1 /* 2 * Xen mmu operations 3 * 4 * This file contains the various mmu fetch and update operations. 5 * The most important job they must perform is the mapping between the 6 * domain's pfn and the overall machine mfns. 7 * 8 * Xen allows guests to directly update the pagetable, in a controlled 9 * fashion. In other words, the guest modifies the same pagetable 10 * that the CPU actually uses, which eliminates the overhead of having 11 * a separate shadow pagetable. 12 * 13 * In order to allow this, it falls on the guest domain to map its 14 * notion of a "physical" pfn - which is just a domain-local linear 15 * address - into a real "machine address" which the CPU's MMU can 16 * use. 17 * 18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be 19 * inserted directly into the pagetable. When creating a new 20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely, 21 * when reading the content back with __(pgd|pmd|pte)_val, it converts 22 * the mfn back into a pfn. 23 * 24 * The other constraint is that all pages which make up a pagetable 25 * must be mapped read-only in the guest. This prevents uncontrolled 26 * guest updates to the pagetable. Xen strictly enforces this, and 27 * will disallow any pagetable update which will end up mapping a 28 * pagetable page RW, and will disallow using any writable page as a 29 * pagetable. 30 * 31 * Naively, when loading %cr3 with the base of a new pagetable, Xen 32 * would need to validate the whole pagetable before going on. 33 * Naturally, this is quite slow. The solution is to "pin" a 34 * pagetable, which enforces all the constraints on the pagetable even 35 * when it is not actively in use. This menas that Xen can be assured 36 * that it is still valid when you do load it into %cr3, and doesn't 37 * need to revalidate it. 38 * 39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 40 */ 41 #include <linux/sched/mm.h> 42 #include <linux/highmem.h> 43 #include <linux/debugfs.h> 44 #include <linux/bug.h> 45 #include <linux/vmalloc.h> 46 #include <linux/export.h> 47 #include <linux/init.h> 48 #include <linux/gfp.h> 49 #include <linux/memblock.h> 50 #include <linux/seq_file.h> 51 #include <linux/crash_dump.h> 52 53 #include <trace/events/xen.h> 54 55 #include <asm/pgtable.h> 56 #include <asm/tlbflush.h> 57 #include <asm/fixmap.h> 58 #include <asm/mmu_context.h> 59 #include <asm/setup.h> 60 #include <asm/paravirt.h> 61 #include <asm/e820/api.h> 62 #include <asm/linkage.h> 63 #include <asm/page.h> 64 #include <asm/init.h> 65 #include <asm/pat.h> 66 #include <asm/smp.h> 67 68 #include <asm/xen/hypercall.h> 69 #include <asm/xen/hypervisor.h> 70 71 #include <xen/xen.h> 72 #include <xen/page.h> 73 #include <xen/interface/xen.h> 74 #include <xen/interface/hvm/hvm_op.h> 75 #include <xen/interface/version.h> 76 #include <xen/interface/memory.h> 77 #include <xen/hvc-console.h> 78 79 #include "multicalls.h" 80 #include "mmu.h" 81 #include "debugfs.h" 82 83 /* 84 * Protects atomic reservation decrease/increase against concurrent increases. 85 * Also protects non-atomic updates of current_pages and balloon lists. 86 */ 87 DEFINE_SPINLOCK(xen_reservation_lock); 88 89 #ifdef CONFIG_X86_32 90 /* 91 * Identity map, in addition to plain kernel map. This needs to be 92 * large enough to allocate page table pages to allocate the rest. 93 * Each page can map 2MB. 94 */ 95 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4) 96 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES); 97 #endif 98 #ifdef CONFIG_X86_64 99 /* l3 pud for userspace vsyscall mapping */ 100 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss; 101 #endif /* CONFIG_X86_64 */ 102 103 /* 104 * Note about cr3 (pagetable base) values: 105 * 106 * xen_cr3 contains the current logical cr3 value; it contains the 107 * last set cr3. This may not be the current effective cr3, because 108 * its update may be being lazily deferred. However, a vcpu looking 109 * at its own cr3 can use this value knowing that it everything will 110 * be self-consistent. 111 * 112 * xen_current_cr3 contains the actual vcpu cr3; it is set once the 113 * hypercall to set the vcpu cr3 is complete (so it may be a little 114 * out of date, but it will never be set early). If one vcpu is 115 * looking at another vcpu's cr3 value, it should use this variable. 116 */ 117 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */ 118 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */ 119 120 static phys_addr_t xen_pt_base, xen_pt_size __initdata; 121 122 /* 123 * Just beyond the highest usermode address. STACK_TOP_MAX has a 124 * redzone above it, so round it up to a PGD boundary. 125 */ 126 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK) 127 128 unsigned long arbitrary_virt_to_mfn(void *vaddr) 129 { 130 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr); 131 132 return PFN_DOWN(maddr.maddr); 133 } 134 135 xmaddr_t arbitrary_virt_to_machine(void *vaddr) 136 { 137 unsigned long address = (unsigned long)vaddr; 138 unsigned int level; 139 pte_t *pte; 140 unsigned offset; 141 142 /* 143 * if the PFN is in the linear mapped vaddr range, we can just use 144 * the (quick) virt_to_machine() p2m lookup 145 */ 146 if (virt_addr_valid(vaddr)) 147 return virt_to_machine(vaddr); 148 149 /* otherwise we have to do a (slower) full page-table walk */ 150 151 pte = lookup_address(address, &level); 152 BUG_ON(pte == NULL); 153 offset = address & ~PAGE_MASK; 154 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset); 155 } 156 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine); 157 158 void make_lowmem_page_readonly(void *vaddr) 159 { 160 pte_t *pte, ptev; 161 unsigned long address = (unsigned long)vaddr; 162 unsigned int level; 163 164 pte = lookup_address(address, &level); 165 if (pte == NULL) 166 return; /* vaddr missing */ 167 168 ptev = pte_wrprotect(*pte); 169 170 if (HYPERVISOR_update_va_mapping(address, ptev, 0)) 171 BUG(); 172 } 173 174 void make_lowmem_page_readwrite(void *vaddr) 175 { 176 pte_t *pte, ptev; 177 unsigned long address = (unsigned long)vaddr; 178 unsigned int level; 179 180 pte = lookup_address(address, &level); 181 if (pte == NULL) 182 return; /* vaddr missing */ 183 184 ptev = pte_mkwrite(*pte); 185 186 if (HYPERVISOR_update_va_mapping(address, ptev, 0)) 187 BUG(); 188 } 189 190 191 static bool xen_page_pinned(void *ptr) 192 { 193 struct page *page = virt_to_page(ptr); 194 195 return PagePinned(page); 196 } 197 198 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid) 199 { 200 struct multicall_space mcs; 201 struct mmu_update *u; 202 203 trace_xen_mmu_set_domain_pte(ptep, pteval, domid); 204 205 mcs = xen_mc_entry(sizeof(*u)); 206 u = mcs.args; 207 208 /* ptep might be kmapped when using 32-bit HIGHPTE */ 209 u->ptr = virt_to_machine(ptep).maddr; 210 u->val = pte_val_ma(pteval); 211 212 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid); 213 214 xen_mc_issue(PARAVIRT_LAZY_MMU); 215 } 216 EXPORT_SYMBOL_GPL(xen_set_domain_pte); 217 218 static void xen_extend_mmu_update(const struct mmu_update *update) 219 { 220 struct multicall_space mcs; 221 struct mmu_update *u; 222 223 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u)); 224 225 if (mcs.mc != NULL) { 226 mcs.mc->args[1]++; 227 } else { 228 mcs = __xen_mc_entry(sizeof(*u)); 229 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 230 } 231 232 u = mcs.args; 233 *u = *update; 234 } 235 236 static void xen_extend_mmuext_op(const struct mmuext_op *op) 237 { 238 struct multicall_space mcs; 239 struct mmuext_op *u; 240 241 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u)); 242 243 if (mcs.mc != NULL) { 244 mcs.mc->args[1]++; 245 } else { 246 mcs = __xen_mc_entry(sizeof(*u)); 247 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 248 } 249 250 u = mcs.args; 251 *u = *op; 252 } 253 254 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val) 255 { 256 struct mmu_update u; 257 258 preempt_disable(); 259 260 xen_mc_batch(); 261 262 /* ptr may be ioremapped for 64-bit pagetable setup */ 263 u.ptr = arbitrary_virt_to_machine(ptr).maddr; 264 u.val = pmd_val_ma(val); 265 xen_extend_mmu_update(&u); 266 267 xen_mc_issue(PARAVIRT_LAZY_MMU); 268 269 preempt_enable(); 270 } 271 272 static void xen_set_pmd(pmd_t *ptr, pmd_t val) 273 { 274 trace_xen_mmu_set_pmd(ptr, val); 275 276 /* If page is not pinned, we can just update the entry 277 directly */ 278 if (!xen_page_pinned(ptr)) { 279 *ptr = val; 280 return; 281 } 282 283 xen_set_pmd_hyper(ptr, val); 284 } 285 286 /* 287 * Associate a virtual page frame with a given physical page frame 288 * and protection flags for that frame. 289 */ 290 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags) 291 { 292 set_pte_vaddr(vaddr, mfn_pte(mfn, flags)); 293 } 294 295 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval) 296 { 297 struct mmu_update u; 298 299 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) 300 return false; 301 302 xen_mc_batch(); 303 304 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; 305 u.val = pte_val_ma(pteval); 306 xen_extend_mmu_update(&u); 307 308 xen_mc_issue(PARAVIRT_LAZY_MMU); 309 310 return true; 311 } 312 313 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval) 314 { 315 if (!xen_batched_set_pte(ptep, pteval)) { 316 /* 317 * Could call native_set_pte() here and trap and 318 * emulate the PTE write but with 32-bit guests this 319 * needs two traps (one for each of the two 32-bit 320 * words in the PTE) so do one hypercall directly 321 * instead. 322 */ 323 struct mmu_update u; 324 325 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; 326 u.val = pte_val_ma(pteval); 327 HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF); 328 } 329 } 330 331 static void xen_set_pte(pte_t *ptep, pte_t pteval) 332 { 333 trace_xen_mmu_set_pte(ptep, pteval); 334 __xen_set_pte(ptep, pteval); 335 } 336 337 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr, 338 pte_t *ptep, pte_t pteval) 339 { 340 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval); 341 __xen_set_pte(ptep, pteval); 342 } 343 344 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, 345 unsigned long addr, pte_t *ptep) 346 { 347 /* Just return the pte as-is. We preserve the bits on commit */ 348 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep); 349 return *ptep; 350 } 351 352 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr, 353 pte_t *ptep, pte_t pte) 354 { 355 struct mmu_update u; 356 357 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte); 358 xen_mc_batch(); 359 360 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD; 361 u.val = pte_val_ma(pte); 362 xen_extend_mmu_update(&u); 363 364 xen_mc_issue(PARAVIRT_LAZY_MMU); 365 } 366 367 /* Assume pteval_t is equivalent to all the other *val_t types. */ 368 static pteval_t pte_mfn_to_pfn(pteval_t val) 369 { 370 if (val & _PAGE_PRESENT) { 371 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; 372 unsigned long pfn = mfn_to_pfn(mfn); 373 374 pteval_t flags = val & PTE_FLAGS_MASK; 375 if (unlikely(pfn == ~0)) 376 val = flags & ~_PAGE_PRESENT; 377 else 378 val = ((pteval_t)pfn << PAGE_SHIFT) | flags; 379 } 380 381 return val; 382 } 383 384 static pteval_t pte_pfn_to_mfn(pteval_t val) 385 { 386 if (val & _PAGE_PRESENT) { 387 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; 388 pteval_t flags = val & PTE_FLAGS_MASK; 389 unsigned long mfn; 390 391 if (!xen_feature(XENFEAT_auto_translated_physmap)) 392 mfn = __pfn_to_mfn(pfn); 393 else 394 mfn = pfn; 395 /* 396 * If there's no mfn for the pfn, then just create an 397 * empty non-present pte. Unfortunately this loses 398 * information about the original pfn, so 399 * pte_mfn_to_pfn is asymmetric. 400 */ 401 if (unlikely(mfn == INVALID_P2M_ENTRY)) { 402 mfn = 0; 403 flags = 0; 404 } else 405 mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT); 406 val = ((pteval_t)mfn << PAGE_SHIFT) | flags; 407 } 408 409 return val; 410 } 411 412 __visible pteval_t xen_pte_val(pte_t pte) 413 { 414 pteval_t pteval = pte.pte; 415 416 return pte_mfn_to_pfn(pteval); 417 } 418 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val); 419 420 __visible pgdval_t xen_pgd_val(pgd_t pgd) 421 { 422 return pte_mfn_to_pfn(pgd.pgd); 423 } 424 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val); 425 426 __visible pte_t xen_make_pte(pteval_t pte) 427 { 428 pte = pte_pfn_to_mfn(pte); 429 430 return native_make_pte(pte); 431 } 432 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte); 433 434 __visible pgd_t xen_make_pgd(pgdval_t pgd) 435 { 436 pgd = pte_pfn_to_mfn(pgd); 437 return native_make_pgd(pgd); 438 } 439 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd); 440 441 __visible pmdval_t xen_pmd_val(pmd_t pmd) 442 { 443 return pte_mfn_to_pfn(pmd.pmd); 444 } 445 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val); 446 447 static void xen_set_pud_hyper(pud_t *ptr, pud_t val) 448 { 449 struct mmu_update u; 450 451 preempt_disable(); 452 453 xen_mc_batch(); 454 455 /* ptr may be ioremapped for 64-bit pagetable setup */ 456 u.ptr = arbitrary_virt_to_machine(ptr).maddr; 457 u.val = pud_val_ma(val); 458 xen_extend_mmu_update(&u); 459 460 xen_mc_issue(PARAVIRT_LAZY_MMU); 461 462 preempt_enable(); 463 } 464 465 static void xen_set_pud(pud_t *ptr, pud_t val) 466 { 467 trace_xen_mmu_set_pud(ptr, val); 468 469 /* If page is not pinned, we can just update the entry 470 directly */ 471 if (!xen_page_pinned(ptr)) { 472 *ptr = val; 473 return; 474 } 475 476 xen_set_pud_hyper(ptr, val); 477 } 478 479 #ifdef CONFIG_X86_PAE 480 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte) 481 { 482 trace_xen_mmu_set_pte_atomic(ptep, pte); 483 set_64bit((u64 *)ptep, native_pte_val(pte)); 484 } 485 486 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 487 { 488 trace_xen_mmu_pte_clear(mm, addr, ptep); 489 if (!xen_batched_set_pte(ptep, native_make_pte(0))) 490 native_pte_clear(mm, addr, ptep); 491 } 492 493 static void xen_pmd_clear(pmd_t *pmdp) 494 { 495 trace_xen_mmu_pmd_clear(pmdp); 496 set_pmd(pmdp, __pmd(0)); 497 } 498 #endif /* CONFIG_X86_PAE */ 499 500 __visible pmd_t xen_make_pmd(pmdval_t pmd) 501 { 502 pmd = pte_pfn_to_mfn(pmd); 503 return native_make_pmd(pmd); 504 } 505 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd); 506 507 #if CONFIG_PGTABLE_LEVELS == 4 508 __visible pudval_t xen_pud_val(pud_t pud) 509 { 510 return pte_mfn_to_pfn(pud.pud); 511 } 512 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val); 513 514 __visible pud_t xen_make_pud(pudval_t pud) 515 { 516 pud = pte_pfn_to_mfn(pud); 517 518 return native_make_pud(pud); 519 } 520 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud); 521 522 static pgd_t *xen_get_user_pgd(pgd_t *pgd) 523 { 524 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK); 525 unsigned offset = pgd - pgd_page; 526 pgd_t *user_ptr = NULL; 527 528 if (offset < pgd_index(USER_LIMIT)) { 529 struct page *page = virt_to_page(pgd_page); 530 user_ptr = (pgd_t *)page->private; 531 if (user_ptr) 532 user_ptr += offset; 533 } 534 535 return user_ptr; 536 } 537 538 static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val) 539 { 540 struct mmu_update u; 541 542 u.ptr = virt_to_machine(ptr).maddr; 543 u.val = p4d_val_ma(val); 544 xen_extend_mmu_update(&u); 545 } 546 547 /* 548 * Raw hypercall-based set_p4d, intended for in early boot before 549 * there's a page structure. This implies: 550 * 1. The only existing pagetable is the kernel's 551 * 2. It is always pinned 552 * 3. It has no user pagetable attached to it 553 */ 554 static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val) 555 { 556 preempt_disable(); 557 558 xen_mc_batch(); 559 560 __xen_set_p4d_hyper(ptr, val); 561 562 xen_mc_issue(PARAVIRT_LAZY_MMU); 563 564 preempt_enable(); 565 } 566 567 static void xen_set_p4d(p4d_t *ptr, p4d_t val) 568 { 569 pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr); 570 pgd_t pgd_val; 571 572 trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val); 573 574 /* If page is not pinned, we can just update the entry 575 directly */ 576 if (!xen_page_pinned(ptr)) { 577 *ptr = val; 578 if (user_ptr) { 579 WARN_ON(xen_page_pinned(user_ptr)); 580 pgd_val.pgd = p4d_val_ma(val); 581 *user_ptr = pgd_val; 582 } 583 return; 584 } 585 586 /* If it's pinned, then we can at least batch the kernel and 587 user updates together. */ 588 xen_mc_batch(); 589 590 __xen_set_p4d_hyper(ptr, val); 591 if (user_ptr) 592 __xen_set_p4d_hyper((p4d_t *)user_ptr, val); 593 594 xen_mc_issue(PARAVIRT_LAZY_MMU); 595 } 596 #endif /* CONFIG_PGTABLE_LEVELS == 4 */ 597 598 static int xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd, 599 int (*func)(struct mm_struct *mm, struct page *, enum pt_level), 600 bool last, unsigned long limit) 601 { 602 int i, nr, flush = 0; 603 604 nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD; 605 for (i = 0; i < nr; i++) { 606 if (!pmd_none(pmd[i])) 607 flush |= (*func)(mm, pmd_page(pmd[i]), PT_PTE); 608 } 609 return flush; 610 } 611 612 static int xen_pud_walk(struct mm_struct *mm, pud_t *pud, 613 int (*func)(struct mm_struct *mm, struct page *, enum pt_level), 614 bool last, unsigned long limit) 615 { 616 int i, nr, flush = 0; 617 618 nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD; 619 for (i = 0; i < nr; i++) { 620 pmd_t *pmd; 621 622 if (pud_none(pud[i])) 623 continue; 624 625 pmd = pmd_offset(&pud[i], 0); 626 if (PTRS_PER_PMD > 1) 627 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD); 628 flush |= xen_pmd_walk(mm, pmd, func, 629 last && i == nr - 1, limit); 630 } 631 return flush; 632 } 633 634 static int xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d, 635 int (*func)(struct mm_struct *mm, struct page *, enum pt_level), 636 bool last, unsigned long limit) 637 { 638 int i, nr, flush = 0; 639 640 nr = last ? p4d_index(limit) + 1 : PTRS_PER_P4D; 641 for (i = 0; i < nr; i++) { 642 pud_t *pud; 643 644 if (p4d_none(p4d[i])) 645 continue; 646 647 pud = pud_offset(&p4d[i], 0); 648 if (PTRS_PER_PUD > 1) 649 flush |= (*func)(mm, virt_to_page(pud), PT_PUD); 650 flush |= xen_pud_walk(mm, pud, func, 651 last && i == nr - 1, limit); 652 } 653 return flush; 654 } 655 656 /* 657 * (Yet another) pagetable walker. This one is intended for pinning a 658 * pagetable. This means that it walks a pagetable and calls the 659 * callback function on each page it finds making up the page table, 660 * at every level. It walks the entire pagetable, but it only bothers 661 * pinning pte pages which are below limit. In the normal case this 662 * will be STACK_TOP_MAX, but at boot we need to pin up to 663 * FIXADDR_TOP. 664 * 665 * For 32-bit the important bit is that we don't pin beyond there, 666 * because then we start getting into Xen's ptes. 667 * 668 * For 64-bit, we must skip the Xen hole in the middle of the address 669 * space, just after the big x86-64 virtual hole. 670 */ 671 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd, 672 int (*func)(struct mm_struct *mm, struct page *, 673 enum pt_level), 674 unsigned long limit) 675 { 676 int i, nr, flush = 0; 677 unsigned hole_low, hole_high; 678 679 /* The limit is the last byte to be touched */ 680 limit--; 681 BUG_ON(limit >= FIXADDR_TOP); 682 683 if (xen_feature(XENFEAT_auto_translated_physmap)) 684 return 0; 685 686 /* 687 * 64-bit has a great big hole in the middle of the address 688 * space, which contains the Xen mappings. On 32-bit these 689 * will end up making a zero-sized hole and so is a no-op. 690 */ 691 hole_low = pgd_index(USER_LIMIT); 692 hole_high = pgd_index(PAGE_OFFSET); 693 694 nr = pgd_index(limit) + 1; 695 for (i = 0; i < nr; i++) { 696 p4d_t *p4d; 697 698 if (i >= hole_low && i < hole_high) 699 continue; 700 701 if (pgd_none(pgd[i])) 702 continue; 703 704 p4d = p4d_offset(&pgd[i], 0); 705 if (PTRS_PER_P4D > 1) 706 flush |= (*func)(mm, virt_to_page(p4d), PT_P4D); 707 flush |= xen_p4d_walk(mm, p4d, func, i == nr - 1, limit); 708 } 709 710 /* Do the top level last, so that the callbacks can use it as 711 a cue to do final things like tlb flushes. */ 712 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD); 713 714 return flush; 715 } 716 717 static int xen_pgd_walk(struct mm_struct *mm, 718 int (*func)(struct mm_struct *mm, struct page *, 719 enum pt_level), 720 unsigned long limit) 721 { 722 return __xen_pgd_walk(mm, mm->pgd, func, limit); 723 } 724 725 /* If we're using split pte locks, then take the page's lock and 726 return a pointer to it. Otherwise return NULL. */ 727 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm) 728 { 729 spinlock_t *ptl = NULL; 730 731 #if USE_SPLIT_PTE_PTLOCKS 732 ptl = ptlock_ptr(page); 733 spin_lock_nest_lock(ptl, &mm->page_table_lock); 734 #endif 735 736 return ptl; 737 } 738 739 static void xen_pte_unlock(void *v) 740 { 741 spinlock_t *ptl = v; 742 spin_unlock(ptl); 743 } 744 745 static void xen_do_pin(unsigned level, unsigned long pfn) 746 { 747 struct mmuext_op op; 748 749 op.cmd = level; 750 op.arg1.mfn = pfn_to_mfn(pfn); 751 752 xen_extend_mmuext_op(&op); 753 } 754 755 static int xen_pin_page(struct mm_struct *mm, struct page *page, 756 enum pt_level level) 757 { 758 unsigned pgfl = TestSetPagePinned(page); 759 int flush; 760 761 if (pgfl) 762 flush = 0; /* already pinned */ 763 else if (PageHighMem(page)) 764 /* kmaps need flushing if we found an unpinned 765 highpage */ 766 flush = 1; 767 else { 768 void *pt = lowmem_page_address(page); 769 unsigned long pfn = page_to_pfn(page); 770 struct multicall_space mcs = __xen_mc_entry(0); 771 spinlock_t *ptl; 772 773 flush = 0; 774 775 /* 776 * We need to hold the pagetable lock between the time 777 * we make the pagetable RO and when we actually pin 778 * it. If we don't, then other users may come in and 779 * attempt to update the pagetable by writing it, 780 * which will fail because the memory is RO but not 781 * pinned, so Xen won't do the trap'n'emulate. 782 * 783 * If we're using split pte locks, we can't hold the 784 * entire pagetable's worth of locks during the 785 * traverse, because we may wrap the preempt count (8 786 * bits). The solution is to mark RO and pin each PTE 787 * page while holding the lock. This means the number 788 * of locks we end up holding is never more than a 789 * batch size (~32 entries, at present). 790 * 791 * If we're not using split pte locks, we needn't pin 792 * the PTE pages independently, because we're 793 * protected by the overall pagetable lock. 794 */ 795 ptl = NULL; 796 if (level == PT_PTE) 797 ptl = xen_pte_lock(page, mm); 798 799 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, 800 pfn_pte(pfn, PAGE_KERNEL_RO), 801 level == PT_PGD ? UVMF_TLB_FLUSH : 0); 802 803 if (ptl) { 804 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn); 805 806 /* Queue a deferred unlock for when this batch 807 is completed. */ 808 xen_mc_callback(xen_pte_unlock, ptl); 809 } 810 } 811 812 return flush; 813 } 814 815 /* This is called just after a mm has been created, but it has not 816 been used yet. We need to make sure that its pagetable is all 817 read-only, and can be pinned. */ 818 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd) 819 { 820 trace_xen_mmu_pgd_pin(mm, pgd); 821 822 xen_mc_batch(); 823 824 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) { 825 /* re-enable interrupts for flushing */ 826 xen_mc_issue(0); 827 828 kmap_flush_unused(); 829 830 xen_mc_batch(); 831 } 832 833 #ifdef CONFIG_X86_64 834 { 835 pgd_t *user_pgd = xen_get_user_pgd(pgd); 836 837 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd))); 838 839 if (user_pgd) { 840 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD); 841 xen_do_pin(MMUEXT_PIN_L4_TABLE, 842 PFN_DOWN(__pa(user_pgd))); 843 } 844 } 845 #else /* CONFIG_X86_32 */ 846 #ifdef CONFIG_X86_PAE 847 /* Need to make sure unshared kernel PMD is pinnable */ 848 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), 849 PT_PMD); 850 #endif 851 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd))); 852 #endif /* CONFIG_X86_64 */ 853 xen_mc_issue(0); 854 } 855 856 static void xen_pgd_pin(struct mm_struct *mm) 857 { 858 __xen_pgd_pin(mm, mm->pgd); 859 } 860 861 /* 862 * On save, we need to pin all pagetables to make sure they get their 863 * mfns turned into pfns. Search the list for any unpinned pgds and pin 864 * them (unpinned pgds are not currently in use, probably because the 865 * process is under construction or destruction). 866 * 867 * Expected to be called in stop_machine() ("equivalent to taking 868 * every spinlock in the system"), so the locking doesn't really 869 * matter all that much. 870 */ 871 void xen_mm_pin_all(void) 872 { 873 struct page *page; 874 875 spin_lock(&pgd_lock); 876 877 list_for_each_entry(page, &pgd_list, lru) { 878 if (!PagePinned(page)) { 879 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page)); 880 SetPageSavePinned(page); 881 } 882 } 883 884 spin_unlock(&pgd_lock); 885 } 886 887 /* 888 * The init_mm pagetable is really pinned as soon as its created, but 889 * that's before we have page structures to store the bits. So do all 890 * the book-keeping now. 891 */ 892 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page, 893 enum pt_level level) 894 { 895 SetPagePinned(page); 896 return 0; 897 } 898 899 static void __init xen_mark_init_mm_pinned(void) 900 { 901 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP); 902 } 903 904 static int xen_unpin_page(struct mm_struct *mm, struct page *page, 905 enum pt_level level) 906 { 907 unsigned pgfl = TestClearPagePinned(page); 908 909 if (pgfl && !PageHighMem(page)) { 910 void *pt = lowmem_page_address(page); 911 unsigned long pfn = page_to_pfn(page); 912 spinlock_t *ptl = NULL; 913 struct multicall_space mcs; 914 915 /* 916 * Do the converse to pin_page. If we're using split 917 * pte locks, we must be holding the lock for while 918 * the pte page is unpinned but still RO to prevent 919 * concurrent updates from seeing it in this 920 * partially-pinned state. 921 */ 922 if (level == PT_PTE) { 923 ptl = xen_pte_lock(page, mm); 924 925 if (ptl) 926 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn); 927 } 928 929 mcs = __xen_mc_entry(0); 930 931 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, 932 pfn_pte(pfn, PAGE_KERNEL), 933 level == PT_PGD ? UVMF_TLB_FLUSH : 0); 934 935 if (ptl) { 936 /* unlock when batch completed */ 937 xen_mc_callback(xen_pte_unlock, ptl); 938 } 939 } 940 941 return 0; /* never need to flush on unpin */ 942 } 943 944 /* Release a pagetables pages back as normal RW */ 945 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd) 946 { 947 trace_xen_mmu_pgd_unpin(mm, pgd); 948 949 xen_mc_batch(); 950 951 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 952 953 #ifdef CONFIG_X86_64 954 { 955 pgd_t *user_pgd = xen_get_user_pgd(pgd); 956 957 if (user_pgd) { 958 xen_do_pin(MMUEXT_UNPIN_TABLE, 959 PFN_DOWN(__pa(user_pgd))); 960 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD); 961 } 962 } 963 #endif 964 965 #ifdef CONFIG_X86_PAE 966 /* Need to make sure unshared kernel PMD is unpinned */ 967 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), 968 PT_PMD); 969 #endif 970 971 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT); 972 973 xen_mc_issue(0); 974 } 975 976 static void xen_pgd_unpin(struct mm_struct *mm) 977 { 978 __xen_pgd_unpin(mm, mm->pgd); 979 } 980 981 /* 982 * On resume, undo any pinning done at save, so that the rest of the 983 * kernel doesn't see any unexpected pinned pagetables. 984 */ 985 void xen_mm_unpin_all(void) 986 { 987 struct page *page; 988 989 spin_lock(&pgd_lock); 990 991 list_for_each_entry(page, &pgd_list, lru) { 992 if (PageSavePinned(page)) { 993 BUG_ON(!PagePinned(page)); 994 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page)); 995 ClearPageSavePinned(page); 996 } 997 } 998 999 spin_unlock(&pgd_lock); 1000 } 1001 1002 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next) 1003 { 1004 spin_lock(&next->page_table_lock); 1005 xen_pgd_pin(next); 1006 spin_unlock(&next->page_table_lock); 1007 } 1008 1009 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) 1010 { 1011 spin_lock(&mm->page_table_lock); 1012 xen_pgd_pin(mm); 1013 spin_unlock(&mm->page_table_lock); 1014 } 1015 1016 1017 #ifdef CONFIG_SMP 1018 /* Another cpu may still have their %cr3 pointing at the pagetable, so 1019 we need to repoint it somewhere else before we can unpin it. */ 1020 static void drop_other_mm_ref(void *info) 1021 { 1022 struct mm_struct *mm = info; 1023 struct mm_struct *active_mm; 1024 1025 active_mm = this_cpu_read(cpu_tlbstate.active_mm); 1026 1027 if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK) 1028 leave_mm(smp_processor_id()); 1029 1030 /* If this cpu still has a stale cr3 reference, then make sure 1031 it has been flushed. */ 1032 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd)) 1033 load_cr3(swapper_pg_dir); 1034 } 1035 1036 static void xen_drop_mm_ref(struct mm_struct *mm) 1037 { 1038 cpumask_var_t mask; 1039 unsigned cpu; 1040 1041 if (current->active_mm == mm) { 1042 if (current->mm == mm) 1043 load_cr3(swapper_pg_dir); 1044 else 1045 leave_mm(smp_processor_id()); 1046 } 1047 1048 /* Get the "official" set of cpus referring to our pagetable. */ 1049 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) { 1050 for_each_online_cpu(cpu) { 1051 if (!cpumask_test_cpu(cpu, mm_cpumask(mm)) 1052 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd)) 1053 continue; 1054 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1); 1055 } 1056 return; 1057 } 1058 cpumask_copy(mask, mm_cpumask(mm)); 1059 1060 /* It's possible that a vcpu may have a stale reference to our 1061 cr3, because its in lazy mode, and it hasn't yet flushed 1062 its set of pending hypercalls yet. In this case, we can 1063 look at its actual current cr3 value, and force it to flush 1064 if needed. */ 1065 for_each_online_cpu(cpu) { 1066 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd)) 1067 cpumask_set_cpu(cpu, mask); 1068 } 1069 1070 if (!cpumask_empty(mask)) 1071 smp_call_function_many(mask, drop_other_mm_ref, mm, 1); 1072 free_cpumask_var(mask); 1073 } 1074 #else 1075 static void xen_drop_mm_ref(struct mm_struct *mm) 1076 { 1077 if (current->active_mm == mm) 1078 load_cr3(swapper_pg_dir); 1079 } 1080 #endif 1081 1082 /* 1083 * While a process runs, Xen pins its pagetables, which means that the 1084 * hypervisor forces it to be read-only, and it controls all updates 1085 * to it. This means that all pagetable updates have to go via the 1086 * hypervisor, which is moderately expensive. 1087 * 1088 * Since we're pulling the pagetable down, we switch to use init_mm, 1089 * unpin old process pagetable and mark it all read-write, which 1090 * allows further operations on it to be simple memory accesses. 1091 * 1092 * The only subtle point is that another CPU may be still using the 1093 * pagetable because of lazy tlb flushing. This means we need need to 1094 * switch all CPUs off this pagetable before we can unpin it. 1095 */ 1096 static void xen_exit_mmap(struct mm_struct *mm) 1097 { 1098 get_cpu(); /* make sure we don't move around */ 1099 xen_drop_mm_ref(mm); 1100 put_cpu(); 1101 1102 spin_lock(&mm->page_table_lock); 1103 1104 /* pgd may not be pinned in the error exit path of execve */ 1105 if (xen_page_pinned(mm->pgd)) 1106 xen_pgd_unpin(mm); 1107 1108 spin_unlock(&mm->page_table_lock); 1109 } 1110 1111 static void xen_post_allocator_init(void); 1112 1113 static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn) 1114 { 1115 struct mmuext_op op; 1116 1117 op.cmd = cmd; 1118 op.arg1.mfn = pfn_to_mfn(pfn); 1119 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) 1120 BUG(); 1121 } 1122 1123 #ifdef CONFIG_X86_64 1124 static void __init xen_cleanhighmap(unsigned long vaddr, 1125 unsigned long vaddr_end) 1126 { 1127 unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1; 1128 pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr); 1129 1130 /* NOTE: The loop is more greedy than the cleanup_highmap variant. 1131 * We include the PMD passed in on _both_ boundaries. */ 1132 for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD)); 1133 pmd++, vaddr += PMD_SIZE) { 1134 if (pmd_none(*pmd)) 1135 continue; 1136 if (vaddr < (unsigned long) _text || vaddr > kernel_end) 1137 set_pmd(pmd, __pmd(0)); 1138 } 1139 /* In case we did something silly, we should crash in this function 1140 * instead of somewhere later and be confusing. */ 1141 xen_mc_flush(); 1142 } 1143 1144 /* 1145 * Make a page range writeable and free it. 1146 */ 1147 static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size) 1148 { 1149 void *vaddr = __va(paddr); 1150 void *vaddr_end = vaddr + size; 1151 1152 for (; vaddr < vaddr_end; vaddr += PAGE_SIZE) 1153 make_lowmem_page_readwrite(vaddr); 1154 1155 memblock_free(paddr, size); 1156 } 1157 1158 static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin) 1159 { 1160 unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK; 1161 1162 if (unpin) 1163 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa)); 1164 ClearPagePinned(virt_to_page(__va(pa))); 1165 xen_free_ro_pages(pa, PAGE_SIZE); 1166 } 1167 1168 static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin) 1169 { 1170 unsigned long pa; 1171 pte_t *pte_tbl; 1172 int i; 1173 1174 if (pmd_large(*pmd)) { 1175 pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK; 1176 xen_free_ro_pages(pa, PMD_SIZE); 1177 return; 1178 } 1179 1180 pte_tbl = pte_offset_kernel(pmd, 0); 1181 for (i = 0; i < PTRS_PER_PTE; i++) { 1182 if (pte_none(pte_tbl[i])) 1183 continue; 1184 pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT; 1185 xen_free_ro_pages(pa, PAGE_SIZE); 1186 } 1187 set_pmd(pmd, __pmd(0)); 1188 xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin); 1189 } 1190 1191 static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin) 1192 { 1193 unsigned long pa; 1194 pmd_t *pmd_tbl; 1195 int i; 1196 1197 if (pud_large(*pud)) { 1198 pa = pud_val(*pud) & PHYSICAL_PAGE_MASK; 1199 xen_free_ro_pages(pa, PUD_SIZE); 1200 return; 1201 } 1202 1203 pmd_tbl = pmd_offset(pud, 0); 1204 for (i = 0; i < PTRS_PER_PMD; i++) { 1205 if (pmd_none(pmd_tbl[i])) 1206 continue; 1207 xen_cleanmfnmap_pmd(pmd_tbl + i, unpin); 1208 } 1209 set_pud(pud, __pud(0)); 1210 xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin); 1211 } 1212 1213 static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin) 1214 { 1215 unsigned long pa; 1216 pud_t *pud_tbl; 1217 int i; 1218 1219 if (p4d_large(*p4d)) { 1220 pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK; 1221 xen_free_ro_pages(pa, P4D_SIZE); 1222 return; 1223 } 1224 1225 pud_tbl = pud_offset(p4d, 0); 1226 for (i = 0; i < PTRS_PER_PUD; i++) { 1227 if (pud_none(pud_tbl[i])) 1228 continue; 1229 xen_cleanmfnmap_pud(pud_tbl + i, unpin); 1230 } 1231 set_p4d(p4d, __p4d(0)); 1232 xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin); 1233 } 1234 1235 /* 1236 * Since it is well isolated we can (and since it is perhaps large we should) 1237 * also free the page tables mapping the initial P->M table. 1238 */ 1239 static void __init xen_cleanmfnmap(unsigned long vaddr) 1240 { 1241 pgd_t *pgd; 1242 p4d_t *p4d; 1243 unsigned int i; 1244 bool unpin; 1245 1246 unpin = (vaddr == 2 * PGDIR_SIZE); 1247 vaddr &= PMD_MASK; 1248 pgd = pgd_offset_k(vaddr); 1249 p4d = p4d_offset(pgd, 0); 1250 for (i = 0; i < PTRS_PER_P4D; i++) { 1251 if (p4d_none(p4d[i])) 1252 continue; 1253 xen_cleanmfnmap_p4d(p4d + i, unpin); 1254 } 1255 if (IS_ENABLED(CONFIG_X86_5LEVEL)) { 1256 set_pgd(pgd, __pgd(0)); 1257 xen_cleanmfnmap_free_pgtbl(p4d, unpin); 1258 } 1259 } 1260 1261 static void __init xen_pagetable_p2m_free(void) 1262 { 1263 unsigned long size; 1264 unsigned long addr; 1265 1266 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); 1267 1268 /* No memory or already called. */ 1269 if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list) 1270 return; 1271 1272 /* using __ka address and sticking INVALID_P2M_ENTRY! */ 1273 memset((void *)xen_start_info->mfn_list, 0xff, size); 1274 1275 addr = xen_start_info->mfn_list; 1276 /* 1277 * We could be in __ka space. 1278 * We roundup to the PMD, which means that if anybody at this stage is 1279 * using the __ka address of xen_start_info or 1280 * xen_start_info->shared_info they are in going to crash. Fortunatly 1281 * we have already revectored in xen_setup_kernel_pagetable and in 1282 * xen_setup_shared_info. 1283 */ 1284 size = roundup(size, PMD_SIZE); 1285 1286 if (addr >= __START_KERNEL_map) { 1287 xen_cleanhighmap(addr, addr + size); 1288 size = PAGE_ALIGN(xen_start_info->nr_pages * 1289 sizeof(unsigned long)); 1290 memblock_free(__pa(addr), size); 1291 } else { 1292 xen_cleanmfnmap(addr); 1293 } 1294 } 1295 1296 static void __init xen_pagetable_cleanhighmap(void) 1297 { 1298 unsigned long size; 1299 unsigned long addr; 1300 1301 /* At this stage, cleanup_highmap has already cleaned __ka space 1302 * from _brk_limit way up to the max_pfn_mapped (which is the end of 1303 * the ramdisk). We continue on, erasing PMD entries that point to page 1304 * tables - do note that they are accessible at this stage via __va. 1305 * For good measure we also round up to the PMD - which means that if 1306 * anybody is using __ka address to the initial boot-stack - and try 1307 * to use it - they are going to crash. The xen_start_info has been 1308 * taken care of already in xen_setup_kernel_pagetable. */ 1309 addr = xen_start_info->pt_base; 1310 size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE); 1311 1312 xen_cleanhighmap(addr, addr + size); 1313 xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base)); 1314 #ifdef DEBUG 1315 /* This is superfluous and is not necessary, but you know what 1316 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of 1317 * anything at this stage. */ 1318 xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1); 1319 #endif 1320 } 1321 #endif 1322 1323 static void __init xen_pagetable_p2m_setup(void) 1324 { 1325 if (xen_feature(XENFEAT_auto_translated_physmap)) 1326 return; 1327 1328 xen_vmalloc_p2m_tree(); 1329 1330 #ifdef CONFIG_X86_64 1331 xen_pagetable_p2m_free(); 1332 1333 xen_pagetable_cleanhighmap(); 1334 #endif 1335 /* And revector! Bye bye old array */ 1336 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr; 1337 } 1338 1339 static void __init xen_pagetable_init(void) 1340 { 1341 paging_init(); 1342 xen_post_allocator_init(); 1343 1344 xen_pagetable_p2m_setup(); 1345 1346 /* Allocate and initialize top and mid mfn levels for p2m structure */ 1347 xen_build_mfn_list_list(); 1348 1349 /* Remap memory freed due to conflicts with E820 map */ 1350 if (!xen_feature(XENFEAT_auto_translated_physmap)) 1351 xen_remap_memory(); 1352 1353 xen_setup_shared_info(); 1354 } 1355 static void xen_write_cr2(unsigned long cr2) 1356 { 1357 this_cpu_read(xen_vcpu)->arch.cr2 = cr2; 1358 } 1359 1360 static unsigned long xen_read_cr2(void) 1361 { 1362 return this_cpu_read(xen_vcpu)->arch.cr2; 1363 } 1364 1365 unsigned long xen_read_cr2_direct(void) 1366 { 1367 return this_cpu_read(xen_vcpu_info.arch.cr2); 1368 } 1369 1370 void xen_flush_tlb_all(void) 1371 { 1372 struct mmuext_op *op; 1373 struct multicall_space mcs; 1374 1375 trace_xen_mmu_flush_tlb_all(0); 1376 1377 preempt_disable(); 1378 1379 mcs = xen_mc_entry(sizeof(*op)); 1380 1381 op = mcs.args; 1382 op->cmd = MMUEXT_TLB_FLUSH_ALL; 1383 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1384 1385 xen_mc_issue(PARAVIRT_LAZY_MMU); 1386 1387 preempt_enable(); 1388 } 1389 static void xen_flush_tlb(void) 1390 { 1391 struct mmuext_op *op; 1392 struct multicall_space mcs; 1393 1394 trace_xen_mmu_flush_tlb(0); 1395 1396 preempt_disable(); 1397 1398 mcs = xen_mc_entry(sizeof(*op)); 1399 1400 op = mcs.args; 1401 op->cmd = MMUEXT_TLB_FLUSH_LOCAL; 1402 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1403 1404 xen_mc_issue(PARAVIRT_LAZY_MMU); 1405 1406 preempt_enable(); 1407 } 1408 1409 static void xen_flush_tlb_single(unsigned long addr) 1410 { 1411 struct mmuext_op *op; 1412 struct multicall_space mcs; 1413 1414 trace_xen_mmu_flush_tlb_single(addr); 1415 1416 preempt_disable(); 1417 1418 mcs = xen_mc_entry(sizeof(*op)); 1419 op = mcs.args; 1420 op->cmd = MMUEXT_INVLPG_LOCAL; 1421 op->arg1.linear_addr = addr & PAGE_MASK; 1422 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1423 1424 xen_mc_issue(PARAVIRT_LAZY_MMU); 1425 1426 preempt_enable(); 1427 } 1428 1429 static void xen_flush_tlb_others(const struct cpumask *cpus, 1430 struct mm_struct *mm, unsigned long start, 1431 unsigned long end) 1432 { 1433 struct { 1434 struct mmuext_op op; 1435 #ifdef CONFIG_SMP 1436 DECLARE_BITMAP(mask, num_processors); 1437 #else 1438 DECLARE_BITMAP(mask, NR_CPUS); 1439 #endif 1440 } *args; 1441 struct multicall_space mcs; 1442 1443 trace_xen_mmu_flush_tlb_others(cpus, mm, start, end); 1444 1445 if (cpumask_empty(cpus)) 1446 return; /* nothing to do */ 1447 1448 mcs = xen_mc_entry(sizeof(*args)); 1449 args = mcs.args; 1450 args->op.arg2.vcpumask = to_cpumask(args->mask); 1451 1452 /* Remove us, and any offline CPUS. */ 1453 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask); 1454 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask)); 1455 1456 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; 1457 if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) { 1458 args->op.cmd = MMUEXT_INVLPG_MULTI; 1459 args->op.arg1.linear_addr = start; 1460 } 1461 1462 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); 1463 1464 xen_mc_issue(PARAVIRT_LAZY_MMU); 1465 } 1466 1467 static unsigned long xen_read_cr3(void) 1468 { 1469 return this_cpu_read(xen_cr3); 1470 } 1471 1472 static void set_current_cr3(void *v) 1473 { 1474 this_cpu_write(xen_current_cr3, (unsigned long)v); 1475 } 1476 1477 static void __xen_write_cr3(bool kernel, unsigned long cr3) 1478 { 1479 struct mmuext_op op; 1480 unsigned long mfn; 1481 1482 trace_xen_mmu_write_cr3(kernel, cr3); 1483 1484 if (cr3) 1485 mfn = pfn_to_mfn(PFN_DOWN(cr3)); 1486 else 1487 mfn = 0; 1488 1489 WARN_ON(mfn == 0 && kernel); 1490 1491 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR; 1492 op.arg1.mfn = mfn; 1493 1494 xen_extend_mmuext_op(&op); 1495 1496 if (kernel) { 1497 this_cpu_write(xen_cr3, cr3); 1498 1499 /* Update xen_current_cr3 once the batch has actually 1500 been submitted. */ 1501 xen_mc_callback(set_current_cr3, (void *)cr3); 1502 } 1503 } 1504 static void xen_write_cr3(unsigned long cr3) 1505 { 1506 BUG_ON(preemptible()); 1507 1508 xen_mc_batch(); /* disables interrupts */ 1509 1510 /* Update while interrupts are disabled, so its atomic with 1511 respect to ipis */ 1512 this_cpu_write(xen_cr3, cr3); 1513 1514 __xen_write_cr3(true, cr3); 1515 1516 #ifdef CONFIG_X86_64 1517 { 1518 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3)); 1519 if (user_pgd) 1520 __xen_write_cr3(false, __pa(user_pgd)); 1521 else 1522 __xen_write_cr3(false, 0); 1523 } 1524 #endif 1525 1526 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ 1527 } 1528 1529 #ifdef CONFIG_X86_64 1530 /* 1531 * At the start of the day - when Xen launches a guest, it has already 1532 * built pagetables for the guest. We diligently look over them 1533 * in xen_setup_kernel_pagetable and graft as appropriate them in the 1534 * init_level4_pgt and its friends. Then when we are happy we load 1535 * the new init_level4_pgt - and continue on. 1536 * 1537 * The generic code starts (start_kernel) and 'init_mem_mapping' sets 1538 * up the rest of the pagetables. When it has completed it loads the cr3. 1539 * N.B. that baremetal would start at 'start_kernel' (and the early 1540 * #PF handler would create bootstrap pagetables) - so we are running 1541 * with the same assumptions as what to do when write_cr3 is executed 1542 * at this point. 1543 * 1544 * Since there are no user-page tables at all, we have two variants 1545 * of xen_write_cr3 - the early bootup (this one), and the late one 1546 * (xen_write_cr3). The reason we have to do that is that in 64-bit 1547 * the Linux kernel and user-space are both in ring 3 while the 1548 * hypervisor is in ring 0. 1549 */ 1550 static void __init xen_write_cr3_init(unsigned long cr3) 1551 { 1552 BUG_ON(preemptible()); 1553 1554 xen_mc_batch(); /* disables interrupts */ 1555 1556 /* Update while interrupts are disabled, so its atomic with 1557 respect to ipis */ 1558 this_cpu_write(xen_cr3, cr3); 1559 1560 __xen_write_cr3(true, cr3); 1561 1562 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ 1563 } 1564 #endif 1565 1566 static int xen_pgd_alloc(struct mm_struct *mm) 1567 { 1568 pgd_t *pgd = mm->pgd; 1569 int ret = 0; 1570 1571 BUG_ON(PagePinned(virt_to_page(pgd))); 1572 1573 #ifdef CONFIG_X86_64 1574 { 1575 struct page *page = virt_to_page(pgd); 1576 pgd_t *user_pgd; 1577 1578 BUG_ON(page->private != 0); 1579 1580 ret = -ENOMEM; 1581 1582 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); 1583 page->private = (unsigned long)user_pgd; 1584 1585 if (user_pgd != NULL) { 1586 #ifdef CONFIG_X86_VSYSCALL_EMULATION 1587 user_pgd[pgd_index(VSYSCALL_ADDR)] = 1588 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE); 1589 #endif 1590 ret = 0; 1591 } 1592 1593 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd)))); 1594 } 1595 #endif 1596 return ret; 1597 } 1598 1599 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd) 1600 { 1601 #ifdef CONFIG_X86_64 1602 pgd_t *user_pgd = xen_get_user_pgd(pgd); 1603 1604 if (user_pgd) 1605 free_page((unsigned long)user_pgd); 1606 #endif 1607 } 1608 1609 /* 1610 * Init-time set_pte while constructing initial pagetables, which 1611 * doesn't allow RO page table pages to be remapped RW. 1612 * 1613 * If there is no MFN for this PFN then this page is initially 1614 * ballooned out so clear the PTE (as in decrease_reservation() in 1615 * drivers/xen/balloon.c). 1616 * 1617 * Many of these PTE updates are done on unpinned and writable pages 1618 * and doing a hypercall for these is unnecessary and expensive. At 1619 * this point it is not possible to tell if a page is pinned or not, 1620 * so always write the PTE directly and rely on Xen trapping and 1621 * emulating any updates as necessary. 1622 */ 1623 __visible pte_t xen_make_pte_init(pteval_t pte) 1624 { 1625 #ifdef CONFIG_X86_64 1626 unsigned long pfn; 1627 1628 /* 1629 * Pages belonging to the initial p2m list mapped outside the default 1630 * address range must be mapped read-only. This region contains the 1631 * page tables for mapping the p2m list, too, and page tables MUST be 1632 * mapped read-only. 1633 */ 1634 pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT; 1635 if (xen_start_info->mfn_list < __START_KERNEL_map && 1636 pfn >= xen_start_info->first_p2m_pfn && 1637 pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames) 1638 pte &= ~_PAGE_RW; 1639 #endif 1640 pte = pte_pfn_to_mfn(pte); 1641 return native_make_pte(pte); 1642 } 1643 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init); 1644 1645 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte) 1646 { 1647 #ifdef CONFIG_X86_32 1648 /* If there's an existing pte, then don't allow _PAGE_RW to be set */ 1649 if (pte_mfn(pte) != INVALID_P2M_ENTRY 1650 && pte_val_ma(*ptep) & _PAGE_PRESENT) 1651 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) & 1652 pte_val_ma(pte)); 1653 #endif 1654 native_set_pte(ptep, pte); 1655 } 1656 1657 /* Early in boot, while setting up the initial pagetable, assume 1658 everything is pinned. */ 1659 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn) 1660 { 1661 #ifdef CONFIG_FLATMEM 1662 BUG_ON(mem_map); /* should only be used early */ 1663 #endif 1664 make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); 1665 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); 1666 } 1667 1668 /* Used for pmd and pud */ 1669 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn) 1670 { 1671 #ifdef CONFIG_FLATMEM 1672 BUG_ON(mem_map); /* should only be used early */ 1673 #endif 1674 make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); 1675 } 1676 1677 /* Early release_pte assumes that all pts are pinned, since there's 1678 only init_mm and anything attached to that is pinned. */ 1679 static void __init xen_release_pte_init(unsigned long pfn) 1680 { 1681 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); 1682 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1683 } 1684 1685 static void __init xen_release_pmd_init(unsigned long pfn) 1686 { 1687 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1688 } 1689 1690 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn) 1691 { 1692 struct multicall_space mcs; 1693 struct mmuext_op *op; 1694 1695 mcs = __xen_mc_entry(sizeof(*op)); 1696 op = mcs.args; 1697 op->cmd = cmd; 1698 op->arg1.mfn = pfn_to_mfn(pfn); 1699 1700 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 1701 } 1702 1703 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot) 1704 { 1705 struct multicall_space mcs; 1706 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT); 1707 1708 mcs = __xen_mc_entry(0); 1709 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr, 1710 pfn_pte(pfn, prot), 0); 1711 } 1712 1713 /* This needs to make sure the new pte page is pinned iff its being 1714 attached to a pinned pagetable. */ 1715 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, 1716 unsigned level) 1717 { 1718 bool pinned = PagePinned(virt_to_page(mm->pgd)); 1719 1720 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned); 1721 1722 if (pinned) { 1723 struct page *page = pfn_to_page(pfn); 1724 1725 SetPagePinned(page); 1726 1727 if (!PageHighMem(page)) { 1728 xen_mc_batch(); 1729 1730 __set_pfn_prot(pfn, PAGE_KERNEL_RO); 1731 1732 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS) 1733 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); 1734 1735 xen_mc_issue(PARAVIRT_LAZY_MMU); 1736 } else { 1737 /* make sure there are no stray mappings of 1738 this page */ 1739 kmap_flush_unused(); 1740 } 1741 } 1742 } 1743 1744 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn) 1745 { 1746 xen_alloc_ptpage(mm, pfn, PT_PTE); 1747 } 1748 1749 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn) 1750 { 1751 xen_alloc_ptpage(mm, pfn, PT_PMD); 1752 } 1753 1754 /* This should never happen until we're OK to use struct page */ 1755 static inline void xen_release_ptpage(unsigned long pfn, unsigned level) 1756 { 1757 struct page *page = pfn_to_page(pfn); 1758 bool pinned = PagePinned(page); 1759 1760 trace_xen_mmu_release_ptpage(pfn, level, pinned); 1761 1762 if (pinned) { 1763 if (!PageHighMem(page)) { 1764 xen_mc_batch(); 1765 1766 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS) 1767 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); 1768 1769 __set_pfn_prot(pfn, PAGE_KERNEL); 1770 1771 xen_mc_issue(PARAVIRT_LAZY_MMU); 1772 } 1773 ClearPagePinned(page); 1774 } 1775 } 1776 1777 static void xen_release_pte(unsigned long pfn) 1778 { 1779 xen_release_ptpage(pfn, PT_PTE); 1780 } 1781 1782 static void xen_release_pmd(unsigned long pfn) 1783 { 1784 xen_release_ptpage(pfn, PT_PMD); 1785 } 1786 1787 #if CONFIG_PGTABLE_LEVELS >= 4 1788 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn) 1789 { 1790 xen_alloc_ptpage(mm, pfn, PT_PUD); 1791 } 1792 1793 static void xen_release_pud(unsigned long pfn) 1794 { 1795 xen_release_ptpage(pfn, PT_PUD); 1796 } 1797 #endif 1798 1799 void __init xen_reserve_top(void) 1800 { 1801 #ifdef CONFIG_X86_32 1802 unsigned long top = HYPERVISOR_VIRT_START; 1803 struct xen_platform_parameters pp; 1804 1805 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0) 1806 top = pp.virt_start; 1807 1808 reserve_top_address(-top); 1809 #endif /* CONFIG_X86_32 */ 1810 } 1811 1812 /* 1813 * Like __va(), but returns address in the kernel mapping (which is 1814 * all we have until the physical memory mapping has been set up. 1815 */ 1816 static void * __init __ka(phys_addr_t paddr) 1817 { 1818 #ifdef CONFIG_X86_64 1819 return (void *)(paddr + __START_KERNEL_map); 1820 #else 1821 return __va(paddr); 1822 #endif 1823 } 1824 1825 /* Convert a machine address to physical address */ 1826 static unsigned long __init m2p(phys_addr_t maddr) 1827 { 1828 phys_addr_t paddr; 1829 1830 maddr &= PTE_PFN_MASK; 1831 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT; 1832 1833 return paddr; 1834 } 1835 1836 /* Convert a machine address to kernel virtual */ 1837 static void * __init m2v(phys_addr_t maddr) 1838 { 1839 return __ka(m2p(maddr)); 1840 } 1841 1842 /* Set the page permissions on an identity-mapped pages */ 1843 static void __init set_page_prot_flags(void *addr, pgprot_t prot, 1844 unsigned long flags) 1845 { 1846 unsigned long pfn = __pa(addr) >> PAGE_SHIFT; 1847 pte_t pte = pfn_pte(pfn, prot); 1848 1849 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags)) 1850 BUG(); 1851 } 1852 static void __init set_page_prot(void *addr, pgprot_t prot) 1853 { 1854 return set_page_prot_flags(addr, prot, UVMF_NONE); 1855 } 1856 #ifdef CONFIG_X86_32 1857 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn) 1858 { 1859 unsigned pmdidx, pteidx; 1860 unsigned ident_pte; 1861 unsigned long pfn; 1862 1863 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES, 1864 PAGE_SIZE); 1865 1866 ident_pte = 0; 1867 pfn = 0; 1868 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) { 1869 pte_t *pte_page; 1870 1871 /* Reuse or allocate a page of ptes */ 1872 if (pmd_present(pmd[pmdidx])) 1873 pte_page = m2v(pmd[pmdidx].pmd); 1874 else { 1875 /* Check for free pte pages */ 1876 if (ident_pte == LEVEL1_IDENT_ENTRIES) 1877 break; 1878 1879 pte_page = &level1_ident_pgt[ident_pte]; 1880 ident_pte += PTRS_PER_PTE; 1881 1882 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE); 1883 } 1884 1885 /* Install mappings */ 1886 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) { 1887 pte_t pte; 1888 1889 if (pfn > max_pfn_mapped) 1890 max_pfn_mapped = pfn; 1891 1892 if (!pte_none(pte_page[pteidx])) 1893 continue; 1894 1895 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC); 1896 pte_page[pteidx] = pte; 1897 } 1898 } 1899 1900 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE) 1901 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO); 1902 1903 set_page_prot(pmd, PAGE_KERNEL_RO); 1904 } 1905 #endif 1906 void __init xen_setup_machphys_mapping(void) 1907 { 1908 struct xen_machphys_mapping mapping; 1909 1910 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) { 1911 machine_to_phys_mapping = (unsigned long *)mapping.v_start; 1912 machine_to_phys_nr = mapping.max_mfn + 1; 1913 } else { 1914 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES; 1915 } 1916 #ifdef CONFIG_X86_32 1917 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1)) 1918 < machine_to_phys_mapping); 1919 #endif 1920 } 1921 1922 #ifdef CONFIG_X86_64 1923 static void __init convert_pfn_mfn(void *v) 1924 { 1925 pte_t *pte = v; 1926 int i; 1927 1928 /* All levels are converted the same way, so just treat them 1929 as ptes. */ 1930 for (i = 0; i < PTRS_PER_PTE; i++) 1931 pte[i] = xen_make_pte(pte[i].pte); 1932 } 1933 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end, 1934 unsigned long addr) 1935 { 1936 if (*pt_base == PFN_DOWN(__pa(addr))) { 1937 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); 1938 clear_page((void *)addr); 1939 (*pt_base)++; 1940 } 1941 if (*pt_end == PFN_DOWN(__pa(addr))) { 1942 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); 1943 clear_page((void *)addr); 1944 (*pt_end)--; 1945 } 1946 } 1947 /* 1948 * Set up the initial kernel pagetable. 1949 * 1950 * We can construct this by grafting the Xen provided pagetable into 1951 * head_64.S's preconstructed pagetables. We copy the Xen L2's into 1952 * level2_ident_pgt, and level2_kernel_pgt. This means that only the 1953 * kernel has a physical mapping to start with - but that's enough to 1954 * get __va working. We need to fill in the rest of the physical 1955 * mapping once some sort of allocator has been set up. 1956 */ 1957 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn) 1958 { 1959 pud_t *l3; 1960 pmd_t *l2; 1961 unsigned long addr[3]; 1962 unsigned long pt_base, pt_end; 1963 unsigned i; 1964 1965 /* max_pfn_mapped is the last pfn mapped in the initial memory 1966 * mappings. Considering that on Xen after the kernel mappings we 1967 * have the mappings of some pages that don't exist in pfn space, we 1968 * set max_pfn_mapped to the last real pfn mapped. */ 1969 if (xen_start_info->mfn_list < __START_KERNEL_map) 1970 max_pfn_mapped = xen_start_info->first_p2m_pfn; 1971 else 1972 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list)); 1973 1974 pt_base = PFN_DOWN(__pa(xen_start_info->pt_base)); 1975 pt_end = pt_base + xen_start_info->nr_pt_frames; 1976 1977 /* Zap identity mapping */ 1978 init_level4_pgt[0] = __pgd(0); 1979 1980 if (!xen_feature(XENFEAT_auto_translated_physmap)) { 1981 /* Pre-constructed entries are in pfn, so convert to mfn */ 1982 /* L4[272] -> level3_ident_pgt 1983 * L4[511] -> level3_kernel_pgt */ 1984 convert_pfn_mfn(init_level4_pgt); 1985 1986 /* L3_i[0] -> level2_ident_pgt */ 1987 convert_pfn_mfn(level3_ident_pgt); 1988 /* L3_k[510] -> level2_kernel_pgt 1989 * L3_k[511] -> level2_fixmap_pgt */ 1990 convert_pfn_mfn(level3_kernel_pgt); 1991 1992 /* L3_k[511][506] -> level1_fixmap_pgt */ 1993 convert_pfn_mfn(level2_fixmap_pgt); 1994 } 1995 /* We get [511][511] and have Xen's version of level2_kernel_pgt */ 1996 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd); 1997 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud); 1998 1999 addr[0] = (unsigned long)pgd; 2000 addr[1] = (unsigned long)l3; 2001 addr[2] = (unsigned long)l2; 2002 /* Graft it onto L4[272][0]. Note that we creating an aliasing problem: 2003 * Both L4[272][0] and L4[511][510] have entries that point to the same 2004 * L2 (PMD) tables. Meaning that if you modify it in __va space 2005 * it will be also modified in the __ka space! (But if you just 2006 * modify the PMD table to point to other PTE's or none, then you 2007 * are OK - which is what cleanup_highmap does) */ 2008 copy_page(level2_ident_pgt, l2); 2009 /* Graft it onto L4[511][510] */ 2010 copy_page(level2_kernel_pgt, l2); 2011 2012 /* Copy the initial P->M table mappings if necessary. */ 2013 i = pgd_index(xen_start_info->mfn_list); 2014 if (i && i < pgd_index(__START_KERNEL_map)) 2015 init_level4_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i]; 2016 2017 if (!xen_feature(XENFEAT_auto_translated_physmap)) { 2018 /* Make pagetable pieces RO */ 2019 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO); 2020 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO); 2021 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO); 2022 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO); 2023 set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO); 2024 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); 2025 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO); 2026 set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO); 2027 2028 /* Pin down new L4 */ 2029 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, 2030 PFN_DOWN(__pa_symbol(init_level4_pgt))); 2031 2032 /* Unpin Xen-provided one */ 2033 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 2034 2035 /* 2036 * At this stage there can be no user pgd, and no page 2037 * structure to attach it to, so make sure we just set kernel 2038 * pgd. 2039 */ 2040 xen_mc_batch(); 2041 __xen_write_cr3(true, __pa(init_level4_pgt)); 2042 xen_mc_issue(PARAVIRT_LAZY_CPU); 2043 } else 2044 native_write_cr3(__pa(init_level4_pgt)); 2045 2046 /* We can't that easily rip out L3 and L2, as the Xen pagetables are 2047 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for 2048 * the initial domain. For guests using the toolstack, they are in: 2049 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only 2050 * rip out the [L4] (pgd), but for guests we shave off three pages. 2051 */ 2052 for (i = 0; i < ARRAY_SIZE(addr); i++) 2053 check_pt_base(&pt_base, &pt_end, addr[i]); 2054 2055 /* Our (by three pages) smaller Xen pagetable that we are using */ 2056 xen_pt_base = PFN_PHYS(pt_base); 2057 xen_pt_size = (pt_end - pt_base) * PAGE_SIZE; 2058 memblock_reserve(xen_pt_base, xen_pt_size); 2059 2060 /* Revector the xen_start_info */ 2061 xen_start_info = (struct start_info *)__va(__pa(xen_start_info)); 2062 } 2063 2064 /* 2065 * Read a value from a physical address. 2066 */ 2067 static unsigned long __init xen_read_phys_ulong(phys_addr_t addr) 2068 { 2069 unsigned long *vaddr; 2070 unsigned long val; 2071 2072 vaddr = early_memremap_ro(addr, sizeof(val)); 2073 val = *vaddr; 2074 early_memunmap(vaddr, sizeof(val)); 2075 return val; 2076 } 2077 2078 /* 2079 * Translate a virtual address to a physical one without relying on mapped 2080 * page tables. 2081 */ 2082 static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr) 2083 { 2084 phys_addr_t pa; 2085 pgd_t pgd; 2086 pud_t pud; 2087 pmd_t pmd; 2088 pte_t pte; 2089 2090 pa = read_cr3(); 2091 pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) * 2092 sizeof(pgd))); 2093 if (!pgd_present(pgd)) 2094 return 0; 2095 2096 pa = pgd_val(pgd) & PTE_PFN_MASK; 2097 pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) * 2098 sizeof(pud))); 2099 if (!pud_present(pud)) 2100 return 0; 2101 pa = pud_pfn(pud) << PAGE_SHIFT; 2102 if (pud_large(pud)) 2103 return pa + (vaddr & ~PUD_MASK); 2104 2105 pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) * 2106 sizeof(pmd))); 2107 if (!pmd_present(pmd)) 2108 return 0; 2109 pa = pmd_pfn(pmd) << PAGE_SHIFT; 2110 if (pmd_large(pmd)) 2111 return pa + (vaddr & ~PMD_MASK); 2112 2113 pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) * 2114 sizeof(pte))); 2115 if (!pte_present(pte)) 2116 return 0; 2117 pa = pte_pfn(pte) << PAGE_SHIFT; 2118 2119 return pa | (vaddr & ~PAGE_MASK); 2120 } 2121 2122 /* 2123 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to 2124 * this area. 2125 */ 2126 void __init xen_relocate_p2m(void) 2127 { 2128 phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys, p4d_phys; 2129 unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end; 2130 int n_pte, n_pt, n_pmd, n_pud, n_p4d, idx_pte, idx_pt, idx_pmd, idx_pud, idx_p4d; 2131 pte_t *pt; 2132 pmd_t *pmd; 2133 pud_t *pud; 2134 p4d_t *p4d = NULL; 2135 pgd_t *pgd; 2136 unsigned long *new_p2m; 2137 int save_pud; 2138 2139 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); 2140 n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT; 2141 n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT; 2142 n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT; 2143 n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT; 2144 if (PTRS_PER_P4D > 1) 2145 n_p4d = roundup(size, PGDIR_SIZE) >> PGDIR_SHIFT; 2146 else 2147 n_p4d = 0; 2148 n_frames = n_pte + n_pt + n_pmd + n_pud + n_p4d; 2149 2150 new_area = xen_find_free_area(PFN_PHYS(n_frames)); 2151 if (!new_area) { 2152 xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n"); 2153 BUG(); 2154 } 2155 2156 /* 2157 * Setup the page tables for addressing the new p2m list. 2158 * We have asked the hypervisor to map the p2m list at the user address 2159 * PUD_SIZE. It may have done so, or it may have used a kernel space 2160 * address depending on the Xen version. 2161 * To avoid any possible virtual address collision, just use 2162 * 2 * PUD_SIZE for the new area. 2163 */ 2164 p4d_phys = new_area; 2165 pud_phys = p4d_phys + PFN_PHYS(n_p4d); 2166 pmd_phys = pud_phys + PFN_PHYS(n_pud); 2167 pt_phys = pmd_phys + PFN_PHYS(n_pmd); 2168 p2m_pfn = PFN_DOWN(pt_phys) + n_pt; 2169 2170 pgd = __va(read_cr3()); 2171 new_p2m = (unsigned long *)(2 * PGDIR_SIZE); 2172 idx_p4d = 0; 2173 save_pud = n_pud; 2174 do { 2175 if (n_p4d > 0) { 2176 p4d = early_memremap(p4d_phys, PAGE_SIZE); 2177 clear_page(p4d); 2178 n_pud = min(save_pud, PTRS_PER_P4D); 2179 } 2180 for (idx_pud = 0; idx_pud < n_pud; idx_pud++) { 2181 pud = early_memremap(pud_phys, PAGE_SIZE); 2182 clear_page(pud); 2183 for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD); 2184 idx_pmd++) { 2185 pmd = early_memremap(pmd_phys, PAGE_SIZE); 2186 clear_page(pmd); 2187 for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD); 2188 idx_pt++) { 2189 pt = early_memremap(pt_phys, PAGE_SIZE); 2190 clear_page(pt); 2191 for (idx_pte = 0; 2192 idx_pte < min(n_pte, PTRS_PER_PTE); 2193 idx_pte++) { 2194 set_pte(pt + idx_pte, 2195 pfn_pte(p2m_pfn, PAGE_KERNEL)); 2196 p2m_pfn++; 2197 } 2198 n_pte -= PTRS_PER_PTE; 2199 early_memunmap(pt, PAGE_SIZE); 2200 make_lowmem_page_readonly(__va(pt_phys)); 2201 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, 2202 PFN_DOWN(pt_phys)); 2203 set_pmd(pmd + idx_pt, 2204 __pmd(_PAGE_TABLE | pt_phys)); 2205 pt_phys += PAGE_SIZE; 2206 } 2207 n_pt -= PTRS_PER_PMD; 2208 early_memunmap(pmd, PAGE_SIZE); 2209 make_lowmem_page_readonly(__va(pmd_phys)); 2210 pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE, 2211 PFN_DOWN(pmd_phys)); 2212 set_pud(pud + idx_pmd, __pud(_PAGE_TABLE | pmd_phys)); 2213 pmd_phys += PAGE_SIZE; 2214 } 2215 n_pmd -= PTRS_PER_PUD; 2216 early_memunmap(pud, PAGE_SIZE); 2217 make_lowmem_page_readonly(__va(pud_phys)); 2218 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys)); 2219 if (n_p4d > 0) 2220 set_p4d(p4d + idx_pud, __p4d(_PAGE_TABLE | pud_phys)); 2221 else 2222 set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys)); 2223 pud_phys += PAGE_SIZE; 2224 } 2225 if (n_p4d > 0) { 2226 save_pud -= PTRS_PER_P4D; 2227 early_memunmap(p4d, PAGE_SIZE); 2228 make_lowmem_page_readonly(__va(p4d_phys)); 2229 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, PFN_DOWN(p4d_phys)); 2230 set_pgd(pgd + 2 + idx_p4d, __pgd(_PAGE_TABLE | p4d_phys)); 2231 p4d_phys += PAGE_SIZE; 2232 } 2233 } while (++idx_p4d < n_p4d); 2234 2235 /* Now copy the old p2m info to the new area. */ 2236 memcpy(new_p2m, xen_p2m_addr, size); 2237 xen_p2m_addr = new_p2m; 2238 2239 /* Release the old p2m list and set new list info. */ 2240 p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list)); 2241 BUG_ON(!p2m_pfn); 2242 p2m_pfn_end = p2m_pfn + PFN_DOWN(size); 2243 2244 if (xen_start_info->mfn_list < __START_KERNEL_map) { 2245 pfn = xen_start_info->first_p2m_pfn; 2246 pfn_end = xen_start_info->first_p2m_pfn + 2247 xen_start_info->nr_p2m_frames; 2248 set_pgd(pgd + 1, __pgd(0)); 2249 } else { 2250 pfn = p2m_pfn; 2251 pfn_end = p2m_pfn_end; 2252 } 2253 2254 memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn)); 2255 while (pfn < pfn_end) { 2256 if (pfn == p2m_pfn) { 2257 pfn = p2m_pfn_end; 2258 continue; 2259 } 2260 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 2261 pfn++; 2262 } 2263 2264 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr; 2265 xen_start_info->first_p2m_pfn = PFN_DOWN(new_area); 2266 xen_start_info->nr_p2m_frames = n_frames; 2267 } 2268 2269 #else /* !CONFIG_X86_64 */ 2270 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD); 2271 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD); 2272 2273 static void __init xen_write_cr3_init(unsigned long cr3) 2274 { 2275 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir)); 2276 2277 BUG_ON(read_cr3() != __pa(initial_page_table)); 2278 BUG_ON(cr3 != __pa(swapper_pg_dir)); 2279 2280 /* 2281 * We are switching to swapper_pg_dir for the first time (from 2282 * initial_page_table) and therefore need to mark that page 2283 * read-only and then pin it. 2284 * 2285 * Xen disallows sharing of kernel PMDs for PAE 2286 * guests. Therefore we must copy the kernel PMD from 2287 * initial_page_table into a new kernel PMD to be used in 2288 * swapper_pg_dir. 2289 */ 2290 swapper_kernel_pmd = 2291 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); 2292 copy_page(swapper_kernel_pmd, initial_kernel_pmd); 2293 swapper_pg_dir[KERNEL_PGD_BOUNDARY] = 2294 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT); 2295 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO); 2296 2297 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO); 2298 xen_write_cr3(cr3); 2299 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn); 2300 2301 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, 2302 PFN_DOWN(__pa(initial_page_table))); 2303 set_page_prot(initial_page_table, PAGE_KERNEL); 2304 set_page_prot(initial_kernel_pmd, PAGE_KERNEL); 2305 2306 pv_mmu_ops.write_cr3 = &xen_write_cr3; 2307 } 2308 2309 /* 2310 * For 32 bit domains xen_start_info->pt_base is the pgd address which might be 2311 * not the first page table in the page table pool. 2312 * Iterate through the initial page tables to find the real page table base. 2313 */ 2314 static phys_addr_t xen_find_pt_base(pmd_t *pmd) 2315 { 2316 phys_addr_t pt_base, paddr; 2317 unsigned pmdidx; 2318 2319 pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd)); 2320 2321 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) 2322 if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) { 2323 paddr = m2p(pmd[pmdidx].pmd); 2324 pt_base = min(pt_base, paddr); 2325 } 2326 2327 return pt_base; 2328 } 2329 2330 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn) 2331 { 2332 pmd_t *kernel_pmd; 2333 2334 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd); 2335 2336 xen_pt_base = xen_find_pt_base(kernel_pmd); 2337 xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE; 2338 2339 initial_kernel_pmd = 2340 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); 2341 2342 max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024); 2343 2344 copy_page(initial_kernel_pmd, kernel_pmd); 2345 2346 xen_map_identity_early(initial_kernel_pmd, max_pfn); 2347 2348 copy_page(initial_page_table, pgd); 2349 initial_page_table[KERNEL_PGD_BOUNDARY] = 2350 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT); 2351 2352 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO); 2353 set_page_prot(initial_page_table, PAGE_KERNEL_RO); 2354 set_page_prot(empty_zero_page, PAGE_KERNEL_RO); 2355 2356 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 2357 2358 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, 2359 PFN_DOWN(__pa(initial_page_table))); 2360 xen_write_cr3(__pa(initial_page_table)); 2361 2362 memblock_reserve(xen_pt_base, xen_pt_size); 2363 } 2364 #endif /* CONFIG_X86_64 */ 2365 2366 void __init xen_reserve_special_pages(void) 2367 { 2368 phys_addr_t paddr; 2369 2370 memblock_reserve(__pa(xen_start_info), PAGE_SIZE); 2371 if (xen_start_info->store_mfn) { 2372 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn)); 2373 memblock_reserve(paddr, PAGE_SIZE); 2374 } 2375 if (!xen_initial_domain()) { 2376 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn)); 2377 memblock_reserve(paddr, PAGE_SIZE); 2378 } 2379 } 2380 2381 void __init xen_pt_check_e820(void) 2382 { 2383 if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) { 2384 xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n"); 2385 BUG(); 2386 } 2387 } 2388 2389 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss; 2390 2391 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot) 2392 { 2393 pte_t pte; 2394 2395 phys >>= PAGE_SHIFT; 2396 2397 switch (idx) { 2398 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN: 2399 case FIX_RO_IDT: 2400 #ifdef CONFIG_X86_32 2401 case FIX_WP_TEST: 2402 # ifdef CONFIG_HIGHMEM 2403 case FIX_KMAP_BEGIN ... FIX_KMAP_END: 2404 # endif 2405 #elif defined(CONFIG_X86_VSYSCALL_EMULATION) 2406 case VSYSCALL_PAGE: 2407 #endif 2408 case FIX_TEXT_POKE0: 2409 case FIX_TEXT_POKE1: 2410 case FIX_GDT_REMAP_BEGIN ... FIX_GDT_REMAP_END: 2411 /* All local page mappings */ 2412 pte = pfn_pte(phys, prot); 2413 break; 2414 2415 #ifdef CONFIG_X86_LOCAL_APIC 2416 case FIX_APIC_BASE: /* maps dummy local APIC */ 2417 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); 2418 break; 2419 #endif 2420 2421 #ifdef CONFIG_X86_IO_APIC 2422 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END: 2423 /* 2424 * We just don't map the IO APIC - all access is via 2425 * hypercalls. Keep the address in the pte for reference. 2426 */ 2427 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); 2428 break; 2429 #endif 2430 2431 case FIX_PARAVIRT_BOOTMAP: 2432 /* This is an MFN, but it isn't an IO mapping from the 2433 IO domain */ 2434 pte = mfn_pte(phys, prot); 2435 break; 2436 2437 default: 2438 /* By default, set_fixmap is used for hardware mappings */ 2439 pte = mfn_pte(phys, prot); 2440 break; 2441 } 2442 2443 __native_set_fixmap(idx, pte); 2444 2445 #ifdef CONFIG_X86_VSYSCALL_EMULATION 2446 /* Replicate changes to map the vsyscall page into the user 2447 pagetable vsyscall mapping. */ 2448 if (idx == VSYSCALL_PAGE) { 2449 unsigned long vaddr = __fix_to_virt(idx); 2450 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte); 2451 } 2452 #endif 2453 } 2454 2455 static void __init xen_post_allocator_init(void) 2456 { 2457 if (xen_feature(XENFEAT_auto_translated_physmap)) 2458 return; 2459 2460 pv_mmu_ops.set_pte = xen_set_pte; 2461 pv_mmu_ops.set_pmd = xen_set_pmd; 2462 pv_mmu_ops.set_pud = xen_set_pud; 2463 #if CONFIG_PGTABLE_LEVELS >= 4 2464 pv_mmu_ops.set_p4d = xen_set_p4d; 2465 #endif 2466 2467 /* This will work as long as patching hasn't happened yet 2468 (which it hasn't) */ 2469 pv_mmu_ops.alloc_pte = xen_alloc_pte; 2470 pv_mmu_ops.alloc_pmd = xen_alloc_pmd; 2471 pv_mmu_ops.release_pte = xen_release_pte; 2472 pv_mmu_ops.release_pmd = xen_release_pmd; 2473 #if CONFIG_PGTABLE_LEVELS >= 4 2474 pv_mmu_ops.alloc_pud = xen_alloc_pud; 2475 pv_mmu_ops.release_pud = xen_release_pud; 2476 #endif 2477 pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte); 2478 2479 #ifdef CONFIG_X86_64 2480 pv_mmu_ops.write_cr3 = &xen_write_cr3; 2481 SetPagePinned(virt_to_page(level3_user_vsyscall)); 2482 #endif 2483 xen_mark_init_mm_pinned(); 2484 } 2485 2486 static void xen_leave_lazy_mmu(void) 2487 { 2488 preempt_disable(); 2489 xen_mc_flush(); 2490 paravirt_leave_lazy_mmu(); 2491 preempt_enable(); 2492 } 2493 2494 static const struct pv_mmu_ops xen_mmu_ops __initconst = { 2495 .read_cr2 = xen_read_cr2, 2496 .write_cr2 = xen_write_cr2, 2497 2498 .read_cr3 = xen_read_cr3, 2499 .write_cr3 = xen_write_cr3_init, 2500 2501 .flush_tlb_user = xen_flush_tlb, 2502 .flush_tlb_kernel = xen_flush_tlb, 2503 .flush_tlb_single = xen_flush_tlb_single, 2504 .flush_tlb_others = xen_flush_tlb_others, 2505 2506 .pte_update = paravirt_nop, 2507 2508 .pgd_alloc = xen_pgd_alloc, 2509 .pgd_free = xen_pgd_free, 2510 2511 .alloc_pte = xen_alloc_pte_init, 2512 .release_pte = xen_release_pte_init, 2513 .alloc_pmd = xen_alloc_pmd_init, 2514 .release_pmd = xen_release_pmd_init, 2515 2516 .set_pte = xen_set_pte_init, 2517 .set_pte_at = xen_set_pte_at, 2518 .set_pmd = xen_set_pmd_hyper, 2519 2520 .ptep_modify_prot_start = __ptep_modify_prot_start, 2521 .ptep_modify_prot_commit = __ptep_modify_prot_commit, 2522 2523 .pte_val = PV_CALLEE_SAVE(xen_pte_val), 2524 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val), 2525 2526 .make_pte = PV_CALLEE_SAVE(xen_make_pte_init), 2527 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd), 2528 2529 #ifdef CONFIG_X86_PAE 2530 .set_pte_atomic = xen_set_pte_atomic, 2531 .pte_clear = xen_pte_clear, 2532 .pmd_clear = xen_pmd_clear, 2533 #endif /* CONFIG_X86_PAE */ 2534 .set_pud = xen_set_pud_hyper, 2535 2536 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd), 2537 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val), 2538 2539 #if CONFIG_PGTABLE_LEVELS >= 4 2540 .pud_val = PV_CALLEE_SAVE(xen_pud_val), 2541 .make_pud = PV_CALLEE_SAVE(xen_make_pud), 2542 .set_p4d = xen_set_p4d_hyper, 2543 2544 .alloc_pud = xen_alloc_pmd_init, 2545 .release_pud = xen_release_pmd_init, 2546 #endif /* CONFIG_PGTABLE_LEVELS == 4 */ 2547 2548 .activate_mm = xen_activate_mm, 2549 .dup_mmap = xen_dup_mmap, 2550 .exit_mmap = xen_exit_mmap, 2551 2552 .lazy_mode = { 2553 .enter = paravirt_enter_lazy_mmu, 2554 .leave = xen_leave_lazy_mmu, 2555 .flush = paravirt_flush_lazy_mmu, 2556 }, 2557 2558 .set_fixmap = xen_set_fixmap, 2559 }; 2560 2561 void __init xen_init_mmu_ops(void) 2562 { 2563 x86_init.paging.pagetable_init = xen_pagetable_init; 2564 2565 if (xen_feature(XENFEAT_auto_translated_physmap)) 2566 return; 2567 2568 pv_mmu_ops = xen_mmu_ops; 2569 2570 memset(dummy_mapping, 0xff, PAGE_SIZE); 2571 } 2572 2573 /* Protected by xen_reservation_lock. */ 2574 #define MAX_CONTIG_ORDER 9 /* 2MB */ 2575 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER]; 2576 2577 #define VOID_PTE (mfn_pte(0, __pgprot(0))) 2578 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order, 2579 unsigned long *in_frames, 2580 unsigned long *out_frames) 2581 { 2582 int i; 2583 struct multicall_space mcs; 2584 2585 xen_mc_batch(); 2586 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) { 2587 mcs = __xen_mc_entry(0); 2588 2589 if (in_frames) 2590 in_frames[i] = virt_to_mfn(vaddr); 2591 2592 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0); 2593 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY); 2594 2595 if (out_frames) 2596 out_frames[i] = virt_to_pfn(vaddr); 2597 } 2598 xen_mc_issue(0); 2599 } 2600 2601 /* 2602 * Update the pfn-to-mfn mappings for a virtual address range, either to 2603 * point to an array of mfns, or contiguously from a single starting 2604 * mfn. 2605 */ 2606 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order, 2607 unsigned long *mfns, 2608 unsigned long first_mfn) 2609 { 2610 unsigned i, limit; 2611 unsigned long mfn; 2612 2613 xen_mc_batch(); 2614 2615 limit = 1u << order; 2616 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) { 2617 struct multicall_space mcs; 2618 unsigned flags; 2619 2620 mcs = __xen_mc_entry(0); 2621 if (mfns) 2622 mfn = mfns[i]; 2623 else 2624 mfn = first_mfn + i; 2625 2626 if (i < (limit - 1)) 2627 flags = 0; 2628 else { 2629 if (order == 0) 2630 flags = UVMF_INVLPG | UVMF_ALL; 2631 else 2632 flags = UVMF_TLB_FLUSH | UVMF_ALL; 2633 } 2634 2635 MULTI_update_va_mapping(mcs.mc, vaddr, 2636 mfn_pte(mfn, PAGE_KERNEL), flags); 2637 2638 set_phys_to_machine(virt_to_pfn(vaddr), mfn); 2639 } 2640 2641 xen_mc_issue(0); 2642 } 2643 2644 /* 2645 * Perform the hypercall to exchange a region of our pfns to point to 2646 * memory with the required contiguous alignment. Takes the pfns as 2647 * input, and populates mfns as output. 2648 * 2649 * Returns a success code indicating whether the hypervisor was able to 2650 * satisfy the request or not. 2651 */ 2652 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in, 2653 unsigned long *pfns_in, 2654 unsigned long extents_out, 2655 unsigned int order_out, 2656 unsigned long *mfns_out, 2657 unsigned int address_bits) 2658 { 2659 long rc; 2660 int success; 2661 2662 struct xen_memory_exchange exchange = { 2663 .in = { 2664 .nr_extents = extents_in, 2665 .extent_order = order_in, 2666 .extent_start = pfns_in, 2667 .domid = DOMID_SELF 2668 }, 2669 .out = { 2670 .nr_extents = extents_out, 2671 .extent_order = order_out, 2672 .extent_start = mfns_out, 2673 .address_bits = address_bits, 2674 .domid = DOMID_SELF 2675 } 2676 }; 2677 2678 BUG_ON(extents_in << order_in != extents_out << order_out); 2679 2680 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange); 2681 success = (exchange.nr_exchanged == extents_in); 2682 2683 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0))); 2684 BUG_ON(success && (rc != 0)); 2685 2686 return success; 2687 } 2688 2689 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order, 2690 unsigned int address_bits, 2691 dma_addr_t *dma_handle) 2692 { 2693 unsigned long *in_frames = discontig_frames, out_frame; 2694 unsigned long flags; 2695 int success; 2696 unsigned long vstart = (unsigned long)phys_to_virt(pstart); 2697 2698 /* 2699 * Currently an auto-translated guest will not perform I/O, nor will 2700 * it require PAE page directories below 4GB. Therefore any calls to 2701 * this function are redundant and can be ignored. 2702 */ 2703 2704 if (xen_feature(XENFEAT_auto_translated_physmap)) 2705 return 0; 2706 2707 if (unlikely(order > MAX_CONTIG_ORDER)) 2708 return -ENOMEM; 2709 2710 memset((void *) vstart, 0, PAGE_SIZE << order); 2711 2712 spin_lock_irqsave(&xen_reservation_lock, flags); 2713 2714 /* 1. Zap current PTEs, remembering MFNs. */ 2715 xen_zap_pfn_range(vstart, order, in_frames, NULL); 2716 2717 /* 2. Get a new contiguous memory extent. */ 2718 out_frame = virt_to_pfn(vstart); 2719 success = xen_exchange_memory(1UL << order, 0, in_frames, 2720 1, order, &out_frame, 2721 address_bits); 2722 2723 /* 3. Map the new extent in place of old pages. */ 2724 if (success) 2725 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame); 2726 else 2727 xen_remap_exchanged_ptes(vstart, order, in_frames, 0); 2728 2729 spin_unlock_irqrestore(&xen_reservation_lock, flags); 2730 2731 *dma_handle = virt_to_machine(vstart).maddr; 2732 return success ? 0 : -ENOMEM; 2733 } 2734 EXPORT_SYMBOL_GPL(xen_create_contiguous_region); 2735 2736 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order) 2737 { 2738 unsigned long *out_frames = discontig_frames, in_frame; 2739 unsigned long flags; 2740 int success; 2741 unsigned long vstart; 2742 2743 if (xen_feature(XENFEAT_auto_translated_physmap)) 2744 return; 2745 2746 if (unlikely(order > MAX_CONTIG_ORDER)) 2747 return; 2748 2749 vstart = (unsigned long)phys_to_virt(pstart); 2750 memset((void *) vstart, 0, PAGE_SIZE << order); 2751 2752 spin_lock_irqsave(&xen_reservation_lock, flags); 2753 2754 /* 1. Find start MFN of contiguous extent. */ 2755 in_frame = virt_to_mfn(vstart); 2756 2757 /* 2. Zap current PTEs. */ 2758 xen_zap_pfn_range(vstart, order, NULL, out_frames); 2759 2760 /* 3. Do the exchange for non-contiguous MFNs. */ 2761 success = xen_exchange_memory(1, order, &in_frame, 1UL << order, 2762 0, out_frames, 0); 2763 2764 /* 4. Map new pages in place of old pages. */ 2765 if (success) 2766 xen_remap_exchanged_ptes(vstart, order, out_frames, 0); 2767 else 2768 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame); 2769 2770 spin_unlock_irqrestore(&xen_reservation_lock, flags); 2771 } 2772 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region); 2773 2774 #ifdef CONFIG_XEN_PVHVM 2775 #ifdef CONFIG_PROC_VMCORE 2776 /* 2777 * This function is used in two contexts: 2778 * - the kdump kernel has to check whether a pfn of the crashed kernel 2779 * was a ballooned page. vmcore is using this function to decide 2780 * whether to access a pfn of the crashed kernel. 2781 * - the kexec kernel has to check whether a pfn was ballooned by the 2782 * previous kernel. If the pfn is ballooned, handle it properly. 2783 * Returns 0 if the pfn is not backed by a RAM page, the caller may 2784 * handle the pfn special in this case. 2785 */ 2786 static int xen_oldmem_pfn_is_ram(unsigned long pfn) 2787 { 2788 struct xen_hvm_get_mem_type a = { 2789 .domid = DOMID_SELF, 2790 .pfn = pfn, 2791 }; 2792 int ram; 2793 2794 if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a)) 2795 return -ENXIO; 2796 2797 switch (a.mem_type) { 2798 case HVMMEM_mmio_dm: 2799 ram = 0; 2800 break; 2801 case HVMMEM_ram_rw: 2802 case HVMMEM_ram_ro: 2803 default: 2804 ram = 1; 2805 break; 2806 } 2807 2808 return ram; 2809 } 2810 #endif 2811 2812 static void xen_hvm_exit_mmap(struct mm_struct *mm) 2813 { 2814 struct xen_hvm_pagetable_dying a; 2815 int rc; 2816 2817 a.domid = DOMID_SELF; 2818 a.gpa = __pa(mm->pgd); 2819 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a); 2820 WARN_ON_ONCE(rc < 0); 2821 } 2822 2823 static int is_pagetable_dying_supported(void) 2824 { 2825 struct xen_hvm_pagetable_dying a; 2826 int rc = 0; 2827 2828 a.domid = DOMID_SELF; 2829 a.gpa = 0x00; 2830 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a); 2831 if (rc < 0) { 2832 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n"); 2833 return 0; 2834 } 2835 return 1; 2836 } 2837 2838 void __init xen_hvm_init_mmu_ops(void) 2839 { 2840 if (is_pagetable_dying_supported()) 2841 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap; 2842 #ifdef CONFIG_PROC_VMCORE 2843 register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram); 2844 #endif 2845 } 2846 #endif 2847 2848 #define REMAP_BATCH_SIZE 16 2849 2850 struct remap_data { 2851 xen_pfn_t *mfn; 2852 bool contiguous; 2853 pgprot_t prot; 2854 struct mmu_update *mmu_update; 2855 }; 2856 2857 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token, 2858 unsigned long addr, void *data) 2859 { 2860 struct remap_data *rmd = data; 2861 pte_t pte = pte_mkspecial(mfn_pte(*rmd->mfn, rmd->prot)); 2862 2863 /* If we have a contiguous range, just update the mfn itself, 2864 else update pointer to be "next mfn". */ 2865 if (rmd->contiguous) 2866 (*rmd->mfn)++; 2867 else 2868 rmd->mfn++; 2869 2870 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr; 2871 rmd->mmu_update->val = pte_val_ma(pte); 2872 rmd->mmu_update++; 2873 2874 return 0; 2875 } 2876 2877 static int do_remap_gfn(struct vm_area_struct *vma, 2878 unsigned long addr, 2879 xen_pfn_t *gfn, int nr, 2880 int *err_ptr, pgprot_t prot, 2881 unsigned domid, 2882 struct page **pages) 2883 { 2884 int err = 0; 2885 struct remap_data rmd; 2886 struct mmu_update mmu_update[REMAP_BATCH_SIZE]; 2887 unsigned long range; 2888 int mapped = 0; 2889 2890 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO))); 2891 2892 rmd.mfn = gfn; 2893 rmd.prot = prot; 2894 /* We use the err_ptr to indicate if there we are doing a contiguous 2895 * mapping or a discontigious mapping. */ 2896 rmd.contiguous = !err_ptr; 2897 2898 while (nr) { 2899 int index = 0; 2900 int done = 0; 2901 int batch = min(REMAP_BATCH_SIZE, nr); 2902 int batch_left = batch; 2903 range = (unsigned long)batch << PAGE_SHIFT; 2904 2905 rmd.mmu_update = mmu_update; 2906 err = apply_to_page_range(vma->vm_mm, addr, range, 2907 remap_area_mfn_pte_fn, &rmd); 2908 if (err) 2909 goto out; 2910 2911 /* We record the error for each page that gives an error, but 2912 * continue mapping until the whole set is done */ 2913 do { 2914 int i; 2915 2916 err = HYPERVISOR_mmu_update(&mmu_update[index], 2917 batch_left, &done, domid); 2918 2919 /* 2920 * @err_ptr may be the same buffer as @gfn, so 2921 * only clear it after each chunk of @gfn is 2922 * used. 2923 */ 2924 if (err_ptr) { 2925 for (i = index; i < index + done; i++) 2926 err_ptr[i] = 0; 2927 } 2928 if (err < 0) { 2929 if (!err_ptr) 2930 goto out; 2931 err_ptr[i] = err; 2932 done++; /* Skip failed frame. */ 2933 } else 2934 mapped += done; 2935 batch_left -= done; 2936 index += done; 2937 } while (batch_left); 2938 2939 nr -= batch; 2940 addr += range; 2941 if (err_ptr) 2942 err_ptr += batch; 2943 cond_resched(); 2944 } 2945 out: 2946 2947 xen_flush_tlb_all(); 2948 2949 return err < 0 ? err : mapped; 2950 } 2951 2952 int xen_remap_domain_gfn_range(struct vm_area_struct *vma, 2953 unsigned long addr, 2954 xen_pfn_t gfn, int nr, 2955 pgprot_t prot, unsigned domid, 2956 struct page **pages) 2957 { 2958 return do_remap_gfn(vma, addr, &gfn, nr, NULL, prot, domid, pages); 2959 } 2960 EXPORT_SYMBOL_GPL(xen_remap_domain_gfn_range); 2961 2962 int xen_remap_domain_gfn_array(struct vm_area_struct *vma, 2963 unsigned long addr, 2964 xen_pfn_t *gfn, int nr, 2965 int *err_ptr, pgprot_t prot, 2966 unsigned domid, struct page **pages) 2967 { 2968 /* We BUG_ON because it's a programmer error to pass a NULL err_ptr, 2969 * and the consequences later is quite hard to detect what the actual 2970 * cause of "wrong memory was mapped in". 2971 */ 2972 BUG_ON(err_ptr == NULL); 2973 return do_remap_gfn(vma, addr, gfn, nr, err_ptr, prot, domid, pages); 2974 } 2975 EXPORT_SYMBOL_GPL(xen_remap_domain_gfn_array); 2976 2977 2978 /* Returns: 0 success */ 2979 int xen_unmap_domain_gfn_range(struct vm_area_struct *vma, 2980 int numpgs, struct page **pages) 2981 { 2982 if (!pages || !xen_feature(XENFEAT_auto_translated_physmap)) 2983 return 0; 2984 2985 return -EINVAL; 2986 } 2987 EXPORT_SYMBOL_GPL(xen_unmap_domain_gfn_range); 2988