			xen_mc_issue(PARAVIRT_LAZY_MMU);
398 			goto out;
399 		} else
400 			if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
401 				goto out;
402 	}
403 	xen_set_pte(ptep, pteval);
404 
405 out:
406 	if (mm == &init_mm)
407 		preempt_enable();
408 }
409 
410 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
411 {
412 	/* Just return the pte as-is.  We preserve the bits on commit */
413 	return *ptep;
414 }
415 
416 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
417 				 pte_t *ptep, pte_t pte)
418 {
419 	struct mmu_update u;
420 
421 	xen_mc_batch();
422 
423 	u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
424 	u.val = pte_val_ma(pte);
425 	xen_extend_mmu_update(&u);
426 
427 	ADD_STATS(prot_commit, 1);
428 	ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
429 
430 	xen_mc_issue(PARAVIRT_LAZY_MMU);
431 }
432 
433 /* Assume pteval_t is equivalent to all the other *val_t types. */
434 static pteval_t pte_mfn_to_pfn(pteval_t val)
435 {
436 	if (val & _PAGE_PRESENT) {
437 		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
438 		pteval_t flags = val & PTE_FLAGS_MASK;
439 		val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
440 	}
441 
442 	return val;
443 }
444 
445 static pteval_t pte_pfn_to_mfn(pteval_t val)
446 {
447 	if (val & _PAGE_PRESENT) {
448 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
449 		pteval_t flags = val & PTE_FLAGS_MASK;
450 		val = ((pteval_t)pfn_to_mfn(pfn) << PAGE_SHIFT) | flags;
451 	}
452 
453 	return val;
454 }
455 
456 pteval_t xen_pte_val(pte_t pte)
457 {
458 	return pte_mfn_to_pfn(pte.pte);
459 }
460 
461 pgdval_t xen_pgd_val(pgd_t pgd)
462 {
463 	return pte_mfn_to_pfn(pgd.pgd);
464 }
465 
466 pte_t xen_make_pte(pteval_t pte)
467 {
468 	pte = pte_pfn_to_mfn(pte);
469 	return native_make_pte(pte);
470 }
471 
472 pgd_t xen_make_pgd(pgdval_t pgd)
473 {
474 	pgd = pte_pfn_to_mfn(pgd);
475 	return native_make_pgd(pgd);
476 }
477 
478 pmdval_t xen_pmd_val(pmd_t pmd)
479 {
480 	return pte_mfn_to_pfn(pmd.pmd);
481 }
482 
483 void xen_set_pud_hyper(pud_t *ptr, pud_t val)
484 {
485 	struct mmu_update u;
486 
487 	preempt_disable();
488 
489 	xen_mc_batch();
490 
491 	/* ptr may be ioremapped for 64-bit pagetable setup */
492 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
493 	u.val = pud_val_ma(val);
494 	xen_extend_mmu_update(&u);
495 
496 	ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
497 
498 	xen_mc_issue(PARAVIRT_LAZY_MMU);
499 
500 	preempt_enable();
501 }
502 
503 void xen_set_pud(pud_t *ptr, pud_t val)
504 {
505 	ADD_STATS(pud_update, 1);
506 
507 	/* If page is not pinned, we can just update the entry
508 	   directly */
509 	if (!xen_page_pinned(ptr)) {
510 		*ptr = val;
511 		return;
512 	}
513 
514 	ADD_STATS(pud_update_pinned, 1);
515 
516 	xen_set_pud_hyper(ptr, val);
517 }
518 
519 void xen_set_pte(pte_t *ptep, pte_t pte)
520 {
521 	ADD_STATS(pte_update, 1);
522 //	ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
523 	ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
524 
525 #ifdef CONFIG_X86_PAE
526 	ptep->pte_high = pte.pte_high;
527 	smp_wmb();
528 	ptep->pte_low = pte.pte_low;
529 #else
530 	*ptep = pte;
531 #endif
532 }
533 
534 #ifdef CONFIG_X86_PAE
535 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
536 {
537 	set_64bit((u64 *)ptep, native_pte_val(pte));
538 }
539 
540 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
541 {
542 	ptep->pte_low = 0;
543 	smp_wmb();		/* make sure low gets written first */
544 	ptep->pte_high = 0;
545 }
546 
547 void xen_pmd_clear(pmd_t *pmdp)
548 {
549 	set_pmd(pmdp, __pmd(0));
550 }
551 #endif	/* CONFIG_X86_PAE */
552 
553 pmd_t xen_make_pmd(pmdval_t pmd)
554 {
555 	pmd = pte_pfn_to_mfn(pmd);
556 	return native_make_pmd(pmd);
557 }
558 
559 #if PAGETABLE_LEVELS == 4
560 pudval_t xen_pud_val(pud_t pud)
561 {
562 	return pte_mfn_to_pfn(pud.pud);
563 }
564 
565 pud_t xen_make_pud(pudval_t pud)
566 {
567 	pud = pte_pfn_to_mfn(pud);
568 
569 	return native_make_pud(pud);
570 }
571 
572 pgd_t *xen_get_user_pgd(pgd_t *pgd)
573 {
574 	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
575 	unsigned offset = pgd - pgd_page;
576 	pgd_t *user_ptr = NULL;
577 
578 	if (offset < pgd_index(USER_LIMIT)) {
579 		struct page *page = virt_to_page(pgd_page);
580 		user_ptr = (pgd_t *)page->private;
581 		if (user_ptr)
582 			user_ptr += offset;
583 	}
584 
585 	return user_ptr;
586 }
587 
588 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
589 {
590 	struct mmu_update u;
591 
592 	u.ptr = virt_to_machine(ptr).maddr;
593 	u.val = pgd_val_ma(val);
594 	xen_extend_mmu_update(&u);
595 }
596 
597 /*
598  * Raw hypercall-based set_pgd, intended for in early boot before
599  * there's a page structure.  This implies:
600  *  1. The only existing pagetable is the kernel's
601  *  2. It is always pinned
602  *  3. It has no user pagetable attached to it
603  */
604 void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
605 {
606 	preempt_disable();
607 
608 	xen_mc_batch();
609 
610 	__xen_set_pgd_hyper(ptr, val);
611 
612 	xen_mc_issue(PARAVIRT_LAZY_MMU);
613 
614 	preempt_enable();
615 }
616 
617 void xen_set_pgd(pgd_t *ptr, pgd_t val)
618 {
619 	pgd_t *user_ptr = xen_get_user_pgd(ptr);
620 
621 	ADD_STATS(pgd_update, 1);
622 
623 	/* If page is not pinned, we can just update the entry
624 	   directly */
625 	if (!xen_page_pinned(ptr)) {
626 		*ptr = val;
627 		if (user_ptr) {
628 			WARN_ON(xen_page_pinned(user_ptr));
629 			*user_ptr = val;
630 		}
631 		return;
632 	}
633 
634 	ADD_STATS(pgd_update_pinned, 1);
635 	ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
636 
637 	/* If it's pinned, then we can at least batch the kernel and
638 	   user updates together. */
639 	xen_mc_batch();
640 
641 	__xen_set_pgd_hyper(ptr, val);
642 	if (user_ptr)
643 		__xen_set_pgd_hyper(user_ptr, val);
644 
645 	xen_mc_issue(PARAVIRT_LAZY_MMU);
646 }
647 #endif	/* PAGETABLE_LEVELS == 4 */
648 
649 /*
650  * (Yet another) pagetable walker.  This one is intended for pinning a
651  * pagetable.  This means that it walks a pagetable and calls the
652  * callback function on each page it finds making up the page table,
653  * at every level.  It walks the entire pagetable, but it only bothers
654  * pinning pte pages which are below limit.  In the normal case this
655  * will be STACK_TOP_MAX, but at boot we need to pin up to
656  * FIXADDR_TOP.
657  *
658  * For 32-bit the important bit is that we don't pin beyond there,
659  * because then we start getting into Xen's ptes.
660  *
661  * For 64-bit, we must skip the Xen hole in the middle of the address
662  * space, just after the big x86-64 virtual hole.
663  */
664 static int xen_pgd_walk(struct mm_struct *mm,
665 			int (*func)(struct mm_struct *mm, struct page *,
666 				    enum pt_level),
667 			unsigned long limit)
668 {
669 	pgd_t *pgd = mm->pgd;
670 	int flush = 0;
671 	unsigned hole_low, hole_high;
672 	unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
673 	unsigned pgdidx, pudidx, pmdidx;
674 
675 	/* The limit is the last byte to be touched */
676 	limit--;
677 	BUG_ON(limit >= FIXADDR_TOP);
678 
679 	if (xen_feature(XENFEAT_auto_translated_physmap))
680 		return 0;
681 
682 	/*
683 	 * 64-bit has a great big hole in the middle of the address
684 	 * space, which contains the Xen mappings.  On 32-bit these
685 	 * will end up making a zero-sized hole and so is a no-op.
686 	 */
687 	hole_low = pgd_index(USER_LIMIT);
688 	hole_high = pgd_index(PAGE_OFFSET);
689 
690 	pgdidx_limit = pgd_index(limit);
691 #if PTRS_PER_PUD > 1
692 	pudidx_limit = pud_index(limit);
693 #else
694 	pudidx_limit = 0;
695 #endif
696 #if PTRS_PER_PMD > 1
697 	pmdidx_limit = pmd_index(limit);
698 #else
699 	pmdidx_limit = 0;
700 #endif
701 
702 	for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
703 		pud_t *pud;
704 
705 		if (pgdidx >= hole_low && pgdidx < hole_high)
706 			continue;
707 
708 		if (!pgd_val(pgd[pgdidx]))
709 			continue;
710 
711 		pud = pud_offset(&pgd[pgdidx], 0);
712 
713 		if (PTRS_PER_PUD > 1) /* not folded */
714 			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
715 
716 		for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
717 			pmd_t *pmd;
718 
719 			if (pgdidx == pgdidx_limit &&
720 			    pudidx > pudidx_limit)
721 				goto out;
722 
723 			if (pud_none(pud[pudidx]))
724 				continue;
725 
726 			pmd = pmd_offset(&pud[pudidx], 0);
727 
728 			if (PTRS_PER_PMD > 1) /* not folded */
729 				flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
730 
731 			for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
732 				struct page *pte;
733 
734 				if (pgdidx == pgdidx_limit &&
735 				    pudidx == pudidx_limit &&
736 				    pmdidx > pmdidx_limit)
737 					goto out;
738 
739 				if (pmd_none(pmd[pmdidx]))
740 					continue;
741 
742 				pte = pmd_page(pmd[pmdidx]);
743 				flush |= (*func)(mm, pte, PT_PTE);
744 			}
745 		}
746 	}
747 
748 out:
749 	/* Do the top level last, so that the callbacks can use it as
750 	   a cue to do final things like tlb flushes. */
751 	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
752 
753 	return flush;
754 }
755 
756 /* If we're using split pte locks, then take the page's lock and
757    return a pointer to it.  Otherwise return NULL. */
758 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
759 {
760 	spinlock_t *ptl = NULL;
761 
762 #if USE_SPLIT_PTLOCKS
763 	ptl = __pte_lockptr(page);
764 	spin_lock_nest_lock(ptl, &mm->page_table_lock);
765 #endif
766 
767 	return ptl;
768 }
769 
770 static void xen_pte_unlock(void *v)
771 {
772 	spinlock_t *ptl = v;
773 	spin_unlock(ptl);
774 }
775 
776 static void xen_do_pin(unsigned level, unsigned long pfn)
777 {
778 	struct mmuext_op *op;
779 	struct multicall_space mcs;
780 
781 	mcs = __xen_mc_entry(sizeof(*op));
782 	op = mcs.args;
783 	op->cmd = level;
784 	op->arg1.mfn = pfn_to_mfn(pfn);
785 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
786 }
787 
788 static int xen_pin_page(struct mm_struct *mm, struct page *page,
789 			enum pt_level level)
790 {
791 	unsigned pgfl = TestSetPagePinned(page);
792 	int flush;
793 
794 	if (pgfl)
795 		flush = 0;		/* already pinned */
796 	else if (PageHighMem(page))
797 		/* kmaps need flushing if we found an unpinned
798 		   highpage */
799 		flush = 1;
800 	else {
801 		void *pt = lowmem_page_address(page);
802 		unsigned long pfn = page_to_pfn(page);
803 		struct multicall_space mcs = __xen_mc_entry(0);
804 		spinlock_t *ptl;
805 
806 		flush = 0;
807 
808 		/*
809 		 * We need to hold the pagetable lock between the time
810 		 * we make the pagetable RO and when we actually pin
811 		 * it.  If we don't, then other users may come in and
812 		 * attempt to update the pagetable by writing it,
813 		 * which will fail because the memory is RO but not
814 		 * pinned, so Xen won't do the trap'n'emulate.
815 		 *
816 		 * If we're using split pte locks, we can't hold the
817 		 * entire pagetable's worth of locks during the
818 		 * traverse, because we may wrap the preempt count (8
819 		 * bits).  The solution is to mark RO and pin each PTE
820 		 * page while holding the lock.  This means the number
821 		 * of locks we end up holding is never more than a
822 		 * batch size (~32 entries, at present).
823 		 *
824 		 * If we're not using split pte locks, we needn't pin
825 		 * the PTE pages independently, because we're
826 		 * protected by the overall pagetable lock.
827 		 */
828 		ptl = NULL;
829 		if (level == PT_PTE)
830 			ptl = xen_pte_lock(page, mm);
831 
832 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
833 					pfn_pte(pfn, PAGE_KERNEL_RO),
834 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
835 
836 		if (ptl) {
837 			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
838 
839 			/* Queue a deferred unlock for when this batch
840 			   is completed. */
841 			xen_mc_callback(xen_pte_unlock, ptl);
842 		}
843 	}
844 
845 	return flush;
846 }
847 
848 /* This is called just after a mm has been created, but it has not
849    been used yet.  We need to make sure that its pagetable is all
850    read-only, and can be pinned. */
851 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
852 {
853 	xen_mc_batch();
854 
855 	if (xen_pgd_walk(mm, xen_pin_page, USER_LIMIT)) {
856 		/* re-enable interrupts for kmap_flush_unused */
857 		xen_mc_issue(0);
858 		kmap_flush_unused();
859 		vm_unmap_aliases();
860 		xen_mc_batch();
861 	}
862 
863 #ifdef CONFIG_X86_64
864 	{
865 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
866 
867 		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
868 
869 		if (user_pgd) {
870 			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
871 			xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(user_pgd)));
872 		}
873 	}
874 #else /* CONFIG_X86_32 */
875 #ifdef CONFIG_X86_PAE
876 	/* Need to make sure unshared kernel PMD is pinnable */
877 	xen_pin_page(mm, virt_to_page(pgd_page(pgd[pgd_index(TASK_SIZE)])),
878 		     PT_PMD);
879 #endif
880 	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
881 #endif /* CONFIG_X86_64 */
882 	xen_mc_issue(0);
883 }
884 
885 static void xen_pgd_pin(struct mm_struct *mm)
886 {
887 	__xen_pgd_pin(mm, mm->pgd);
888 }
889 
890 /*
891  * On save, we need to pin all pagetables to make sure they get their
892  * mfns turned into pfns.  Search the list for any unpinned pgds and pin
893  * them (unpinned pgds are not currently in use, probably because the
894  * process is under construction or destruction).
895  *
896  * Expected to be called in stop_machine() ("equivalent to taking
897  * every spinlock in the system"), so the locking doesn't really
898  * matter all that much.
899  */
900 void xen_mm_pin_all(void)
901 {
902 	unsigned long flags;
903 	struct page *page;
904 
905 	spin_lock_irqsave(&pgd_lock, flags);
906 
907 	list_for_each_entry(page, &pgd_list, lru) {
908 		if (!PagePinned(page)) {
909 			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
910 			SetPageSavePinned(page);
911 		}
912 	}
913 
914 	spin_unlock_irqrestore(&pgd_lock, flags);
915 }
916 
917 /*
918  * The init_mm pagetable is really pinned as soon as its created, but
919  * that's before we have page structures to store the bits.  So do all
920  * the book-keeping now.
921  */
922 static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
923 				  enum pt_level level)
924 {
925 	SetPagePinned(page);
926 	return 0;
927 }
928 
929 void __init xen_mark_init_mm_pinned(void)
930 {
931 	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
932 }
933 
934 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
935 			  enum pt_level level)
936 {
937 	unsigned pgfl = TestClearPagePinned(page);
938 
939 	if (pgfl && !PageHighMem(page)) {
940 		void *pt = lowmem_page_address(page);
941 		unsigned long pfn = page_to_pfn(page);
942 		spinlock_t *ptl = NULL;
943 		struct multicall_space mcs;
944 
945 		/*
946 		 * Do the converse to pin_page.  If we're using split
947 		 * pte locks, we must be holding the lock for while
948 		 * the pte page is unpinned but still RO to prevent
949 		 * concurrent updates from seeing it in this
950 		 * partially-pinned state.
951 		 */
952 		if (level == PT_PTE) {
953 			ptl = xen_pte_lock(page, mm);
954 
955 			if (ptl)
956 				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
957 		}
958 
959 		mcs = __xen_mc_entry(0);
960 
961 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
962 					pfn_pte(pfn, PAGE_KERNEL),
963 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
964 
965 		if (ptl) {
966 			/* unlock when batch completed */
967 			xen_mc_callback(xen_pte_unlock, ptl);
968 		}
969 	}
970 
971 	return 0;		/* never need to flush on unpin */
972 }
973 
974 /* Release a pagetables pages back as normal RW */
975 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
976 {
977 	xen_mc_batch();
978 
979 	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
980 
981 #ifdef CONFIG_X86_64
982 	{
983 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
984 
985 		if (user_pgd) {
986 			xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(user_pgd)));
987 			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
988 		}
989 	}
990 #endif
991 
992 #ifdef CONFIG_X86_PAE
993 	/* Need to make sure unshared kernel PMD is unpinned */
994 	xen_unpin_page(mm, virt_to_page(pgd_page(pgd[pgd_index(TASK_SIZE)])),
995 		       PT_PMD);
996 #endif
997 
998 	xen_pgd_walk(mm, xen_unpin_page, USER_LIMIT);
999 
1000 	xen_mc_issue(0);
1001 }
1002 
1003 static void xen_pgd_unpin(struct mm_struct *mm)
1004 {
1005 	__xen_pgd_unpin(mm, mm->pgd);
1006 }
1007 
1008 /*
1009  * On resume, undo any pinning done at save, so that the rest of the
1010  * kernel doesn't see any unexpected pinned pagetables.
1011  */
1012 void xen_mm_unpin_all(void)
1013 {
1014 	unsigned long flags;
1015 	struct page *page;
1016 
1017 	spin_lock_irqsave(&pgd_lock, flags);
1018 
1019 	list_for_each_entry(page, &pgd_list, lru) {
1020 		if (PageSavePinned(page)) {
1021 			BUG_ON(!PagePinned(page));
1022 			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1023 			ClearPageSavePinned(page);
1024 		}
1025 	}
1026 
1027 	spin_unlock_irqrestore(&pgd_lock, flags);
1028 }
1029 
1030 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1031 {
1032 	spin_lock(&next->page_table_lock);
1033 	xen_pgd_pin(next);
1034 	spin_unlock(&next->page_table_lock);
1035 }
1036 
1037 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1038 {
1039 	spin_lock(&mm->page_table_lock);
1040 	xen_pgd_pin(mm);
1041 	spin_unlock(&mm->page_table_lock);
1042 }
1043 
1044 
1045 #ifdef CONFIG_SMP
1046 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1047    we need to repoint it somewhere else before we can unpin it. */
1048 static void drop_other_mm_ref(void *info)
1049 {
1050 	struct mm_struct *mm = info;
1051 	struct mm_struct *active_mm;
1052 
1053 #ifdef CONFIG_X86_64
1054 	active_mm = read_pda(active_mm);
1055 #else
1056 	active_mm = __get_cpu_var(cpu_tlbstate).active_mm;
1057 #endif
1058 
1059 	if (active_mm == mm)
1060 		leave_mm(smp_processor_id());
1061 
1062 	/* If this cpu still has a stale cr3 reference, then make sure
1063 	   it has been flushed. */
1064 	if (x86_read_percpu(xen_current_cr3) == __pa(mm->pgd)) {
1065 		load_cr3(swapper_pg_dir);
1066 		arch_flush_lazy_cpu_mode();
1067 	}
1068 }
1069 
1070 static void xen_drop_mm_ref(struct mm_struct *mm)
1071 {
1072 	cpumask_t mask;
1073 	unsigned cpu;
1074 
1075 	if (current->active_mm == mm) {
1076 		if (current->mm == mm)
1077 			load_cr3(swapper_pg_dir);
1078 		else
1079 			leave_mm(smp_processor_id());
1080 		arch_flush_lazy_cpu_mode();
1081 	}
1082 
1083 	/* Get the "official" set of cpus referring to our pagetable. */
1084 	mask = mm->cpu_vm_mask;
1085 
1086 	/* It's possible that a vcpu may have a stale reference to our
1087 	   cr3, because its in lazy mode, and it hasn't yet flushed
1088 	   its set of pending hypercalls yet.  In this case, we can
1089 	   look at its actual current cr3 value, and force it to flush
1090 	   if needed. */
1091 	for_each_online_cpu(cpu) {
1092 		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1093 			cpu_set(cpu, mask);
1094 	}
1095 
1096 	if (!cpus_empty(mask))
1097 		smp_call_function_mask(mask, drop_other_mm_ref, mm, 1);
1098 }
1099 #else
1100 static void xen_drop_mm_ref(struct mm_struct *mm)
1101 {
1102 	if (current->active_mm == mm)
1103 		load_cr3(swapper_pg_dir);
1104 }
1105 #endif
1106 
1107 /*
1108  * While a process runs, Xen pins its pagetables, which means that the
1109  * hypervisor forces it to be read-only, and it controls all updates
1110  * to it.  This means that all pagetable updates have to go via the
1111  * hypervisor, which is moderately expensive.
1112  *
1113  * Since we're pulling the pagetable down, we switch to use init_mm,
1114  * unpin old process pagetable and mark it all read-write, which
1115  * allows further operations on it to be simple memory accesses.
1116  *
1117  * The only subtle point is that another CPU may be still using the
1118  * pagetable because of lazy tlb flushing.  This means we need need to
1119  * switch all CPUs off this pagetable before we can unpin it.
1120  */
1121 void xen_exit_mmap(struct mm_struct *mm)
1122 {
1123 	get_cpu();		/* make sure we don't move around */
1124 	xen_drop_mm_ref(mm);
1125 	put_cpu();
1126 
1127 	spin_lock(&mm->page_table_lock);
1128 
1129 	/* pgd may not be pinned in the error exit path of execve */
1130 	if (xen_page_pinned(mm->pgd))
1131 		xen_pgd_unpin(mm);
1132 
1133 	spin_unlock(&mm->page_table_lock);
1134 }
1135 
1136 #ifdef CONFIG_XEN_DEBUG_FS
1137 
1138 static struct dentry *d_mmu_debug;
1139 
1140 static int __init xen_mmu_debugfs(void)
1141 {
1142 	struct dentry *d_xen = xen_init_debugfs();
1143 
1144 	if (d_xen == NULL)
1145 		return -ENOMEM;
1146 
1147 	d_mmu_debug = debugfs_create_dir("mmu", d_xen);
1148 
1149 	debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
1150 
1151 	debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
1152 	debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
1153 			   &mmu_stats.pgd_update_pinned);
1154 	debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
1155 			   &mmu_stats.pgd_update_pinned);
1156 
1157 	debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
1158 	debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
1159 			   &mmu_stats.pud_update_pinned);
1160 	debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
1161 			   &mmu_stats.pud_update_pinned);
1162 
1163 	debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
1164 	debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
1165 			   &mmu_stats.pmd_update_pinned);
1166 	debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
1167 			   &mmu_stats.pmd_update_pinned);
1168 
1169 	debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
1170 //	debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
1171 //			   &mmu_stats.pte_update_pinned);
1172 	debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
1173 			   &mmu_stats.pte_update_pinned);
1174 
1175 	debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
1176 	debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
1177 			   &mmu_stats.mmu_update_extended);
1178 	xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
1179 				     mmu_stats.mmu_update_histo, 20);
1180 
1181 	debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
1182 	debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
1183 			   &mmu_stats.set_pte_at_batched);
1184 	debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
1185 			   &mmu_stats.set_pte_at_current);
1186 	debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
1187 			   &mmu_stats.set_pte_at_kernel);
1188 
1189 	debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
1190 	debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
1191 			   &mmu_stats.prot_commit_batched);
1192 
1193 	return 0;
1194 }
1195 fs_initcall(xen_mmu_debugfs);
1196 
1197 #endif	/* CONFIG_XEN_DEBUG_FS */
1198