xref: /openbmc/linux/arch/x86/xen/mmu.c (revision 25985edc)
1 /*
2  * Xen mmu operations
3  *
4  * This file contains the various mmu fetch and update operations.
5  * The most important job they must perform is the mapping between the
6  * domain's pfn and the overall machine mfns.
7  *
8  * Xen allows guests to directly update the pagetable, in a controlled
9  * fashion.  In other words, the guest modifies the same pagetable
10  * that the CPU actually uses, which eliminates the overhead of having
11  * a separate shadow pagetable.
12  *
13  * In order to allow this, it falls on the guest domain to map its
14  * notion of a "physical" pfn - which is just a domain-local linear
15  * address - into a real "machine address" which the CPU's MMU can
16  * use.
17  *
18  * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19  * inserted directly into the pagetable.  When creating a new
20  * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
21  * when reading the content back with __(pgd|pmd|pte)_val, it converts
22  * the mfn back into a pfn.
23  *
24  * The other constraint is that all pages which make up a pagetable
25  * must be mapped read-only in the guest.  This prevents uncontrolled
26  * guest updates to the pagetable.  Xen strictly enforces this, and
27  * will disallow any pagetable update which will end up mapping a
28  * pagetable page RW, and will disallow using any writable page as a
29  * pagetable.
30  *
31  * Naively, when loading %cr3 with the base of a new pagetable, Xen
32  * would need to validate the whole pagetable before going on.
33  * Naturally, this is quite slow.  The solution is to "pin" a
34  * pagetable, which enforces all the constraints on the pagetable even
35  * when it is not actively in use.  This menas that Xen can be assured
36  * that it is still valid when you do load it into %cr3, and doesn't
37  * need to revalidate it.
38  *
39  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40  */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49 #include <linux/seq_file.h>
50 
51 #include <asm/pgtable.h>
52 #include <asm/tlbflush.h>
53 #include <asm/fixmap.h>
54 #include <asm/mmu_context.h>
55 #include <asm/setup.h>
56 #include <asm/paravirt.h>
57 #include <asm/e820.h>
58 #include <asm/linkage.h>
59 #include <asm/page.h>
60 #include <asm/init.h>
61 #include <asm/pat.h>
62 
63 #include <asm/xen/hypercall.h>
64 #include <asm/xen/hypervisor.h>
65 
66 #include <xen/xen.h>
67 #include <xen/page.h>
68 #include <xen/interface/xen.h>
69 #include <xen/interface/hvm/hvm_op.h>
70 #include <xen/interface/version.h>
71 #include <xen/interface/memory.h>
72 #include <xen/hvc-console.h>
73 
74 #include "multicalls.h"
75 #include "mmu.h"
76 #include "debugfs.h"
77 
78 #define MMU_UPDATE_HISTO	30
79 
80 /*
81  * Protects atomic reservation decrease/increase against concurrent increases.
82  * Also protects non-atomic updates of current_pages and balloon lists.
83  */
84 DEFINE_SPINLOCK(xen_reservation_lock);
85 
86 #ifdef CONFIG_XEN_DEBUG_FS
87 
88 static struct {
89 	u32 pgd_update;
90 	u32 pgd_update_pinned;
91 	u32 pgd_update_batched;
92 
93 	u32 pud_update;
94 	u32 pud_update_pinned;
95 	u32 pud_update_batched;
96 
97 	u32 pmd_update;
98 	u32 pmd_update_pinned;
99 	u32 pmd_update_batched;
100 
101 	u32 pte_update;
102 	u32 pte_update_pinned;
103 	u32 pte_update_batched;
104 
105 	u32 mmu_update;
106 	u32 mmu_update_extended;
107 	u32 mmu_update_histo[MMU_UPDATE_HISTO];
108 
109 	u32 prot_commit;
110 	u32 prot_commit_batched;
111 
112 	u32 set_pte_at;
113 	u32 set_pte_at_batched;
114 	u32 set_pte_at_pinned;
115 	u32 set_pte_at_current;
116 	u32 set_pte_at_kernel;
117 } mmu_stats;
118 
119 static u8 zero_stats;
120 
121 static inline void check_zero(void)
122 {
123 	if (unlikely(zero_stats)) {
124 		memset(&mmu_stats, 0, sizeof(mmu_stats));
125 		zero_stats = 0;
126 	}
127 }
128 
129 #define ADD_STATS(elem, val)			\
130 	do { check_zero(); mmu_stats.elem += (val); } while(0)
131 
132 #else  /* !CONFIG_XEN_DEBUG_FS */
133 
134 #define ADD_STATS(elem, val)	do { (void)(val); } while(0)
135 
136 #endif /* CONFIG_XEN_DEBUG_FS */
137 
138 
139 /*
140  * Identity map, in addition to plain kernel map.  This needs to be
141  * large enough to allocate page table pages to allocate the rest.
142  * Each page can map 2MB.
143  */
144 #define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4)
145 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
146 
147 #ifdef CONFIG_X86_64
148 /* l3 pud for userspace vsyscall mapping */
149 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
150 #endif /* CONFIG_X86_64 */
151 
152 /*
153  * Note about cr3 (pagetable base) values:
154  *
155  * xen_cr3 contains the current logical cr3 value; it contains the
156  * last set cr3.  This may not be the current effective cr3, because
157  * its update may be being lazily deferred.  However, a vcpu looking
158  * at its own cr3 can use this value knowing that it everything will
159  * be self-consistent.
160  *
161  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
162  * hypercall to set the vcpu cr3 is complete (so it may be a little
163  * out of date, but it will never be set early).  If one vcpu is
164  * looking at another vcpu's cr3 value, it should use this variable.
165  */
166 DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
167 DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
168 
169 
170 /*
171  * Just beyond the highest usermode address.  STACK_TOP_MAX has a
172  * redzone above it, so round it up to a PGD boundary.
173  */
174 #define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
175 
176 unsigned long arbitrary_virt_to_mfn(void *vaddr)
177 {
178 	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
179 
180 	return PFN_DOWN(maddr.maddr);
181 }
182 
183 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
184 {
185 	unsigned long address = (unsigned long)vaddr;
186 	unsigned int level;
187 	pte_t *pte;
188 	unsigned offset;
189 
190 	/*
191 	 * if the PFN is in the linear mapped vaddr range, we can just use
192 	 * the (quick) virt_to_machine() p2m lookup
193 	 */
194 	if (virt_addr_valid(vaddr))
195 		return virt_to_machine(vaddr);
196 
197 	/* otherwise we have to do a (slower) full page-table walk */
198 
199 	pte = lookup_address(address, &level);
200 	BUG_ON(pte == NULL);
201 	offset = address & ~PAGE_MASK;
202 	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
203 }
204 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
205 
206 void make_lowmem_page_readonly(void *vaddr)
207 {
208 	pte_t *pte, ptev;
209 	unsigned long address = (unsigned long)vaddr;
210 	unsigned int level;
211 
212 	pte = lookup_address(address, &level);
213 	if (pte == NULL)
214 		return;		/* vaddr missing */
215 
216 	ptev = pte_wrprotect(*pte);
217 
218 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
219 		BUG();
220 }
221 
222 void make_lowmem_page_readwrite(void *vaddr)
223 {
224 	pte_t *pte, ptev;
225 	unsigned long address = (unsigned long)vaddr;
226 	unsigned int level;
227 
228 	pte = lookup_address(address, &level);
229 	if (pte == NULL)
230 		return;		/* vaddr missing */
231 
232 	ptev = pte_mkwrite(*pte);
233 
234 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
235 		BUG();
236 }
237 
238 
239 static bool xen_page_pinned(void *ptr)
240 {
241 	struct page *page = virt_to_page(ptr);
242 
243 	return PagePinned(page);
244 }
245 
246 static bool xen_iomap_pte(pte_t pte)
247 {
248 	return pte_flags(pte) & _PAGE_IOMAP;
249 }
250 
251 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
252 {
253 	struct multicall_space mcs;
254 	struct mmu_update *u;
255 
256 	mcs = xen_mc_entry(sizeof(*u));
257 	u = mcs.args;
258 
259 	/* ptep might be kmapped when using 32-bit HIGHPTE */
260 	u->ptr = arbitrary_virt_to_machine(ptep).maddr;
261 	u->val = pte_val_ma(pteval);
262 
263 	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
264 
265 	xen_mc_issue(PARAVIRT_LAZY_MMU);
266 }
267 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
268 
269 static void xen_set_iomap_pte(pte_t *ptep, pte_t pteval)
270 {
271 	xen_set_domain_pte(ptep, pteval, DOMID_IO);
272 }
273 
274 static void xen_extend_mmu_update(const struct mmu_update *update)
275 {
276 	struct multicall_space mcs;
277 	struct mmu_update *u;
278 
279 	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
280 
281 	if (mcs.mc != NULL) {
282 		ADD_STATS(mmu_update_extended, 1);
283 		ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
284 
285 		mcs.mc->args[1]++;
286 
287 		if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
288 			ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
289 		else
290 			ADD_STATS(mmu_update_histo[0], 1);
291 	} else {
292 		ADD_STATS(mmu_update, 1);
293 		mcs = __xen_mc_entry(sizeof(*u));
294 		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
295 		ADD_STATS(mmu_update_histo[1], 1);
296 	}
297 
298 	u = mcs.args;
299 	*u = *update;
300 }
301 
302 void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
303 {
304 	struct mmu_update u;
305 
306 	preempt_disable();
307 
308 	xen_mc_batch();
309 
310 	/* ptr may be ioremapped for 64-bit pagetable setup */
311 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
312 	u.val = pmd_val_ma(val);
313 	xen_extend_mmu_update(&u);
314 
315 	ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
316 
317 	xen_mc_issue(PARAVIRT_LAZY_MMU);
318 
319 	preempt_enable();
320 }
321 
322 void xen_set_pmd(pmd_t *ptr, pmd_t val)
323 {
324 	ADD_STATS(pmd_update, 1);
325 
326 	/* If page is not pinned, we can just update the entry
327 	   directly */
328 	if (!xen_page_pinned(ptr)) {
329 		*ptr = val;
330 		return;
331 	}
332 
333 	ADD_STATS(pmd_update_pinned, 1);
334 
335 	xen_set_pmd_hyper(ptr, val);
336 }
337 
338 /*
339  * Associate a virtual page frame with a given physical page frame
340  * and protection flags for that frame.
341  */
342 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
343 {
344 	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
345 }
346 
347 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
348 		    pte_t *ptep, pte_t pteval)
349 {
350 	if (xen_iomap_pte(pteval)) {
351 		xen_set_iomap_pte(ptep, pteval);
352 		goto out;
353 	}
354 
355 	ADD_STATS(set_pte_at, 1);
356 //	ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
357 	ADD_STATS(set_pte_at_current, mm == current->mm);
358 	ADD_STATS(set_pte_at_kernel, mm == &init_mm);
359 
360 	if (mm == current->mm || mm == &init_mm) {
361 		if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
362 			struct multicall_space mcs;
363 			mcs = xen_mc_entry(0);
364 
365 			MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
366 			ADD_STATS(set_pte_at_batched, 1);
367 			xen_mc_issue(PARAVIRT_LAZY_MMU);
368 			goto out;
369 		} else
370 			if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
371 				goto out;
372 	}
373 	xen_set_pte(ptep, pteval);
374 
375 out:	return;
376 }
377 
378 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
379 				 unsigned long addr, pte_t *ptep)
380 {
381 	/* Just return the pte as-is.  We preserve the bits on commit */
382 	return *ptep;
383 }
384 
385 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
386 				 pte_t *ptep, pte_t pte)
387 {
388 	struct mmu_update u;
389 
390 	xen_mc_batch();
391 
392 	u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
393 	u.val = pte_val_ma(pte);
394 	xen_extend_mmu_update(&u);
395 
396 	ADD_STATS(prot_commit, 1);
397 	ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
398 
399 	xen_mc_issue(PARAVIRT_LAZY_MMU);
400 }
401 
402 /* Assume pteval_t is equivalent to all the other *val_t types. */
403 static pteval_t pte_mfn_to_pfn(pteval_t val)
404 {
405 	if (val & _PAGE_PRESENT) {
406 		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
407 		pteval_t flags = val & PTE_FLAGS_MASK;
408 		val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
409 	}
410 
411 	return val;
412 }
413 
414 static pteval_t pte_pfn_to_mfn(pteval_t val)
415 {
416 	if (val & _PAGE_PRESENT) {
417 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
418 		pteval_t flags = val & PTE_FLAGS_MASK;
419 		unsigned long mfn;
420 
421 		if (!xen_feature(XENFEAT_auto_translated_physmap))
422 			mfn = get_phys_to_machine(pfn);
423 		else
424 			mfn = pfn;
425 		/*
426 		 * If there's no mfn for the pfn, then just create an
427 		 * empty non-present pte.  Unfortunately this loses
428 		 * information about the original pfn, so
429 		 * pte_mfn_to_pfn is asymmetric.
430 		 */
431 		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
432 			mfn = 0;
433 			flags = 0;
434 		} else {
435 			/*
436 			 * Paramount to do this test _after_ the
437 			 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
438 			 * IDENTITY_FRAME_BIT resolves to true.
439 			 */
440 			mfn &= ~FOREIGN_FRAME_BIT;
441 			if (mfn & IDENTITY_FRAME_BIT) {
442 				mfn &= ~IDENTITY_FRAME_BIT;
443 				flags |= _PAGE_IOMAP;
444 			}
445 		}
446 		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
447 	}
448 
449 	return val;
450 }
451 
452 static pteval_t iomap_pte(pteval_t val)
453 {
454 	if (val & _PAGE_PRESENT) {
455 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
456 		pteval_t flags = val & PTE_FLAGS_MASK;
457 
458 		/* We assume the pte frame number is a MFN, so
459 		   just use it as-is. */
460 		val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
461 	}
462 
463 	return val;
464 }
465 
466 pteval_t xen_pte_val(pte_t pte)
467 {
468 	pteval_t pteval = pte.pte;
469 
470 	/* If this is a WC pte, convert back from Xen WC to Linux WC */
471 	if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
472 		WARN_ON(!pat_enabled);
473 		pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
474 	}
475 
476 	if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
477 		return pteval;
478 
479 	return pte_mfn_to_pfn(pteval);
480 }
481 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
482 
483 pgdval_t xen_pgd_val(pgd_t pgd)
484 {
485 	return pte_mfn_to_pfn(pgd.pgd);
486 }
487 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
488 
489 /*
490  * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
491  * are reserved for now, to correspond to the Intel-reserved PAT
492  * types.
493  *
494  * We expect Linux's PAT set as follows:
495  *
496  * Idx  PTE flags        Linux    Xen    Default
497  * 0                     WB       WB     WB
498  * 1            PWT      WC       WT     WT
499  * 2        PCD          UC-      UC-    UC-
500  * 3        PCD PWT      UC       UC     UC
501  * 4    PAT              WB       WC     WB
502  * 5    PAT     PWT      WC       WP     WT
503  * 6    PAT PCD          UC-      UC     UC-
504  * 7    PAT PCD PWT      UC       UC     UC
505  */
506 
507 void xen_set_pat(u64 pat)
508 {
509 	/* We expect Linux to use a PAT setting of
510 	 * UC UC- WC WB (ignoring the PAT flag) */
511 	WARN_ON(pat != 0x0007010600070106ull);
512 }
513 
514 pte_t xen_make_pte(pteval_t pte)
515 {
516 	phys_addr_t addr = (pte & PTE_PFN_MASK);
517 
518 	/* If Linux is trying to set a WC pte, then map to the Xen WC.
519 	 * If _PAGE_PAT is set, then it probably means it is really
520 	 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
521 	 * things work out OK...
522 	 *
523 	 * (We should never see kernel mappings with _PAGE_PSE set,
524 	 * but we could see hugetlbfs mappings, I think.).
525 	 */
526 	if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
527 		if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
528 			pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
529 	}
530 
531 	/*
532 	 * Unprivileged domains are allowed to do IOMAPpings for
533 	 * PCI passthrough, but not map ISA space.  The ISA
534 	 * mappings are just dummy local mappings to keep other
535 	 * parts of the kernel happy.
536 	 */
537 	if (unlikely(pte & _PAGE_IOMAP) &&
538 	    (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
539 		pte = iomap_pte(pte);
540 	} else {
541 		pte &= ~_PAGE_IOMAP;
542 		pte = pte_pfn_to_mfn(pte);
543 	}
544 
545 	return native_make_pte(pte);
546 }
547 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
548 
549 #ifdef CONFIG_XEN_DEBUG
550 pte_t xen_make_pte_debug(pteval_t pte)
551 {
552 	phys_addr_t addr = (pte & PTE_PFN_MASK);
553 	phys_addr_t other_addr;
554 	bool io_page = false;
555 	pte_t _pte;
556 
557 	if (pte & _PAGE_IOMAP)
558 		io_page = true;
559 
560 	_pte = xen_make_pte(pte);
561 
562 	if (!addr)
563 		return _pte;
564 
565 	if (io_page &&
566 	    (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
567 		other_addr = pfn_to_mfn(addr >> PAGE_SHIFT) << PAGE_SHIFT;
568 		WARN(addr != other_addr,
569 			"0x%lx is using VM_IO, but it is 0x%lx!\n",
570 			(unsigned long)addr, (unsigned long)other_addr);
571 	} else {
572 		pteval_t iomap_set = (_pte.pte & PTE_FLAGS_MASK) & _PAGE_IOMAP;
573 		other_addr = (_pte.pte & PTE_PFN_MASK);
574 		WARN((addr == other_addr) && (!io_page) && (!iomap_set),
575 			"0x%lx is missing VM_IO (and wasn't fixed)!\n",
576 			(unsigned long)addr);
577 	}
578 
579 	return _pte;
580 }
581 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_debug);
582 #endif
583 
584 pgd_t xen_make_pgd(pgdval_t pgd)
585 {
586 	pgd = pte_pfn_to_mfn(pgd);
587 	return native_make_pgd(pgd);
588 }
589 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
590 
591 pmdval_t xen_pmd_val(pmd_t pmd)
592 {
593 	return pte_mfn_to_pfn(pmd.pmd);
594 }
595 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
596 
597 void xen_set_pud_hyper(pud_t *ptr, pud_t val)
598 {
599 	struct mmu_update u;
600 
601 	preempt_disable();
602 
603 	xen_mc_batch();
604 
605 	/* ptr may be ioremapped for 64-bit pagetable setup */
606 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
607 	u.val = pud_val_ma(val);
608 	xen_extend_mmu_update(&u);
609 
610 	ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
611 
612 	xen_mc_issue(PARAVIRT_LAZY_MMU);
613 
614 	preempt_enable();
615 }
616 
617 void xen_set_pud(pud_t *ptr, pud_t val)
618 {
619 	ADD_STATS(pud_update, 1);
620 
621 	/* If page is not pinned, we can just update the entry
622 	   directly */
623 	if (!xen_page_pinned(ptr)) {
624 		*ptr = val;
625 		return;
626 	}
627 
628 	ADD_STATS(pud_update_pinned, 1);
629 
630 	xen_set_pud_hyper(ptr, val);
631 }
632 
633 void xen_set_pte(pte_t *ptep, pte_t pte)
634 {
635 	if (xen_iomap_pte(pte)) {
636 		xen_set_iomap_pte(ptep, pte);
637 		return;
638 	}
639 
640 	ADD_STATS(pte_update, 1);
641 //	ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
642 	ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
643 
644 #ifdef CONFIG_X86_PAE
645 	ptep->pte_high = pte.pte_high;
646 	smp_wmb();
647 	ptep->pte_low = pte.pte_low;
648 #else
649 	*ptep = pte;
650 #endif
651 }
652 
653 #ifdef CONFIG_X86_PAE
654 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
655 {
656 	if (xen_iomap_pte(pte)) {
657 		xen_set_iomap_pte(ptep, pte);
658 		return;
659 	}
660 
661 	set_64bit((u64 *)ptep, native_pte_val(pte));
662 }
663 
664 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
665 {
666 	ptep->pte_low = 0;
667 	smp_wmb();		/* make sure low gets written first */
668 	ptep->pte_high = 0;
669 }
670 
671 void xen_pmd_clear(pmd_t *pmdp)
672 {
673 	set_pmd(pmdp, __pmd(0));
674 }
675 #endif	/* CONFIG_X86_PAE */
676 
677 pmd_t xen_make_pmd(pmdval_t pmd)
678 {
679 	pmd = pte_pfn_to_mfn(pmd);
680 	return native_make_pmd(pmd);
681 }
682 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
683 
684 #if PAGETABLE_LEVELS == 4
685 pudval_t xen_pud_val(pud_t pud)
686 {
687 	return pte_mfn_to_pfn(pud.pud);
688 }
689 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
690 
691 pud_t xen_make_pud(pudval_t pud)
692 {
693 	pud = pte_pfn_to_mfn(pud);
694 
695 	return native_make_pud(pud);
696 }
697 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
698 
699 pgd_t *xen_get_user_pgd(pgd_t *pgd)
700 {
701 	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
702 	unsigned offset = pgd - pgd_page;
703 	pgd_t *user_ptr = NULL;
704 
705 	if (offset < pgd_index(USER_LIMIT)) {
706 		struct page *page = virt_to_page(pgd_page);
707 		user_ptr = (pgd_t *)page->private;
708 		if (user_ptr)
709 			user_ptr += offset;
710 	}
711 
712 	return user_ptr;
713 }
714 
715 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
716 {
717 	struct mmu_update u;
718 
719 	u.ptr = virt_to_machine(ptr).maddr;
720 	u.val = pgd_val_ma(val);
721 	xen_extend_mmu_update(&u);
722 }
723 
724 /*
725  * Raw hypercall-based set_pgd, intended for in early boot before
726  * there's a page structure.  This implies:
727  *  1. The only existing pagetable is the kernel's
728  *  2. It is always pinned
729  *  3. It has no user pagetable attached to it
730  */
731 void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
732 {
733 	preempt_disable();
734 
735 	xen_mc_batch();
736 
737 	__xen_set_pgd_hyper(ptr, val);
738 
739 	xen_mc_issue(PARAVIRT_LAZY_MMU);
740 
741 	preempt_enable();
742 }
743 
744 void xen_set_pgd(pgd_t *ptr, pgd_t val)
745 {
746 	pgd_t *user_ptr = xen_get_user_pgd(ptr);
747 
748 	ADD_STATS(pgd_update, 1);
749 
750 	/* If page is not pinned, we can just update the entry
751 	   directly */
752 	if (!xen_page_pinned(ptr)) {
753 		*ptr = val;
754 		if (user_ptr) {
755 			WARN_ON(xen_page_pinned(user_ptr));
756 			*user_ptr = val;
757 		}
758 		return;
759 	}
760 
761 	ADD_STATS(pgd_update_pinned, 1);
762 	ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
763 
764 	/* If it's pinned, then we can at least batch the kernel and
765 	   user updates together. */
766 	xen_mc_batch();
767 
768 	__xen_set_pgd_hyper(ptr, val);
769 	if (user_ptr)
770 		__xen_set_pgd_hyper(user_ptr, val);
771 
772 	xen_mc_issue(PARAVIRT_LAZY_MMU);
773 }
774 #endif	/* PAGETABLE_LEVELS == 4 */
775 
776 /*
777  * (Yet another) pagetable walker.  This one is intended for pinning a
778  * pagetable.  This means that it walks a pagetable and calls the
779  * callback function on each page it finds making up the page table,
780  * at every level.  It walks the entire pagetable, but it only bothers
781  * pinning pte pages which are below limit.  In the normal case this
782  * will be STACK_TOP_MAX, but at boot we need to pin up to
783  * FIXADDR_TOP.
784  *
785  * For 32-bit the important bit is that we don't pin beyond there,
786  * because then we start getting into Xen's ptes.
787  *
788  * For 64-bit, we must skip the Xen hole in the middle of the address
789  * space, just after the big x86-64 virtual hole.
790  */
791 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
792 			  int (*func)(struct mm_struct *mm, struct page *,
793 				      enum pt_level),
794 			  unsigned long limit)
795 {
796 	int flush = 0;
797 	unsigned hole_low, hole_high;
798 	unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
799 	unsigned pgdidx, pudidx, pmdidx;
800 
801 	/* The limit is the last byte to be touched */
802 	limit--;
803 	BUG_ON(limit >= FIXADDR_TOP);
804 
805 	if (xen_feature(XENFEAT_auto_translated_physmap))
806 		return 0;
807 
808 	/*
809 	 * 64-bit has a great big hole in the middle of the address
810 	 * space, which contains the Xen mappings.  On 32-bit these
811 	 * will end up making a zero-sized hole and so is a no-op.
812 	 */
813 	hole_low = pgd_index(USER_LIMIT);
814 	hole_high = pgd_index(PAGE_OFFSET);
815 
816 	pgdidx_limit = pgd_index(limit);
817 #if PTRS_PER_PUD > 1
818 	pudidx_limit = pud_index(limit);
819 #else
820 	pudidx_limit = 0;
821 #endif
822 #if PTRS_PER_PMD > 1
823 	pmdidx_limit = pmd_index(limit);
824 #else
825 	pmdidx_limit = 0;
826 #endif
827 
828 	for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
829 		pud_t *pud;
830 
831 		if (pgdidx >= hole_low && pgdidx < hole_high)
832 			continue;
833 
834 		if (!pgd_val(pgd[pgdidx]))
835 			continue;
836 
837 		pud = pud_offset(&pgd[pgdidx], 0);
838 
839 		if (PTRS_PER_PUD > 1) /* not folded */
840 			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
841 
842 		for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
843 			pmd_t *pmd;
844 
845 			if (pgdidx == pgdidx_limit &&
846 			    pudidx > pudidx_limit)
847 				goto out;
848 
849 			if (pud_none(pud[pudidx]))
850 				continue;
851 
852 			pmd = pmd_offset(&pud[pudidx], 0);
853 
854 			if (PTRS_PER_PMD > 1) /* not folded */
855 				flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
856 
857 			for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
858 				struct page *pte;
859 
860 				if (pgdidx == pgdidx_limit &&
861 				    pudidx == pudidx_limit &&
862 				    pmdidx > pmdidx_limit)
863 					goto out;
864 
865 				if (pmd_none(pmd[pmdidx]))
866 					continue;
867 
868 				pte = pmd_page(pmd[pmdidx]);
869 				flush |= (*func)(mm, pte, PT_PTE);
870 			}
871 		}
872 	}
873 
874 out:
875 	/* Do the top level last, so that the callbacks can use it as
876 	   a cue to do final things like tlb flushes. */
877 	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
878 
879 	return flush;
880 }
881 
882 static int xen_pgd_walk(struct mm_struct *mm,
883 			int (*func)(struct mm_struct *mm, struct page *,
884 				    enum pt_level),
885 			unsigned long limit)
886 {
887 	return __xen_pgd_walk(mm, mm->pgd, func, limit);
888 }
889 
890 /* If we're using split pte locks, then take the page's lock and
891    return a pointer to it.  Otherwise return NULL. */
892 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
893 {
894 	spinlock_t *ptl = NULL;
895 
896 #if USE_SPLIT_PTLOCKS
897 	ptl = __pte_lockptr(page);
898 	spin_lock_nest_lock(ptl, &mm->page_table_lock);
899 #endif
900 
901 	return ptl;
902 }
903 
904 static void xen_pte_unlock(void *v)
905 {
906 	spinlock_t *ptl = v;
907 	spin_unlock(ptl);
908 }
909 
910 static void xen_do_pin(unsigned level, unsigned long pfn)
911 {
912 	struct mmuext_op *op;
913 	struct multicall_space mcs;
914 
915 	mcs = __xen_mc_entry(sizeof(*op));
916 	op = mcs.args;
917 	op->cmd = level;
918 	op->arg1.mfn = pfn_to_mfn(pfn);
919 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
920 }
921 
922 static int xen_pin_page(struct mm_struct *mm, struct page *page,
923 			enum pt_level level)
924 {
925 	unsigned pgfl = TestSetPagePinned(page);
926 	int flush;
927 
928 	if (pgfl)
929 		flush = 0;		/* already pinned */
930 	else if (PageHighMem(page))
931 		/* kmaps need flushing if we found an unpinned
932 		   highpage */
933 		flush = 1;
934 	else {
935 		void *pt = lowmem_page_address(page);
936 		unsigned long pfn = page_to_pfn(page);
937 		struct multicall_space mcs = __xen_mc_entry(0);
938 		spinlock_t *ptl;
939 
940 		flush = 0;
941 
942 		/*
943 		 * We need to hold the pagetable lock between the time
944 		 * we make the pagetable RO and when we actually pin
945 		 * it.  If we don't, then other users may come in and
946 		 * attempt to update the pagetable by writing it,
947 		 * which will fail because the memory is RO but not
948 		 * pinned, so Xen won't do the trap'n'emulate.
949 		 *
950 		 * If we're using split pte locks, we can't hold the
951 		 * entire pagetable's worth of locks during the
952 		 * traverse, because we may wrap the preempt count (8
953 		 * bits).  The solution is to mark RO and pin each PTE
954 		 * page while holding the lock.  This means the number
955 		 * of locks we end up holding is never more than a
956 		 * batch size (~32 entries, at present).
957 		 *
958 		 * If we're not using split pte locks, we needn't pin
959 		 * the PTE pages independently, because we're
960 		 * protected by the overall pagetable lock.
961 		 */
962 		ptl = NULL;
963 		if (level == PT_PTE)
964 			ptl = xen_pte_lock(page, mm);
965 
966 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
967 					pfn_pte(pfn, PAGE_KERNEL_RO),
968 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
969 
970 		if (ptl) {
971 			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
972 
973 			/* Queue a deferred unlock for when this batch
974 			   is completed. */
975 			xen_mc_callback(xen_pte_unlock, ptl);
976 		}
977 	}
978 
979 	return flush;
980 }
981 
982 /* This is called just after a mm has been created, but it has not
983    been used yet.  We need to make sure that its pagetable is all
984    read-only, and can be pinned. */
985 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
986 {
987 	xen_mc_batch();
988 
989 	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
990 		/* re-enable interrupts for flushing */
991 		xen_mc_issue(0);
992 
993 		kmap_flush_unused();
994 
995 		xen_mc_batch();
996 	}
997 
998 #ifdef CONFIG_X86_64
999 	{
1000 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
1001 
1002 		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
1003 
1004 		if (user_pgd) {
1005 			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
1006 			xen_do_pin(MMUEXT_PIN_L4_TABLE,
1007 				   PFN_DOWN(__pa(user_pgd)));
1008 		}
1009 	}
1010 #else /* CONFIG_X86_32 */
1011 #ifdef CONFIG_X86_PAE
1012 	/* Need to make sure unshared kernel PMD is pinnable */
1013 	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1014 		     PT_PMD);
1015 #endif
1016 	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
1017 #endif /* CONFIG_X86_64 */
1018 	xen_mc_issue(0);
1019 }
1020 
1021 static void xen_pgd_pin(struct mm_struct *mm)
1022 {
1023 	__xen_pgd_pin(mm, mm->pgd);
1024 }
1025 
1026 /*
1027  * On save, we need to pin all pagetables to make sure they get their
1028  * mfns turned into pfns.  Search the list for any unpinned pgds and pin
1029  * them (unpinned pgds are not currently in use, probably because the
1030  * process is under construction or destruction).
1031  *
1032  * Expected to be called in stop_machine() ("equivalent to taking
1033  * every spinlock in the system"), so the locking doesn't really
1034  * matter all that much.
1035  */
1036 void xen_mm_pin_all(void)
1037 {
1038 	struct page *page;
1039 
1040 	spin_lock(&pgd_lock);
1041 
1042 	list_for_each_entry(page, &pgd_list, lru) {
1043 		if (!PagePinned(page)) {
1044 			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
1045 			SetPageSavePinned(page);
1046 		}
1047 	}
1048 
1049 	spin_unlock(&pgd_lock);
1050 }
1051 
1052 /*
1053  * The init_mm pagetable is really pinned as soon as its created, but
1054  * that's before we have page structures to store the bits.  So do all
1055  * the book-keeping now.
1056  */
1057 static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
1058 				  enum pt_level level)
1059 {
1060 	SetPagePinned(page);
1061 	return 0;
1062 }
1063 
1064 static void __init xen_mark_init_mm_pinned(void)
1065 {
1066 	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
1067 }
1068 
1069 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
1070 			  enum pt_level level)
1071 {
1072 	unsigned pgfl = TestClearPagePinned(page);
1073 
1074 	if (pgfl && !PageHighMem(page)) {
1075 		void *pt = lowmem_page_address(page);
1076 		unsigned long pfn = page_to_pfn(page);
1077 		spinlock_t *ptl = NULL;
1078 		struct multicall_space mcs;
1079 
1080 		/*
1081 		 * Do the converse to pin_page.  If we're using split
1082 		 * pte locks, we must be holding the lock for while
1083 		 * the pte page is unpinned but still RO to prevent
1084 		 * concurrent updates from seeing it in this
1085 		 * partially-pinned state.
1086 		 */
1087 		if (level == PT_PTE) {
1088 			ptl = xen_pte_lock(page, mm);
1089 
1090 			if (ptl)
1091 				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
1092 		}
1093 
1094 		mcs = __xen_mc_entry(0);
1095 
1096 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1097 					pfn_pte(pfn, PAGE_KERNEL),
1098 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1099 
1100 		if (ptl) {
1101 			/* unlock when batch completed */
1102 			xen_mc_callback(xen_pte_unlock, ptl);
1103 		}
1104 	}
1105 
1106 	return 0;		/* never need to flush on unpin */
1107 }
1108 
1109 /* Release a pagetables pages back as normal RW */
1110 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1111 {
1112 	xen_mc_batch();
1113 
1114 	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1115 
1116 #ifdef CONFIG_X86_64
1117 	{
1118 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
1119 
1120 		if (user_pgd) {
1121 			xen_do_pin(MMUEXT_UNPIN_TABLE,
1122 				   PFN_DOWN(__pa(user_pgd)));
1123 			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1124 		}
1125 	}
1126 #endif
1127 
1128 #ifdef CONFIG_X86_PAE
1129 	/* Need to make sure unshared kernel PMD is unpinned */
1130 	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1131 		       PT_PMD);
1132 #endif
1133 
1134 	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1135 
1136 	xen_mc_issue(0);
1137 }
1138 
1139 static void xen_pgd_unpin(struct mm_struct *mm)
1140 {
1141 	__xen_pgd_unpin(mm, mm->pgd);
1142 }
1143 
1144 /*
1145  * On resume, undo any pinning done at save, so that the rest of the
1146  * kernel doesn't see any unexpected pinned pagetables.
1147  */
1148 void xen_mm_unpin_all(void)
1149 {
1150 	struct page *page;
1151 
1152 	spin_lock(&pgd_lock);
1153 
1154 	list_for_each_entry(page, &pgd_list, lru) {
1155 		if (PageSavePinned(page)) {
1156 			BUG_ON(!PagePinned(page));
1157 			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1158 			ClearPageSavePinned(page);
1159 		}
1160 	}
1161 
1162 	spin_unlock(&pgd_lock);
1163 }
1164 
1165 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1166 {
1167 	spin_lock(&next->page_table_lock);
1168 	xen_pgd_pin(next);
1169 	spin_unlock(&next->page_table_lock);
1170 }
1171 
1172 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1173 {
1174 	spin_lock(&mm->page_table_lock);
1175 	xen_pgd_pin(mm);
1176 	spin_unlock(&mm->page_table_lock);
1177 }
1178 
1179 
1180 #ifdef CONFIG_SMP
1181 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1182    we need to repoint it somewhere else before we can unpin it. */
1183 static void drop_other_mm_ref(void *info)
1184 {
1185 	struct mm_struct *mm = info;
1186 	struct mm_struct *active_mm;
1187 
1188 	active_mm = percpu_read(cpu_tlbstate.active_mm);
1189 
1190 	if (active_mm == mm)
1191 		leave_mm(smp_processor_id());
1192 
1193 	/* If this cpu still has a stale cr3 reference, then make sure
1194 	   it has been flushed. */
1195 	if (percpu_read(xen_current_cr3) == __pa(mm->pgd))
1196 		load_cr3(swapper_pg_dir);
1197 }
1198 
1199 static void xen_drop_mm_ref(struct mm_struct *mm)
1200 {
1201 	cpumask_var_t mask;
1202 	unsigned cpu;
1203 
1204 	if (current->active_mm == mm) {
1205 		if (current->mm == mm)
1206 			load_cr3(swapper_pg_dir);
1207 		else
1208 			leave_mm(smp_processor_id());
1209 	}
1210 
1211 	/* Get the "official" set of cpus referring to our pagetable. */
1212 	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1213 		for_each_online_cpu(cpu) {
1214 			if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1215 			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1216 				continue;
1217 			smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1218 		}
1219 		return;
1220 	}
1221 	cpumask_copy(mask, mm_cpumask(mm));
1222 
1223 	/* It's possible that a vcpu may have a stale reference to our
1224 	   cr3, because its in lazy mode, and it hasn't yet flushed
1225 	   its set of pending hypercalls yet.  In this case, we can
1226 	   look at its actual current cr3 value, and force it to flush
1227 	   if needed. */
1228 	for_each_online_cpu(cpu) {
1229 		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1230 			cpumask_set_cpu(cpu, mask);
1231 	}
1232 
1233 	if (!cpumask_empty(mask))
1234 		smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1235 	free_cpumask_var(mask);
1236 }
1237 #else
1238 static void xen_drop_mm_ref(struct mm_struct *mm)
1239 {
1240 	if (current->active_mm == mm)
1241 		load_cr3(swapper_pg_dir);
1242 }
1243 #endif
1244 
1245 /*
1246  * While a process runs, Xen pins its pagetables, which means that the
1247  * hypervisor forces it to be read-only, and it controls all updates
1248  * to it.  This means that all pagetable updates have to go via the
1249  * hypervisor, which is moderately expensive.
1250  *
1251  * Since we're pulling the pagetable down, we switch to use init_mm,
1252  * unpin old process pagetable and mark it all read-write, which
1253  * allows further operations on it to be simple memory accesses.
1254  *
1255  * The only subtle point is that another CPU may be still using the
1256  * pagetable because of lazy tlb flushing.  This means we need need to
1257  * switch all CPUs off this pagetable before we can unpin it.
1258  */
1259 void xen_exit_mmap(struct mm_struct *mm)
1260 {
1261 	get_cpu();		/* make sure we don't move around */
1262 	xen_drop_mm_ref(mm);
1263 	put_cpu();
1264 
1265 	spin_lock(&mm->page_table_lock);
1266 
1267 	/* pgd may not be pinned in the error exit path of execve */
1268 	if (xen_page_pinned(mm->pgd))
1269 		xen_pgd_unpin(mm);
1270 
1271 	spin_unlock(&mm->page_table_lock);
1272 }
1273 
1274 static __init void xen_pagetable_setup_start(pgd_t *base)
1275 {
1276 }
1277 
1278 static void xen_post_allocator_init(void);
1279 
1280 static __init void xen_pagetable_setup_done(pgd_t *base)
1281 {
1282 	xen_setup_shared_info();
1283 	xen_post_allocator_init();
1284 }
1285 
1286 static void xen_write_cr2(unsigned long cr2)
1287 {
1288 	percpu_read(xen_vcpu)->arch.cr2 = cr2;
1289 }
1290 
1291 static unsigned long xen_read_cr2(void)
1292 {
1293 	return percpu_read(xen_vcpu)->arch.cr2;
1294 }
1295 
1296 unsigned long xen_read_cr2_direct(void)
1297 {
1298 	return percpu_read(xen_vcpu_info.arch.cr2);
1299 }
1300 
1301 static void xen_flush_tlb(void)
1302 {
1303 	struct mmuext_op *op;
1304 	struct multicall_space mcs;
1305 
1306 	preempt_disable();
1307 
1308 	mcs = xen_mc_entry(sizeof(*op));
1309 
1310 	op = mcs.args;
1311 	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1312 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1313 
1314 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1315 
1316 	preempt_enable();
1317 }
1318 
1319 static void xen_flush_tlb_single(unsigned long addr)
1320 {
1321 	struct mmuext_op *op;
1322 	struct multicall_space mcs;
1323 
1324 	preempt_disable();
1325 
1326 	mcs = xen_mc_entry(sizeof(*op));
1327 	op = mcs.args;
1328 	op->cmd = MMUEXT_INVLPG_LOCAL;
1329 	op->arg1.linear_addr = addr & PAGE_MASK;
1330 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1331 
1332 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1333 
1334 	preempt_enable();
1335 }
1336 
1337 static void xen_flush_tlb_others(const struct cpumask *cpus,
1338 				 struct mm_struct *mm, unsigned long va)
1339 {
1340 	struct {
1341 		struct mmuext_op op;
1342 		DECLARE_BITMAP(mask, NR_CPUS);
1343 	} *args;
1344 	struct multicall_space mcs;
1345 
1346 	if (cpumask_empty(cpus))
1347 		return;		/* nothing to do */
1348 
1349 	mcs = xen_mc_entry(sizeof(*args));
1350 	args = mcs.args;
1351 	args->op.arg2.vcpumask = to_cpumask(args->mask);
1352 
1353 	/* Remove us, and any offline CPUS. */
1354 	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1355 	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1356 
1357 	if (va == TLB_FLUSH_ALL) {
1358 		args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1359 	} else {
1360 		args->op.cmd = MMUEXT_INVLPG_MULTI;
1361 		args->op.arg1.linear_addr = va;
1362 	}
1363 
1364 	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1365 
1366 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1367 }
1368 
1369 static unsigned long xen_read_cr3(void)
1370 {
1371 	return percpu_read(xen_cr3);
1372 }
1373 
1374 static void set_current_cr3(void *v)
1375 {
1376 	percpu_write(xen_current_cr3, (unsigned long)v);
1377 }
1378 
1379 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1380 {
1381 	struct mmuext_op *op;
1382 	struct multicall_space mcs;
1383 	unsigned long mfn;
1384 
1385 	if (cr3)
1386 		mfn = pfn_to_mfn(PFN_DOWN(cr3));
1387 	else
1388 		mfn = 0;
1389 
1390 	WARN_ON(mfn == 0 && kernel);
1391 
1392 	mcs = __xen_mc_entry(sizeof(*op));
1393 
1394 	op = mcs.args;
1395 	op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1396 	op->arg1.mfn = mfn;
1397 
1398 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1399 
1400 	if (kernel) {
1401 		percpu_write(xen_cr3, cr3);
1402 
1403 		/* Update xen_current_cr3 once the batch has actually
1404 		   been submitted. */
1405 		xen_mc_callback(set_current_cr3, (void *)cr3);
1406 	}
1407 }
1408 
1409 static void xen_write_cr3(unsigned long cr3)
1410 {
1411 	BUG_ON(preemptible());
1412 
1413 	xen_mc_batch();  /* disables interrupts */
1414 
1415 	/* Update while interrupts are disabled, so its atomic with
1416 	   respect to ipis */
1417 	percpu_write(xen_cr3, cr3);
1418 
1419 	__xen_write_cr3(true, cr3);
1420 
1421 #ifdef CONFIG_X86_64
1422 	{
1423 		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1424 		if (user_pgd)
1425 			__xen_write_cr3(false, __pa(user_pgd));
1426 		else
1427 			__xen_write_cr3(false, 0);
1428 	}
1429 #endif
1430 
1431 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1432 }
1433 
1434 static int xen_pgd_alloc(struct mm_struct *mm)
1435 {
1436 	pgd_t *pgd = mm->pgd;
1437 	int ret = 0;
1438 
1439 	BUG_ON(PagePinned(virt_to_page(pgd)));
1440 
1441 #ifdef CONFIG_X86_64
1442 	{
1443 		struct page *page = virt_to_page(pgd);
1444 		pgd_t *user_pgd;
1445 
1446 		BUG_ON(page->private != 0);
1447 
1448 		ret = -ENOMEM;
1449 
1450 		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1451 		page->private = (unsigned long)user_pgd;
1452 
1453 		if (user_pgd != NULL) {
1454 			user_pgd[pgd_index(VSYSCALL_START)] =
1455 				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1456 			ret = 0;
1457 		}
1458 
1459 		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1460 	}
1461 #endif
1462 
1463 	return ret;
1464 }
1465 
1466 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1467 {
1468 #ifdef CONFIG_X86_64
1469 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
1470 
1471 	if (user_pgd)
1472 		free_page((unsigned long)user_pgd);
1473 #endif
1474 }
1475 
1476 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
1477 {
1478 	unsigned long pfn = pte_pfn(pte);
1479 
1480 #ifdef CONFIG_X86_32
1481 	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
1482 	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1483 		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1484 			       pte_val_ma(pte));
1485 #endif
1486 
1487 	/*
1488 	 * If the new pfn is within the range of the newly allocated
1489 	 * kernel pagetable, and it isn't being mapped into an
1490 	 * early_ioremap fixmap slot as a freshly allocated page, make sure
1491 	 * it is RO.
1492 	 */
1493 	if (((!is_early_ioremap_ptep(ptep) &&
1494 			pfn >= pgt_buf_start && pfn < pgt_buf_end)) ||
1495 			(is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1)))
1496 		pte = pte_wrprotect(pte);
1497 
1498 	return pte;
1499 }
1500 
1501 /* Init-time set_pte while constructing initial pagetables, which
1502    doesn't allow RO pagetable pages to be remapped RW */
1503 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
1504 {
1505 	pte = mask_rw_pte(ptep, pte);
1506 
1507 	xen_set_pte(ptep, pte);
1508 }
1509 
1510 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1511 {
1512 	struct mmuext_op op;
1513 	op.cmd = cmd;
1514 	op.arg1.mfn = pfn_to_mfn(pfn);
1515 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1516 		BUG();
1517 }
1518 
1519 /* Early in boot, while setting up the initial pagetable, assume
1520    everything is pinned. */
1521 static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1522 {
1523 #ifdef CONFIG_FLATMEM
1524 	BUG_ON(mem_map);	/* should only be used early */
1525 #endif
1526 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1527 	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1528 }
1529 
1530 /* Used for pmd and pud */
1531 static __init void xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1532 {
1533 #ifdef CONFIG_FLATMEM
1534 	BUG_ON(mem_map);	/* should only be used early */
1535 #endif
1536 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1537 }
1538 
1539 /* Early release_pte assumes that all pts are pinned, since there's
1540    only init_mm and anything attached to that is pinned. */
1541 static __init void xen_release_pte_init(unsigned long pfn)
1542 {
1543 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1544 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1545 }
1546 
1547 static __init void xen_release_pmd_init(unsigned long pfn)
1548 {
1549 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1550 }
1551 
1552 /* This needs to make sure the new pte page is pinned iff its being
1553    attached to a pinned pagetable. */
1554 static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
1555 {
1556 	struct page *page = pfn_to_page(pfn);
1557 
1558 	if (PagePinned(virt_to_page(mm->pgd))) {
1559 		SetPagePinned(page);
1560 
1561 		if (!PageHighMem(page)) {
1562 			make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
1563 			if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1564 				pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1565 		} else {
1566 			/* make sure there are no stray mappings of
1567 			   this page */
1568 			kmap_flush_unused();
1569 		}
1570 	}
1571 }
1572 
1573 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1574 {
1575 	xen_alloc_ptpage(mm, pfn, PT_PTE);
1576 }
1577 
1578 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1579 {
1580 	xen_alloc_ptpage(mm, pfn, PT_PMD);
1581 }
1582 
1583 /* This should never happen until we're OK to use struct page */
1584 static void xen_release_ptpage(unsigned long pfn, unsigned level)
1585 {
1586 	struct page *page = pfn_to_page(pfn);
1587 
1588 	if (PagePinned(page)) {
1589 		if (!PageHighMem(page)) {
1590 			if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1591 				pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1592 			make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1593 		}
1594 		ClearPagePinned(page);
1595 	}
1596 }
1597 
1598 static void xen_release_pte(unsigned long pfn)
1599 {
1600 	xen_release_ptpage(pfn, PT_PTE);
1601 }
1602 
1603 static void xen_release_pmd(unsigned long pfn)
1604 {
1605 	xen_release_ptpage(pfn, PT_PMD);
1606 }
1607 
1608 #if PAGETABLE_LEVELS == 4
1609 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1610 {
1611 	xen_alloc_ptpage(mm, pfn, PT_PUD);
1612 }
1613 
1614 static void xen_release_pud(unsigned long pfn)
1615 {
1616 	xen_release_ptpage(pfn, PT_PUD);
1617 }
1618 #endif
1619 
1620 void __init xen_reserve_top(void)
1621 {
1622 #ifdef CONFIG_X86_32
1623 	unsigned long top = HYPERVISOR_VIRT_START;
1624 	struct xen_platform_parameters pp;
1625 
1626 	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1627 		top = pp.virt_start;
1628 
1629 	reserve_top_address(-top);
1630 #endif	/* CONFIG_X86_32 */
1631 }
1632 
1633 /*
1634  * Like __va(), but returns address in the kernel mapping (which is
1635  * all we have until the physical memory mapping has been set up.
1636  */
1637 static void *__ka(phys_addr_t paddr)
1638 {
1639 #ifdef CONFIG_X86_64
1640 	return (void *)(paddr + __START_KERNEL_map);
1641 #else
1642 	return __va(paddr);
1643 #endif
1644 }
1645 
1646 /* Convert a machine address to physical address */
1647 static unsigned long m2p(phys_addr_t maddr)
1648 {
1649 	phys_addr_t paddr;
1650 
1651 	maddr &= PTE_PFN_MASK;
1652 	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1653 
1654 	return paddr;
1655 }
1656 
1657 /* Convert a machine address to kernel virtual */
1658 static void *m2v(phys_addr_t maddr)
1659 {
1660 	return __ka(m2p(maddr));
1661 }
1662 
1663 /* Set the page permissions on an identity-mapped pages */
1664 static void set_page_prot(void *addr, pgprot_t prot)
1665 {
1666 	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1667 	pte_t pte = pfn_pte(pfn, prot);
1668 
1669 	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1670 		BUG();
1671 }
1672 
1673 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1674 {
1675 	unsigned pmdidx, pteidx;
1676 	unsigned ident_pte;
1677 	unsigned long pfn;
1678 
1679 	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1680 				      PAGE_SIZE);
1681 
1682 	ident_pte = 0;
1683 	pfn = 0;
1684 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1685 		pte_t *pte_page;
1686 
1687 		/* Reuse or allocate a page of ptes */
1688 		if (pmd_present(pmd[pmdidx]))
1689 			pte_page = m2v(pmd[pmdidx].pmd);
1690 		else {
1691 			/* Check for free pte pages */
1692 			if (ident_pte == LEVEL1_IDENT_ENTRIES)
1693 				break;
1694 
1695 			pte_page = &level1_ident_pgt[ident_pte];
1696 			ident_pte += PTRS_PER_PTE;
1697 
1698 			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1699 		}
1700 
1701 		/* Install mappings */
1702 		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1703 			pte_t pte;
1704 
1705 			if (!pte_none(pte_page[pteidx]))
1706 				continue;
1707 
1708 			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1709 			pte_page[pteidx] = pte;
1710 		}
1711 	}
1712 
1713 	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1714 		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1715 
1716 	set_page_prot(pmd, PAGE_KERNEL_RO);
1717 }
1718 
1719 void __init xen_setup_machphys_mapping(void)
1720 {
1721 	struct xen_machphys_mapping mapping;
1722 	unsigned long machine_to_phys_nr_ents;
1723 
1724 	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1725 		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1726 		machine_to_phys_nr_ents = mapping.max_mfn + 1;
1727 	} else {
1728 		machine_to_phys_nr_ents = MACH2PHYS_NR_ENTRIES;
1729 	}
1730 	machine_to_phys_order = fls(machine_to_phys_nr_ents - 1);
1731 }
1732 
1733 #ifdef CONFIG_X86_64
1734 static void convert_pfn_mfn(void *v)
1735 {
1736 	pte_t *pte = v;
1737 	int i;
1738 
1739 	/* All levels are converted the same way, so just treat them
1740 	   as ptes. */
1741 	for (i = 0; i < PTRS_PER_PTE; i++)
1742 		pte[i] = xen_make_pte(pte[i].pte);
1743 }
1744 
1745 /*
1746  * Set up the initial kernel pagetable.
1747  *
1748  * We can construct this by grafting the Xen provided pagetable into
1749  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1750  * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
1751  * means that only the kernel has a physical mapping to start with -
1752  * but that's enough to get __va working.  We need to fill in the rest
1753  * of the physical mapping once some sort of allocator has been set
1754  * up.
1755  */
1756 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1757 					 unsigned long max_pfn)
1758 {
1759 	pud_t *l3;
1760 	pmd_t *l2;
1761 
1762 	/* max_pfn_mapped is the last pfn mapped in the initial memory
1763 	 * mappings. Considering that on Xen after the kernel mappings we
1764 	 * have the mappings of some pages that don't exist in pfn space, we
1765 	 * set max_pfn_mapped to the last real pfn mapped. */
1766 	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1767 
1768 	/* Zap identity mapping */
1769 	init_level4_pgt[0] = __pgd(0);
1770 
1771 	/* Pre-constructed entries are in pfn, so convert to mfn */
1772 	convert_pfn_mfn(init_level4_pgt);
1773 	convert_pfn_mfn(level3_ident_pgt);
1774 	convert_pfn_mfn(level3_kernel_pgt);
1775 
1776 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1777 	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1778 
1779 	memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1780 	memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1781 
1782 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1783 	l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1784 	memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1785 
1786 	/* Set up identity map */
1787 	xen_map_identity_early(level2_ident_pgt, max_pfn);
1788 
1789 	/* Make pagetable pieces RO */
1790 	set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1791 	set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1792 	set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1793 	set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1794 	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1795 	set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1796 
1797 	/* Pin down new L4 */
1798 	pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1799 			  PFN_DOWN(__pa_symbol(init_level4_pgt)));
1800 
1801 	/* Unpin Xen-provided one */
1802 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1803 
1804 	/* Switch over */
1805 	pgd = init_level4_pgt;
1806 
1807 	/*
1808 	 * At this stage there can be no user pgd, and no page
1809 	 * structure to attach it to, so make sure we just set kernel
1810 	 * pgd.
1811 	 */
1812 	xen_mc_batch();
1813 	__xen_write_cr3(true, __pa(pgd));
1814 	xen_mc_issue(PARAVIRT_LAZY_CPU);
1815 
1816 	memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
1817 		      __pa(xen_start_info->pt_base +
1818 			   xen_start_info->nr_pt_frames * PAGE_SIZE),
1819 		      "XEN PAGETABLES");
1820 
1821 	return pgd;
1822 }
1823 #else	/* !CONFIG_X86_64 */
1824 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1825 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1826 
1827 static __init void xen_write_cr3_init(unsigned long cr3)
1828 {
1829 	unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1830 
1831 	BUG_ON(read_cr3() != __pa(initial_page_table));
1832 	BUG_ON(cr3 != __pa(swapper_pg_dir));
1833 
1834 	/*
1835 	 * We are switching to swapper_pg_dir for the first time (from
1836 	 * initial_page_table) and therefore need to mark that page
1837 	 * read-only and then pin it.
1838 	 *
1839 	 * Xen disallows sharing of kernel PMDs for PAE
1840 	 * guests. Therefore we must copy the kernel PMD from
1841 	 * initial_page_table into a new kernel PMD to be used in
1842 	 * swapper_pg_dir.
1843 	 */
1844 	swapper_kernel_pmd =
1845 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1846 	memcpy(swapper_kernel_pmd, initial_kernel_pmd,
1847 	       sizeof(pmd_t) * PTRS_PER_PMD);
1848 	swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1849 		__pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1850 	set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1851 
1852 	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1853 	xen_write_cr3(cr3);
1854 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1855 
1856 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1857 			  PFN_DOWN(__pa(initial_page_table)));
1858 	set_page_prot(initial_page_table, PAGE_KERNEL);
1859 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1860 
1861 	pv_mmu_ops.write_cr3 = &xen_write_cr3;
1862 }
1863 
1864 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1865 					 unsigned long max_pfn)
1866 {
1867 	pmd_t *kernel_pmd;
1868 
1869 	initial_kernel_pmd =
1870 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1871 
1872 	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1873 
1874 	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1875 	memcpy(initial_kernel_pmd, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1876 
1877 	xen_map_identity_early(initial_kernel_pmd, max_pfn);
1878 
1879 	memcpy(initial_page_table, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1880 	initial_page_table[KERNEL_PGD_BOUNDARY] =
1881 		__pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
1882 
1883 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
1884 	set_page_prot(initial_page_table, PAGE_KERNEL_RO);
1885 	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1886 
1887 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1888 
1889 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1890 			  PFN_DOWN(__pa(initial_page_table)));
1891 	xen_write_cr3(__pa(initial_page_table));
1892 
1893 	memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
1894 		      __pa(xen_start_info->pt_base +
1895 			   xen_start_info->nr_pt_frames * PAGE_SIZE),
1896 		      "XEN PAGETABLES");
1897 
1898 	return initial_page_table;
1899 }
1900 #endif	/* CONFIG_X86_64 */
1901 
1902 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
1903 
1904 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1905 {
1906 	pte_t pte;
1907 
1908 	phys >>= PAGE_SHIFT;
1909 
1910 	switch (idx) {
1911 	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1912 #ifdef CONFIG_X86_F00F_BUG
1913 	case FIX_F00F_IDT:
1914 #endif
1915 #ifdef CONFIG_X86_32
1916 	case FIX_WP_TEST:
1917 	case FIX_VDSO:
1918 # ifdef CONFIG_HIGHMEM
1919 	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1920 # endif
1921 #else
1922 	case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1923 #endif
1924 	case FIX_TEXT_POKE0:
1925 	case FIX_TEXT_POKE1:
1926 		/* All local page mappings */
1927 		pte = pfn_pte(phys, prot);
1928 		break;
1929 
1930 #ifdef CONFIG_X86_LOCAL_APIC
1931 	case FIX_APIC_BASE:	/* maps dummy local APIC */
1932 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1933 		break;
1934 #endif
1935 
1936 #ifdef CONFIG_X86_IO_APIC
1937 	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
1938 		/*
1939 		 * We just don't map the IO APIC - all access is via
1940 		 * hypercalls.  Keep the address in the pte for reference.
1941 		 */
1942 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1943 		break;
1944 #endif
1945 
1946 	case FIX_PARAVIRT_BOOTMAP:
1947 		/* This is an MFN, but it isn't an IO mapping from the
1948 		   IO domain */
1949 		pte = mfn_pte(phys, prot);
1950 		break;
1951 
1952 	default:
1953 		/* By default, set_fixmap is used for hardware mappings */
1954 		pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
1955 		break;
1956 	}
1957 
1958 	__native_set_fixmap(idx, pte);
1959 
1960 #ifdef CONFIG_X86_64
1961 	/* Replicate changes to map the vsyscall page into the user
1962 	   pagetable vsyscall mapping. */
1963 	if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1964 		unsigned long vaddr = __fix_to_virt(idx);
1965 		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1966 	}
1967 #endif
1968 }
1969 
1970 __init void xen_ident_map_ISA(void)
1971 {
1972 	unsigned long pa;
1973 
1974 	/*
1975 	 * If we're dom0, then linear map the ISA machine addresses into
1976 	 * the kernel's address space.
1977 	 */
1978 	if (!xen_initial_domain())
1979 		return;
1980 
1981 	xen_raw_printk("Xen: setup ISA identity maps\n");
1982 
1983 	for (pa = ISA_START_ADDRESS; pa < ISA_END_ADDRESS; pa += PAGE_SIZE) {
1984 		pte_t pte = mfn_pte(PFN_DOWN(pa), PAGE_KERNEL_IO);
1985 
1986 		if (HYPERVISOR_update_va_mapping(PAGE_OFFSET + pa, pte, 0))
1987 			BUG();
1988 	}
1989 
1990 	xen_flush_tlb();
1991 }
1992 
1993 static __init void xen_post_allocator_init(void)
1994 {
1995 #ifdef CONFIG_XEN_DEBUG
1996 	pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte_debug);
1997 #endif
1998 	pv_mmu_ops.set_pte = xen_set_pte;
1999 	pv_mmu_ops.set_pmd = xen_set_pmd;
2000 	pv_mmu_ops.set_pud = xen_set_pud;
2001 #if PAGETABLE_LEVELS == 4
2002 	pv_mmu_ops.set_pgd = xen_set_pgd;
2003 #endif
2004 
2005 	/* This will work as long as patching hasn't happened yet
2006 	   (which it hasn't) */
2007 	pv_mmu_ops.alloc_pte = xen_alloc_pte;
2008 	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2009 	pv_mmu_ops.release_pte = xen_release_pte;
2010 	pv_mmu_ops.release_pmd = xen_release_pmd;
2011 #if PAGETABLE_LEVELS == 4
2012 	pv_mmu_ops.alloc_pud = xen_alloc_pud;
2013 	pv_mmu_ops.release_pud = xen_release_pud;
2014 #endif
2015 
2016 #ifdef CONFIG_X86_64
2017 	SetPagePinned(virt_to_page(level3_user_vsyscall));
2018 #endif
2019 	xen_mark_init_mm_pinned();
2020 }
2021 
2022 static void xen_leave_lazy_mmu(void)
2023 {
2024 	preempt_disable();
2025 	xen_mc_flush();
2026 	paravirt_leave_lazy_mmu();
2027 	preempt_enable();
2028 }
2029 
2030 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
2031 	.read_cr2 = xen_read_cr2,
2032 	.write_cr2 = xen_write_cr2,
2033 
2034 	.read_cr3 = xen_read_cr3,
2035 #ifdef CONFIG_X86_32
2036 	.write_cr3 = xen_write_cr3_init,
2037 #else
2038 	.write_cr3 = xen_write_cr3,
2039 #endif
2040 
2041 	.flush_tlb_user = xen_flush_tlb,
2042 	.flush_tlb_kernel = xen_flush_tlb,
2043 	.flush_tlb_single = xen_flush_tlb_single,
2044 	.flush_tlb_others = xen_flush_tlb_others,
2045 
2046 	.pte_update = paravirt_nop,
2047 	.pte_update_defer = paravirt_nop,
2048 
2049 	.pgd_alloc = xen_pgd_alloc,
2050 	.pgd_free = xen_pgd_free,
2051 
2052 	.alloc_pte = xen_alloc_pte_init,
2053 	.release_pte = xen_release_pte_init,
2054 	.alloc_pmd = xen_alloc_pmd_init,
2055 	.release_pmd = xen_release_pmd_init,
2056 
2057 	.set_pte = xen_set_pte_init,
2058 	.set_pte_at = xen_set_pte_at,
2059 	.set_pmd = xen_set_pmd_hyper,
2060 
2061 	.ptep_modify_prot_start = __ptep_modify_prot_start,
2062 	.ptep_modify_prot_commit = __ptep_modify_prot_commit,
2063 
2064 	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
2065 	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2066 
2067 	.make_pte = PV_CALLEE_SAVE(xen_make_pte),
2068 	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2069 
2070 #ifdef CONFIG_X86_PAE
2071 	.set_pte_atomic = xen_set_pte_atomic,
2072 	.pte_clear = xen_pte_clear,
2073 	.pmd_clear = xen_pmd_clear,
2074 #endif	/* CONFIG_X86_PAE */
2075 	.set_pud = xen_set_pud_hyper,
2076 
2077 	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2078 	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2079 
2080 #if PAGETABLE_LEVELS == 4
2081 	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
2082 	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2083 	.set_pgd = xen_set_pgd_hyper,
2084 
2085 	.alloc_pud = xen_alloc_pmd_init,
2086 	.release_pud = xen_release_pmd_init,
2087 #endif	/* PAGETABLE_LEVELS == 4 */
2088 
2089 	.activate_mm = xen_activate_mm,
2090 	.dup_mmap = xen_dup_mmap,
2091 	.exit_mmap = xen_exit_mmap,
2092 
2093 	.lazy_mode = {
2094 		.enter = paravirt_enter_lazy_mmu,
2095 		.leave = xen_leave_lazy_mmu,
2096 	},
2097 
2098 	.set_fixmap = xen_set_fixmap,
2099 };
2100 
2101 void __init xen_init_mmu_ops(void)
2102 {
2103 	x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
2104 	x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
2105 	pv_mmu_ops = xen_mmu_ops;
2106 
2107 	memset(dummy_mapping, 0xff, PAGE_SIZE);
2108 }
2109 
2110 /* Protected by xen_reservation_lock. */
2111 #define MAX_CONTIG_ORDER 9 /* 2MB */
2112 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2113 
2114 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2115 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2116 				unsigned long *in_frames,
2117 				unsigned long *out_frames)
2118 {
2119 	int i;
2120 	struct multicall_space mcs;
2121 
2122 	xen_mc_batch();
2123 	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2124 		mcs = __xen_mc_entry(0);
2125 
2126 		if (in_frames)
2127 			in_frames[i] = virt_to_mfn(vaddr);
2128 
2129 		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2130 		__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2131 
2132 		if (out_frames)
2133 			out_frames[i] = virt_to_pfn(vaddr);
2134 	}
2135 	xen_mc_issue(0);
2136 }
2137 
2138 /*
2139  * Update the pfn-to-mfn mappings for a virtual address range, either to
2140  * point to an array of mfns, or contiguously from a single starting
2141  * mfn.
2142  */
2143 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2144 				     unsigned long *mfns,
2145 				     unsigned long first_mfn)
2146 {
2147 	unsigned i, limit;
2148 	unsigned long mfn;
2149 
2150 	xen_mc_batch();
2151 
2152 	limit = 1u << order;
2153 	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2154 		struct multicall_space mcs;
2155 		unsigned flags;
2156 
2157 		mcs = __xen_mc_entry(0);
2158 		if (mfns)
2159 			mfn = mfns[i];
2160 		else
2161 			mfn = first_mfn + i;
2162 
2163 		if (i < (limit - 1))
2164 			flags = 0;
2165 		else {
2166 			if (order == 0)
2167 				flags = UVMF_INVLPG | UVMF_ALL;
2168 			else
2169 				flags = UVMF_TLB_FLUSH | UVMF_ALL;
2170 		}
2171 
2172 		MULTI_update_va_mapping(mcs.mc, vaddr,
2173 				mfn_pte(mfn, PAGE_KERNEL), flags);
2174 
2175 		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2176 	}
2177 
2178 	xen_mc_issue(0);
2179 }
2180 
2181 /*
2182  * Perform the hypercall to exchange a region of our pfns to point to
2183  * memory with the required contiguous alignment.  Takes the pfns as
2184  * input, and populates mfns as output.
2185  *
2186  * Returns a success code indicating whether the hypervisor was able to
2187  * satisfy the request or not.
2188  */
2189 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2190 			       unsigned long *pfns_in,
2191 			       unsigned long extents_out,
2192 			       unsigned int order_out,
2193 			       unsigned long *mfns_out,
2194 			       unsigned int address_bits)
2195 {
2196 	long rc;
2197 	int success;
2198 
2199 	struct xen_memory_exchange exchange = {
2200 		.in = {
2201 			.nr_extents   = extents_in,
2202 			.extent_order = order_in,
2203 			.extent_start = pfns_in,
2204 			.domid        = DOMID_SELF
2205 		},
2206 		.out = {
2207 			.nr_extents   = extents_out,
2208 			.extent_order = order_out,
2209 			.extent_start = mfns_out,
2210 			.address_bits = address_bits,
2211 			.domid        = DOMID_SELF
2212 		}
2213 	};
2214 
2215 	BUG_ON(extents_in << order_in != extents_out << order_out);
2216 
2217 	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2218 	success = (exchange.nr_exchanged == extents_in);
2219 
2220 	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2221 	BUG_ON(success && (rc != 0));
2222 
2223 	return success;
2224 }
2225 
2226 int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2227 				 unsigned int address_bits)
2228 {
2229 	unsigned long *in_frames = discontig_frames, out_frame;
2230 	unsigned long  flags;
2231 	int            success;
2232 
2233 	/*
2234 	 * Currently an auto-translated guest will not perform I/O, nor will
2235 	 * it require PAE page directories below 4GB. Therefore any calls to
2236 	 * this function are redundant and can be ignored.
2237 	 */
2238 
2239 	if (xen_feature(XENFEAT_auto_translated_physmap))
2240 		return 0;
2241 
2242 	if (unlikely(order > MAX_CONTIG_ORDER))
2243 		return -ENOMEM;
2244 
2245 	memset((void *) vstart, 0, PAGE_SIZE << order);
2246 
2247 	spin_lock_irqsave(&xen_reservation_lock, flags);
2248 
2249 	/* 1. Zap current PTEs, remembering MFNs. */
2250 	xen_zap_pfn_range(vstart, order, in_frames, NULL);
2251 
2252 	/* 2. Get a new contiguous memory extent. */
2253 	out_frame = virt_to_pfn(vstart);
2254 	success = xen_exchange_memory(1UL << order, 0, in_frames,
2255 				      1, order, &out_frame,
2256 				      address_bits);
2257 
2258 	/* 3. Map the new extent in place of old pages. */
2259 	if (success)
2260 		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2261 	else
2262 		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2263 
2264 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2265 
2266 	return success ? 0 : -ENOMEM;
2267 }
2268 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2269 
2270 void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2271 {
2272 	unsigned long *out_frames = discontig_frames, in_frame;
2273 	unsigned long  flags;
2274 	int success;
2275 
2276 	if (xen_feature(XENFEAT_auto_translated_physmap))
2277 		return;
2278 
2279 	if (unlikely(order > MAX_CONTIG_ORDER))
2280 		return;
2281 
2282 	memset((void *) vstart, 0, PAGE_SIZE << order);
2283 
2284 	spin_lock_irqsave(&xen_reservation_lock, flags);
2285 
2286 	/* 1. Find start MFN of contiguous extent. */
2287 	in_frame = virt_to_mfn(vstart);
2288 
2289 	/* 2. Zap current PTEs. */
2290 	xen_zap_pfn_range(vstart, order, NULL, out_frames);
2291 
2292 	/* 3. Do the exchange for non-contiguous MFNs. */
2293 	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2294 					0, out_frames, 0);
2295 
2296 	/* 4. Map new pages in place of old pages. */
2297 	if (success)
2298 		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2299 	else
2300 		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2301 
2302 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2303 }
2304 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2305 
2306 #ifdef CONFIG_XEN_PVHVM
2307 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2308 {
2309 	struct xen_hvm_pagetable_dying a;
2310 	int rc;
2311 
2312 	a.domid = DOMID_SELF;
2313 	a.gpa = __pa(mm->pgd);
2314 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2315 	WARN_ON_ONCE(rc < 0);
2316 }
2317 
2318 static int is_pagetable_dying_supported(void)
2319 {
2320 	struct xen_hvm_pagetable_dying a;
2321 	int rc = 0;
2322 
2323 	a.domid = DOMID_SELF;
2324 	a.gpa = 0x00;
2325 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2326 	if (rc < 0) {
2327 		printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2328 		return 0;
2329 	}
2330 	return 1;
2331 }
2332 
2333 void __init xen_hvm_init_mmu_ops(void)
2334 {
2335 	if (is_pagetable_dying_supported())
2336 		pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2337 }
2338 #endif
2339 
2340 #define REMAP_BATCH_SIZE 16
2341 
2342 struct remap_data {
2343 	unsigned long mfn;
2344 	pgprot_t prot;
2345 	struct mmu_update *mmu_update;
2346 };
2347 
2348 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2349 				 unsigned long addr, void *data)
2350 {
2351 	struct remap_data *rmd = data;
2352 	pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2353 
2354 	rmd->mmu_update->ptr = arbitrary_virt_to_machine(ptep).maddr;
2355 	rmd->mmu_update->val = pte_val_ma(pte);
2356 	rmd->mmu_update++;
2357 
2358 	return 0;
2359 }
2360 
2361 int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2362 			       unsigned long addr,
2363 			       unsigned long mfn, int nr,
2364 			       pgprot_t prot, unsigned domid)
2365 {
2366 	struct remap_data rmd;
2367 	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2368 	int batch;
2369 	unsigned long range;
2370 	int err = 0;
2371 
2372 	prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2373 
2374 	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) ==
2375 				(VM_PFNMAP | VM_RESERVED | VM_IO)));
2376 
2377 	rmd.mfn = mfn;
2378 	rmd.prot = prot;
2379 
2380 	while (nr) {
2381 		batch = min(REMAP_BATCH_SIZE, nr);
2382 		range = (unsigned long)batch << PAGE_SHIFT;
2383 
2384 		rmd.mmu_update = mmu_update;
2385 		err = apply_to_page_range(vma->vm_mm, addr, range,
2386 					  remap_area_mfn_pte_fn, &rmd);
2387 		if (err)
2388 			goto out;
2389 
2390 		err = -EFAULT;
2391 		if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0)
2392 			goto out;
2393 
2394 		nr -= batch;
2395 		addr += range;
2396 	}
2397 
2398 	err = 0;
2399 out:
2400 
2401 	flush_tlb_all();
2402 
2403 	return err;
2404 }
2405 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2406 
2407 #ifdef CONFIG_XEN_DEBUG_FS
2408 
2409 static int p2m_dump_open(struct inode *inode, struct file *filp)
2410 {
2411 	return single_open(filp, p2m_dump_show, NULL);
2412 }
2413 
2414 static const struct file_operations p2m_dump_fops = {
2415 	.open		= p2m_dump_open,
2416 	.read		= seq_read,
2417 	.llseek		= seq_lseek,
2418 	.release	= single_release,
2419 };
2420 
2421 static struct dentry *d_mmu_debug;
2422 
2423 static int __init xen_mmu_debugfs(void)
2424 {
2425 	struct dentry *d_xen = xen_init_debugfs();
2426 
2427 	if (d_xen == NULL)
2428 		return -ENOMEM;
2429 
2430 	d_mmu_debug = debugfs_create_dir("mmu", d_xen);
2431 
2432 	debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
2433 
2434 	debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
2435 	debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
2436 			   &mmu_stats.pgd_update_pinned);
2437 	debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
2438 			   &mmu_stats.pgd_update_pinned);
2439 
2440 	debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
2441 	debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
2442 			   &mmu_stats.pud_update_pinned);
2443 	debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
2444 			   &mmu_stats.pud_update_pinned);
2445 
2446 	debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
2447 	debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
2448 			   &mmu_stats.pmd_update_pinned);
2449 	debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
2450 			   &mmu_stats.pmd_update_pinned);
2451 
2452 	debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
2453 //	debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
2454 //			   &mmu_stats.pte_update_pinned);
2455 	debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
2456 			   &mmu_stats.pte_update_pinned);
2457 
2458 	debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
2459 	debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
2460 			   &mmu_stats.mmu_update_extended);
2461 	xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
2462 				     mmu_stats.mmu_update_histo, 20);
2463 
2464 	debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
2465 	debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
2466 			   &mmu_stats.set_pte_at_batched);
2467 	debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
2468 			   &mmu_stats.set_pte_at_current);
2469 	debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
2470 			   &mmu_stats.set_pte_at_kernel);
2471 
2472 	debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
2473 	debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
2474 			   &mmu_stats.prot_commit_batched);
2475 
2476 	debugfs_create_file("p2m", 0600, d_mmu_debug, NULL, &p2m_dump_fops);
2477 	return 0;
2478 }
2479 fs_initcall(xen_mmu_debugfs);
2480 
2481 #endif	/* CONFIG_XEN_DEBUG_FS */
2482