1 /* 2 * Xen mmu operations 3 * 4 * This file contains the various mmu fetch and update operations. 5 * The most important job they must perform is the mapping between the 6 * domain's pfn and the overall machine mfns. 7 * 8 * Xen allows guests to directly update the pagetable, in a controlled 9 * fashion. In other words, the guest modifies the same pagetable 10 * that the CPU actually uses, which eliminates the overhead of having 11 * a separate shadow pagetable. 12 * 13 * In order to allow this, it falls on the guest domain to map its 14 * notion of a "physical" pfn - which is just a domain-local linear 15 * address - into a real "machine address" which the CPU's MMU can 16 * use. 17 * 18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be 19 * inserted directly into the pagetable. When creating a new 20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely, 21 * when reading the content back with __(pgd|pmd|pte)_val, it converts 22 * the mfn back into a pfn. 23 * 24 * The other constraint is that all pages which make up a pagetable 25 * must be mapped read-only in the guest. This prevents uncontrolled 26 * guest updates to the pagetable. Xen strictly enforces this, and 27 * will disallow any pagetable update which will end up mapping a 28 * pagetable page RW, and will disallow using any writable page as a 29 * pagetable. 30 * 31 * Naively, when loading %cr3 with the base of a new pagetable, Xen 32 * would need to validate the whole pagetable before going on. 33 * Naturally, this is quite slow. The solution is to "pin" a 34 * pagetable, which enforces all the constraints on the pagetable even 35 * when it is not actively in use. This menas that Xen can be assured 36 * that it is still valid when you do load it into %cr3, and doesn't 37 * need to revalidate it. 38 * 39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 40 */ 41 #include <linux/sched.h> 42 #include <linux/highmem.h> 43 #include <linux/debugfs.h> 44 #include <linux/bug.h> 45 #include <linux/vmalloc.h> 46 #include <linux/module.h> 47 #include <linux/gfp.h> 48 #include <linux/memblock.h> 49 #include <linux/seq_file.h> 50 #include <linux/crash_dump.h> 51 52 #include <trace/events/xen.h> 53 54 #include <asm/pgtable.h> 55 #include <asm/tlbflush.h> 56 #include <asm/fixmap.h> 57 #include <asm/mmu_context.h> 58 #include <asm/setup.h> 59 #include <asm/paravirt.h> 60 #include <asm/e820.h> 61 #include <asm/linkage.h> 62 #include <asm/page.h> 63 #include <asm/init.h> 64 #include <asm/pat.h> 65 #include <asm/smp.h> 66 67 #include <asm/xen/hypercall.h> 68 #include <asm/xen/hypervisor.h> 69 70 #include <xen/xen.h> 71 #include <xen/page.h> 72 #include <xen/interface/xen.h> 73 #include <xen/interface/hvm/hvm_op.h> 74 #include <xen/interface/version.h> 75 #include <xen/interface/memory.h> 76 #include <xen/hvc-console.h> 77 78 #include "multicalls.h" 79 #include "mmu.h" 80 #include "debugfs.h" 81 82 /* 83 * Protects atomic reservation decrease/increase against concurrent increases. 84 * Also protects non-atomic updates of current_pages and balloon lists. 85 */ 86 DEFINE_SPINLOCK(xen_reservation_lock); 87 88 #ifdef CONFIG_X86_32 89 /* 90 * Identity map, in addition to plain kernel map. This needs to be 91 * large enough to allocate page table pages to allocate the rest. 92 * Each page can map 2MB. 93 */ 94 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4) 95 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES); 96 #endif 97 #ifdef CONFIG_X86_64 98 /* l3 pud for userspace vsyscall mapping */ 99 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss; 100 #endif /* CONFIG_X86_64 */ 101 102 /* 103 * Note about cr3 (pagetable base) values: 104 * 105 * xen_cr3 contains the current logical cr3 value; it contains the 106 * last set cr3. This may not be the current effective cr3, because 107 * its update may be being lazily deferred. However, a vcpu looking 108 * at its own cr3 can use this value knowing that it everything will 109 * be self-consistent. 110 * 111 * xen_current_cr3 contains the actual vcpu cr3; it is set once the 112 * hypercall to set the vcpu cr3 is complete (so it may be a little 113 * out of date, but it will never be set early). If one vcpu is 114 * looking at another vcpu's cr3 value, it should use this variable. 115 */ 116 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */ 117 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */ 118 119 static phys_addr_t xen_pt_base, xen_pt_size __initdata; 120 121 /* 122 * Just beyond the highest usermode address. STACK_TOP_MAX has a 123 * redzone above it, so round it up to a PGD boundary. 124 */ 125 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK) 126 127 unsigned long arbitrary_virt_to_mfn(void *vaddr) 128 { 129 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr); 130 131 return PFN_DOWN(maddr.maddr); 132 } 133 134 xmaddr_t arbitrary_virt_to_machine(void *vaddr) 135 { 136 unsigned long address = (unsigned long)vaddr; 137 unsigned int level; 138 pte_t *pte; 139 unsigned offset; 140 141 /* 142 * if the PFN is in the linear mapped vaddr range, we can just use 143 * the (quick) virt_to_machine() p2m lookup 144 */ 145 if (virt_addr_valid(vaddr)) 146 return virt_to_machine(vaddr); 147 148 /* otherwise we have to do a (slower) full page-table walk */ 149 150 pte = lookup_address(address, &level); 151 BUG_ON(pte == NULL); 152 offset = address & ~PAGE_MASK; 153 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset); 154 } 155 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine); 156 157 void make_lowmem_page_readonly(void *vaddr) 158 { 159 pte_t *pte, ptev; 160 unsigned long address = (unsigned long)vaddr; 161 unsigned int level; 162 163 pte = lookup_address(address, &level); 164 if (pte == NULL) 165 return; /* vaddr missing */ 166 167 ptev = pte_wrprotect(*pte); 168 169 if (HYPERVISOR_update_va_mapping(address, ptev, 0)) 170 BUG(); 171 } 172 173 void make_lowmem_page_readwrite(void *vaddr) 174 { 175 pte_t *pte, ptev; 176 unsigned long address = (unsigned long)vaddr; 177 unsigned int level; 178 179 pte = lookup_address(address, &level); 180 if (pte == NULL) 181 return; /* vaddr missing */ 182 183 ptev = pte_mkwrite(*pte); 184 185 if (HYPERVISOR_update_va_mapping(address, ptev, 0)) 186 BUG(); 187 } 188 189 190 static bool xen_page_pinned(void *ptr) 191 { 192 struct page *page = virt_to_page(ptr); 193 194 return PagePinned(page); 195 } 196 197 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid) 198 { 199 struct multicall_space mcs; 200 struct mmu_update *u; 201 202 trace_xen_mmu_set_domain_pte(ptep, pteval, domid); 203 204 mcs = xen_mc_entry(sizeof(*u)); 205 u = mcs.args; 206 207 /* ptep might be kmapped when using 32-bit HIGHPTE */ 208 u->ptr = virt_to_machine(ptep).maddr; 209 u->val = pte_val_ma(pteval); 210 211 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid); 212 213 xen_mc_issue(PARAVIRT_LAZY_MMU); 214 } 215 EXPORT_SYMBOL_GPL(xen_set_domain_pte); 216 217 static void xen_extend_mmu_update(const struct mmu_update *update) 218 { 219 struct multicall_space mcs; 220 struct mmu_update *u; 221 222 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u)); 223 224 if (mcs.mc != NULL) { 225 mcs.mc->args[1]++; 226 } else { 227 mcs = __xen_mc_entry(sizeof(*u)); 228 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 229 } 230 231 u = mcs.args; 232 *u = *update; 233 } 234 235 static void xen_extend_mmuext_op(const struct mmuext_op *op) 236 { 237 struct multicall_space mcs; 238 struct mmuext_op *u; 239 240 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u)); 241 242 if (mcs.mc != NULL) { 243 mcs.mc->args[1]++; 244 } else { 245 mcs = __xen_mc_entry(sizeof(*u)); 246 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 247 } 248 249 u = mcs.args; 250 *u = *op; 251 } 252 253 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val) 254 { 255 struct mmu_update u; 256 257 preempt_disable(); 258 259 xen_mc_batch(); 260 261 /* ptr may be ioremapped for 64-bit pagetable setup */ 262 u.ptr = arbitrary_virt_to_machine(ptr).maddr; 263 u.val = pmd_val_ma(val); 264 xen_extend_mmu_update(&u); 265 266 xen_mc_issue(PARAVIRT_LAZY_MMU); 267 268 preempt_enable(); 269 } 270 271 static void xen_set_pmd(pmd_t *ptr, pmd_t val) 272 { 273 trace_xen_mmu_set_pmd(ptr, val); 274 275 /* If page is not pinned, we can just update the entry 276 directly */ 277 if (!xen_page_pinned(ptr)) { 278 *ptr = val; 279 return; 280 } 281 282 xen_set_pmd_hyper(ptr, val); 283 } 284 285 /* 286 * Associate a virtual page frame with a given physical page frame 287 * and protection flags for that frame. 288 */ 289 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags) 290 { 291 set_pte_vaddr(vaddr, mfn_pte(mfn, flags)); 292 } 293 294 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval) 295 { 296 struct mmu_update u; 297 298 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) 299 return false; 300 301 xen_mc_batch(); 302 303 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; 304 u.val = pte_val_ma(pteval); 305 xen_extend_mmu_update(&u); 306 307 xen_mc_issue(PARAVIRT_LAZY_MMU); 308 309 return true; 310 } 311 312 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval) 313 { 314 if (!xen_batched_set_pte(ptep, pteval)) { 315 /* 316 * Could call native_set_pte() here and trap and 317 * emulate the PTE write but with 32-bit guests this 318 * needs two traps (one for each of the two 32-bit 319 * words in the PTE) so do one hypercall directly 320 * instead. 321 */ 322 struct mmu_update u; 323 324 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; 325 u.val = pte_val_ma(pteval); 326 HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF); 327 } 328 } 329 330 static void xen_set_pte(pte_t *ptep, pte_t pteval) 331 { 332 trace_xen_mmu_set_pte(ptep, pteval); 333 __xen_set_pte(ptep, pteval); 334 } 335 336 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr, 337 pte_t *ptep, pte_t pteval) 338 { 339 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval); 340 __xen_set_pte(ptep, pteval); 341 } 342 343 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, 344 unsigned long addr, pte_t *ptep) 345 { 346 /* Just return the pte as-is. We preserve the bits on commit */ 347 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep); 348 return *ptep; 349 } 350 351 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr, 352 pte_t *ptep, pte_t pte) 353 { 354 struct mmu_update u; 355 356 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte); 357 xen_mc_batch(); 358 359 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD; 360 u.val = pte_val_ma(pte); 361 xen_extend_mmu_update(&u); 362 363 xen_mc_issue(PARAVIRT_LAZY_MMU); 364 } 365 366 /* Assume pteval_t is equivalent to all the other *val_t types. */ 367 static pteval_t pte_mfn_to_pfn(pteval_t val) 368 { 369 if (val & _PAGE_PRESENT) { 370 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; 371 unsigned long pfn = mfn_to_pfn(mfn); 372 373 pteval_t flags = val & PTE_FLAGS_MASK; 374 if (unlikely(pfn == ~0)) 375 val = flags & ~_PAGE_PRESENT; 376 else 377 val = ((pteval_t)pfn << PAGE_SHIFT) | flags; 378 } 379 380 return val; 381 } 382 383 static pteval_t pte_pfn_to_mfn(pteval_t val) 384 { 385 if (val & _PAGE_PRESENT) { 386 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; 387 pteval_t flags = val & PTE_FLAGS_MASK; 388 unsigned long mfn; 389 390 if (!xen_feature(XENFEAT_auto_translated_physmap)) 391 mfn = __pfn_to_mfn(pfn); 392 else 393 mfn = pfn; 394 /* 395 * If there's no mfn for the pfn, then just create an 396 * empty non-present pte. Unfortunately this loses 397 * information about the original pfn, so 398 * pte_mfn_to_pfn is asymmetric. 399 */ 400 if (unlikely(mfn == INVALID_P2M_ENTRY)) { 401 mfn = 0; 402 flags = 0; 403 } else 404 mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT); 405 val = ((pteval_t)mfn << PAGE_SHIFT) | flags; 406 } 407 408 return val; 409 } 410 411 __visible pteval_t xen_pte_val(pte_t pte) 412 { 413 pteval_t pteval = pte.pte; 414 415 return pte_mfn_to_pfn(pteval); 416 } 417 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val); 418 419 __visible pgdval_t xen_pgd_val(pgd_t pgd) 420 { 421 return pte_mfn_to_pfn(pgd.pgd); 422 } 423 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val); 424 425 __visible pte_t xen_make_pte(pteval_t pte) 426 { 427 pte = pte_pfn_to_mfn(pte); 428 429 return native_make_pte(pte); 430 } 431 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte); 432 433 __visible pgd_t xen_make_pgd(pgdval_t pgd) 434 { 435 pgd = pte_pfn_to_mfn(pgd); 436 return native_make_pgd(pgd); 437 } 438 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd); 439 440 __visible pmdval_t xen_pmd_val(pmd_t pmd) 441 { 442 return pte_mfn_to_pfn(pmd.pmd); 443 } 444 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val); 445 446 static void xen_set_pud_hyper(pud_t *ptr, pud_t val) 447 { 448 struct mmu_update u; 449 450 preempt_disable(); 451 452 xen_mc_batch(); 453 454 /* ptr may be ioremapped for 64-bit pagetable setup */ 455 u.ptr = arbitrary_virt_to_machine(ptr).maddr; 456 u.val = pud_val_ma(val); 457 xen_extend_mmu_update(&u); 458 459 xen_mc_issue(PARAVIRT_LAZY_MMU); 460 461 preempt_enable(); 462 } 463 464 static void xen_set_pud(pud_t *ptr, pud_t val) 465 { 466 trace_xen_mmu_set_pud(ptr, val); 467 468 /* If page is not pinned, we can just update the entry 469 directly */ 470 if (!xen_page_pinned(ptr)) { 471 *ptr = val; 472 return; 473 } 474 475 xen_set_pud_hyper(ptr, val); 476 } 477 478 #ifdef CONFIG_X86_PAE 479 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte) 480 { 481 trace_xen_mmu_set_pte_atomic(ptep, pte); 482 set_64bit((u64 *)ptep, native_pte_val(pte)); 483 } 484 485 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 486 { 487 trace_xen_mmu_pte_clear(mm, addr, ptep); 488 if (!xen_batched_set_pte(ptep, native_make_pte(0))) 489 native_pte_clear(mm, addr, ptep); 490 } 491 492 static void xen_pmd_clear(pmd_t *pmdp) 493 { 494 trace_xen_mmu_pmd_clear(pmdp); 495 set_pmd(pmdp, __pmd(0)); 496 } 497 #endif /* CONFIG_X86_PAE */ 498 499 __visible pmd_t xen_make_pmd(pmdval_t pmd) 500 { 501 pmd = pte_pfn_to_mfn(pmd); 502 return native_make_pmd(pmd); 503 } 504 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd); 505 506 #if CONFIG_PGTABLE_LEVELS == 4 507 __visible pudval_t xen_pud_val(pud_t pud) 508 { 509 return pte_mfn_to_pfn(pud.pud); 510 } 511 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val); 512 513 __visible pud_t xen_make_pud(pudval_t pud) 514 { 515 pud = pte_pfn_to_mfn(pud); 516 517 return native_make_pud(pud); 518 } 519 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud); 520 521 static pgd_t *xen_get_user_pgd(pgd_t *pgd) 522 { 523 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK); 524 unsigned offset = pgd - pgd_page; 525 pgd_t *user_ptr = NULL; 526 527 if (offset < pgd_index(USER_LIMIT)) { 528 struct page *page = virt_to_page(pgd_page); 529 user_ptr = (pgd_t *)page->private; 530 if (user_ptr) 531 user_ptr += offset; 532 } 533 534 return user_ptr; 535 } 536 537 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val) 538 { 539 struct mmu_update u; 540 541 u.ptr = virt_to_machine(ptr).maddr; 542 u.val = pgd_val_ma(val); 543 xen_extend_mmu_update(&u); 544 } 545 546 /* 547 * Raw hypercall-based set_pgd, intended for in early boot before 548 * there's a page structure. This implies: 549 * 1. The only existing pagetable is the kernel's 550 * 2. It is always pinned 551 * 3. It has no user pagetable attached to it 552 */ 553 static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val) 554 { 555 preempt_disable(); 556 557 xen_mc_batch(); 558 559 __xen_set_pgd_hyper(ptr, val); 560 561 xen_mc_issue(PARAVIRT_LAZY_MMU); 562 563 preempt_enable(); 564 } 565 566 static void xen_set_pgd(pgd_t *ptr, pgd_t val) 567 { 568 pgd_t *user_ptr = xen_get_user_pgd(ptr); 569 570 trace_xen_mmu_set_pgd(ptr, user_ptr, val); 571 572 /* If page is not pinned, we can just update the entry 573 directly */ 574 if (!xen_page_pinned(ptr)) { 575 *ptr = val; 576 if (user_ptr) { 577 WARN_ON(xen_page_pinned(user_ptr)); 578 *user_ptr = val; 579 } 580 return; 581 } 582 583 /* If it's pinned, then we can at least batch the kernel and 584 user updates together. */ 585 xen_mc_batch(); 586 587 __xen_set_pgd_hyper(ptr, val); 588 if (user_ptr) 589 __xen_set_pgd_hyper(user_ptr, val); 590 591 xen_mc_issue(PARAVIRT_LAZY_MMU); 592 } 593 #endif /* CONFIG_PGTABLE_LEVELS == 4 */ 594 595 /* 596 * (Yet another) pagetable walker. This one is intended for pinning a 597 * pagetable. This means that it walks a pagetable and calls the 598 * callback function on each page it finds making up the page table, 599 * at every level. It walks the entire pagetable, but it only bothers 600 * pinning pte pages which are below limit. In the normal case this 601 * will be STACK_TOP_MAX, but at boot we need to pin up to 602 * FIXADDR_TOP. 603 * 604 * For 32-bit the important bit is that we don't pin beyond there, 605 * because then we start getting into Xen's ptes. 606 * 607 * For 64-bit, we must skip the Xen hole in the middle of the address 608 * space, just after the big x86-64 virtual hole. 609 */ 610 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd, 611 int (*func)(struct mm_struct *mm, struct page *, 612 enum pt_level), 613 unsigned long limit) 614 { 615 int flush = 0; 616 unsigned hole_low, hole_high; 617 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit; 618 unsigned pgdidx, pudidx, pmdidx; 619 620 /* The limit is the last byte to be touched */ 621 limit--; 622 BUG_ON(limit >= FIXADDR_TOP); 623 624 if (xen_feature(XENFEAT_auto_translated_physmap)) 625 return 0; 626 627 /* 628 * 64-bit has a great big hole in the middle of the address 629 * space, which contains the Xen mappings. On 32-bit these 630 * will end up making a zero-sized hole and so is a no-op. 631 */ 632 hole_low = pgd_index(USER_LIMIT); 633 hole_high = pgd_index(PAGE_OFFSET); 634 635 pgdidx_limit = pgd_index(limit); 636 #if PTRS_PER_PUD > 1 637 pudidx_limit = pud_index(limit); 638 #else 639 pudidx_limit = 0; 640 #endif 641 #if PTRS_PER_PMD > 1 642 pmdidx_limit = pmd_index(limit); 643 #else 644 pmdidx_limit = 0; 645 #endif 646 647 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) { 648 pud_t *pud; 649 650 if (pgdidx >= hole_low && pgdidx < hole_high) 651 continue; 652 653 if (!pgd_val(pgd[pgdidx])) 654 continue; 655 656 pud = pud_offset(&pgd[pgdidx], 0); 657 658 if (PTRS_PER_PUD > 1) /* not folded */ 659 flush |= (*func)(mm, virt_to_page(pud), PT_PUD); 660 661 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) { 662 pmd_t *pmd; 663 664 if (pgdidx == pgdidx_limit && 665 pudidx > pudidx_limit) 666 goto out; 667 668 if (pud_none(pud[pudidx])) 669 continue; 670 671 pmd = pmd_offset(&pud[pudidx], 0); 672 673 if (PTRS_PER_PMD > 1) /* not folded */ 674 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD); 675 676 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) { 677 struct page *pte; 678 679 if (pgdidx == pgdidx_limit && 680 pudidx == pudidx_limit && 681 pmdidx > pmdidx_limit) 682 goto out; 683 684 if (pmd_none(pmd[pmdidx])) 685 continue; 686 687 pte = pmd_page(pmd[pmdidx]); 688 flush |= (*func)(mm, pte, PT_PTE); 689 } 690 } 691 } 692 693 out: 694 /* Do the top level last, so that the callbacks can use it as 695 a cue to do final things like tlb flushes. */ 696 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD); 697 698 return flush; 699 } 700 701 static int xen_pgd_walk(struct mm_struct *mm, 702 int (*func)(struct mm_struct *mm, struct page *, 703 enum pt_level), 704 unsigned long limit) 705 { 706 return __xen_pgd_walk(mm, mm->pgd, func, limit); 707 } 708 709 /* If we're using split pte locks, then take the page's lock and 710 return a pointer to it. Otherwise return NULL. */ 711 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm) 712 { 713 spinlock_t *ptl = NULL; 714 715 #if USE_SPLIT_PTE_PTLOCKS 716 ptl = ptlock_ptr(page); 717 spin_lock_nest_lock(ptl, &mm->page_table_lock); 718 #endif 719 720 return ptl; 721 } 722 723 static void xen_pte_unlock(void *v) 724 { 725 spinlock_t *ptl = v; 726 spin_unlock(ptl); 727 } 728 729 static void xen_do_pin(unsigned level, unsigned long pfn) 730 { 731 struct mmuext_op op; 732 733 op.cmd = level; 734 op.arg1.mfn = pfn_to_mfn(pfn); 735 736 xen_extend_mmuext_op(&op); 737 } 738 739 static int xen_pin_page(struct mm_struct *mm, struct page *page, 740 enum pt_level level) 741 { 742 unsigned pgfl = TestSetPagePinned(page); 743 int flush; 744 745 if (pgfl) 746 flush = 0; /* already pinned */ 747 else if (PageHighMem(page)) 748 /* kmaps need flushing if we found an unpinned 749 highpage */ 750 flush = 1; 751 else { 752 void *pt = lowmem_page_address(page); 753 unsigned long pfn = page_to_pfn(page); 754 struct multicall_space mcs = __xen_mc_entry(0); 755 spinlock_t *ptl; 756 757 flush = 0; 758 759 /* 760 * We need to hold the pagetable lock between the time 761 * we make the pagetable RO and when we actually pin 762 * it. If we don't, then other users may come in and 763 * attempt to update the pagetable by writing it, 764 * which will fail because the memory is RO but not 765 * pinned, so Xen won't do the trap'n'emulate. 766 * 767 * If we're using split pte locks, we can't hold the 768 * entire pagetable's worth of locks during the 769 * traverse, because we may wrap the preempt count (8 770 * bits). The solution is to mark RO and pin each PTE 771 * page while holding the lock. This means the number 772 * of locks we end up holding is never more than a 773 * batch size (~32 entries, at present). 774 * 775 * If we're not using split pte locks, we needn't pin 776 * the PTE pages independently, because we're 777 * protected by the overall pagetable lock. 778 */ 779 ptl = NULL; 780 if (level == PT_PTE) 781 ptl = xen_pte_lock(page, mm); 782 783 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, 784 pfn_pte(pfn, PAGE_KERNEL_RO), 785 level == PT_PGD ? UVMF_TLB_FLUSH : 0); 786 787 if (ptl) { 788 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn); 789 790 /* Queue a deferred unlock for when this batch 791 is completed. */ 792 xen_mc_callback(xen_pte_unlock, ptl); 793 } 794 } 795 796 return flush; 797 } 798 799 /* This is called just after a mm has been created, but it has not 800 been used yet. We need to make sure that its pagetable is all 801 read-only, and can be pinned. */ 802 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd) 803 { 804 trace_xen_mmu_pgd_pin(mm, pgd); 805 806 xen_mc_batch(); 807 808 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) { 809 /* re-enable interrupts for flushing */ 810 xen_mc_issue(0); 811 812 kmap_flush_unused(); 813 814 xen_mc_batch(); 815 } 816 817 #ifdef CONFIG_X86_64 818 { 819 pgd_t *user_pgd = xen_get_user_pgd(pgd); 820 821 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd))); 822 823 if (user_pgd) { 824 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD); 825 xen_do_pin(MMUEXT_PIN_L4_TABLE, 826 PFN_DOWN(__pa(user_pgd))); 827 } 828 } 829 #else /* CONFIG_X86_32 */ 830 #ifdef CONFIG_X86_PAE 831 /* Need to make sure unshared kernel PMD is pinnable */ 832 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), 833 PT_PMD); 834 #endif 835 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd))); 836 #endif /* CONFIG_X86_64 */ 837 xen_mc_issue(0); 838 } 839 840 static void xen_pgd_pin(struct mm_struct *mm) 841 { 842 __xen_pgd_pin(mm, mm->pgd); 843 } 844 845 /* 846 * On save, we need to pin all pagetables to make sure they get their 847 * mfns turned into pfns. Search the list for any unpinned pgds and pin 848 * them (unpinned pgds are not currently in use, probably because the 849 * process is under construction or destruction). 850 * 851 * Expected to be called in stop_machine() ("equivalent to taking 852 * every spinlock in the system"), so the locking doesn't really 853 * matter all that much. 854 */ 855 void xen_mm_pin_all(void) 856 { 857 struct page *page; 858 859 spin_lock(&pgd_lock); 860 861 list_for_each_entry(page, &pgd_list, lru) { 862 if (!PagePinned(page)) { 863 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page)); 864 SetPageSavePinned(page); 865 } 866 } 867 868 spin_unlock(&pgd_lock); 869 } 870 871 /* 872 * The init_mm pagetable is really pinned as soon as its created, but 873 * that's before we have page structures to store the bits. So do all 874 * the book-keeping now. 875 */ 876 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page, 877 enum pt_level level) 878 { 879 SetPagePinned(page); 880 return 0; 881 } 882 883 static void __init xen_mark_init_mm_pinned(void) 884 { 885 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP); 886 } 887 888 static int xen_unpin_page(struct mm_struct *mm, struct page *page, 889 enum pt_level level) 890 { 891 unsigned pgfl = TestClearPagePinned(page); 892 893 if (pgfl && !PageHighMem(page)) { 894 void *pt = lowmem_page_address(page); 895 unsigned long pfn = page_to_pfn(page); 896 spinlock_t *ptl = NULL; 897 struct multicall_space mcs; 898 899 /* 900 * Do the converse to pin_page. If we're using split 901 * pte locks, we must be holding the lock for while 902 * the pte page is unpinned but still RO to prevent 903 * concurrent updates from seeing it in this 904 * partially-pinned state. 905 */ 906 if (level == PT_PTE) { 907 ptl = xen_pte_lock(page, mm); 908 909 if (ptl) 910 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn); 911 } 912 913 mcs = __xen_mc_entry(0); 914 915 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, 916 pfn_pte(pfn, PAGE_KERNEL), 917 level == PT_PGD ? UVMF_TLB_FLUSH : 0); 918 919 if (ptl) { 920 /* unlock when batch completed */ 921 xen_mc_callback(xen_pte_unlock, ptl); 922 } 923 } 924 925 return 0; /* never need to flush on unpin */ 926 } 927 928 /* Release a pagetables pages back as normal RW */ 929 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd) 930 { 931 trace_xen_mmu_pgd_unpin(mm, pgd); 932 933 xen_mc_batch(); 934 935 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 936 937 #ifdef CONFIG_X86_64 938 { 939 pgd_t *user_pgd = xen_get_user_pgd(pgd); 940 941 if (user_pgd) { 942 xen_do_pin(MMUEXT_UNPIN_TABLE, 943 PFN_DOWN(__pa(user_pgd))); 944 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD); 945 } 946 } 947 #endif 948 949 #ifdef CONFIG_X86_PAE 950 /* Need to make sure unshared kernel PMD is unpinned */ 951 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), 952 PT_PMD); 953 #endif 954 955 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT); 956 957 xen_mc_issue(0); 958 } 959 960 static void xen_pgd_unpin(struct mm_struct *mm) 961 { 962 __xen_pgd_unpin(mm, mm->pgd); 963 } 964 965 /* 966 * On resume, undo any pinning done at save, so that the rest of the 967 * kernel doesn't see any unexpected pinned pagetables. 968 */ 969 void xen_mm_unpin_all(void) 970 { 971 struct page *page; 972 973 spin_lock(&pgd_lock); 974 975 list_for_each_entry(page, &pgd_list, lru) { 976 if (PageSavePinned(page)) { 977 BUG_ON(!PagePinned(page)); 978 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page)); 979 ClearPageSavePinned(page); 980 } 981 } 982 983 spin_unlock(&pgd_lock); 984 } 985 986 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next) 987 { 988 spin_lock(&next->page_table_lock); 989 xen_pgd_pin(next); 990 spin_unlock(&next->page_table_lock); 991 } 992 993 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) 994 { 995 spin_lock(&mm->page_table_lock); 996 xen_pgd_pin(mm); 997 spin_unlock(&mm->page_table_lock); 998 } 999 1000 1001 #ifdef CONFIG_SMP 1002 /* Another cpu may still have their %cr3 pointing at the pagetable, so 1003 we need to repoint it somewhere else before we can unpin it. */ 1004 static void drop_other_mm_ref(void *info) 1005 { 1006 struct mm_struct *mm = info; 1007 struct mm_struct *active_mm; 1008 1009 active_mm = this_cpu_read(cpu_tlbstate.active_mm); 1010 1011 if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK) 1012 leave_mm(smp_processor_id()); 1013 1014 /* If this cpu still has a stale cr3 reference, then make sure 1015 it has been flushed. */ 1016 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd)) 1017 load_cr3(swapper_pg_dir); 1018 } 1019 1020 static void xen_drop_mm_ref(struct mm_struct *mm) 1021 { 1022 cpumask_var_t mask; 1023 unsigned cpu; 1024 1025 if (current->active_mm == mm) { 1026 if (current->mm == mm) 1027 load_cr3(swapper_pg_dir); 1028 else 1029 leave_mm(smp_processor_id()); 1030 } 1031 1032 /* Get the "official" set of cpus referring to our pagetable. */ 1033 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) { 1034 for_each_online_cpu(cpu) { 1035 if (!cpumask_test_cpu(cpu, mm_cpumask(mm)) 1036 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd)) 1037 continue; 1038 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1); 1039 } 1040 return; 1041 } 1042 cpumask_copy(mask, mm_cpumask(mm)); 1043 1044 /* It's possible that a vcpu may have a stale reference to our 1045 cr3, because its in lazy mode, and it hasn't yet flushed 1046 its set of pending hypercalls yet. In this case, we can 1047 look at its actual current cr3 value, and force it to flush 1048 if needed. */ 1049 for_each_online_cpu(cpu) { 1050 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd)) 1051 cpumask_set_cpu(cpu, mask); 1052 } 1053 1054 if (!cpumask_empty(mask)) 1055 smp_call_function_many(mask, drop_other_mm_ref, mm, 1); 1056 free_cpumask_var(mask); 1057 } 1058 #else 1059 static void xen_drop_mm_ref(struct mm_struct *mm) 1060 { 1061 if (current->active_mm == mm) 1062 load_cr3(swapper_pg_dir); 1063 } 1064 #endif 1065 1066 /* 1067 * While a process runs, Xen pins its pagetables, which means that the 1068 * hypervisor forces it to be read-only, and it controls all updates 1069 * to it. This means that all pagetable updates have to go via the 1070 * hypervisor, which is moderately expensive. 1071 * 1072 * Since we're pulling the pagetable down, we switch to use init_mm, 1073 * unpin old process pagetable and mark it all read-write, which 1074 * allows further operations on it to be simple memory accesses. 1075 * 1076 * The only subtle point is that another CPU may be still using the 1077 * pagetable because of lazy tlb flushing. This means we need need to 1078 * switch all CPUs off this pagetable before we can unpin it. 1079 */ 1080 static void xen_exit_mmap(struct mm_struct *mm) 1081 { 1082 get_cpu(); /* make sure we don't move around */ 1083 xen_drop_mm_ref(mm); 1084 put_cpu(); 1085 1086 spin_lock(&mm->page_table_lock); 1087 1088 /* pgd may not be pinned in the error exit path of execve */ 1089 if (xen_page_pinned(mm->pgd)) 1090 xen_pgd_unpin(mm); 1091 1092 spin_unlock(&mm->page_table_lock); 1093 } 1094 1095 static void xen_post_allocator_init(void); 1096 1097 static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn) 1098 { 1099 struct mmuext_op op; 1100 1101 op.cmd = cmd; 1102 op.arg1.mfn = pfn_to_mfn(pfn); 1103 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) 1104 BUG(); 1105 } 1106 1107 #ifdef CONFIG_X86_64 1108 static void __init xen_cleanhighmap(unsigned long vaddr, 1109 unsigned long vaddr_end) 1110 { 1111 unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1; 1112 pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr); 1113 1114 /* NOTE: The loop is more greedy than the cleanup_highmap variant. 1115 * We include the PMD passed in on _both_ boundaries. */ 1116 for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PAGE_SIZE)); 1117 pmd++, vaddr += PMD_SIZE) { 1118 if (pmd_none(*pmd)) 1119 continue; 1120 if (vaddr < (unsigned long) _text || vaddr > kernel_end) 1121 set_pmd(pmd, __pmd(0)); 1122 } 1123 /* In case we did something silly, we should crash in this function 1124 * instead of somewhere later and be confusing. */ 1125 xen_mc_flush(); 1126 } 1127 1128 /* 1129 * Make a page range writeable and free it. 1130 */ 1131 static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size) 1132 { 1133 void *vaddr = __va(paddr); 1134 void *vaddr_end = vaddr + size; 1135 1136 for (; vaddr < vaddr_end; vaddr += PAGE_SIZE) 1137 make_lowmem_page_readwrite(vaddr); 1138 1139 memblock_free(paddr, size); 1140 } 1141 1142 static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin) 1143 { 1144 unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK; 1145 1146 if (unpin) 1147 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa)); 1148 ClearPagePinned(virt_to_page(__va(pa))); 1149 xen_free_ro_pages(pa, PAGE_SIZE); 1150 } 1151 1152 /* 1153 * Since it is well isolated we can (and since it is perhaps large we should) 1154 * also free the page tables mapping the initial P->M table. 1155 */ 1156 static void __init xen_cleanmfnmap(unsigned long vaddr) 1157 { 1158 unsigned long va = vaddr & PMD_MASK; 1159 unsigned long pa; 1160 pgd_t *pgd = pgd_offset_k(va); 1161 pud_t *pud_page = pud_offset(pgd, 0); 1162 pud_t *pud; 1163 pmd_t *pmd; 1164 pte_t *pte; 1165 unsigned int i; 1166 bool unpin; 1167 1168 unpin = (vaddr == 2 * PGDIR_SIZE); 1169 set_pgd(pgd, __pgd(0)); 1170 do { 1171 pud = pud_page + pud_index(va); 1172 if (pud_none(*pud)) { 1173 va += PUD_SIZE; 1174 } else if (pud_large(*pud)) { 1175 pa = pud_val(*pud) & PHYSICAL_PAGE_MASK; 1176 xen_free_ro_pages(pa, PUD_SIZE); 1177 va += PUD_SIZE; 1178 } else { 1179 pmd = pmd_offset(pud, va); 1180 if (pmd_large(*pmd)) { 1181 pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK; 1182 xen_free_ro_pages(pa, PMD_SIZE); 1183 } else if (!pmd_none(*pmd)) { 1184 pte = pte_offset_kernel(pmd, va); 1185 set_pmd(pmd, __pmd(0)); 1186 for (i = 0; i < PTRS_PER_PTE; ++i) { 1187 if (pte_none(pte[i])) 1188 break; 1189 pa = pte_pfn(pte[i]) << PAGE_SHIFT; 1190 xen_free_ro_pages(pa, PAGE_SIZE); 1191 } 1192 xen_cleanmfnmap_free_pgtbl(pte, unpin); 1193 } 1194 va += PMD_SIZE; 1195 if (pmd_index(va)) 1196 continue; 1197 set_pud(pud, __pud(0)); 1198 xen_cleanmfnmap_free_pgtbl(pmd, unpin); 1199 } 1200 1201 } while (pud_index(va) || pmd_index(va)); 1202 xen_cleanmfnmap_free_pgtbl(pud_page, unpin); 1203 } 1204 1205 static void __init xen_pagetable_p2m_free(void) 1206 { 1207 unsigned long size; 1208 unsigned long addr; 1209 1210 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); 1211 1212 /* No memory or already called. */ 1213 if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list) 1214 return; 1215 1216 /* using __ka address and sticking INVALID_P2M_ENTRY! */ 1217 memset((void *)xen_start_info->mfn_list, 0xff, size); 1218 1219 addr = xen_start_info->mfn_list; 1220 /* 1221 * We could be in __ka space. 1222 * We roundup to the PMD, which means that if anybody at this stage is 1223 * using the __ka address of xen_start_info or 1224 * xen_start_info->shared_info they are in going to crash. Fortunatly 1225 * we have already revectored in xen_setup_kernel_pagetable and in 1226 * xen_setup_shared_info. 1227 */ 1228 size = roundup(size, PMD_SIZE); 1229 1230 if (addr >= __START_KERNEL_map) { 1231 xen_cleanhighmap(addr, addr + size); 1232 size = PAGE_ALIGN(xen_start_info->nr_pages * 1233 sizeof(unsigned long)); 1234 memblock_free(__pa(addr), size); 1235 } else { 1236 xen_cleanmfnmap(addr); 1237 } 1238 } 1239 1240 static void __init xen_pagetable_cleanhighmap(void) 1241 { 1242 unsigned long size; 1243 unsigned long addr; 1244 1245 /* At this stage, cleanup_highmap has already cleaned __ka space 1246 * from _brk_limit way up to the max_pfn_mapped (which is the end of 1247 * the ramdisk). We continue on, erasing PMD entries that point to page 1248 * tables - do note that they are accessible at this stage via __va. 1249 * For good measure we also round up to the PMD - which means that if 1250 * anybody is using __ka address to the initial boot-stack - and try 1251 * to use it - they are going to crash. The xen_start_info has been 1252 * taken care of already in xen_setup_kernel_pagetable. */ 1253 addr = xen_start_info->pt_base; 1254 size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE); 1255 1256 xen_cleanhighmap(addr, addr + size); 1257 xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base)); 1258 #ifdef DEBUG 1259 /* This is superflous and is not neccessary, but you know what 1260 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of 1261 * anything at this stage. */ 1262 xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1); 1263 #endif 1264 } 1265 #endif 1266 1267 static void __init xen_pagetable_p2m_setup(void) 1268 { 1269 if (xen_feature(XENFEAT_auto_translated_physmap)) 1270 return; 1271 1272 xen_vmalloc_p2m_tree(); 1273 1274 #ifdef CONFIG_X86_64 1275 xen_pagetable_p2m_free(); 1276 1277 xen_pagetable_cleanhighmap(); 1278 #endif 1279 /* And revector! Bye bye old array */ 1280 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr; 1281 } 1282 1283 static void __init xen_pagetable_init(void) 1284 { 1285 paging_init(); 1286 xen_post_allocator_init(); 1287 1288 xen_pagetable_p2m_setup(); 1289 1290 /* Allocate and initialize top and mid mfn levels for p2m structure */ 1291 xen_build_mfn_list_list(); 1292 1293 /* Remap memory freed due to conflicts with E820 map */ 1294 if (!xen_feature(XENFEAT_auto_translated_physmap)) 1295 xen_remap_memory(); 1296 1297 xen_setup_shared_info(); 1298 } 1299 static void xen_write_cr2(unsigned long cr2) 1300 { 1301 this_cpu_read(xen_vcpu)->arch.cr2 = cr2; 1302 } 1303 1304 static unsigned long xen_read_cr2(void) 1305 { 1306 return this_cpu_read(xen_vcpu)->arch.cr2; 1307 } 1308 1309 unsigned long xen_read_cr2_direct(void) 1310 { 1311 return this_cpu_read(xen_vcpu_info.arch.cr2); 1312 } 1313 1314 void xen_flush_tlb_all(void) 1315 { 1316 struct mmuext_op *op; 1317 struct multicall_space mcs; 1318 1319 trace_xen_mmu_flush_tlb_all(0); 1320 1321 preempt_disable(); 1322 1323 mcs = xen_mc_entry(sizeof(*op)); 1324 1325 op = mcs.args; 1326 op->cmd = MMUEXT_TLB_FLUSH_ALL; 1327 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1328 1329 xen_mc_issue(PARAVIRT_LAZY_MMU); 1330 1331 preempt_enable(); 1332 } 1333 static void xen_flush_tlb(void) 1334 { 1335 struct mmuext_op *op; 1336 struct multicall_space mcs; 1337 1338 trace_xen_mmu_flush_tlb(0); 1339 1340 preempt_disable(); 1341 1342 mcs = xen_mc_entry(sizeof(*op)); 1343 1344 op = mcs.args; 1345 op->cmd = MMUEXT_TLB_FLUSH_LOCAL; 1346 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1347 1348 xen_mc_issue(PARAVIRT_LAZY_MMU); 1349 1350 preempt_enable(); 1351 } 1352 1353 static void xen_flush_tlb_single(unsigned long addr) 1354 { 1355 struct mmuext_op *op; 1356 struct multicall_space mcs; 1357 1358 trace_xen_mmu_flush_tlb_single(addr); 1359 1360 preempt_disable(); 1361 1362 mcs = xen_mc_entry(sizeof(*op)); 1363 op = mcs.args; 1364 op->cmd = MMUEXT_INVLPG_LOCAL; 1365 op->arg1.linear_addr = addr & PAGE_MASK; 1366 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1367 1368 xen_mc_issue(PARAVIRT_LAZY_MMU); 1369 1370 preempt_enable(); 1371 } 1372 1373 static void xen_flush_tlb_others(const struct cpumask *cpus, 1374 struct mm_struct *mm, unsigned long start, 1375 unsigned long end) 1376 { 1377 struct { 1378 struct mmuext_op op; 1379 #ifdef CONFIG_SMP 1380 DECLARE_BITMAP(mask, num_processors); 1381 #else 1382 DECLARE_BITMAP(mask, NR_CPUS); 1383 #endif 1384 } *args; 1385 struct multicall_space mcs; 1386 1387 trace_xen_mmu_flush_tlb_others(cpus, mm, start, end); 1388 1389 if (cpumask_empty(cpus)) 1390 return; /* nothing to do */ 1391 1392 mcs = xen_mc_entry(sizeof(*args)); 1393 args = mcs.args; 1394 args->op.arg2.vcpumask = to_cpumask(args->mask); 1395 1396 /* Remove us, and any offline CPUS. */ 1397 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask); 1398 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask)); 1399 1400 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; 1401 if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) { 1402 args->op.cmd = MMUEXT_INVLPG_MULTI; 1403 args->op.arg1.linear_addr = start; 1404 } 1405 1406 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); 1407 1408 xen_mc_issue(PARAVIRT_LAZY_MMU); 1409 } 1410 1411 static unsigned long xen_read_cr3(void) 1412 { 1413 return this_cpu_read(xen_cr3); 1414 } 1415 1416 static void set_current_cr3(void *v) 1417 { 1418 this_cpu_write(xen_current_cr3, (unsigned long)v); 1419 } 1420 1421 static void __xen_write_cr3(bool kernel, unsigned long cr3) 1422 { 1423 struct mmuext_op op; 1424 unsigned long mfn; 1425 1426 trace_xen_mmu_write_cr3(kernel, cr3); 1427 1428 if (cr3) 1429 mfn = pfn_to_mfn(PFN_DOWN(cr3)); 1430 else 1431 mfn = 0; 1432 1433 WARN_ON(mfn == 0 && kernel); 1434 1435 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR; 1436 op.arg1.mfn = mfn; 1437 1438 xen_extend_mmuext_op(&op); 1439 1440 if (kernel) { 1441 this_cpu_write(xen_cr3, cr3); 1442 1443 /* Update xen_current_cr3 once the batch has actually 1444 been submitted. */ 1445 xen_mc_callback(set_current_cr3, (void *)cr3); 1446 } 1447 } 1448 static void xen_write_cr3(unsigned long cr3) 1449 { 1450 BUG_ON(preemptible()); 1451 1452 xen_mc_batch(); /* disables interrupts */ 1453 1454 /* Update while interrupts are disabled, so its atomic with 1455 respect to ipis */ 1456 this_cpu_write(xen_cr3, cr3); 1457 1458 __xen_write_cr3(true, cr3); 1459 1460 #ifdef CONFIG_X86_64 1461 { 1462 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3)); 1463 if (user_pgd) 1464 __xen_write_cr3(false, __pa(user_pgd)); 1465 else 1466 __xen_write_cr3(false, 0); 1467 } 1468 #endif 1469 1470 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ 1471 } 1472 1473 #ifdef CONFIG_X86_64 1474 /* 1475 * At the start of the day - when Xen launches a guest, it has already 1476 * built pagetables for the guest. We diligently look over them 1477 * in xen_setup_kernel_pagetable and graft as appropiate them in the 1478 * init_level4_pgt and its friends. Then when we are happy we load 1479 * the new init_level4_pgt - and continue on. 1480 * 1481 * The generic code starts (start_kernel) and 'init_mem_mapping' sets 1482 * up the rest of the pagetables. When it has completed it loads the cr3. 1483 * N.B. that baremetal would start at 'start_kernel' (and the early 1484 * #PF handler would create bootstrap pagetables) - so we are running 1485 * with the same assumptions as what to do when write_cr3 is executed 1486 * at this point. 1487 * 1488 * Since there are no user-page tables at all, we have two variants 1489 * of xen_write_cr3 - the early bootup (this one), and the late one 1490 * (xen_write_cr3). The reason we have to do that is that in 64-bit 1491 * the Linux kernel and user-space are both in ring 3 while the 1492 * hypervisor is in ring 0. 1493 */ 1494 static void __init xen_write_cr3_init(unsigned long cr3) 1495 { 1496 BUG_ON(preemptible()); 1497 1498 xen_mc_batch(); /* disables interrupts */ 1499 1500 /* Update while interrupts are disabled, so its atomic with 1501 respect to ipis */ 1502 this_cpu_write(xen_cr3, cr3); 1503 1504 __xen_write_cr3(true, cr3); 1505 1506 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ 1507 } 1508 #endif 1509 1510 static int xen_pgd_alloc(struct mm_struct *mm) 1511 { 1512 pgd_t *pgd = mm->pgd; 1513 int ret = 0; 1514 1515 BUG_ON(PagePinned(virt_to_page(pgd))); 1516 1517 #ifdef CONFIG_X86_64 1518 { 1519 struct page *page = virt_to_page(pgd); 1520 pgd_t *user_pgd; 1521 1522 BUG_ON(page->private != 0); 1523 1524 ret = -ENOMEM; 1525 1526 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); 1527 page->private = (unsigned long)user_pgd; 1528 1529 if (user_pgd != NULL) { 1530 #ifdef CONFIG_X86_VSYSCALL_EMULATION 1531 user_pgd[pgd_index(VSYSCALL_ADDR)] = 1532 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE); 1533 #endif 1534 ret = 0; 1535 } 1536 1537 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd)))); 1538 } 1539 #endif 1540 1541 return ret; 1542 } 1543 1544 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd) 1545 { 1546 #ifdef CONFIG_X86_64 1547 pgd_t *user_pgd = xen_get_user_pgd(pgd); 1548 1549 if (user_pgd) 1550 free_page((unsigned long)user_pgd); 1551 #endif 1552 } 1553 1554 #ifdef CONFIG_X86_32 1555 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte) 1556 { 1557 /* If there's an existing pte, then don't allow _PAGE_RW to be set */ 1558 if (pte_val_ma(*ptep) & _PAGE_PRESENT) 1559 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) & 1560 pte_val_ma(pte)); 1561 1562 return pte; 1563 } 1564 #else /* CONFIG_X86_64 */ 1565 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte) 1566 { 1567 unsigned long pfn; 1568 1569 if (xen_feature(XENFEAT_writable_page_tables) || 1570 xen_feature(XENFEAT_auto_translated_physmap) || 1571 xen_start_info->mfn_list >= __START_KERNEL_map) 1572 return pte; 1573 1574 /* 1575 * Pages belonging to the initial p2m list mapped outside the default 1576 * address range must be mapped read-only. This region contains the 1577 * page tables for mapping the p2m list, too, and page tables MUST be 1578 * mapped read-only. 1579 */ 1580 pfn = pte_pfn(pte); 1581 if (pfn >= xen_start_info->first_p2m_pfn && 1582 pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames) 1583 pte = __pte_ma(pte_val_ma(pte) & ~_PAGE_RW); 1584 1585 return pte; 1586 } 1587 #endif /* CONFIG_X86_64 */ 1588 1589 /* 1590 * Init-time set_pte while constructing initial pagetables, which 1591 * doesn't allow RO page table pages to be remapped RW. 1592 * 1593 * If there is no MFN for this PFN then this page is initially 1594 * ballooned out so clear the PTE (as in decrease_reservation() in 1595 * drivers/xen/balloon.c). 1596 * 1597 * Many of these PTE updates are done on unpinned and writable pages 1598 * and doing a hypercall for these is unnecessary and expensive. At 1599 * this point it is not possible to tell if a page is pinned or not, 1600 * so always write the PTE directly and rely on Xen trapping and 1601 * emulating any updates as necessary. 1602 */ 1603 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte) 1604 { 1605 if (pte_mfn(pte) != INVALID_P2M_ENTRY) 1606 pte = mask_rw_pte(ptep, pte); 1607 else 1608 pte = __pte_ma(0); 1609 1610 native_set_pte(ptep, pte); 1611 } 1612 1613 /* Early in boot, while setting up the initial pagetable, assume 1614 everything is pinned. */ 1615 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn) 1616 { 1617 #ifdef CONFIG_FLATMEM 1618 BUG_ON(mem_map); /* should only be used early */ 1619 #endif 1620 make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); 1621 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); 1622 } 1623 1624 /* Used for pmd and pud */ 1625 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn) 1626 { 1627 #ifdef CONFIG_FLATMEM 1628 BUG_ON(mem_map); /* should only be used early */ 1629 #endif 1630 make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); 1631 } 1632 1633 /* Early release_pte assumes that all pts are pinned, since there's 1634 only init_mm and anything attached to that is pinned. */ 1635 static void __init xen_release_pte_init(unsigned long pfn) 1636 { 1637 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); 1638 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1639 } 1640 1641 static void __init xen_release_pmd_init(unsigned long pfn) 1642 { 1643 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1644 } 1645 1646 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn) 1647 { 1648 struct multicall_space mcs; 1649 struct mmuext_op *op; 1650 1651 mcs = __xen_mc_entry(sizeof(*op)); 1652 op = mcs.args; 1653 op->cmd = cmd; 1654 op->arg1.mfn = pfn_to_mfn(pfn); 1655 1656 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 1657 } 1658 1659 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot) 1660 { 1661 struct multicall_space mcs; 1662 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT); 1663 1664 mcs = __xen_mc_entry(0); 1665 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr, 1666 pfn_pte(pfn, prot), 0); 1667 } 1668 1669 /* This needs to make sure the new pte page is pinned iff its being 1670 attached to a pinned pagetable. */ 1671 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, 1672 unsigned level) 1673 { 1674 bool pinned = PagePinned(virt_to_page(mm->pgd)); 1675 1676 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned); 1677 1678 if (pinned) { 1679 struct page *page = pfn_to_page(pfn); 1680 1681 SetPagePinned(page); 1682 1683 if (!PageHighMem(page)) { 1684 xen_mc_batch(); 1685 1686 __set_pfn_prot(pfn, PAGE_KERNEL_RO); 1687 1688 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS) 1689 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); 1690 1691 xen_mc_issue(PARAVIRT_LAZY_MMU); 1692 } else { 1693 /* make sure there are no stray mappings of 1694 this page */ 1695 kmap_flush_unused(); 1696 } 1697 } 1698 } 1699 1700 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn) 1701 { 1702 xen_alloc_ptpage(mm, pfn, PT_PTE); 1703 } 1704 1705 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn) 1706 { 1707 xen_alloc_ptpage(mm, pfn, PT_PMD); 1708 } 1709 1710 /* This should never happen until we're OK to use struct page */ 1711 static inline void xen_release_ptpage(unsigned long pfn, unsigned level) 1712 { 1713 struct page *page = pfn_to_page(pfn); 1714 bool pinned = PagePinned(page); 1715 1716 trace_xen_mmu_release_ptpage(pfn, level, pinned); 1717 1718 if (pinned) { 1719 if (!PageHighMem(page)) { 1720 xen_mc_batch(); 1721 1722 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS) 1723 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); 1724 1725 __set_pfn_prot(pfn, PAGE_KERNEL); 1726 1727 xen_mc_issue(PARAVIRT_LAZY_MMU); 1728 } 1729 ClearPagePinned(page); 1730 } 1731 } 1732 1733 static void xen_release_pte(unsigned long pfn) 1734 { 1735 xen_release_ptpage(pfn, PT_PTE); 1736 } 1737 1738 static void xen_release_pmd(unsigned long pfn) 1739 { 1740 xen_release_ptpage(pfn, PT_PMD); 1741 } 1742 1743 #if CONFIG_PGTABLE_LEVELS == 4 1744 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn) 1745 { 1746 xen_alloc_ptpage(mm, pfn, PT_PUD); 1747 } 1748 1749 static void xen_release_pud(unsigned long pfn) 1750 { 1751 xen_release_ptpage(pfn, PT_PUD); 1752 } 1753 #endif 1754 1755 void __init xen_reserve_top(void) 1756 { 1757 #ifdef CONFIG_X86_32 1758 unsigned long top = HYPERVISOR_VIRT_START; 1759 struct xen_platform_parameters pp; 1760 1761 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0) 1762 top = pp.virt_start; 1763 1764 reserve_top_address(-top); 1765 #endif /* CONFIG_X86_32 */ 1766 } 1767 1768 /* 1769 * Like __va(), but returns address in the kernel mapping (which is 1770 * all we have until the physical memory mapping has been set up. 1771 */ 1772 static void * __init __ka(phys_addr_t paddr) 1773 { 1774 #ifdef CONFIG_X86_64 1775 return (void *)(paddr + __START_KERNEL_map); 1776 #else 1777 return __va(paddr); 1778 #endif 1779 } 1780 1781 /* Convert a machine address to physical address */ 1782 static unsigned long __init m2p(phys_addr_t maddr) 1783 { 1784 phys_addr_t paddr; 1785 1786 maddr &= PTE_PFN_MASK; 1787 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT; 1788 1789 return paddr; 1790 } 1791 1792 /* Convert a machine address to kernel virtual */ 1793 static void * __init m2v(phys_addr_t maddr) 1794 { 1795 return __ka(m2p(maddr)); 1796 } 1797 1798 /* Set the page permissions on an identity-mapped pages */ 1799 static void __init set_page_prot_flags(void *addr, pgprot_t prot, 1800 unsigned long flags) 1801 { 1802 unsigned long pfn = __pa(addr) >> PAGE_SHIFT; 1803 pte_t pte = pfn_pte(pfn, prot); 1804 1805 /* For PVH no need to set R/O or R/W to pin them or unpin them. */ 1806 if (xen_feature(XENFEAT_auto_translated_physmap)) 1807 return; 1808 1809 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags)) 1810 BUG(); 1811 } 1812 static void __init set_page_prot(void *addr, pgprot_t prot) 1813 { 1814 return set_page_prot_flags(addr, prot, UVMF_NONE); 1815 } 1816 #ifdef CONFIG_X86_32 1817 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn) 1818 { 1819 unsigned pmdidx, pteidx; 1820 unsigned ident_pte; 1821 unsigned long pfn; 1822 1823 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES, 1824 PAGE_SIZE); 1825 1826 ident_pte = 0; 1827 pfn = 0; 1828 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) { 1829 pte_t *pte_page; 1830 1831 /* Reuse or allocate a page of ptes */ 1832 if (pmd_present(pmd[pmdidx])) 1833 pte_page = m2v(pmd[pmdidx].pmd); 1834 else { 1835 /* Check for free pte pages */ 1836 if (ident_pte == LEVEL1_IDENT_ENTRIES) 1837 break; 1838 1839 pte_page = &level1_ident_pgt[ident_pte]; 1840 ident_pte += PTRS_PER_PTE; 1841 1842 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE); 1843 } 1844 1845 /* Install mappings */ 1846 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) { 1847 pte_t pte; 1848 1849 if (pfn > max_pfn_mapped) 1850 max_pfn_mapped = pfn; 1851 1852 if (!pte_none(pte_page[pteidx])) 1853 continue; 1854 1855 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC); 1856 pte_page[pteidx] = pte; 1857 } 1858 } 1859 1860 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE) 1861 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO); 1862 1863 set_page_prot(pmd, PAGE_KERNEL_RO); 1864 } 1865 #endif 1866 void __init xen_setup_machphys_mapping(void) 1867 { 1868 struct xen_machphys_mapping mapping; 1869 1870 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) { 1871 machine_to_phys_mapping = (unsigned long *)mapping.v_start; 1872 machine_to_phys_nr = mapping.max_mfn + 1; 1873 } else { 1874 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES; 1875 } 1876 #ifdef CONFIG_X86_32 1877 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1)) 1878 < machine_to_phys_mapping); 1879 #endif 1880 } 1881 1882 #ifdef CONFIG_X86_64 1883 static void __init convert_pfn_mfn(void *v) 1884 { 1885 pte_t *pte = v; 1886 int i; 1887 1888 /* All levels are converted the same way, so just treat them 1889 as ptes. */ 1890 for (i = 0; i < PTRS_PER_PTE; i++) 1891 pte[i] = xen_make_pte(pte[i].pte); 1892 } 1893 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end, 1894 unsigned long addr) 1895 { 1896 if (*pt_base == PFN_DOWN(__pa(addr))) { 1897 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); 1898 clear_page((void *)addr); 1899 (*pt_base)++; 1900 } 1901 if (*pt_end == PFN_DOWN(__pa(addr))) { 1902 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); 1903 clear_page((void *)addr); 1904 (*pt_end)--; 1905 } 1906 } 1907 /* 1908 * Set up the initial kernel pagetable. 1909 * 1910 * We can construct this by grafting the Xen provided pagetable into 1911 * head_64.S's preconstructed pagetables. We copy the Xen L2's into 1912 * level2_ident_pgt, and level2_kernel_pgt. This means that only the 1913 * kernel has a physical mapping to start with - but that's enough to 1914 * get __va working. We need to fill in the rest of the physical 1915 * mapping once some sort of allocator has been set up. NOTE: for 1916 * PVH, the page tables are native. 1917 */ 1918 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn) 1919 { 1920 pud_t *l3; 1921 pmd_t *l2; 1922 unsigned long addr[3]; 1923 unsigned long pt_base, pt_end; 1924 unsigned i; 1925 1926 /* max_pfn_mapped is the last pfn mapped in the initial memory 1927 * mappings. Considering that on Xen after the kernel mappings we 1928 * have the mappings of some pages that don't exist in pfn space, we 1929 * set max_pfn_mapped to the last real pfn mapped. */ 1930 if (xen_start_info->mfn_list < __START_KERNEL_map) 1931 max_pfn_mapped = xen_start_info->first_p2m_pfn; 1932 else 1933 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list)); 1934 1935 pt_base = PFN_DOWN(__pa(xen_start_info->pt_base)); 1936 pt_end = pt_base + xen_start_info->nr_pt_frames; 1937 1938 /* Zap identity mapping */ 1939 init_level4_pgt[0] = __pgd(0); 1940 1941 if (!xen_feature(XENFEAT_auto_translated_physmap)) { 1942 /* Pre-constructed entries are in pfn, so convert to mfn */ 1943 /* L4[272] -> level3_ident_pgt 1944 * L4[511] -> level3_kernel_pgt */ 1945 convert_pfn_mfn(init_level4_pgt); 1946 1947 /* L3_i[0] -> level2_ident_pgt */ 1948 convert_pfn_mfn(level3_ident_pgt); 1949 /* L3_k[510] -> level2_kernel_pgt 1950 * L3_k[511] -> level2_fixmap_pgt */ 1951 convert_pfn_mfn(level3_kernel_pgt); 1952 1953 /* L3_k[511][506] -> level1_fixmap_pgt */ 1954 convert_pfn_mfn(level2_fixmap_pgt); 1955 } 1956 /* We get [511][511] and have Xen's version of level2_kernel_pgt */ 1957 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd); 1958 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud); 1959 1960 addr[0] = (unsigned long)pgd; 1961 addr[1] = (unsigned long)l3; 1962 addr[2] = (unsigned long)l2; 1963 /* Graft it onto L4[272][0]. Note that we creating an aliasing problem: 1964 * Both L4[272][0] and L4[511][510] have entries that point to the same 1965 * L2 (PMD) tables. Meaning that if you modify it in __va space 1966 * it will be also modified in the __ka space! (But if you just 1967 * modify the PMD table to point to other PTE's or none, then you 1968 * are OK - which is what cleanup_highmap does) */ 1969 copy_page(level2_ident_pgt, l2); 1970 /* Graft it onto L4[511][510] */ 1971 copy_page(level2_kernel_pgt, l2); 1972 1973 /* Copy the initial P->M table mappings if necessary. */ 1974 i = pgd_index(xen_start_info->mfn_list); 1975 if (i && i < pgd_index(__START_KERNEL_map)) 1976 init_level4_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i]; 1977 1978 if (!xen_feature(XENFEAT_auto_translated_physmap)) { 1979 /* Make pagetable pieces RO */ 1980 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO); 1981 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO); 1982 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO); 1983 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO); 1984 set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO); 1985 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); 1986 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO); 1987 set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO); 1988 1989 /* Pin down new L4 */ 1990 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, 1991 PFN_DOWN(__pa_symbol(init_level4_pgt))); 1992 1993 /* Unpin Xen-provided one */ 1994 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 1995 1996 /* 1997 * At this stage there can be no user pgd, and no page 1998 * structure to attach it to, so make sure we just set kernel 1999 * pgd. 2000 */ 2001 xen_mc_batch(); 2002 __xen_write_cr3(true, __pa(init_level4_pgt)); 2003 xen_mc_issue(PARAVIRT_LAZY_CPU); 2004 } else 2005 native_write_cr3(__pa(init_level4_pgt)); 2006 2007 /* We can't that easily rip out L3 and L2, as the Xen pagetables are 2008 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for 2009 * the initial domain. For guests using the toolstack, they are in: 2010 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only 2011 * rip out the [L4] (pgd), but for guests we shave off three pages. 2012 */ 2013 for (i = 0; i < ARRAY_SIZE(addr); i++) 2014 check_pt_base(&pt_base, &pt_end, addr[i]); 2015 2016 /* Our (by three pages) smaller Xen pagetable that we are using */ 2017 xen_pt_base = PFN_PHYS(pt_base); 2018 xen_pt_size = (pt_end - pt_base) * PAGE_SIZE; 2019 memblock_reserve(xen_pt_base, xen_pt_size); 2020 2021 /* Revector the xen_start_info */ 2022 xen_start_info = (struct start_info *)__va(__pa(xen_start_info)); 2023 } 2024 2025 /* 2026 * Read a value from a physical address. 2027 */ 2028 static unsigned long __init xen_read_phys_ulong(phys_addr_t addr) 2029 { 2030 unsigned long *vaddr; 2031 unsigned long val; 2032 2033 vaddr = early_memremap_ro(addr, sizeof(val)); 2034 val = *vaddr; 2035 early_memunmap(vaddr, sizeof(val)); 2036 return val; 2037 } 2038 2039 /* 2040 * Translate a virtual address to a physical one without relying on mapped 2041 * page tables. 2042 */ 2043 static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr) 2044 { 2045 phys_addr_t pa; 2046 pgd_t pgd; 2047 pud_t pud; 2048 pmd_t pmd; 2049 pte_t pte; 2050 2051 pa = read_cr3(); 2052 pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) * 2053 sizeof(pgd))); 2054 if (!pgd_present(pgd)) 2055 return 0; 2056 2057 pa = pgd_val(pgd) & PTE_PFN_MASK; 2058 pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) * 2059 sizeof(pud))); 2060 if (!pud_present(pud)) 2061 return 0; 2062 pa = pud_pfn(pud) << PAGE_SHIFT; 2063 if (pud_large(pud)) 2064 return pa + (vaddr & ~PUD_MASK); 2065 2066 pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) * 2067 sizeof(pmd))); 2068 if (!pmd_present(pmd)) 2069 return 0; 2070 pa = pmd_pfn(pmd) << PAGE_SHIFT; 2071 if (pmd_large(pmd)) 2072 return pa + (vaddr & ~PMD_MASK); 2073 2074 pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) * 2075 sizeof(pte))); 2076 if (!pte_present(pte)) 2077 return 0; 2078 pa = pte_pfn(pte) << PAGE_SHIFT; 2079 2080 return pa | (vaddr & ~PAGE_MASK); 2081 } 2082 2083 /* 2084 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to 2085 * this area. 2086 */ 2087 void __init xen_relocate_p2m(void) 2088 { 2089 phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys; 2090 unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end; 2091 int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud; 2092 pte_t *pt; 2093 pmd_t *pmd; 2094 pud_t *pud; 2095 pgd_t *pgd; 2096 unsigned long *new_p2m; 2097 2098 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); 2099 n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT; 2100 n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT; 2101 n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT; 2102 n_pud = roundup(size, PGDIR_SIZE) >> PGDIR_SHIFT; 2103 n_frames = n_pte + n_pt + n_pmd + n_pud; 2104 2105 new_area = xen_find_free_area(PFN_PHYS(n_frames)); 2106 if (!new_area) { 2107 xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n"); 2108 BUG(); 2109 } 2110 2111 /* 2112 * Setup the page tables for addressing the new p2m list. 2113 * We have asked the hypervisor to map the p2m list at the user address 2114 * PUD_SIZE. It may have done so, or it may have used a kernel space 2115 * address depending on the Xen version. 2116 * To avoid any possible virtual address collision, just use 2117 * 2 * PUD_SIZE for the new area. 2118 */ 2119 pud_phys = new_area; 2120 pmd_phys = pud_phys + PFN_PHYS(n_pud); 2121 pt_phys = pmd_phys + PFN_PHYS(n_pmd); 2122 p2m_pfn = PFN_DOWN(pt_phys) + n_pt; 2123 2124 pgd = __va(read_cr3()); 2125 new_p2m = (unsigned long *)(2 * PGDIR_SIZE); 2126 for (idx_pud = 0; idx_pud < n_pud; idx_pud++) { 2127 pud = early_memremap(pud_phys, PAGE_SIZE); 2128 clear_page(pud); 2129 for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD); 2130 idx_pmd++) { 2131 pmd = early_memremap(pmd_phys, PAGE_SIZE); 2132 clear_page(pmd); 2133 for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD); 2134 idx_pt++) { 2135 pt = early_memremap(pt_phys, PAGE_SIZE); 2136 clear_page(pt); 2137 for (idx_pte = 0; 2138 idx_pte < min(n_pte, PTRS_PER_PTE); 2139 idx_pte++) { 2140 set_pte(pt + idx_pte, 2141 pfn_pte(p2m_pfn, PAGE_KERNEL)); 2142 p2m_pfn++; 2143 } 2144 n_pte -= PTRS_PER_PTE; 2145 early_memunmap(pt, PAGE_SIZE); 2146 make_lowmem_page_readonly(__va(pt_phys)); 2147 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, 2148 PFN_DOWN(pt_phys)); 2149 set_pmd(pmd + idx_pt, 2150 __pmd(_PAGE_TABLE | pt_phys)); 2151 pt_phys += PAGE_SIZE; 2152 } 2153 n_pt -= PTRS_PER_PMD; 2154 early_memunmap(pmd, PAGE_SIZE); 2155 make_lowmem_page_readonly(__va(pmd_phys)); 2156 pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE, 2157 PFN_DOWN(pmd_phys)); 2158 set_pud(pud + idx_pmd, __pud(_PAGE_TABLE | pmd_phys)); 2159 pmd_phys += PAGE_SIZE; 2160 } 2161 n_pmd -= PTRS_PER_PUD; 2162 early_memunmap(pud, PAGE_SIZE); 2163 make_lowmem_page_readonly(__va(pud_phys)); 2164 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys)); 2165 set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys)); 2166 pud_phys += PAGE_SIZE; 2167 } 2168 2169 /* Now copy the old p2m info to the new area. */ 2170 memcpy(new_p2m, xen_p2m_addr, size); 2171 xen_p2m_addr = new_p2m; 2172 2173 /* Release the old p2m list and set new list info. */ 2174 p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list)); 2175 BUG_ON(!p2m_pfn); 2176 p2m_pfn_end = p2m_pfn + PFN_DOWN(size); 2177 2178 if (xen_start_info->mfn_list < __START_KERNEL_map) { 2179 pfn = xen_start_info->first_p2m_pfn; 2180 pfn_end = xen_start_info->first_p2m_pfn + 2181 xen_start_info->nr_p2m_frames; 2182 set_pgd(pgd + 1, __pgd(0)); 2183 } else { 2184 pfn = p2m_pfn; 2185 pfn_end = p2m_pfn_end; 2186 } 2187 2188 memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn)); 2189 while (pfn < pfn_end) { 2190 if (pfn == p2m_pfn) { 2191 pfn = p2m_pfn_end; 2192 continue; 2193 } 2194 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 2195 pfn++; 2196 } 2197 2198 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr; 2199 xen_start_info->first_p2m_pfn = PFN_DOWN(new_area); 2200 xen_start_info->nr_p2m_frames = n_frames; 2201 } 2202 2203 #else /* !CONFIG_X86_64 */ 2204 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD); 2205 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD); 2206 2207 static void __init xen_write_cr3_init(unsigned long cr3) 2208 { 2209 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir)); 2210 2211 BUG_ON(read_cr3() != __pa(initial_page_table)); 2212 BUG_ON(cr3 != __pa(swapper_pg_dir)); 2213 2214 /* 2215 * We are switching to swapper_pg_dir for the first time (from 2216 * initial_page_table) and therefore need to mark that page 2217 * read-only and then pin it. 2218 * 2219 * Xen disallows sharing of kernel PMDs for PAE 2220 * guests. Therefore we must copy the kernel PMD from 2221 * initial_page_table into a new kernel PMD to be used in 2222 * swapper_pg_dir. 2223 */ 2224 swapper_kernel_pmd = 2225 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); 2226 copy_page(swapper_kernel_pmd, initial_kernel_pmd); 2227 swapper_pg_dir[KERNEL_PGD_BOUNDARY] = 2228 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT); 2229 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO); 2230 2231 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO); 2232 xen_write_cr3(cr3); 2233 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn); 2234 2235 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, 2236 PFN_DOWN(__pa(initial_page_table))); 2237 set_page_prot(initial_page_table, PAGE_KERNEL); 2238 set_page_prot(initial_kernel_pmd, PAGE_KERNEL); 2239 2240 pv_mmu_ops.write_cr3 = &xen_write_cr3; 2241 } 2242 2243 /* 2244 * For 32 bit domains xen_start_info->pt_base is the pgd address which might be 2245 * not the first page table in the page table pool. 2246 * Iterate through the initial page tables to find the real page table base. 2247 */ 2248 static phys_addr_t xen_find_pt_base(pmd_t *pmd) 2249 { 2250 phys_addr_t pt_base, paddr; 2251 unsigned pmdidx; 2252 2253 pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd)); 2254 2255 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) 2256 if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) { 2257 paddr = m2p(pmd[pmdidx].pmd); 2258 pt_base = min(pt_base, paddr); 2259 } 2260 2261 return pt_base; 2262 } 2263 2264 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn) 2265 { 2266 pmd_t *kernel_pmd; 2267 2268 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd); 2269 2270 xen_pt_base = xen_find_pt_base(kernel_pmd); 2271 xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE; 2272 2273 initial_kernel_pmd = 2274 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); 2275 2276 max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024); 2277 2278 copy_page(initial_kernel_pmd, kernel_pmd); 2279 2280 xen_map_identity_early(initial_kernel_pmd, max_pfn); 2281 2282 copy_page(initial_page_table, pgd); 2283 initial_page_table[KERNEL_PGD_BOUNDARY] = 2284 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT); 2285 2286 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO); 2287 set_page_prot(initial_page_table, PAGE_KERNEL_RO); 2288 set_page_prot(empty_zero_page, PAGE_KERNEL_RO); 2289 2290 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 2291 2292 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, 2293 PFN_DOWN(__pa(initial_page_table))); 2294 xen_write_cr3(__pa(initial_page_table)); 2295 2296 memblock_reserve(xen_pt_base, xen_pt_size); 2297 } 2298 #endif /* CONFIG_X86_64 */ 2299 2300 void __init xen_reserve_special_pages(void) 2301 { 2302 phys_addr_t paddr; 2303 2304 memblock_reserve(__pa(xen_start_info), PAGE_SIZE); 2305 if (xen_start_info->store_mfn) { 2306 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn)); 2307 memblock_reserve(paddr, PAGE_SIZE); 2308 } 2309 if (!xen_initial_domain()) { 2310 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn)); 2311 memblock_reserve(paddr, PAGE_SIZE); 2312 } 2313 } 2314 2315 void __init xen_pt_check_e820(void) 2316 { 2317 if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) { 2318 xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n"); 2319 BUG(); 2320 } 2321 } 2322 2323 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss; 2324 2325 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot) 2326 { 2327 pte_t pte; 2328 2329 phys >>= PAGE_SHIFT; 2330 2331 switch (idx) { 2332 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN: 2333 case FIX_RO_IDT: 2334 #ifdef CONFIG_X86_32 2335 case FIX_WP_TEST: 2336 # ifdef CONFIG_HIGHMEM 2337 case FIX_KMAP_BEGIN ... FIX_KMAP_END: 2338 # endif 2339 #elif defined(CONFIG_X86_VSYSCALL_EMULATION) 2340 case VSYSCALL_PAGE: 2341 #endif 2342 case FIX_TEXT_POKE0: 2343 case FIX_TEXT_POKE1: 2344 /* All local page mappings */ 2345 pte = pfn_pte(phys, prot); 2346 break; 2347 2348 #ifdef CONFIG_X86_LOCAL_APIC 2349 case FIX_APIC_BASE: /* maps dummy local APIC */ 2350 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); 2351 break; 2352 #endif 2353 2354 #ifdef CONFIG_X86_IO_APIC 2355 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END: 2356 /* 2357 * We just don't map the IO APIC - all access is via 2358 * hypercalls. Keep the address in the pte for reference. 2359 */ 2360 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); 2361 break; 2362 #endif 2363 2364 case FIX_PARAVIRT_BOOTMAP: 2365 /* This is an MFN, but it isn't an IO mapping from the 2366 IO domain */ 2367 pte = mfn_pte(phys, prot); 2368 break; 2369 2370 default: 2371 /* By default, set_fixmap is used for hardware mappings */ 2372 pte = mfn_pte(phys, prot); 2373 break; 2374 } 2375 2376 __native_set_fixmap(idx, pte); 2377 2378 #ifdef CONFIG_X86_VSYSCALL_EMULATION 2379 /* Replicate changes to map the vsyscall page into the user 2380 pagetable vsyscall mapping. */ 2381 if (idx == VSYSCALL_PAGE) { 2382 unsigned long vaddr = __fix_to_virt(idx); 2383 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte); 2384 } 2385 #endif 2386 } 2387 2388 static void __init xen_post_allocator_init(void) 2389 { 2390 if (xen_feature(XENFEAT_auto_translated_physmap)) 2391 return; 2392 2393 pv_mmu_ops.set_pte = xen_set_pte; 2394 pv_mmu_ops.set_pmd = xen_set_pmd; 2395 pv_mmu_ops.set_pud = xen_set_pud; 2396 #if CONFIG_PGTABLE_LEVELS == 4 2397 pv_mmu_ops.set_pgd = xen_set_pgd; 2398 #endif 2399 2400 /* This will work as long as patching hasn't happened yet 2401 (which it hasn't) */ 2402 pv_mmu_ops.alloc_pte = xen_alloc_pte; 2403 pv_mmu_ops.alloc_pmd = xen_alloc_pmd; 2404 pv_mmu_ops.release_pte = xen_release_pte; 2405 pv_mmu_ops.release_pmd = xen_release_pmd; 2406 #if CONFIG_PGTABLE_LEVELS == 4 2407 pv_mmu_ops.alloc_pud = xen_alloc_pud; 2408 pv_mmu_ops.release_pud = xen_release_pud; 2409 #endif 2410 2411 #ifdef CONFIG_X86_64 2412 pv_mmu_ops.write_cr3 = &xen_write_cr3; 2413 SetPagePinned(virt_to_page(level3_user_vsyscall)); 2414 #endif 2415 xen_mark_init_mm_pinned(); 2416 } 2417 2418 static void xen_leave_lazy_mmu(void) 2419 { 2420 preempt_disable(); 2421 xen_mc_flush(); 2422 paravirt_leave_lazy_mmu(); 2423 preempt_enable(); 2424 } 2425 2426 static const struct pv_mmu_ops xen_mmu_ops __initconst = { 2427 .read_cr2 = xen_read_cr2, 2428 .write_cr2 = xen_write_cr2, 2429 2430 .read_cr3 = xen_read_cr3, 2431 .write_cr3 = xen_write_cr3_init, 2432 2433 .flush_tlb_user = xen_flush_tlb, 2434 .flush_tlb_kernel = xen_flush_tlb, 2435 .flush_tlb_single = xen_flush_tlb_single, 2436 .flush_tlb_others = xen_flush_tlb_others, 2437 2438 .pte_update = paravirt_nop, 2439 .pte_update_defer = paravirt_nop, 2440 2441 .pgd_alloc = xen_pgd_alloc, 2442 .pgd_free = xen_pgd_free, 2443 2444 .alloc_pte = xen_alloc_pte_init, 2445 .release_pte = xen_release_pte_init, 2446 .alloc_pmd = xen_alloc_pmd_init, 2447 .release_pmd = xen_release_pmd_init, 2448 2449 .set_pte = xen_set_pte_init, 2450 .set_pte_at = xen_set_pte_at, 2451 .set_pmd = xen_set_pmd_hyper, 2452 2453 .ptep_modify_prot_start = __ptep_modify_prot_start, 2454 .ptep_modify_prot_commit = __ptep_modify_prot_commit, 2455 2456 .pte_val = PV_CALLEE_SAVE(xen_pte_val), 2457 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val), 2458 2459 .make_pte = PV_CALLEE_SAVE(xen_make_pte), 2460 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd), 2461 2462 #ifdef CONFIG_X86_PAE 2463 .set_pte_atomic = xen_set_pte_atomic, 2464 .pte_clear = xen_pte_clear, 2465 .pmd_clear = xen_pmd_clear, 2466 #endif /* CONFIG_X86_PAE */ 2467 .set_pud = xen_set_pud_hyper, 2468 2469 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd), 2470 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val), 2471 2472 #if CONFIG_PGTABLE_LEVELS == 4 2473 .pud_val = PV_CALLEE_SAVE(xen_pud_val), 2474 .make_pud = PV_CALLEE_SAVE(xen_make_pud), 2475 .set_pgd = xen_set_pgd_hyper, 2476 2477 .alloc_pud = xen_alloc_pmd_init, 2478 .release_pud = xen_release_pmd_init, 2479 #endif /* CONFIG_PGTABLE_LEVELS == 4 */ 2480 2481 .activate_mm = xen_activate_mm, 2482 .dup_mmap = xen_dup_mmap, 2483 .exit_mmap = xen_exit_mmap, 2484 2485 .lazy_mode = { 2486 .enter = paravirt_enter_lazy_mmu, 2487 .leave = xen_leave_lazy_mmu, 2488 .flush = paravirt_flush_lazy_mmu, 2489 }, 2490 2491 .set_fixmap = xen_set_fixmap, 2492 }; 2493 2494 void __init xen_init_mmu_ops(void) 2495 { 2496 x86_init.paging.pagetable_init = xen_pagetable_init; 2497 2498 if (xen_feature(XENFEAT_auto_translated_physmap)) 2499 return; 2500 2501 pv_mmu_ops = xen_mmu_ops; 2502 2503 memset(dummy_mapping, 0xff, PAGE_SIZE); 2504 } 2505 2506 /* Protected by xen_reservation_lock. */ 2507 #define MAX_CONTIG_ORDER 9 /* 2MB */ 2508 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER]; 2509 2510 #define VOID_PTE (mfn_pte(0, __pgprot(0))) 2511 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order, 2512 unsigned long *in_frames, 2513 unsigned long *out_frames) 2514 { 2515 int i; 2516 struct multicall_space mcs; 2517 2518 xen_mc_batch(); 2519 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) { 2520 mcs = __xen_mc_entry(0); 2521 2522 if (in_frames) 2523 in_frames[i] = virt_to_mfn(vaddr); 2524 2525 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0); 2526 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY); 2527 2528 if (out_frames) 2529 out_frames[i] = virt_to_pfn(vaddr); 2530 } 2531 xen_mc_issue(0); 2532 } 2533 2534 /* 2535 * Update the pfn-to-mfn mappings for a virtual address range, either to 2536 * point to an array of mfns, or contiguously from a single starting 2537 * mfn. 2538 */ 2539 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order, 2540 unsigned long *mfns, 2541 unsigned long first_mfn) 2542 { 2543 unsigned i, limit; 2544 unsigned long mfn; 2545 2546 xen_mc_batch(); 2547 2548 limit = 1u << order; 2549 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) { 2550 struct multicall_space mcs; 2551 unsigned flags; 2552 2553 mcs = __xen_mc_entry(0); 2554 if (mfns) 2555 mfn = mfns[i]; 2556 else 2557 mfn = first_mfn + i; 2558 2559 if (i < (limit - 1)) 2560 flags = 0; 2561 else { 2562 if (order == 0) 2563 flags = UVMF_INVLPG | UVMF_ALL; 2564 else 2565 flags = UVMF_TLB_FLUSH | UVMF_ALL; 2566 } 2567 2568 MULTI_update_va_mapping(mcs.mc, vaddr, 2569 mfn_pte(mfn, PAGE_KERNEL), flags); 2570 2571 set_phys_to_machine(virt_to_pfn(vaddr), mfn); 2572 } 2573 2574 xen_mc_issue(0); 2575 } 2576 2577 /* 2578 * Perform the hypercall to exchange a region of our pfns to point to 2579 * memory with the required contiguous alignment. Takes the pfns as 2580 * input, and populates mfns as output. 2581 * 2582 * Returns a success code indicating whether the hypervisor was able to 2583 * satisfy the request or not. 2584 */ 2585 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in, 2586 unsigned long *pfns_in, 2587 unsigned long extents_out, 2588 unsigned int order_out, 2589 unsigned long *mfns_out, 2590 unsigned int address_bits) 2591 { 2592 long rc; 2593 int success; 2594 2595 struct xen_memory_exchange exchange = { 2596 .in = { 2597 .nr_extents = extents_in, 2598 .extent_order = order_in, 2599 .extent_start = pfns_in, 2600 .domid = DOMID_SELF 2601 }, 2602 .out = { 2603 .nr_extents = extents_out, 2604 .extent_order = order_out, 2605 .extent_start = mfns_out, 2606 .address_bits = address_bits, 2607 .domid = DOMID_SELF 2608 } 2609 }; 2610 2611 BUG_ON(extents_in << order_in != extents_out << order_out); 2612 2613 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange); 2614 success = (exchange.nr_exchanged == extents_in); 2615 2616 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0))); 2617 BUG_ON(success && (rc != 0)); 2618 2619 return success; 2620 } 2621 2622 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order, 2623 unsigned int address_bits, 2624 dma_addr_t *dma_handle) 2625 { 2626 unsigned long *in_frames = discontig_frames, out_frame; 2627 unsigned long flags; 2628 int success; 2629 unsigned long vstart = (unsigned long)phys_to_virt(pstart); 2630 2631 /* 2632 * Currently an auto-translated guest will not perform I/O, nor will 2633 * it require PAE page directories below 4GB. Therefore any calls to 2634 * this function are redundant and can be ignored. 2635 */ 2636 2637 if (xen_feature(XENFEAT_auto_translated_physmap)) 2638 return 0; 2639 2640 if (unlikely(order > MAX_CONTIG_ORDER)) 2641 return -ENOMEM; 2642 2643 memset((void *) vstart, 0, PAGE_SIZE << order); 2644 2645 spin_lock_irqsave(&xen_reservation_lock, flags); 2646 2647 /* 1. Zap current PTEs, remembering MFNs. */ 2648 xen_zap_pfn_range(vstart, order, in_frames, NULL); 2649 2650 /* 2. Get a new contiguous memory extent. */ 2651 out_frame = virt_to_pfn(vstart); 2652 success = xen_exchange_memory(1UL << order, 0, in_frames, 2653 1, order, &out_frame, 2654 address_bits); 2655 2656 /* 3. Map the new extent in place of old pages. */ 2657 if (success) 2658 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame); 2659 else 2660 xen_remap_exchanged_ptes(vstart, order, in_frames, 0); 2661 2662 spin_unlock_irqrestore(&xen_reservation_lock, flags); 2663 2664 *dma_handle = virt_to_machine(vstart).maddr; 2665 return success ? 0 : -ENOMEM; 2666 } 2667 EXPORT_SYMBOL_GPL(xen_create_contiguous_region); 2668 2669 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order) 2670 { 2671 unsigned long *out_frames = discontig_frames, in_frame; 2672 unsigned long flags; 2673 int success; 2674 unsigned long vstart; 2675 2676 if (xen_feature(XENFEAT_auto_translated_physmap)) 2677 return; 2678 2679 if (unlikely(order > MAX_CONTIG_ORDER)) 2680 return; 2681 2682 vstart = (unsigned long)phys_to_virt(pstart); 2683 memset((void *) vstart, 0, PAGE_SIZE << order); 2684 2685 spin_lock_irqsave(&xen_reservation_lock, flags); 2686 2687 /* 1. Find start MFN of contiguous extent. */ 2688 in_frame = virt_to_mfn(vstart); 2689 2690 /* 2. Zap current PTEs. */ 2691 xen_zap_pfn_range(vstart, order, NULL, out_frames); 2692 2693 /* 3. Do the exchange for non-contiguous MFNs. */ 2694 success = xen_exchange_memory(1, order, &in_frame, 1UL << order, 2695 0, out_frames, 0); 2696 2697 /* 4. Map new pages in place of old pages. */ 2698 if (success) 2699 xen_remap_exchanged_ptes(vstart, order, out_frames, 0); 2700 else 2701 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame); 2702 2703 spin_unlock_irqrestore(&xen_reservation_lock, flags); 2704 } 2705 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region); 2706 2707 #ifdef CONFIG_XEN_PVHVM 2708 #ifdef CONFIG_PROC_VMCORE 2709 /* 2710 * This function is used in two contexts: 2711 * - the kdump kernel has to check whether a pfn of the crashed kernel 2712 * was a ballooned page. vmcore is using this function to decide 2713 * whether to access a pfn of the crashed kernel. 2714 * - the kexec kernel has to check whether a pfn was ballooned by the 2715 * previous kernel. If the pfn is ballooned, handle it properly. 2716 * Returns 0 if the pfn is not backed by a RAM page, the caller may 2717 * handle the pfn special in this case. 2718 */ 2719 static int xen_oldmem_pfn_is_ram(unsigned long pfn) 2720 { 2721 struct xen_hvm_get_mem_type a = { 2722 .domid = DOMID_SELF, 2723 .pfn = pfn, 2724 }; 2725 int ram; 2726 2727 if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a)) 2728 return -ENXIO; 2729 2730 switch (a.mem_type) { 2731 case HVMMEM_mmio_dm: 2732 ram = 0; 2733 break; 2734 case HVMMEM_ram_rw: 2735 case HVMMEM_ram_ro: 2736 default: 2737 ram = 1; 2738 break; 2739 } 2740 2741 return ram; 2742 } 2743 #endif 2744 2745 static void xen_hvm_exit_mmap(struct mm_struct *mm) 2746 { 2747 struct xen_hvm_pagetable_dying a; 2748 int rc; 2749 2750 a.domid = DOMID_SELF; 2751 a.gpa = __pa(mm->pgd); 2752 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a); 2753 WARN_ON_ONCE(rc < 0); 2754 } 2755 2756 static int is_pagetable_dying_supported(void) 2757 { 2758 struct xen_hvm_pagetable_dying a; 2759 int rc = 0; 2760 2761 a.domid = DOMID_SELF; 2762 a.gpa = 0x00; 2763 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a); 2764 if (rc < 0) { 2765 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n"); 2766 return 0; 2767 } 2768 return 1; 2769 } 2770 2771 void __init xen_hvm_init_mmu_ops(void) 2772 { 2773 if (is_pagetable_dying_supported()) 2774 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap; 2775 #ifdef CONFIG_PROC_VMCORE 2776 register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram); 2777 #endif 2778 } 2779 #endif 2780 2781 #define REMAP_BATCH_SIZE 16 2782 2783 struct remap_data { 2784 xen_pfn_t *mfn; 2785 bool contiguous; 2786 pgprot_t prot; 2787 struct mmu_update *mmu_update; 2788 }; 2789 2790 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token, 2791 unsigned long addr, void *data) 2792 { 2793 struct remap_data *rmd = data; 2794 pte_t pte = pte_mkspecial(mfn_pte(*rmd->mfn, rmd->prot)); 2795 2796 /* If we have a contigious range, just update the mfn itself, 2797 else update pointer to be "next mfn". */ 2798 if (rmd->contiguous) 2799 (*rmd->mfn)++; 2800 else 2801 rmd->mfn++; 2802 2803 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr; 2804 rmd->mmu_update->val = pte_val_ma(pte); 2805 rmd->mmu_update++; 2806 2807 return 0; 2808 } 2809 2810 static int do_remap_gfn(struct vm_area_struct *vma, 2811 unsigned long addr, 2812 xen_pfn_t *gfn, int nr, 2813 int *err_ptr, pgprot_t prot, 2814 unsigned domid, 2815 struct page **pages) 2816 { 2817 int err = 0; 2818 struct remap_data rmd; 2819 struct mmu_update mmu_update[REMAP_BATCH_SIZE]; 2820 unsigned long range; 2821 int mapped = 0; 2822 2823 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO))); 2824 2825 if (xen_feature(XENFEAT_auto_translated_physmap)) { 2826 #ifdef CONFIG_XEN_PVH 2827 /* We need to update the local page tables and the xen HAP */ 2828 return xen_xlate_remap_gfn_array(vma, addr, gfn, nr, err_ptr, 2829 prot, domid, pages); 2830 #else 2831 return -EINVAL; 2832 #endif 2833 } 2834 2835 rmd.mfn = gfn; 2836 rmd.prot = prot; 2837 /* We use the err_ptr to indicate if there we are doing a contigious 2838 * mapping or a discontigious mapping. */ 2839 rmd.contiguous = !err_ptr; 2840 2841 while (nr) { 2842 int index = 0; 2843 int done = 0; 2844 int batch = min(REMAP_BATCH_SIZE, nr); 2845 int batch_left = batch; 2846 range = (unsigned long)batch << PAGE_SHIFT; 2847 2848 rmd.mmu_update = mmu_update; 2849 err = apply_to_page_range(vma->vm_mm, addr, range, 2850 remap_area_mfn_pte_fn, &rmd); 2851 if (err) 2852 goto out; 2853 2854 /* We record the error for each page that gives an error, but 2855 * continue mapping until the whole set is done */ 2856 do { 2857 int i; 2858 2859 err = HYPERVISOR_mmu_update(&mmu_update[index], 2860 batch_left, &done, domid); 2861 2862 /* 2863 * @err_ptr may be the same buffer as @gfn, so 2864 * only clear it after each chunk of @gfn is 2865 * used. 2866 */ 2867 if (err_ptr) { 2868 for (i = index; i < index + done; i++) 2869 err_ptr[i] = 0; 2870 } 2871 if (err < 0) { 2872 if (!err_ptr) 2873 goto out; 2874 err_ptr[i] = err; 2875 done++; /* Skip failed frame. */ 2876 } else 2877 mapped += done; 2878 batch_left -= done; 2879 index += done; 2880 } while (batch_left); 2881 2882 nr -= batch; 2883 addr += range; 2884 if (err_ptr) 2885 err_ptr += batch; 2886 cond_resched(); 2887 } 2888 out: 2889 2890 xen_flush_tlb_all(); 2891 2892 return err < 0 ? err : mapped; 2893 } 2894 2895 int xen_remap_domain_gfn_range(struct vm_area_struct *vma, 2896 unsigned long addr, 2897 xen_pfn_t gfn, int nr, 2898 pgprot_t prot, unsigned domid, 2899 struct page **pages) 2900 { 2901 return do_remap_gfn(vma, addr, &gfn, nr, NULL, prot, domid, pages); 2902 } 2903 EXPORT_SYMBOL_GPL(xen_remap_domain_gfn_range); 2904 2905 int xen_remap_domain_gfn_array(struct vm_area_struct *vma, 2906 unsigned long addr, 2907 xen_pfn_t *gfn, int nr, 2908 int *err_ptr, pgprot_t prot, 2909 unsigned domid, struct page **pages) 2910 { 2911 /* We BUG_ON because it's a programmer error to pass a NULL err_ptr, 2912 * and the consequences later is quite hard to detect what the actual 2913 * cause of "wrong memory was mapped in". 2914 */ 2915 BUG_ON(err_ptr == NULL); 2916 return do_remap_gfn(vma, addr, gfn, nr, err_ptr, prot, domid, pages); 2917 } 2918 EXPORT_SYMBOL_GPL(xen_remap_domain_gfn_array); 2919 2920 2921 /* Returns: 0 success */ 2922 int xen_unmap_domain_gfn_range(struct vm_area_struct *vma, 2923 int numpgs, struct page **pages) 2924 { 2925 if (!pages || !xen_feature(XENFEAT_auto_translated_physmap)) 2926 return 0; 2927 2928 #ifdef CONFIG_XEN_PVH 2929 return xen_xlate_unmap_gfn_range(vma, numpgs, pages); 2930 #else 2931 return -EINVAL; 2932 #endif 2933 } 2934 EXPORT_SYMBOL_GPL(xen_unmap_domain_gfn_range); 2935