xref: /openbmc/linux/arch/x86/xen/mmu.c (revision 1c2dd16a)
1 /*
2  * Xen mmu operations
3  *
4  * This file contains the various mmu fetch and update operations.
5  * The most important job they must perform is the mapping between the
6  * domain's pfn and the overall machine mfns.
7  *
8  * Xen allows guests to directly update the pagetable, in a controlled
9  * fashion.  In other words, the guest modifies the same pagetable
10  * that the CPU actually uses, which eliminates the overhead of having
11  * a separate shadow pagetable.
12  *
13  * In order to allow this, it falls on the guest domain to map its
14  * notion of a "physical" pfn - which is just a domain-local linear
15  * address - into a real "machine address" which the CPU's MMU can
16  * use.
17  *
18  * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19  * inserted directly into the pagetable.  When creating a new
20  * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
21  * when reading the content back with __(pgd|pmd|pte)_val, it converts
22  * the mfn back into a pfn.
23  *
24  * The other constraint is that all pages which make up a pagetable
25  * must be mapped read-only in the guest.  This prevents uncontrolled
26  * guest updates to the pagetable.  Xen strictly enforces this, and
27  * will disallow any pagetable update which will end up mapping a
28  * pagetable page RW, and will disallow using any writable page as a
29  * pagetable.
30  *
31  * Naively, when loading %cr3 with the base of a new pagetable, Xen
32  * would need to validate the whole pagetable before going on.
33  * Naturally, this is quite slow.  The solution is to "pin" a
34  * pagetable, which enforces all the constraints on the pagetable even
35  * when it is not actively in use.  This menas that Xen can be assured
36  * that it is still valid when you do load it into %cr3, and doesn't
37  * need to revalidate it.
38  *
39  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40  */
41 #include <linux/sched/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/export.h>
47 #include <linux/init.h>
48 #include <linux/gfp.h>
49 #include <linux/memblock.h>
50 #include <linux/seq_file.h>
51 #include <linux/crash_dump.h>
52 
53 #include <trace/events/xen.h>
54 
55 #include <asm/pgtable.h>
56 #include <asm/tlbflush.h>
57 #include <asm/fixmap.h>
58 #include <asm/mmu_context.h>
59 #include <asm/setup.h>
60 #include <asm/paravirt.h>
61 #include <asm/e820/api.h>
62 #include <asm/linkage.h>
63 #include <asm/page.h>
64 #include <asm/init.h>
65 #include <asm/pat.h>
66 #include <asm/smp.h>
67 
68 #include <asm/xen/hypercall.h>
69 #include <asm/xen/hypervisor.h>
70 
71 #include <xen/xen.h>
72 #include <xen/page.h>
73 #include <xen/interface/xen.h>
74 #include <xen/interface/hvm/hvm_op.h>
75 #include <xen/interface/version.h>
76 #include <xen/interface/memory.h>
77 #include <xen/hvc-console.h>
78 
79 #include "multicalls.h"
80 #include "mmu.h"
81 #include "debugfs.h"
82 
83 /*
84  * Protects atomic reservation decrease/increase against concurrent increases.
85  * Also protects non-atomic updates of current_pages and balloon lists.
86  */
87 DEFINE_SPINLOCK(xen_reservation_lock);
88 
89 #ifdef CONFIG_X86_32
90 /*
91  * Identity map, in addition to plain kernel map.  This needs to be
92  * large enough to allocate page table pages to allocate the rest.
93  * Each page can map 2MB.
94  */
95 #define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4)
96 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
97 #endif
98 #ifdef CONFIG_X86_64
99 /* l3 pud for userspace vsyscall mapping */
100 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
101 #endif /* CONFIG_X86_64 */
102 
103 /*
104  * Note about cr3 (pagetable base) values:
105  *
106  * xen_cr3 contains the current logical cr3 value; it contains the
107  * last set cr3.  This may not be the current effective cr3, because
108  * its update may be being lazily deferred.  However, a vcpu looking
109  * at its own cr3 can use this value knowing that it everything will
110  * be self-consistent.
111  *
112  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
113  * hypercall to set the vcpu cr3 is complete (so it may be a little
114  * out of date, but it will never be set early).  If one vcpu is
115  * looking at another vcpu's cr3 value, it should use this variable.
116  */
117 DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
118 DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
119 
120 static phys_addr_t xen_pt_base, xen_pt_size __initdata;
121 
122 /*
123  * Just beyond the highest usermode address.  STACK_TOP_MAX has a
124  * redzone above it, so round it up to a PGD boundary.
125  */
126 #define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
127 
128 unsigned long arbitrary_virt_to_mfn(void *vaddr)
129 {
130 	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
131 
132 	return PFN_DOWN(maddr.maddr);
133 }
134 
135 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
136 {
137 	unsigned long address = (unsigned long)vaddr;
138 	unsigned int level;
139 	pte_t *pte;
140 	unsigned offset;
141 
142 	/*
143 	 * if the PFN is in the linear mapped vaddr range, we can just use
144 	 * the (quick) virt_to_machine() p2m lookup
145 	 */
146 	if (virt_addr_valid(vaddr))
147 		return virt_to_machine(vaddr);
148 
149 	/* otherwise we have to do a (slower) full page-table walk */
150 
151 	pte = lookup_address(address, &level);
152 	BUG_ON(pte == NULL);
153 	offset = address & ~PAGE_MASK;
154 	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
155 }
156 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
157 
158 void make_lowmem_page_readonly(void *vaddr)
159 {
160 	pte_t *pte, ptev;
161 	unsigned long address = (unsigned long)vaddr;
162 	unsigned int level;
163 
164 	pte = lookup_address(address, &level);
165 	if (pte == NULL)
166 		return;		/* vaddr missing */
167 
168 	ptev = pte_wrprotect(*pte);
169 
170 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
171 		BUG();
172 }
173 
174 void make_lowmem_page_readwrite(void *vaddr)
175 {
176 	pte_t *pte, ptev;
177 	unsigned long address = (unsigned long)vaddr;
178 	unsigned int level;
179 
180 	pte = lookup_address(address, &level);
181 	if (pte == NULL)
182 		return;		/* vaddr missing */
183 
184 	ptev = pte_mkwrite(*pte);
185 
186 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
187 		BUG();
188 }
189 
190 
191 static bool xen_page_pinned(void *ptr)
192 {
193 	struct page *page = virt_to_page(ptr);
194 
195 	return PagePinned(page);
196 }
197 
198 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
199 {
200 	struct multicall_space mcs;
201 	struct mmu_update *u;
202 
203 	trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
204 
205 	mcs = xen_mc_entry(sizeof(*u));
206 	u = mcs.args;
207 
208 	/* ptep might be kmapped when using 32-bit HIGHPTE */
209 	u->ptr = virt_to_machine(ptep).maddr;
210 	u->val = pte_val_ma(pteval);
211 
212 	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
213 
214 	xen_mc_issue(PARAVIRT_LAZY_MMU);
215 }
216 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
217 
218 static void xen_extend_mmu_update(const struct mmu_update *update)
219 {
220 	struct multicall_space mcs;
221 	struct mmu_update *u;
222 
223 	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
224 
225 	if (mcs.mc != NULL) {
226 		mcs.mc->args[1]++;
227 	} else {
228 		mcs = __xen_mc_entry(sizeof(*u));
229 		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
230 	}
231 
232 	u = mcs.args;
233 	*u = *update;
234 }
235 
236 static void xen_extend_mmuext_op(const struct mmuext_op *op)
237 {
238 	struct multicall_space mcs;
239 	struct mmuext_op *u;
240 
241 	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
242 
243 	if (mcs.mc != NULL) {
244 		mcs.mc->args[1]++;
245 	} else {
246 		mcs = __xen_mc_entry(sizeof(*u));
247 		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
248 	}
249 
250 	u = mcs.args;
251 	*u = *op;
252 }
253 
254 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
255 {
256 	struct mmu_update u;
257 
258 	preempt_disable();
259 
260 	xen_mc_batch();
261 
262 	/* ptr may be ioremapped for 64-bit pagetable setup */
263 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
264 	u.val = pmd_val_ma(val);
265 	xen_extend_mmu_update(&u);
266 
267 	xen_mc_issue(PARAVIRT_LAZY_MMU);
268 
269 	preempt_enable();
270 }
271 
272 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
273 {
274 	trace_xen_mmu_set_pmd(ptr, val);
275 
276 	/* If page is not pinned, we can just update the entry
277 	   directly */
278 	if (!xen_page_pinned(ptr)) {
279 		*ptr = val;
280 		return;
281 	}
282 
283 	xen_set_pmd_hyper(ptr, val);
284 }
285 
286 /*
287  * Associate a virtual page frame with a given physical page frame
288  * and protection flags for that frame.
289  */
290 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
291 {
292 	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
293 }
294 
295 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
296 {
297 	struct mmu_update u;
298 
299 	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
300 		return false;
301 
302 	xen_mc_batch();
303 
304 	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
305 	u.val = pte_val_ma(pteval);
306 	xen_extend_mmu_update(&u);
307 
308 	xen_mc_issue(PARAVIRT_LAZY_MMU);
309 
310 	return true;
311 }
312 
313 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
314 {
315 	if (!xen_batched_set_pte(ptep, pteval)) {
316 		/*
317 		 * Could call native_set_pte() here and trap and
318 		 * emulate the PTE write but with 32-bit guests this
319 		 * needs two traps (one for each of the two 32-bit
320 		 * words in the PTE) so do one hypercall directly
321 		 * instead.
322 		 */
323 		struct mmu_update u;
324 
325 		u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
326 		u.val = pte_val_ma(pteval);
327 		HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
328 	}
329 }
330 
331 static void xen_set_pte(pte_t *ptep, pte_t pteval)
332 {
333 	trace_xen_mmu_set_pte(ptep, pteval);
334 	__xen_set_pte(ptep, pteval);
335 }
336 
337 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
338 		    pte_t *ptep, pte_t pteval)
339 {
340 	trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
341 	__xen_set_pte(ptep, pteval);
342 }
343 
344 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
345 				 unsigned long addr, pte_t *ptep)
346 {
347 	/* Just return the pte as-is.  We preserve the bits on commit */
348 	trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
349 	return *ptep;
350 }
351 
352 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
353 				 pte_t *ptep, pte_t pte)
354 {
355 	struct mmu_update u;
356 
357 	trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
358 	xen_mc_batch();
359 
360 	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
361 	u.val = pte_val_ma(pte);
362 	xen_extend_mmu_update(&u);
363 
364 	xen_mc_issue(PARAVIRT_LAZY_MMU);
365 }
366 
367 /* Assume pteval_t is equivalent to all the other *val_t types. */
368 static pteval_t pte_mfn_to_pfn(pteval_t val)
369 {
370 	if (val & _PAGE_PRESENT) {
371 		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
372 		unsigned long pfn = mfn_to_pfn(mfn);
373 
374 		pteval_t flags = val & PTE_FLAGS_MASK;
375 		if (unlikely(pfn == ~0))
376 			val = flags & ~_PAGE_PRESENT;
377 		else
378 			val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
379 	}
380 
381 	return val;
382 }
383 
384 static pteval_t pte_pfn_to_mfn(pteval_t val)
385 {
386 	if (val & _PAGE_PRESENT) {
387 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
388 		pteval_t flags = val & PTE_FLAGS_MASK;
389 		unsigned long mfn;
390 
391 		if (!xen_feature(XENFEAT_auto_translated_physmap))
392 			mfn = __pfn_to_mfn(pfn);
393 		else
394 			mfn = pfn;
395 		/*
396 		 * If there's no mfn for the pfn, then just create an
397 		 * empty non-present pte.  Unfortunately this loses
398 		 * information about the original pfn, so
399 		 * pte_mfn_to_pfn is asymmetric.
400 		 */
401 		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
402 			mfn = 0;
403 			flags = 0;
404 		} else
405 			mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
406 		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
407 	}
408 
409 	return val;
410 }
411 
412 __visible pteval_t xen_pte_val(pte_t pte)
413 {
414 	pteval_t pteval = pte.pte;
415 
416 	return pte_mfn_to_pfn(pteval);
417 }
418 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
419 
420 __visible pgdval_t xen_pgd_val(pgd_t pgd)
421 {
422 	return pte_mfn_to_pfn(pgd.pgd);
423 }
424 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
425 
426 __visible pte_t xen_make_pte(pteval_t pte)
427 {
428 	pte = pte_pfn_to_mfn(pte);
429 
430 	return native_make_pte(pte);
431 }
432 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
433 
434 __visible pgd_t xen_make_pgd(pgdval_t pgd)
435 {
436 	pgd = pte_pfn_to_mfn(pgd);
437 	return native_make_pgd(pgd);
438 }
439 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
440 
441 __visible pmdval_t xen_pmd_val(pmd_t pmd)
442 {
443 	return pte_mfn_to_pfn(pmd.pmd);
444 }
445 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
446 
447 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
448 {
449 	struct mmu_update u;
450 
451 	preempt_disable();
452 
453 	xen_mc_batch();
454 
455 	/* ptr may be ioremapped for 64-bit pagetable setup */
456 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
457 	u.val = pud_val_ma(val);
458 	xen_extend_mmu_update(&u);
459 
460 	xen_mc_issue(PARAVIRT_LAZY_MMU);
461 
462 	preempt_enable();
463 }
464 
465 static void xen_set_pud(pud_t *ptr, pud_t val)
466 {
467 	trace_xen_mmu_set_pud(ptr, val);
468 
469 	/* If page is not pinned, we can just update the entry
470 	   directly */
471 	if (!xen_page_pinned(ptr)) {
472 		*ptr = val;
473 		return;
474 	}
475 
476 	xen_set_pud_hyper(ptr, val);
477 }
478 
479 #ifdef CONFIG_X86_PAE
480 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
481 {
482 	trace_xen_mmu_set_pte_atomic(ptep, pte);
483 	set_64bit((u64 *)ptep, native_pte_val(pte));
484 }
485 
486 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
487 {
488 	trace_xen_mmu_pte_clear(mm, addr, ptep);
489 	if (!xen_batched_set_pte(ptep, native_make_pte(0)))
490 		native_pte_clear(mm, addr, ptep);
491 }
492 
493 static void xen_pmd_clear(pmd_t *pmdp)
494 {
495 	trace_xen_mmu_pmd_clear(pmdp);
496 	set_pmd(pmdp, __pmd(0));
497 }
498 #endif	/* CONFIG_X86_PAE */
499 
500 __visible pmd_t xen_make_pmd(pmdval_t pmd)
501 {
502 	pmd = pte_pfn_to_mfn(pmd);
503 	return native_make_pmd(pmd);
504 }
505 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
506 
507 #if CONFIG_PGTABLE_LEVELS == 4
508 __visible pudval_t xen_pud_val(pud_t pud)
509 {
510 	return pte_mfn_to_pfn(pud.pud);
511 }
512 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
513 
514 __visible pud_t xen_make_pud(pudval_t pud)
515 {
516 	pud = pte_pfn_to_mfn(pud);
517 
518 	return native_make_pud(pud);
519 }
520 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
521 
522 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
523 {
524 	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
525 	unsigned offset = pgd - pgd_page;
526 	pgd_t *user_ptr = NULL;
527 
528 	if (offset < pgd_index(USER_LIMIT)) {
529 		struct page *page = virt_to_page(pgd_page);
530 		user_ptr = (pgd_t *)page->private;
531 		if (user_ptr)
532 			user_ptr += offset;
533 	}
534 
535 	return user_ptr;
536 }
537 
538 static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
539 {
540 	struct mmu_update u;
541 
542 	u.ptr = virt_to_machine(ptr).maddr;
543 	u.val = p4d_val_ma(val);
544 	xen_extend_mmu_update(&u);
545 }
546 
547 /*
548  * Raw hypercall-based set_p4d, intended for in early boot before
549  * there's a page structure.  This implies:
550  *  1. The only existing pagetable is the kernel's
551  *  2. It is always pinned
552  *  3. It has no user pagetable attached to it
553  */
554 static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
555 {
556 	preempt_disable();
557 
558 	xen_mc_batch();
559 
560 	__xen_set_p4d_hyper(ptr, val);
561 
562 	xen_mc_issue(PARAVIRT_LAZY_MMU);
563 
564 	preempt_enable();
565 }
566 
567 static void xen_set_p4d(p4d_t *ptr, p4d_t val)
568 {
569 	pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr);
570 	pgd_t pgd_val;
571 
572 	trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val);
573 
574 	/* If page is not pinned, we can just update the entry
575 	   directly */
576 	if (!xen_page_pinned(ptr)) {
577 		*ptr = val;
578 		if (user_ptr) {
579 			WARN_ON(xen_page_pinned(user_ptr));
580 			pgd_val.pgd = p4d_val_ma(val);
581 			*user_ptr = pgd_val;
582 		}
583 		return;
584 	}
585 
586 	/* If it's pinned, then we can at least batch the kernel and
587 	   user updates together. */
588 	xen_mc_batch();
589 
590 	__xen_set_p4d_hyper(ptr, val);
591 	if (user_ptr)
592 		__xen_set_p4d_hyper((p4d_t *)user_ptr, val);
593 
594 	xen_mc_issue(PARAVIRT_LAZY_MMU);
595 }
596 #endif	/* CONFIG_PGTABLE_LEVELS == 4 */
597 
598 static int xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd,
599 		int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
600 		bool last, unsigned long limit)
601 {
602 	int i, nr, flush = 0;
603 
604 	nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD;
605 	for (i = 0; i < nr; i++) {
606 		if (!pmd_none(pmd[i]))
607 			flush |= (*func)(mm, pmd_page(pmd[i]), PT_PTE);
608 	}
609 	return flush;
610 }
611 
612 static int xen_pud_walk(struct mm_struct *mm, pud_t *pud,
613 		int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
614 		bool last, unsigned long limit)
615 {
616 	int i, nr, flush = 0;
617 
618 	nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD;
619 	for (i = 0; i < nr; i++) {
620 		pmd_t *pmd;
621 
622 		if (pud_none(pud[i]))
623 			continue;
624 
625 		pmd = pmd_offset(&pud[i], 0);
626 		if (PTRS_PER_PMD > 1)
627 			flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
628 		flush |= xen_pmd_walk(mm, pmd, func,
629 				last && i == nr - 1, limit);
630 	}
631 	return flush;
632 }
633 
634 static int xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d,
635 		int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
636 		bool last, unsigned long limit)
637 {
638 	int i, nr, flush = 0;
639 
640 	nr = last ? p4d_index(limit) + 1 : PTRS_PER_P4D;
641 	for (i = 0; i < nr; i++) {
642 		pud_t *pud;
643 
644 		if (p4d_none(p4d[i]))
645 			continue;
646 
647 		pud = pud_offset(&p4d[i], 0);
648 		if (PTRS_PER_PUD > 1)
649 			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
650 		flush |= xen_pud_walk(mm, pud, func,
651 				last && i == nr - 1, limit);
652 	}
653 	return flush;
654 }
655 
656 /*
657  * (Yet another) pagetable walker.  This one is intended for pinning a
658  * pagetable.  This means that it walks a pagetable and calls the
659  * callback function on each page it finds making up the page table,
660  * at every level.  It walks the entire pagetable, but it only bothers
661  * pinning pte pages which are below limit.  In the normal case this
662  * will be STACK_TOP_MAX, but at boot we need to pin up to
663  * FIXADDR_TOP.
664  *
665  * For 32-bit the important bit is that we don't pin beyond there,
666  * because then we start getting into Xen's ptes.
667  *
668  * For 64-bit, we must skip the Xen hole in the middle of the address
669  * space, just after the big x86-64 virtual hole.
670  */
671 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
672 			  int (*func)(struct mm_struct *mm, struct page *,
673 				      enum pt_level),
674 			  unsigned long limit)
675 {
676 	int i, nr, flush = 0;
677 	unsigned hole_low, hole_high;
678 
679 	/* The limit is the last byte to be touched */
680 	limit--;
681 	BUG_ON(limit >= FIXADDR_TOP);
682 
683 	if (xen_feature(XENFEAT_auto_translated_physmap))
684 		return 0;
685 
686 	/*
687 	 * 64-bit has a great big hole in the middle of the address
688 	 * space, which contains the Xen mappings.  On 32-bit these
689 	 * will end up making a zero-sized hole and so is a no-op.
690 	 */
691 	hole_low = pgd_index(USER_LIMIT);
692 	hole_high = pgd_index(PAGE_OFFSET);
693 
694 	nr = pgd_index(limit) + 1;
695 	for (i = 0; i < nr; i++) {
696 		p4d_t *p4d;
697 
698 		if (i >= hole_low && i < hole_high)
699 			continue;
700 
701 		if (pgd_none(pgd[i]))
702 			continue;
703 
704 		p4d = p4d_offset(&pgd[i], 0);
705 		if (PTRS_PER_P4D > 1)
706 			flush |= (*func)(mm, virt_to_page(p4d), PT_P4D);
707 		flush |= xen_p4d_walk(mm, p4d, func, i == nr - 1, limit);
708 	}
709 
710 	/* Do the top level last, so that the callbacks can use it as
711 	   a cue to do final things like tlb flushes. */
712 	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
713 
714 	return flush;
715 }
716 
717 static int xen_pgd_walk(struct mm_struct *mm,
718 			int (*func)(struct mm_struct *mm, struct page *,
719 				    enum pt_level),
720 			unsigned long limit)
721 {
722 	return __xen_pgd_walk(mm, mm->pgd, func, limit);
723 }
724 
725 /* If we're using split pte locks, then take the page's lock and
726    return a pointer to it.  Otherwise return NULL. */
727 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
728 {
729 	spinlock_t *ptl = NULL;
730 
731 #if USE_SPLIT_PTE_PTLOCKS
732 	ptl = ptlock_ptr(page);
733 	spin_lock_nest_lock(ptl, &mm->page_table_lock);
734 #endif
735 
736 	return ptl;
737 }
738 
739 static void xen_pte_unlock(void *v)
740 {
741 	spinlock_t *ptl = v;
742 	spin_unlock(ptl);
743 }
744 
745 static void xen_do_pin(unsigned level, unsigned long pfn)
746 {
747 	struct mmuext_op op;
748 
749 	op.cmd = level;
750 	op.arg1.mfn = pfn_to_mfn(pfn);
751 
752 	xen_extend_mmuext_op(&op);
753 }
754 
755 static int xen_pin_page(struct mm_struct *mm, struct page *page,
756 			enum pt_level level)
757 {
758 	unsigned pgfl = TestSetPagePinned(page);
759 	int flush;
760 
761 	if (pgfl)
762 		flush = 0;		/* already pinned */
763 	else if (PageHighMem(page))
764 		/* kmaps need flushing if we found an unpinned
765 		   highpage */
766 		flush = 1;
767 	else {
768 		void *pt = lowmem_page_address(page);
769 		unsigned long pfn = page_to_pfn(page);
770 		struct multicall_space mcs = __xen_mc_entry(0);
771 		spinlock_t *ptl;
772 
773 		flush = 0;
774 
775 		/*
776 		 * We need to hold the pagetable lock between the time
777 		 * we make the pagetable RO and when we actually pin
778 		 * it.  If we don't, then other users may come in and
779 		 * attempt to update the pagetable by writing it,
780 		 * which will fail because the memory is RO but not
781 		 * pinned, so Xen won't do the trap'n'emulate.
782 		 *
783 		 * If we're using split pte locks, we can't hold the
784 		 * entire pagetable's worth of locks during the
785 		 * traverse, because we may wrap the preempt count (8
786 		 * bits).  The solution is to mark RO and pin each PTE
787 		 * page while holding the lock.  This means the number
788 		 * of locks we end up holding is never more than a
789 		 * batch size (~32 entries, at present).
790 		 *
791 		 * If we're not using split pte locks, we needn't pin
792 		 * the PTE pages independently, because we're
793 		 * protected by the overall pagetable lock.
794 		 */
795 		ptl = NULL;
796 		if (level == PT_PTE)
797 			ptl = xen_pte_lock(page, mm);
798 
799 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
800 					pfn_pte(pfn, PAGE_KERNEL_RO),
801 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
802 
803 		if (ptl) {
804 			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
805 
806 			/* Queue a deferred unlock for when this batch
807 			   is completed. */
808 			xen_mc_callback(xen_pte_unlock, ptl);
809 		}
810 	}
811 
812 	return flush;
813 }
814 
815 /* This is called just after a mm has been created, but it has not
816    been used yet.  We need to make sure that its pagetable is all
817    read-only, and can be pinned. */
818 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
819 {
820 	trace_xen_mmu_pgd_pin(mm, pgd);
821 
822 	xen_mc_batch();
823 
824 	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
825 		/* re-enable interrupts for flushing */
826 		xen_mc_issue(0);
827 
828 		kmap_flush_unused();
829 
830 		xen_mc_batch();
831 	}
832 
833 #ifdef CONFIG_X86_64
834 	{
835 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
836 
837 		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
838 
839 		if (user_pgd) {
840 			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
841 			xen_do_pin(MMUEXT_PIN_L4_TABLE,
842 				   PFN_DOWN(__pa(user_pgd)));
843 		}
844 	}
845 #else /* CONFIG_X86_32 */
846 #ifdef CONFIG_X86_PAE
847 	/* Need to make sure unshared kernel PMD is pinnable */
848 	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
849 		     PT_PMD);
850 #endif
851 	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
852 #endif /* CONFIG_X86_64 */
853 	xen_mc_issue(0);
854 }
855 
856 static void xen_pgd_pin(struct mm_struct *mm)
857 {
858 	__xen_pgd_pin(mm, mm->pgd);
859 }
860 
861 /*
862  * On save, we need to pin all pagetables to make sure they get their
863  * mfns turned into pfns.  Search the list for any unpinned pgds and pin
864  * them (unpinned pgds are not currently in use, probably because the
865  * process is under construction or destruction).
866  *
867  * Expected to be called in stop_machine() ("equivalent to taking
868  * every spinlock in the system"), so the locking doesn't really
869  * matter all that much.
870  */
871 void xen_mm_pin_all(void)
872 {
873 	struct page *page;
874 
875 	spin_lock(&pgd_lock);
876 
877 	list_for_each_entry(page, &pgd_list, lru) {
878 		if (!PagePinned(page)) {
879 			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
880 			SetPageSavePinned(page);
881 		}
882 	}
883 
884 	spin_unlock(&pgd_lock);
885 }
886 
887 /*
888  * The init_mm pagetable is really pinned as soon as its created, but
889  * that's before we have page structures to store the bits.  So do all
890  * the book-keeping now.
891  */
892 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
893 				  enum pt_level level)
894 {
895 	SetPagePinned(page);
896 	return 0;
897 }
898 
899 static void __init xen_mark_init_mm_pinned(void)
900 {
901 	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
902 }
903 
904 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
905 			  enum pt_level level)
906 {
907 	unsigned pgfl = TestClearPagePinned(page);
908 
909 	if (pgfl && !PageHighMem(page)) {
910 		void *pt = lowmem_page_address(page);
911 		unsigned long pfn = page_to_pfn(page);
912 		spinlock_t *ptl = NULL;
913 		struct multicall_space mcs;
914 
915 		/*
916 		 * Do the converse to pin_page.  If we're using split
917 		 * pte locks, we must be holding the lock for while
918 		 * the pte page is unpinned but still RO to prevent
919 		 * concurrent updates from seeing it in this
920 		 * partially-pinned state.
921 		 */
922 		if (level == PT_PTE) {
923 			ptl = xen_pte_lock(page, mm);
924 
925 			if (ptl)
926 				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
927 		}
928 
929 		mcs = __xen_mc_entry(0);
930 
931 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
932 					pfn_pte(pfn, PAGE_KERNEL),
933 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
934 
935 		if (ptl) {
936 			/* unlock when batch completed */
937 			xen_mc_callback(xen_pte_unlock, ptl);
938 		}
939 	}
940 
941 	return 0;		/* never need to flush on unpin */
942 }
943 
944 /* Release a pagetables pages back as normal RW */
945 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
946 {
947 	trace_xen_mmu_pgd_unpin(mm, pgd);
948 
949 	xen_mc_batch();
950 
951 	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
952 
953 #ifdef CONFIG_X86_64
954 	{
955 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
956 
957 		if (user_pgd) {
958 			xen_do_pin(MMUEXT_UNPIN_TABLE,
959 				   PFN_DOWN(__pa(user_pgd)));
960 			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
961 		}
962 	}
963 #endif
964 
965 #ifdef CONFIG_X86_PAE
966 	/* Need to make sure unshared kernel PMD is unpinned */
967 	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
968 		       PT_PMD);
969 #endif
970 
971 	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
972 
973 	xen_mc_issue(0);
974 }
975 
976 static void xen_pgd_unpin(struct mm_struct *mm)
977 {
978 	__xen_pgd_unpin(mm, mm->pgd);
979 }
980 
981 /*
982  * On resume, undo any pinning done at save, so that the rest of the
983  * kernel doesn't see any unexpected pinned pagetables.
984  */
985 void xen_mm_unpin_all(void)
986 {
987 	struct page *page;
988 
989 	spin_lock(&pgd_lock);
990 
991 	list_for_each_entry(page, &pgd_list, lru) {
992 		if (PageSavePinned(page)) {
993 			BUG_ON(!PagePinned(page));
994 			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
995 			ClearPageSavePinned(page);
996 		}
997 	}
998 
999 	spin_unlock(&pgd_lock);
1000 }
1001 
1002 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1003 {
1004 	spin_lock(&next->page_table_lock);
1005 	xen_pgd_pin(next);
1006 	spin_unlock(&next->page_table_lock);
1007 }
1008 
1009 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1010 {
1011 	spin_lock(&mm->page_table_lock);
1012 	xen_pgd_pin(mm);
1013 	spin_unlock(&mm->page_table_lock);
1014 }
1015 
1016 
1017 #ifdef CONFIG_SMP
1018 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1019    we need to repoint it somewhere else before we can unpin it. */
1020 static void drop_other_mm_ref(void *info)
1021 {
1022 	struct mm_struct *mm = info;
1023 	struct mm_struct *active_mm;
1024 
1025 	active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1026 
1027 	if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1028 		leave_mm(smp_processor_id());
1029 
1030 	/* If this cpu still has a stale cr3 reference, then make sure
1031 	   it has been flushed. */
1032 	if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1033 		load_cr3(swapper_pg_dir);
1034 }
1035 
1036 static void xen_drop_mm_ref(struct mm_struct *mm)
1037 {
1038 	cpumask_var_t mask;
1039 	unsigned cpu;
1040 
1041 	if (current->active_mm == mm) {
1042 		if (current->mm == mm)
1043 			load_cr3(swapper_pg_dir);
1044 		else
1045 			leave_mm(smp_processor_id());
1046 	}
1047 
1048 	/* Get the "official" set of cpus referring to our pagetable. */
1049 	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1050 		for_each_online_cpu(cpu) {
1051 			if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1052 			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1053 				continue;
1054 			smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1055 		}
1056 		return;
1057 	}
1058 	cpumask_copy(mask, mm_cpumask(mm));
1059 
1060 	/* It's possible that a vcpu may have a stale reference to our
1061 	   cr3, because its in lazy mode, and it hasn't yet flushed
1062 	   its set of pending hypercalls yet.  In this case, we can
1063 	   look at its actual current cr3 value, and force it to flush
1064 	   if needed. */
1065 	for_each_online_cpu(cpu) {
1066 		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1067 			cpumask_set_cpu(cpu, mask);
1068 	}
1069 
1070 	if (!cpumask_empty(mask))
1071 		smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1072 	free_cpumask_var(mask);
1073 }
1074 #else
1075 static void xen_drop_mm_ref(struct mm_struct *mm)
1076 {
1077 	if (current->active_mm == mm)
1078 		load_cr3(swapper_pg_dir);
1079 }
1080 #endif
1081 
1082 /*
1083  * While a process runs, Xen pins its pagetables, which means that the
1084  * hypervisor forces it to be read-only, and it controls all updates
1085  * to it.  This means that all pagetable updates have to go via the
1086  * hypervisor, which is moderately expensive.
1087  *
1088  * Since we're pulling the pagetable down, we switch to use init_mm,
1089  * unpin old process pagetable and mark it all read-write, which
1090  * allows further operations on it to be simple memory accesses.
1091  *
1092  * The only subtle point is that another CPU may be still using the
1093  * pagetable because of lazy tlb flushing.  This means we need need to
1094  * switch all CPUs off this pagetable before we can unpin it.
1095  */
1096 static void xen_exit_mmap(struct mm_struct *mm)
1097 {
1098 	get_cpu();		/* make sure we don't move around */
1099 	xen_drop_mm_ref(mm);
1100 	put_cpu();
1101 
1102 	spin_lock(&mm->page_table_lock);
1103 
1104 	/* pgd may not be pinned in the error exit path of execve */
1105 	if (xen_page_pinned(mm->pgd))
1106 		xen_pgd_unpin(mm);
1107 
1108 	spin_unlock(&mm->page_table_lock);
1109 }
1110 
1111 static void xen_post_allocator_init(void);
1112 
1113 static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1114 {
1115 	struct mmuext_op op;
1116 
1117 	op.cmd = cmd;
1118 	op.arg1.mfn = pfn_to_mfn(pfn);
1119 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1120 		BUG();
1121 }
1122 
1123 #ifdef CONFIG_X86_64
1124 static void __init xen_cleanhighmap(unsigned long vaddr,
1125 				    unsigned long vaddr_end)
1126 {
1127 	unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1128 	pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1129 
1130 	/* NOTE: The loop is more greedy than the cleanup_highmap variant.
1131 	 * We include the PMD passed in on _both_ boundaries. */
1132 	for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1133 			pmd++, vaddr += PMD_SIZE) {
1134 		if (pmd_none(*pmd))
1135 			continue;
1136 		if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1137 			set_pmd(pmd, __pmd(0));
1138 	}
1139 	/* In case we did something silly, we should crash in this function
1140 	 * instead of somewhere later and be confusing. */
1141 	xen_mc_flush();
1142 }
1143 
1144 /*
1145  * Make a page range writeable and free it.
1146  */
1147 static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1148 {
1149 	void *vaddr = __va(paddr);
1150 	void *vaddr_end = vaddr + size;
1151 
1152 	for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1153 		make_lowmem_page_readwrite(vaddr);
1154 
1155 	memblock_free(paddr, size);
1156 }
1157 
1158 static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1159 {
1160 	unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1161 
1162 	if (unpin)
1163 		pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1164 	ClearPagePinned(virt_to_page(__va(pa)));
1165 	xen_free_ro_pages(pa, PAGE_SIZE);
1166 }
1167 
1168 static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin)
1169 {
1170 	unsigned long pa;
1171 	pte_t *pte_tbl;
1172 	int i;
1173 
1174 	if (pmd_large(*pmd)) {
1175 		pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1176 		xen_free_ro_pages(pa, PMD_SIZE);
1177 		return;
1178 	}
1179 
1180 	pte_tbl = pte_offset_kernel(pmd, 0);
1181 	for (i = 0; i < PTRS_PER_PTE; i++) {
1182 		if (pte_none(pte_tbl[i]))
1183 			continue;
1184 		pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT;
1185 		xen_free_ro_pages(pa, PAGE_SIZE);
1186 	}
1187 	set_pmd(pmd, __pmd(0));
1188 	xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin);
1189 }
1190 
1191 static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin)
1192 {
1193 	unsigned long pa;
1194 	pmd_t *pmd_tbl;
1195 	int i;
1196 
1197 	if (pud_large(*pud)) {
1198 		pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1199 		xen_free_ro_pages(pa, PUD_SIZE);
1200 		return;
1201 	}
1202 
1203 	pmd_tbl = pmd_offset(pud, 0);
1204 	for (i = 0; i < PTRS_PER_PMD; i++) {
1205 		if (pmd_none(pmd_tbl[i]))
1206 			continue;
1207 		xen_cleanmfnmap_pmd(pmd_tbl + i, unpin);
1208 	}
1209 	set_pud(pud, __pud(0));
1210 	xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin);
1211 }
1212 
1213 static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin)
1214 {
1215 	unsigned long pa;
1216 	pud_t *pud_tbl;
1217 	int i;
1218 
1219 	if (p4d_large(*p4d)) {
1220 		pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK;
1221 		xen_free_ro_pages(pa, P4D_SIZE);
1222 		return;
1223 	}
1224 
1225 	pud_tbl = pud_offset(p4d, 0);
1226 	for (i = 0; i < PTRS_PER_PUD; i++) {
1227 		if (pud_none(pud_tbl[i]))
1228 			continue;
1229 		xen_cleanmfnmap_pud(pud_tbl + i, unpin);
1230 	}
1231 	set_p4d(p4d, __p4d(0));
1232 	xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin);
1233 }
1234 
1235 /*
1236  * Since it is well isolated we can (and since it is perhaps large we should)
1237  * also free the page tables mapping the initial P->M table.
1238  */
1239 static void __init xen_cleanmfnmap(unsigned long vaddr)
1240 {
1241 	pgd_t *pgd;
1242 	p4d_t *p4d;
1243 	unsigned int i;
1244 	bool unpin;
1245 
1246 	unpin = (vaddr == 2 * PGDIR_SIZE);
1247 	vaddr &= PMD_MASK;
1248 	pgd = pgd_offset_k(vaddr);
1249 	p4d = p4d_offset(pgd, 0);
1250 	for (i = 0; i < PTRS_PER_P4D; i++) {
1251 		if (p4d_none(p4d[i]))
1252 			continue;
1253 		xen_cleanmfnmap_p4d(p4d + i, unpin);
1254 	}
1255 	if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
1256 		set_pgd(pgd, __pgd(0));
1257 		xen_cleanmfnmap_free_pgtbl(p4d, unpin);
1258 	}
1259 }
1260 
1261 static void __init xen_pagetable_p2m_free(void)
1262 {
1263 	unsigned long size;
1264 	unsigned long addr;
1265 
1266 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1267 
1268 	/* No memory or already called. */
1269 	if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1270 		return;
1271 
1272 	/* using __ka address and sticking INVALID_P2M_ENTRY! */
1273 	memset((void *)xen_start_info->mfn_list, 0xff, size);
1274 
1275 	addr = xen_start_info->mfn_list;
1276 	/*
1277 	 * We could be in __ka space.
1278 	 * We roundup to the PMD, which means that if anybody at this stage is
1279 	 * using the __ka address of xen_start_info or
1280 	 * xen_start_info->shared_info they are in going to crash. Fortunatly
1281 	 * we have already revectored in xen_setup_kernel_pagetable and in
1282 	 * xen_setup_shared_info.
1283 	 */
1284 	size = roundup(size, PMD_SIZE);
1285 
1286 	if (addr >= __START_KERNEL_map) {
1287 		xen_cleanhighmap(addr, addr + size);
1288 		size = PAGE_ALIGN(xen_start_info->nr_pages *
1289 				  sizeof(unsigned long));
1290 		memblock_free(__pa(addr), size);
1291 	} else {
1292 		xen_cleanmfnmap(addr);
1293 	}
1294 }
1295 
1296 static void __init xen_pagetable_cleanhighmap(void)
1297 {
1298 	unsigned long size;
1299 	unsigned long addr;
1300 
1301 	/* At this stage, cleanup_highmap has already cleaned __ka space
1302 	 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1303 	 * the ramdisk). We continue on, erasing PMD entries that point to page
1304 	 * tables - do note that they are accessible at this stage via __va.
1305 	 * For good measure we also round up to the PMD - which means that if
1306 	 * anybody is using __ka address to the initial boot-stack - and try
1307 	 * to use it - they are going to crash. The xen_start_info has been
1308 	 * taken care of already in xen_setup_kernel_pagetable. */
1309 	addr = xen_start_info->pt_base;
1310 	size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1311 
1312 	xen_cleanhighmap(addr, addr + size);
1313 	xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1314 #ifdef DEBUG
1315 	/* This is superfluous and is not necessary, but you know what
1316 	 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1317 	 * anything at this stage. */
1318 	xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1319 #endif
1320 }
1321 #endif
1322 
1323 static void __init xen_pagetable_p2m_setup(void)
1324 {
1325 	if (xen_feature(XENFEAT_auto_translated_physmap))
1326 		return;
1327 
1328 	xen_vmalloc_p2m_tree();
1329 
1330 #ifdef CONFIG_X86_64
1331 	xen_pagetable_p2m_free();
1332 
1333 	xen_pagetable_cleanhighmap();
1334 #endif
1335 	/* And revector! Bye bye old array */
1336 	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1337 }
1338 
1339 static void __init xen_pagetable_init(void)
1340 {
1341 	paging_init();
1342 	xen_post_allocator_init();
1343 
1344 	xen_pagetable_p2m_setup();
1345 
1346 	/* Allocate and initialize top and mid mfn levels for p2m structure */
1347 	xen_build_mfn_list_list();
1348 
1349 	/* Remap memory freed due to conflicts with E820 map */
1350 	if (!xen_feature(XENFEAT_auto_translated_physmap))
1351 		xen_remap_memory();
1352 
1353 	xen_setup_shared_info();
1354 }
1355 static void xen_write_cr2(unsigned long cr2)
1356 {
1357 	this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1358 }
1359 
1360 static unsigned long xen_read_cr2(void)
1361 {
1362 	return this_cpu_read(xen_vcpu)->arch.cr2;
1363 }
1364 
1365 unsigned long xen_read_cr2_direct(void)
1366 {
1367 	return this_cpu_read(xen_vcpu_info.arch.cr2);
1368 }
1369 
1370 void xen_flush_tlb_all(void)
1371 {
1372 	struct mmuext_op *op;
1373 	struct multicall_space mcs;
1374 
1375 	trace_xen_mmu_flush_tlb_all(0);
1376 
1377 	preempt_disable();
1378 
1379 	mcs = xen_mc_entry(sizeof(*op));
1380 
1381 	op = mcs.args;
1382 	op->cmd = MMUEXT_TLB_FLUSH_ALL;
1383 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1384 
1385 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1386 
1387 	preempt_enable();
1388 }
1389 static void xen_flush_tlb(void)
1390 {
1391 	struct mmuext_op *op;
1392 	struct multicall_space mcs;
1393 
1394 	trace_xen_mmu_flush_tlb(0);
1395 
1396 	preempt_disable();
1397 
1398 	mcs = xen_mc_entry(sizeof(*op));
1399 
1400 	op = mcs.args;
1401 	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1402 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1403 
1404 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1405 
1406 	preempt_enable();
1407 }
1408 
1409 static void xen_flush_tlb_single(unsigned long addr)
1410 {
1411 	struct mmuext_op *op;
1412 	struct multicall_space mcs;
1413 
1414 	trace_xen_mmu_flush_tlb_single(addr);
1415 
1416 	preempt_disable();
1417 
1418 	mcs = xen_mc_entry(sizeof(*op));
1419 	op = mcs.args;
1420 	op->cmd = MMUEXT_INVLPG_LOCAL;
1421 	op->arg1.linear_addr = addr & PAGE_MASK;
1422 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1423 
1424 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1425 
1426 	preempt_enable();
1427 }
1428 
1429 static void xen_flush_tlb_others(const struct cpumask *cpus,
1430 				 struct mm_struct *mm, unsigned long start,
1431 				 unsigned long end)
1432 {
1433 	struct {
1434 		struct mmuext_op op;
1435 #ifdef CONFIG_SMP
1436 		DECLARE_BITMAP(mask, num_processors);
1437 #else
1438 		DECLARE_BITMAP(mask, NR_CPUS);
1439 #endif
1440 	} *args;
1441 	struct multicall_space mcs;
1442 
1443 	trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1444 
1445 	if (cpumask_empty(cpus))
1446 		return;		/* nothing to do */
1447 
1448 	mcs = xen_mc_entry(sizeof(*args));
1449 	args = mcs.args;
1450 	args->op.arg2.vcpumask = to_cpumask(args->mask);
1451 
1452 	/* Remove us, and any offline CPUS. */
1453 	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1454 	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1455 
1456 	args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1457 	if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1458 		args->op.cmd = MMUEXT_INVLPG_MULTI;
1459 		args->op.arg1.linear_addr = start;
1460 	}
1461 
1462 	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1463 
1464 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1465 }
1466 
1467 static unsigned long xen_read_cr3(void)
1468 {
1469 	return this_cpu_read(xen_cr3);
1470 }
1471 
1472 static void set_current_cr3(void *v)
1473 {
1474 	this_cpu_write(xen_current_cr3, (unsigned long)v);
1475 }
1476 
1477 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1478 {
1479 	struct mmuext_op op;
1480 	unsigned long mfn;
1481 
1482 	trace_xen_mmu_write_cr3(kernel, cr3);
1483 
1484 	if (cr3)
1485 		mfn = pfn_to_mfn(PFN_DOWN(cr3));
1486 	else
1487 		mfn = 0;
1488 
1489 	WARN_ON(mfn == 0 && kernel);
1490 
1491 	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1492 	op.arg1.mfn = mfn;
1493 
1494 	xen_extend_mmuext_op(&op);
1495 
1496 	if (kernel) {
1497 		this_cpu_write(xen_cr3, cr3);
1498 
1499 		/* Update xen_current_cr3 once the batch has actually
1500 		   been submitted. */
1501 		xen_mc_callback(set_current_cr3, (void *)cr3);
1502 	}
1503 }
1504 static void xen_write_cr3(unsigned long cr3)
1505 {
1506 	BUG_ON(preemptible());
1507 
1508 	xen_mc_batch();  /* disables interrupts */
1509 
1510 	/* Update while interrupts are disabled, so its atomic with
1511 	   respect to ipis */
1512 	this_cpu_write(xen_cr3, cr3);
1513 
1514 	__xen_write_cr3(true, cr3);
1515 
1516 #ifdef CONFIG_X86_64
1517 	{
1518 		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1519 		if (user_pgd)
1520 			__xen_write_cr3(false, __pa(user_pgd));
1521 		else
1522 			__xen_write_cr3(false, 0);
1523 	}
1524 #endif
1525 
1526 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1527 }
1528 
1529 #ifdef CONFIG_X86_64
1530 /*
1531  * At the start of the day - when Xen launches a guest, it has already
1532  * built pagetables for the guest. We diligently look over them
1533  * in xen_setup_kernel_pagetable and graft as appropriate them in the
1534  * init_level4_pgt and its friends. Then when we are happy we load
1535  * the new init_level4_pgt - and continue on.
1536  *
1537  * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1538  * up the rest of the pagetables. When it has completed it loads the cr3.
1539  * N.B. that baremetal would start at 'start_kernel' (and the early
1540  * #PF handler would create bootstrap pagetables) - so we are running
1541  * with the same assumptions as what to do when write_cr3 is executed
1542  * at this point.
1543  *
1544  * Since there are no user-page tables at all, we have two variants
1545  * of xen_write_cr3 - the early bootup (this one), and the late one
1546  * (xen_write_cr3). The reason we have to do that is that in 64-bit
1547  * the Linux kernel and user-space are both in ring 3 while the
1548  * hypervisor is in ring 0.
1549  */
1550 static void __init xen_write_cr3_init(unsigned long cr3)
1551 {
1552 	BUG_ON(preemptible());
1553 
1554 	xen_mc_batch();  /* disables interrupts */
1555 
1556 	/* Update while interrupts are disabled, so its atomic with
1557 	   respect to ipis */
1558 	this_cpu_write(xen_cr3, cr3);
1559 
1560 	__xen_write_cr3(true, cr3);
1561 
1562 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1563 }
1564 #endif
1565 
1566 static int xen_pgd_alloc(struct mm_struct *mm)
1567 {
1568 	pgd_t *pgd = mm->pgd;
1569 	int ret = 0;
1570 
1571 	BUG_ON(PagePinned(virt_to_page(pgd)));
1572 
1573 #ifdef CONFIG_X86_64
1574 	{
1575 		struct page *page = virt_to_page(pgd);
1576 		pgd_t *user_pgd;
1577 
1578 		BUG_ON(page->private != 0);
1579 
1580 		ret = -ENOMEM;
1581 
1582 		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1583 		page->private = (unsigned long)user_pgd;
1584 
1585 		if (user_pgd != NULL) {
1586 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1587 			user_pgd[pgd_index(VSYSCALL_ADDR)] =
1588 				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1589 #endif
1590 			ret = 0;
1591 		}
1592 
1593 		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1594 	}
1595 #endif
1596 	return ret;
1597 }
1598 
1599 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1600 {
1601 #ifdef CONFIG_X86_64
1602 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
1603 
1604 	if (user_pgd)
1605 		free_page((unsigned long)user_pgd);
1606 #endif
1607 }
1608 
1609 /*
1610  * Init-time set_pte while constructing initial pagetables, which
1611  * doesn't allow RO page table pages to be remapped RW.
1612  *
1613  * If there is no MFN for this PFN then this page is initially
1614  * ballooned out so clear the PTE (as in decrease_reservation() in
1615  * drivers/xen/balloon.c).
1616  *
1617  * Many of these PTE updates are done on unpinned and writable pages
1618  * and doing a hypercall for these is unnecessary and expensive.  At
1619  * this point it is not possible to tell if a page is pinned or not,
1620  * so always write the PTE directly and rely on Xen trapping and
1621  * emulating any updates as necessary.
1622  */
1623 __visible pte_t xen_make_pte_init(pteval_t pte)
1624 {
1625 #ifdef CONFIG_X86_64
1626 	unsigned long pfn;
1627 
1628 	/*
1629 	 * Pages belonging to the initial p2m list mapped outside the default
1630 	 * address range must be mapped read-only. This region contains the
1631 	 * page tables for mapping the p2m list, too, and page tables MUST be
1632 	 * mapped read-only.
1633 	 */
1634 	pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
1635 	if (xen_start_info->mfn_list < __START_KERNEL_map &&
1636 	    pfn >= xen_start_info->first_p2m_pfn &&
1637 	    pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1638 		pte &= ~_PAGE_RW;
1639 #endif
1640 	pte = pte_pfn_to_mfn(pte);
1641 	return native_make_pte(pte);
1642 }
1643 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
1644 
1645 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1646 {
1647 #ifdef CONFIG_X86_32
1648 	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
1649 	if (pte_mfn(pte) != INVALID_P2M_ENTRY
1650 	    && pte_val_ma(*ptep) & _PAGE_PRESENT)
1651 		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1652 			       pte_val_ma(pte));
1653 #endif
1654 	native_set_pte(ptep, pte);
1655 }
1656 
1657 /* Early in boot, while setting up the initial pagetable, assume
1658    everything is pinned. */
1659 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1660 {
1661 #ifdef CONFIG_FLATMEM
1662 	BUG_ON(mem_map);	/* should only be used early */
1663 #endif
1664 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1665 	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1666 }
1667 
1668 /* Used for pmd and pud */
1669 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1670 {
1671 #ifdef CONFIG_FLATMEM
1672 	BUG_ON(mem_map);	/* should only be used early */
1673 #endif
1674 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1675 }
1676 
1677 /* Early release_pte assumes that all pts are pinned, since there's
1678    only init_mm and anything attached to that is pinned. */
1679 static void __init xen_release_pte_init(unsigned long pfn)
1680 {
1681 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1682 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1683 }
1684 
1685 static void __init xen_release_pmd_init(unsigned long pfn)
1686 {
1687 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1688 }
1689 
1690 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1691 {
1692 	struct multicall_space mcs;
1693 	struct mmuext_op *op;
1694 
1695 	mcs = __xen_mc_entry(sizeof(*op));
1696 	op = mcs.args;
1697 	op->cmd = cmd;
1698 	op->arg1.mfn = pfn_to_mfn(pfn);
1699 
1700 	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1701 }
1702 
1703 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1704 {
1705 	struct multicall_space mcs;
1706 	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1707 
1708 	mcs = __xen_mc_entry(0);
1709 	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1710 				pfn_pte(pfn, prot), 0);
1711 }
1712 
1713 /* This needs to make sure the new pte page is pinned iff its being
1714    attached to a pinned pagetable. */
1715 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1716 				    unsigned level)
1717 {
1718 	bool pinned = PagePinned(virt_to_page(mm->pgd));
1719 
1720 	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1721 
1722 	if (pinned) {
1723 		struct page *page = pfn_to_page(pfn);
1724 
1725 		SetPagePinned(page);
1726 
1727 		if (!PageHighMem(page)) {
1728 			xen_mc_batch();
1729 
1730 			__set_pfn_prot(pfn, PAGE_KERNEL_RO);
1731 
1732 			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1733 				__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1734 
1735 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1736 		} else {
1737 			/* make sure there are no stray mappings of
1738 			   this page */
1739 			kmap_flush_unused();
1740 		}
1741 	}
1742 }
1743 
1744 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1745 {
1746 	xen_alloc_ptpage(mm, pfn, PT_PTE);
1747 }
1748 
1749 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1750 {
1751 	xen_alloc_ptpage(mm, pfn, PT_PMD);
1752 }
1753 
1754 /* This should never happen until we're OK to use struct page */
1755 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1756 {
1757 	struct page *page = pfn_to_page(pfn);
1758 	bool pinned = PagePinned(page);
1759 
1760 	trace_xen_mmu_release_ptpage(pfn, level, pinned);
1761 
1762 	if (pinned) {
1763 		if (!PageHighMem(page)) {
1764 			xen_mc_batch();
1765 
1766 			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1767 				__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1768 
1769 			__set_pfn_prot(pfn, PAGE_KERNEL);
1770 
1771 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1772 		}
1773 		ClearPagePinned(page);
1774 	}
1775 }
1776 
1777 static void xen_release_pte(unsigned long pfn)
1778 {
1779 	xen_release_ptpage(pfn, PT_PTE);
1780 }
1781 
1782 static void xen_release_pmd(unsigned long pfn)
1783 {
1784 	xen_release_ptpage(pfn, PT_PMD);
1785 }
1786 
1787 #if CONFIG_PGTABLE_LEVELS >= 4
1788 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1789 {
1790 	xen_alloc_ptpage(mm, pfn, PT_PUD);
1791 }
1792 
1793 static void xen_release_pud(unsigned long pfn)
1794 {
1795 	xen_release_ptpage(pfn, PT_PUD);
1796 }
1797 #endif
1798 
1799 void __init xen_reserve_top(void)
1800 {
1801 #ifdef CONFIG_X86_32
1802 	unsigned long top = HYPERVISOR_VIRT_START;
1803 	struct xen_platform_parameters pp;
1804 
1805 	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1806 		top = pp.virt_start;
1807 
1808 	reserve_top_address(-top);
1809 #endif	/* CONFIG_X86_32 */
1810 }
1811 
1812 /*
1813  * Like __va(), but returns address in the kernel mapping (which is
1814  * all we have until the physical memory mapping has been set up.
1815  */
1816 static void * __init __ka(phys_addr_t paddr)
1817 {
1818 #ifdef CONFIG_X86_64
1819 	return (void *)(paddr + __START_KERNEL_map);
1820 #else
1821 	return __va(paddr);
1822 #endif
1823 }
1824 
1825 /* Convert a machine address to physical address */
1826 static unsigned long __init m2p(phys_addr_t maddr)
1827 {
1828 	phys_addr_t paddr;
1829 
1830 	maddr &= PTE_PFN_MASK;
1831 	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1832 
1833 	return paddr;
1834 }
1835 
1836 /* Convert a machine address to kernel virtual */
1837 static void * __init m2v(phys_addr_t maddr)
1838 {
1839 	return __ka(m2p(maddr));
1840 }
1841 
1842 /* Set the page permissions on an identity-mapped pages */
1843 static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1844 				       unsigned long flags)
1845 {
1846 	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1847 	pte_t pte = pfn_pte(pfn, prot);
1848 
1849 	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1850 		BUG();
1851 }
1852 static void __init set_page_prot(void *addr, pgprot_t prot)
1853 {
1854 	return set_page_prot_flags(addr, prot, UVMF_NONE);
1855 }
1856 #ifdef CONFIG_X86_32
1857 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1858 {
1859 	unsigned pmdidx, pteidx;
1860 	unsigned ident_pte;
1861 	unsigned long pfn;
1862 
1863 	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1864 				      PAGE_SIZE);
1865 
1866 	ident_pte = 0;
1867 	pfn = 0;
1868 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1869 		pte_t *pte_page;
1870 
1871 		/* Reuse or allocate a page of ptes */
1872 		if (pmd_present(pmd[pmdidx]))
1873 			pte_page = m2v(pmd[pmdidx].pmd);
1874 		else {
1875 			/* Check for free pte pages */
1876 			if (ident_pte == LEVEL1_IDENT_ENTRIES)
1877 				break;
1878 
1879 			pte_page = &level1_ident_pgt[ident_pte];
1880 			ident_pte += PTRS_PER_PTE;
1881 
1882 			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1883 		}
1884 
1885 		/* Install mappings */
1886 		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1887 			pte_t pte;
1888 
1889 			if (pfn > max_pfn_mapped)
1890 				max_pfn_mapped = pfn;
1891 
1892 			if (!pte_none(pte_page[pteidx]))
1893 				continue;
1894 
1895 			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1896 			pte_page[pteidx] = pte;
1897 		}
1898 	}
1899 
1900 	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1901 		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1902 
1903 	set_page_prot(pmd, PAGE_KERNEL_RO);
1904 }
1905 #endif
1906 void __init xen_setup_machphys_mapping(void)
1907 {
1908 	struct xen_machphys_mapping mapping;
1909 
1910 	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1911 		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1912 		machine_to_phys_nr = mapping.max_mfn + 1;
1913 	} else {
1914 		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1915 	}
1916 #ifdef CONFIG_X86_32
1917 	WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1918 		< machine_to_phys_mapping);
1919 #endif
1920 }
1921 
1922 #ifdef CONFIG_X86_64
1923 static void __init convert_pfn_mfn(void *v)
1924 {
1925 	pte_t *pte = v;
1926 	int i;
1927 
1928 	/* All levels are converted the same way, so just treat them
1929 	   as ptes. */
1930 	for (i = 0; i < PTRS_PER_PTE; i++)
1931 		pte[i] = xen_make_pte(pte[i].pte);
1932 }
1933 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1934 				 unsigned long addr)
1935 {
1936 	if (*pt_base == PFN_DOWN(__pa(addr))) {
1937 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1938 		clear_page((void *)addr);
1939 		(*pt_base)++;
1940 	}
1941 	if (*pt_end == PFN_DOWN(__pa(addr))) {
1942 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1943 		clear_page((void *)addr);
1944 		(*pt_end)--;
1945 	}
1946 }
1947 /*
1948  * Set up the initial kernel pagetable.
1949  *
1950  * We can construct this by grafting the Xen provided pagetable into
1951  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1952  * level2_ident_pgt, and level2_kernel_pgt.  This means that only the
1953  * kernel has a physical mapping to start with - but that's enough to
1954  * get __va working.  We need to fill in the rest of the physical
1955  * mapping once some sort of allocator has been set up.
1956  */
1957 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1958 {
1959 	pud_t *l3;
1960 	pmd_t *l2;
1961 	unsigned long addr[3];
1962 	unsigned long pt_base, pt_end;
1963 	unsigned i;
1964 
1965 	/* max_pfn_mapped is the last pfn mapped in the initial memory
1966 	 * mappings. Considering that on Xen after the kernel mappings we
1967 	 * have the mappings of some pages that don't exist in pfn space, we
1968 	 * set max_pfn_mapped to the last real pfn mapped. */
1969 	if (xen_start_info->mfn_list < __START_KERNEL_map)
1970 		max_pfn_mapped = xen_start_info->first_p2m_pfn;
1971 	else
1972 		max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1973 
1974 	pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1975 	pt_end = pt_base + xen_start_info->nr_pt_frames;
1976 
1977 	/* Zap identity mapping */
1978 	init_level4_pgt[0] = __pgd(0);
1979 
1980 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1981 		/* Pre-constructed entries are in pfn, so convert to mfn */
1982 		/* L4[272] -> level3_ident_pgt
1983 		 * L4[511] -> level3_kernel_pgt */
1984 		convert_pfn_mfn(init_level4_pgt);
1985 
1986 		/* L3_i[0] -> level2_ident_pgt */
1987 		convert_pfn_mfn(level3_ident_pgt);
1988 		/* L3_k[510] -> level2_kernel_pgt
1989 		 * L3_k[511] -> level2_fixmap_pgt */
1990 		convert_pfn_mfn(level3_kernel_pgt);
1991 
1992 		/* L3_k[511][506] -> level1_fixmap_pgt */
1993 		convert_pfn_mfn(level2_fixmap_pgt);
1994 	}
1995 	/* We get [511][511] and have Xen's version of level2_kernel_pgt */
1996 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1997 	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1998 
1999 	addr[0] = (unsigned long)pgd;
2000 	addr[1] = (unsigned long)l3;
2001 	addr[2] = (unsigned long)l2;
2002 	/* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
2003 	 * Both L4[272][0] and L4[511][510] have entries that point to the same
2004 	 * L2 (PMD) tables. Meaning that if you modify it in __va space
2005 	 * it will be also modified in the __ka space! (But if you just
2006 	 * modify the PMD table to point to other PTE's or none, then you
2007 	 * are OK - which is what cleanup_highmap does) */
2008 	copy_page(level2_ident_pgt, l2);
2009 	/* Graft it onto L4[511][510] */
2010 	copy_page(level2_kernel_pgt, l2);
2011 
2012 	/* Copy the initial P->M table mappings if necessary. */
2013 	i = pgd_index(xen_start_info->mfn_list);
2014 	if (i && i < pgd_index(__START_KERNEL_map))
2015 		init_level4_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
2016 
2017 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
2018 		/* Make pagetable pieces RO */
2019 		set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
2020 		set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
2021 		set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
2022 		set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
2023 		set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
2024 		set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
2025 		set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
2026 		set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO);
2027 
2028 		/* Pin down new L4 */
2029 		pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
2030 				  PFN_DOWN(__pa_symbol(init_level4_pgt)));
2031 
2032 		/* Unpin Xen-provided one */
2033 		pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2034 
2035 		/*
2036 		 * At this stage there can be no user pgd, and no page
2037 		 * structure to attach it to, so make sure we just set kernel
2038 		 * pgd.
2039 		 */
2040 		xen_mc_batch();
2041 		__xen_write_cr3(true, __pa(init_level4_pgt));
2042 		xen_mc_issue(PARAVIRT_LAZY_CPU);
2043 	} else
2044 		native_write_cr3(__pa(init_level4_pgt));
2045 
2046 	/* We can't that easily rip out L3 and L2, as the Xen pagetables are
2047 	 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
2048 	 * the initial domain. For guests using the toolstack, they are in:
2049 	 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
2050 	 * rip out the [L4] (pgd), but for guests we shave off three pages.
2051 	 */
2052 	for (i = 0; i < ARRAY_SIZE(addr); i++)
2053 		check_pt_base(&pt_base, &pt_end, addr[i]);
2054 
2055 	/* Our (by three pages) smaller Xen pagetable that we are using */
2056 	xen_pt_base = PFN_PHYS(pt_base);
2057 	xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
2058 	memblock_reserve(xen_pt_base, xen_pt_size);
2059 
2060 	/* Revector the xen_start_info */
2061 	xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
2062 }
2063 
2064 /*
2065  * Read a value from a physical address.
2066  */
2067 static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
2068 {
2069 	unsigned long *vaddr;
2070 	unsigned long val;
2071 
2072 	vaddr = early_memremap_ro(addr, sizeof(val));
2073 	val = *vaddr;
2074 	early_memunmap(vaddr, sizeof(val));
2075 	return val;
2076 }
2077 
2078 /*
2079  * Translate a virtual address to a physical one without relying on mapped
2080  * page tables.
2081  */
2082 static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
2083 {
2084 	phys_addr_t pa;
2085 	pgd_t pgd;
2086 	pud_t pud;
2087 	pmd_t pmd;
2088 	pte_t pte;
2089 
2090 	pa = read_cr3();
2091 	pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
2092 						       sizeof(pgd)));
2093 	if (!pgd_present(pgd))
2094 		return 0;
2095 
2096 	pa = pgd_val(pgd) & PTE_PFN_MASK;
2097 	pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
2098 						       sizeof(pud)));
2099 	if (!pud_present(pud))
2100 		return 0;
2101 	pa = pud_pfn(pud) << PAGE_SHIFT;
2102 	if (pud_large(pud))
2103 		return pa + (vaddr & ~PUD_MASK);
2104 
2105 	pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
2106 						       sizeof(pmd)));
2107 	if (!pmd_present(pmd))
2108 		return 0;
2109 	pa = pmd_pfn(pmd) << PAGE_SHIFT;
2110 	if (pmd_large(pmd))
2111 		return pa + (vaddr & ~PMD_MASK);
2112 
2113 	pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
2114 						       sizeof(pte)));
2115 	if (!pte_present(pte))
2116 		return 0;
2117 	pa = pte_pfn(pte) << PAGE_SHIFT;
2118 
2119 	return pa | (vaddr & ~PAGE_MASK);
2120 }
2121 
2122 /*
2123  * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
2124  * this area.
2125  */
2126 void __init xen_relocate_p2m(void)
2127 {
2128 	phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys, p4d_phys;
2129 	unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
2130 	int n_pte, n_pt, n_pmd, n_pud, n_p4d, idx_pte, idx_pt, idx_pmd, idx_pud, idx_p4d;
2131 	pte_t *pt;
2132 	pmd_t *pmd;
2133 	pud_t *pud;
2134 	p4d_t *p4d = NULL;
2135 	pgd_t *pgd;
2136 	unsigned long *new_p2m;
2137 	int save_pud;
2138 
2139 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
2140 	n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
2141 	n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
2142 	n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
2143 	n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT;
2144 	if (PTRS_PER_P4D > 1)
2145 		n_p4d = roundup(size, PGDIR_SIZE) >> PGDIR_SHIFT;
2146 	else
2147 		n_p4d = 0;
2148 	n_frames = n_pte + n_pt + n_pmd + n_pud + n_p4d;
2149 
2150 	new_area = xen_find_free_area(PFN_PHYS(n_frames));
2151 	if (!new_area) {
2152 		xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
2153 		BUG();
2154 	}
2155 
2156 	/*
2157 	 * Setup the page tables for addressing the new p2m list.
2158 	 * We have asked the hypervisor to map the p2m list at the user address
2159 	 * PUD_SIZE. It may have done so, or it may have used a kernel space
2160 	 * address depending on the Xen version.
2161 	 * To avoid any possible virtual address collision, just use
2162 	 * 2 * PUD_SIZE for the new area.
2163 	 */
2164 	p4d_phys = new_area;
2165 	pud_phys = p4d_phys + PFN_PHYS(n_p4d);
2166 	pmd_phys = pud_phys + PFN_PHYS(n_pud);
2167 	pt_phys = pmd_phys + PFN_PHYS(n_pmd);
2168 	p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
2169 
2170 	pgd = __va(read_cr3());
2171 	new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
2172 	idx_p4d = 0;
2173 	save_pud = n_pud;
2174 	do {
2175 		if (n_p4d > 0) {
2176 			p4d = early_memremap(p4d_phys, PAGE_SIZE);
2177 			clear_page(p4d);
2178 			n_pud = min(save_pud, PTRS_PER_P4D);
2179 		}
2180 		for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
2181 			pud = early_memremap(pud_phys, PAGE_SIZE);
2182 			clear_page(pud);
2183 			for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
2184 				 idx_pmd++) {
2185 				pmd = early_memremap(pmd_phys, PAGE_SIZE);
2186 				clear_page(pmd);
2187 				for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
2188 					 idx_pt++) {
2189 					pt = early_memremap(pt_phys, PAGE_SIZE);
2190 					clear_page(pt);
2191 					for (idx_pte = 0;
2192 						 idx_pte < min(n_pte, PTRS_PER_PTE);
2193 						 idx_pte++) {
2194 						set_pte(pt + idx_pte,
2195 								pfn_pte(p2m_pfn, PAGE_KERNEL));
2196 						p2m_pfn++;
2197 					}
2198 					n_pte -= PTRS_PER_PTE;
2199 					early_memunmap(pt, PAGE_SIZE);
2200 					make_lowmem_page_readonly(__va(pt_phys));
2201 					pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
2202 							PFN_DOWN(pt_phys));
2203 					set_pmd(pmd + idx_pt,
2204 							__pmd(_PAGE_TABLE | pt_phys));
2205 					pt_phys += PAGE_SIZE;
2206 				}
2207 				n_pt -= PTRS_PER_PMD;
2208 				early_memunmap(pmd, PAGE_SIZE);
2209 				make_lowmem_page_readonly(__va(pmd_phys));
2210 				pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
2211 						PFN_DOWN(pmd_phys));
2212 				set_pud(pud + idx_pmd, __pud(_PAGE_TABLE | pmd_phys));
2213 				pmd_phys += PAGE_SIZE;
2214 			}
2215 			n_pmd -= PTRS_PER_PUD;
2216 			early_memunmap(pud, PAGE_SIZE);
2217 			make_lowmem_page_readonly(__va(pud_phys));
2218 			pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
2219 			if (n_p4d > 0)
2220 				set_p4d(p4d + idx_pud, __p4d(_PAGE_TABLE | pud_phys));
2221 			else
2222 				set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
2223 			pud_phys += PAGE_SIZE;
2224 		}
2225 		if (n_p4d > 0) {
2226 			save_pud -= PTRS_PER_P4D;
2227 			early_memunmap(p4d, PAGE_SIZE);
2228 			make_lowmem_page_readonly(__va(p4d_phys));
2229 			pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, PFN_DOWN(p4d_phys));
2230 			set_pgd(pgd + 2 + idx_p4d, __pgd(_PAGE_TABLE | p4d_phys));
2231 			p4d_phys += PAGE_SIZE;
2232 		}
2233 	} while (++idx_p4d < n_p4d);
2234 
2235 	/* Now copy the old p2m info to the new area. */
2236 	memcpy(new_p2m, xen_p2m_addr, size);
2237 	xen_p2m_addr = new_p2m;
2238 
2239 	/* Release the old p2m list and set new list info. */
2240 	p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
2241 	BUG_ON(!p2m_pfn);
2242 	p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
2243 
2244 	if (xen_start_info->mfn_list < __START_KERNEL_map) {
2245 		pfn = xen_start_info->first_p2m_pfn;
2246 		pfn_end = xen_start_info->first_p2m_pfn +
2247 			  xen_start_info->nr_p2m_frames;
2248 		set_pgd(pgd + 1, __pgd(0));
2249 	} else {
2250 		pfn = p2m_pfn;
2251 		pfn_end = p2m_pfn_end;
2252 	}
2253 
2254 	memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
2255 	while (pfn < pfn_end) {
2256 		if (pfn == p2m_pfn) {
2257 			pfn = p2m_pfn_end;
2258 			continue;
2259 		}
2260 		make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
2261 		pfn++;
2262 	}
2263 
2264 	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
2265 	xen_start_info->first_p2m_pfn =  PFN_DOWN(new_area);
2266 	xen_start_info->nr_p2m_frames = n_frames;
2267 }
2268 
2269 #else	/* !CONFIG_X86_64 */
2270 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
2271 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
2272 
2273 static void __init xen_write_cr3_init(unsigned long cr3)
2274 {
2275 	unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
2276 
2277 	BUG_ON(read_cr3() != __pa(initial_page_table));
2278 	BUG_ON(cr3 != __pa(swapper_pg_dir));
2279 
2280 	/*
2281 	 * We are switching to swapper_pg_dir for the first time (from
2282 	 * initial_page_table) and therefore need to mark that page
2283 	 * read-only and then pin it.
2284 	 *
2285 	 * Xen disallows sharing of kernel PMDs for PAE
2286 	 * guests. Therefore we must copy the kernel PMD from
2287 	 * initial_page_table into a new kernel PMD to be used in
2288 	 * swapper_pg_dir.
2289 	 */
2290 	swapper_kernel_pmd =
2291 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2292 	copy_page(swapper_kernel_pmd, initial_kernel_pmd);
2293 	swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
2294 		__pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
2295 	set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
2296 
2297 	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
2298 	xen_write_cr3(cr3);
2299 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
2300 
2301 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
2302 			  PFN_DOWN(__pa(initial_page_table)));
2303 	set_page_prot(initial_page_table, PAGE_KERNEL);
2304 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
2305 
2306 	pv_mmu_ops.write_cr3 = &xen_write_cr3;
2307 }
2308 
2309 /*
2310  * For 32 bit domains xen_start_info->pt_base is the pgd address which might be
2311  * not the first page table in the page table pool.
2312  * Iterate through the initial page tables to find the real page table base.
2313  */
2314 static phys_addr_t xen_find_pt_base(pmd_t *pmd)
2315 {
2316 	phys_addr_t pt_base, paddr;
2317 	unsigned pmdidx;
2318 
2319 	pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd));
2320 
2321 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++)
2322 		if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) {
2323 			paddr = m2p(pmd[pmdidx].pmd);
2324 			pt_base = min(pt_base, paddr);
2325 		}
2326 
2327 	return pt_base;
2328 }
2329 
2330 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
2331 {
2332 	pmd_t *kernel_pmd;
2333 
2334 	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2335 
2336 	xen_pt_base = xen_find_pt_base(kernel_pmd);
2337 	xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE;
2338 
2339 	initial_kernel_pmd =
2340 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2341 
2342 	max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024);
2343 
2344 	copy_page(initial_kernel_pmd, kernel_pmd);
2345 
2346 	xen_map_identity_early(initial_kernel_pmd, max_pfn);
2347 
2348 	copy_page(initial_page_table, pgd);
2349 	initial_page_table[KERNEL_PGD_BOUNDARY] =
2350 		__pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2351 
2352 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2353 	set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2354 	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2355 
2356 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2357 
2358 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2359 			  PFN_DOWN(__pa(initial_page_table)));
2360 	xen_write_cr3(__pa(initial_page_table));
2361 
2362 	memblock_reserve(xen_pt_base, xen_pt_size);
2363 }
2364 #endif	/* CONFIG_X86_64 */
2365 
2366 void __init xen_reserve_special_pages(void)
2367 {
2368 	phys_addr_t paddr;
2369 
2370 	memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2371 	if (xen_start_info->store_mfn) {
2372 		paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2373 		memblock_reserve(paddr, PAGE_SIZE);
2374 	}
2375 	if (!xen_initial_domain()) {
2376 		paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2377 		memblock_reserve(paddr, PAGE_SIZE);
2378 	}
2379 }
2380 
2381 void __init xen_pt_check_e820(void)
2382 {
2383 	if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
2384 		xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2385 		BUG();
2386 	}
2387 }
2388 
2389 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2390 
2391 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2392 {
2393 	pte_t pte;
2394 
2395 	phys >>= PAGE_SHIFT;
2396 
2397 	switch (idx) {
2398 	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2399 	case FIX_RO_IDT:
2400 #ifdef CONFIG_X86_32
2401 	case FIX_WP_TEST:
2402 # ifdef CONFIG_HIGHMEM
2403 	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2404 # endif
2405 #elif defined(CONFIG_X86_VSYSCALL_EMULATION)
2406 	case VSYSCALL_PAGE:
2407 #endif
2408 	case FIX_TEXT_POKE0:
2409 	case FIX_TEXT_POKE1:
2410 	case FIX_GDT_REMAP_BEGIN ... FIX_GDT_REMAP_END:
2411 		/* All local page mappings */
2412 		pte = pfn_pte(phys, prot);
2413 		break;
2414 
2415 #ifdef CONFIG_X86_LOCAL_APIC
2416 	case FIX_APIC_BASE:	/* maps dummy local APIC */
2417 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2418 		break;
2419 #endif
2420 
2421 #ifdef CONFIG_X86_IO_APIC
2422 	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2423 		/*
2424 		 * We just don't map the IO APIC - all access is via
2425 		 * hypercalls.  Keep the address in the pte for reference.
2426 		 */
2427 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2428 		break;
2429 #endif
2430 
2431 	case FIX_PARAVIRT_BOOTMAP:
2432 		/* This is an MFN, but it isn't an IO mapping from the
2433 		   IO domain */
2434 		pte = mfn_pte(phys, prot);
2435 		break;
2436 
2437 	default:
2438 		/* By default, set_fixmap is used for hardware mappings */
2439 		pte = mfn_pte(phys, prot);
2440 		break;
2441 	}
2442 
2443 	__native_set_fixmap(idx, pte);
2444 
2445 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2446 	/* Replicate changes to map the vsyscall page into the user
2447 	   pagetable vsyscall mapping. */
2448 	if (idx == VSYSCALL_PAGE) {
2449 		unsigned long vaddr = __fix_to_virt(idx);
2450 		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2451 	}
2452 #endif
2453 }
2454 
2455 static void __init xen_post_allocator_init(void)
2456 {
2457 	if (xen_feature(XENFEAT_auto_translated_physmap))
2458 		return;
2459 
2460 	pv_mmu_ops.set_pte = xen_set_pte;
2461 	pv_mmu_ops.set_pmd = xen_set_pmd;
2462 	pv_mmu_ops.set_pud = xen_set_pud;
2463 #if CONFIG_PGTABLE_LEVELS >= 4
2464 	pv_mmu_ops.set_p4d = xen_set_p4d;
2465 #endif
2466 
2467 	/* This will work as long as patching hasn't happened yet
2468 	   (which it hasn't) */
2469 	pv_mmu_ops.alloc_pte = xen_alloc_pte;
2470 	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2471 	pv_mmu_ops.release_pte = xen_release_pte;
2472 	pv_mmu_ops.release_pmd = xen_release_pmd;
2473 #if CONFIG_PGTABLE_LEVELS >= 4
2474 	pv_mmu_ops.alloc_pud = xen_alloc_pud;
2475 	pv_mmu_ops.release_pud = xen_release_pud;
2476 #endif
2477 	pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte);
2478 
2479 #ifdef CONFIG_X86_64
2480 	pv_mmu_ops.write_cr3 = &xen_write_cr3;
2481 	SetPagePinned(virt_to_page(level3_user_vsyscall));
2482 #endif
2483 	xen_mark_init_mm_pinned();
2484 }
2485 
2486 static void xen_leave_lazy_mmu(void)
2487 {
2488 	preempt_disable();
2489 	xen_mc_flush();
2490 	paravirt_leave_lazy_mmu();
2491 	preempt_enable();
2492 }
2493 
2494 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2495 	.read_cr2 = xen_read_cr2,
2496 	.write_cr2 = xen_write_cr2,
2497 
2498 	.read_cr3 = xen_read_cr3,
2499 	.write_cr3 = xen_write_cr3_init,
2500 
2501 	.flush_tlb_user = xen_flush_tlb,
2502 	.flush_tlb_kernel = xen_flush_tlb,
2503 	.flush_tlb_single = xen_flush_tlb_single,
2504 	.flush_tlb_others = xen_flush_tlb_others,
2505 
2506 	.pte_update = paravirt_nop,
2507 
2508 	.pgd_alloc = xen_pgd_alloc,
2509 	.pgd_free = xen_pgd_free,
2510 
2511 	.alloc_pte = xen_alloc_pte_init,
2512 	.release_pte = xen_release_pte_init,
2513 	.alloc_pmd = xen_alloc_pmd_init,
2514 	.release_pmd = xen_release_pmd_init,
2515 
2516 	.set_pte = xen_set_pte_init,
2517 	.set_pte_at = xen_set_pte_at,
2518 	.set_pmd = xen_set_pmd_hyper,
2519 
2520 	.ptep_modify_prot_start = __ptep_modify_prot_start,
2521 	.ptep_modify_prot_commit = __ptep_modify_prot_commit,
2522 
2523 	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
2524 	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2525 
2526 	.make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
2527 	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2528 
2529 #ifdef CONFIG_X86_PAE
2530 	.set_pte_atomic = xen_set_pte_atomic,
2531 	.pte_clear = xen_pte_clear,
2532 	.pmd_clear = xen_pmd_clear,
2533 #endif	/* CONFIG_X86_PAE */
2534 	.set_pud = xen_set_pud_hyper,
2535 
2536 	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2537 	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2538 
2539 #if CONFIG_PGTABLE_LEVELS >= 4
2540 	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
2541 	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2542 	.set_p4d = xen_set_p4d_hyper,
2543 
2544 	.alloc_pud = xen_alloc_pmd_init,
2545 	.release_pud = xen_release_pmd_init,
2546 #endif	/* CONFIG_PGTABLE_LEVELS == 4 */
2547 
2548 	.activate_mm = xen_activate_mm,
2549 	.dup_mmap = xen_dup_mmap,
2550 	.exit_mmap = xen_exit_mmap,
2551 
2552 	.lazy_mode = {
2553 		.enter = paravirt_enter_lazy_mmu,
2554 		.leave = xen_leave_lazy_mmu,
2555 		.flush = paravirt_flush_lazy_mmu,
2556 	},
2557 
2558 	.set_fixmap = xen_set_fixmap,
2559 };
2560 
2561 void __init xen_init_mmu_ops(void)
2562 {
2563 	x86_init.paging.pagetable_init = xen_pagetable_init;
2564 
2565 	if (xen_feature(XENFEAT_auto_translated_physmap))
2566 		return;
2567 
2568 	pv_mmu_ops = xen_mmu_ops;
2569 
2570 	memset(dummy_mapping, 0xff, PAGE_SIZE);
2571 }
2572 
2573 /* Protected by xen_reservation_lock. */
2574 #define MAX_CONTIG_ORDER 9 /* 2MB */
2575 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2576 
2577 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2578 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2579 				unsigned long *in_frames,
2580 				unsigned long *out_frames)
2581 {
2582 	int i;
2583 	struct multicall_space mcs;
2584 
2585 	xen_mc_batch();
2586 	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2587 		mcs = __xen_mc_entry(0);
2588 
2589 		if (in_frames)
2590 			in_frames[i] = virt_to_mfn(vaddr);
2591 
2592 		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2593 		__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2594 
2595 		if (out_frames)
2596 			out_frames[i] = virt_to_pfn(vaddr);
2597 	}
2598 	xen_mc_issue(0);
2599 }
2600 
2601 /*
2602  * Update the pfn-to-mfn mappings for a virtual address range, either to
2603  * point to an array of mfns, or contiguously from a single starting
2604  * mfn.
2605  */
2606 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2607 				     unsigned long *mfns,
2608 				     unsigned long first_mfn)
2609 {
2610 	unsigned i, limit;
2611 	unsigned long mfn;
2612 
2613 	xen_mc_batch();
2614 
2615 	limit = 1u << order;
2616 	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2617 		struct multicall_space mcs;
2618 		unsigned flags;
2619 
2620 		mcs = __xen_mc_entry(0);
2621 		if (mfns)
2622 			mfn = mfns[i];
2623 		else
2624 			mfn = first_mfn + i;
2625 
2626 		if (i < (limit - 1))
2627 			flags = 0;
2628 		else {
2629 			if (order == 0)
2630 				flags = UVMF_INVLPG | UVMF_ALL;
2631 			else
2632 				flags = UVMF_TLB_FLUSH | UVMF_ALL;
2633 		}
2634 
2635 		MULTI_update_va_mapping(mcs.mc, vaddr,
2636 				mfn_pte(mfn, PAGE_KERNEL), flags);
2637 
2638 		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2639 	}
2640 
2641 	xen_mc_issue(0);
2642 }
2643 
2644 /*
2645  * Perform the hypercall to exchange a region of our pfns to point to
2646  * memory with the required contiguous alignment.  Takes the pfns as
2647  * input, and populates mfns as output.
2648  *
2649  * Returns a success code indicating whether the hypervisor was able to
2650  * satisfy the request or not.
2651  */
2652 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2653 			       unsigned long *pfns_in,
2654 			       unsigned long extents_out,
2655 			       unsigned int order_out,
2656 			       unsigned long *mfns_out,
2657 			       unsigned int address_bits)
2658 {
2659 	long rc;
2660 	int success;
2661 
2662 	struct xen_memory_exchange exchange = {
2663 		.in = {
2664 			.nr_extents   = extents_in,
2665 			.extent_order = order_in,
2666 			.extent_start = pfns_in,
2667 			.domid        = DOMID_SELF
2668 		},
2669 		.out = {
2670 			.nr_extents   = extents_out,
2671 			.extent_order = order_out,
2672 			.extent_start = mfns_out,
2673 			.address_bits = address_bits,
2674 			.domid        = DOMID_SELF
2675 		}
2676 	};
2677 
2678 	BUG_ON(extents_in << order_in != extents_out << order_out);
2679 
2680 	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2681 	success = (exchange.nr_exchanged == extents_in);
2682 
2683 	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2684 	BUG_ON(success && (rc != 0));
2685 
2686 	return success;
2687 }
2688 
2689 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2690 				 unsigned int address_bits,
2691 				 dma_addr_t *dma_handle)
2692 {
2693 	unsigned long *in_frames = discontig_frames, out_frame;
2694 	unsigned long  flags;
2695 	int            success;
2696 	unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2697 
2698 	/*
2699 	 * Currently an auto-translated guest will not perform I/O, nor will
2700 	 * it require PAE page directories below 4GB. Therefore any calls to
2701 	 * this function are redundant and can be ignored.
2702 	 */
2703 
2704 	if (xen_feature(XENFEAT_auto_translated_physmap))
2705 		return 0;
2706 
2707 	if (unlikely(order > MAX_CONTIG_ORDER))
2708 		return -ENOMEM;
2709 
2710 	memset((void *) vstart, 0, PAGE_SIZE << order);
2711 
2712 	spin_lock_irqsave(&xen_reservation_lock, flags);
2713 
2714 	/* 1. Zap current PTEs, remembering MFNs. */
2715 	xen_zap_pfn_range(vstart, order, in_frames, NULL);
2716 
2717 	/* 2. Get a new contiguous memory extent. */
2718 	out_frame = virt_to_pfn(vstart);
2719 	success = xen_exchange_memory(1UL << order, 0, in_frames,
2720 				      1, order, &out_frame,
2721 				      address_bits);
2722 
2723 	/* 3. Map the new extent in place of old pages. */
2724 	if (success)
2725 		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2726 	else
2727 		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2728 
2729 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2730 
2731 	*dma_handle = virt_to_machine(vstart).maddr;
2732 	return success ? 0 : -ENOMEM;
2733 }
2734 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2735 
2736 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2737 {
2738 	unsigned long *out_frames = discontig_frames, in_frame;
2739 	unsigned long  flags;
2740 	int success;
2741 	unsigned long vstart;
2742 
2743 	if (xen_feature(XENFEAT_auto_translated_physmap))
2744 		return;
2745 
2746 	if (unlikely(order > MAX_CONTIG_ORDER))
2747 		return;
2748 
2749 	vstart = (unsigned long)phys_to_virt(pstart);
2750 	memset((void *) vstart, 0, PAGE_SIZE << order);
2751 
2752 	spin_lock_irqsave(&xen_reservation_lock, flags);
2753 
2754 	/* 1. Find start MFN of contiguous extent. */
2755 	in_frame = virt_to_mfn(vstart);
2756 
2757 	/* 2. Zap current PTEs. */
2758 	xen_zap_pfn_range(vstart, order, NULL, out_frames);
2759 
2760 	/* 3. Do the exchange for non-contiguous MFNs. */
2761 	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2762 					0, out_frames, 0);
2763 
2764 	/* 4. Map new pages in place of old pages. */
2765 	if (success)
2766 		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2767 	else
2768 		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2769 
2770 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2771 }
2772 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2773 
2774 #ifdef CONFIG_XEN_PVHVM
2775 #ifdef CONFIG_PROC_VMCORE
2776 /*
2777  * This function is used in two contexts:
2778  * - the kdump kernel has to check whether a pfn of the crashed kernel
2779  *   was a ballooned page. vmcore is using this function to decide
2780  *   whether to access a pfn of the crashed kernel.
2781  * - the kexec kernel has to check whether a pfn was ballooned by the
2782  *   previous kernel. If the pfn is ballooned, handle it properly.
2783  * Returns 0 if the pfn is not backed by a RAM page, the caller may
2784  * handle the pfn special in this case.
2785  */
2786 static int xen_oldmem_pfn_is_ram(unsigned long pfn)
2787 {
2788 	struct xen_hvm_get_mem_type a = {
2789 		.domid = DOMID_SELF,
2790 		.pfn = pfn,
2791 	};
2792 	int ram;
2793 
2794 	if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a))
2795 		return -ENXIO;
2796 
2797 	switch (a.mem_type) {
2798 		case HVMMEM_mmio_dm:
2799 			ram = 0;
2800 			break;
2801 		case HVMMEM_ram_rw:
2802 		case HVMMEM_ram_ro:
2803 		default:
2804 			ram = 1;
2805 			break;
2806 	}
2807 
2808 	return ram;
2809 }
2810 #endif
2811 
2812 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2813 {
2814 	struct xen_hvm_pagetable_dying a;
2815 	int rc;
2816 
2817 	a.domid = DOMID_SELF;
2818 	a.gpa = __pa(mm->pgd);
2819 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2820 	WARN_ON_ONCE(rc < 0);
2821 }
2822 
2823 static int is_pagetable_dying_supported(void)
2824 {
2825 	struct xen_hvm_pagetable_dying a;
2826 	int rc = 0;
2827 
2828 	a.domid = DOMID_SELF;
2829 	a.gpa = 0x00;
2830 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2831 	if (rc < 0) {
2832 		printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2833 		return 0;
2834 	}
2835 	return 1;
2836 }
2837 
2838 void __init xen_hvm_init_mmu_ops(void)
2839 {
2840 	if (is_pagetable_dying_supported())
2841 		pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2842 #ifdef CONFIG_PROC_VMCORE
2843 	register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram);
2844 #endif
2845 }
2846 #endif
2847 
2848 #define REMAP_BATCH_SIZE 16
2849 
2850 struct remap_data {
2851 	xen_pfn_t *mfn;
2852 	bool contiguous;
2853 	pgprot_t prot;
2854 	struct mmu_update *mmu_update;
2855 };
2856 
2857 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2858 				 unsigned long addr, void *data)
2859 {
2860 	struct remap_data *rmd = data;
2861 	pte_t pte = pte_mkspecial(mfn_pte(*rmd->mfn, rmd->prot));
2862 
2863 	/* If we have a contiguous range, just update the mfn itself,
2864 	   else update pointer to be "next mfn". */
2865 	if (rmd->contiguous)
2866 		(*rmd->mfn)++;
2867 	else
2868 		rmd->mfn++;
2869 
2870 	rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2871 	rmd->mmu_update->val = pte_val_ma(pte);
2872 	rmd->mmu_update++;
2873 
2874 	return 0;
2875 }
2876 
2877 static int do_remap_gfn(struct vm_area_struct *vma,
2878 			unsigned long addr,
2879 			xen_pfn_t *gfn, int nr,
2880 			int *err_ptr, pgprot_t prot,
2881 			unsigned domid,
2882 			struct page **pages)
2883 {
2884 	int err = 0;
2885 	struct remap_data rmd;
2886 	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2887 	unsigned long range;
2888 	int mapped = 0;
2889 
2890 	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2891 
2892 	rmd.mfn = gfn;
2893 	rmd.prot = prot;
2894 	/* We use the err_ptr to indicate if there we are doing a contiguous
2895 	 * mapping or a discontigious mapping. */
2896 	rmd.contiguous = !err_ptr;
2897 
2898 	while (nr) {
2899 		int index = 0;
2900 		int done = 0;
2901 		int batch = min(REMAP_BATCH_SIZE, nr);
2902 		int batch_left = batch;
2903 		range = (unsigned long)batch << PAGE_SHIFT;
2904 
2905 		rmd.mmu_update = mmu_update;
2906 		err = apply_to_page_range(vma->vm_mm, addr, range,
2907 					  remap_area_mfn_pte_fn, &rmd);
2908 		if (err)
2909 			goto out;
2910 
2911 		/* We record the error for each page that gives an error, but
2912 		 * continue mapping until the whole set is done */
2913 		do {
2914 			int i;
2915 
2916 			err = HYPERVISOR_mmu_update(&mmu_update[index],
2917 						    batch_left, &done, domid);
2918 
2919 			/*
2920 			 * @err_ptr may be the same buffer as @gfn, so
2921 			 * only clear it after each chunk of @gfn is
2922 			 * used.
2923 			 */
2924 			if (err_ptr) {
2925 				for (i = index; i < index + done; i++)
2926 					err_ptr[i] = 0;
2927 			}
2928 			if (err < 0) {
2929 				if (!err_ptr)
2930 					goto out;
2931 				err_ptr[i] = err;
2932 				done++; /* Skip failed frame. */
2933 			} else
2934 				mapped += done;
2935 			batch_left -= done;
2936 			index += done;
2937 		} while (batch_left);
2938 
2939 		nr -= batch;
2940 		addr += range;
2941 		if (err_ptr)
2942 			err_ptr += batch;
2943 		cond_resched();
2944 	}
2945 out:
2946 
2947 	xen_flush_tlb_all();
2948 
2949 	return err < 0 ? err : mapped;
2950 }
2951 
2952 int xen_remap_domain_gfn_range(struct vm_area_struct *vma,
2953 			       unsigned long addr,
2954 			       xen_pfn_t gfn, int nr,
2955 			       pgprot_t prot, unsigned domid,
2956 			       struct page **pages)
2957 {
2958 	return do_remap_gfn(vma, addr, &gfn, nr, NULL, prot, domid, pages);
2959 }
2960 EXPORT_SYMBOL_GPL(xen_remap_domain_gfn_range);
2961 
2962 int xen_remap_domain_gfn_array(struct vm_area_struct *vma,
2963 			       unsigned long addr,
2964 			       xen_pfn_t *gfn, int nr,
2965 			       int *err_ptr, pgprot_t prot,
2966 			       unsigned domid, struct page **pages)
2967 {
2968 	/* We BUG_ON because it's a programmer error to pass a NULL err_ptr,
2969 	 * and the consequences later is quite hard to detect what the actual
2970 	 * cause of "wrong memory was mapped in".
2971 	 */
2972 	BUG_ON(err_ptr == NULL);
2973 	return do_remap_gfn(vma, addr, gfn, nr, err_ptr, prot, domid, pages);
2974 }
2975 EXPORT_SYMBOL_GPL(xen_remap_domain_gfn_array);
2976 
2977 
2978 /* Returns: 0 success */
2979 int xen_unmap_domain_gfn_range(struct vm_area_struct *vma,
2980 			       int numpgs, struct page **pages)
2981 {
2982 	if (!pages || !xen_feature(XENFEAT_auto_translated_physmap))
2983 		return 0;
2984 
2985 	return -EINVAL;
2986 }
2987 EXPORT_SYMBOL_GPL(xen_unmap_domain_gfn_range);
2988