xref: /openbmc/linux/arch/x86/xen/mmu.c (revision 04c71976)
1 /*
2  * Xen mmu operations
3  *
4  * This file contains the various mmu fetch and update operations.
5  * The most important job they must perform is the mapping between the
6  * domain's pfn and the overall machine mfns.
7  *
8  * Xen allows guests to directly update the pagetable, in a controlled
9  * fashion.  In other words, the guest modifies the same pagetable
10  * that the CPU actually uses, which eliminates the overhead of having
11  * a separate shadow pagetable.
12  *
13  * In order to allow this, it falls on the guest domain to map its
14  * notion of a "physical" pfn - which is just a domain-local linear
15  * address - into a real "machine address" which the CPU's MMU can
16  * use.
17  *
18  * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19  * inserted directly into the pagetable.  When creating a new
20  * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
21  * when reading the content back with __(pgd|pmd|pte)_val, it converts
22  * the mfn back into a pfn.
23  *
24  * The other constraint is that all pages which make up a pagetable
25  * must be mapped read-only in the guest.  This prevents uncontrolled
26  * guest updates to the pagetable.  Xen strictly enforces this, and
27  * will disallow any pagetable update which will end up mapping a
28  * pagetable page RW, and will disallow using any writable page as a
29  * pagetable.
30  *
31  * Naively, when loading %cr3 with the base of a new pagetable, Xen
32  * would need to validate the whole pagetable before going on.
33  * Naturally, this is quite slow.  The solution is to "pin" a
34  * pagetable, which enforces all the constraints on the pagetable even
35  * when it is not actively in use.  This menas that Xen can be assured
36  * that it is still valid when you do load it into %cr3, and doesn't
37  * need to revalidate it.
38  *
39  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40  */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/bug.h>
44 #include <linux/sched.h>
45 
46 #include <asm/pgtable.h>
47 #include <asm/tlbflush.h>
48 #include <asm/mmu_context.h>
49 #include <asm/paravirt.h>
50 
51 #include <asm/xen/hypercall.h>
52 #include <asm/xen/hypervisor.h>
53 
54 #include <xen/page.h>
55 #include <xen/interface/xen.h>
56 
57 #include "multicalls.h"
58 #include "mmu.h"
59 
60 xmaddr_t arbitrary_virt_to_machine(unsigned long address)
61 {
62 	pte_t *pte = lookup_address(address);
63 	unsigned offset = address & PAGE_MASK;
64 
65 	BUG_ON(pte == NULL);
66 
67 	return XMADDR((pte_mfn(*pte) << PAGE_SHIFT) + offset);
68 }
69 
70 void make_lowmem_page_readonly(void *vaddr)
71 {
72 	pte_t *pte, ptev;
73 	unsigned long address = (unsigned long)vaddr;
74 
75 	pte = lookup_address(address);
76 	BUG_ON(pte == NULL);
77 
78 	ptev = pte_wrprotect(*pte);
79 
80 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
81 		BUG();
82 }
83 
84 void make_lowmem_page_readwrite(void *vaddr)
85 {
86 	pte_t *pte, ptev;
87 	unsigned long address = (unsigned long)vaddr;
88 
89 	pte = lookup_address(address);
90 	BUG_ON(pte == NULL);
91 
92 	ptev = pte_mkwrite(*pte);
93 
94 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
95 		BUG();
96 }
97 
98 
99 void xen_set_pmd(pmd_t *ptr, pmd_t val)
100 {
101 	struct multicall_space mcs;
102 	struct mmu_update *u;
103 
104 	preempt_disable();
105 
106 	mcs = xen_mc_entry(sizeof(*u));
107 	u = mcs.args;
108 	u->ptr = virt_to_machine(ptr).maddr;
109 	u->val = pmd_val_ma(val);
110 	MULTI_mmu_update(mcs.mc, u, 1, NULL, DOMID_SELF);
111 
112 	xen_mc_issue(PARAVIRT_LAZY_MMU);
113 
114 	preempt_enable();
115 }
116 
117 /*
118  * Associate a virtual page frame with a given physical page frame
119  * and protection flags for that frame.
120  */
121 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
122 {
123 	pgd_t *pgd;
124 	pud_t *pud;
125 	pmd_t *pmd;
126 	pte_t *pte;
127 
128 	pgd = swapper_pg_dir + pgd_index(vaddr);
129 	if (pgd_none(*pgd)) {
130 		BUG();
131 		return;
132 	}
133 	pud = pud_offset(pgd, vaddr);
134 	if (pud_none(*pud)) {
135 		BUG();
136 		return;
137 	}
138 	pmd = pmd_offset(pud, vaddr);
139 	if (pmd_none(*pmd)) {
140 		BUG();
141 		return;
142 	}
143 	pte = pte_offset_kernel(pmd, vaddr);
144 	/* <mfn,flags> stored as-is, to permit clearing entries */
145 	xen_set_pte(pte, mfn_pte(mfn, flags));
146 
147 	/*
148 	 * It's enough to flush this one mapping.
149 	 * (PGE mappings get flushed as well)
150 	 */
151 	__flush_tlb_one(vaddr);
152 }
153 
154 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
155 		    pte_t *ptep, pte_t pteval)
156 {
157 	if (mm == current->mm || mm == &init_mm) {
158 		if (xen_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
159 			struct multicall_space mcs;
160 			mcs = xen_mc_entry(0);
161 
162 			MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
163 			xen_mc_issue(PARAVIRT_LAZY_MMU);
164 			return;
165 		} else
166 			if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
167 				return;
168 	}
169 	xen_set_pte(ptep, pteval);
170 }
171 
172 #ifdef CONFIG_X86_PAE
173 void xen_set_pud(pud_t *ptr, pud_t val)
174 {
175 	struct multicall_space mcs;
176 	struct mmu_update *u;
177 
178 	preempt_disable();
179 
180 	mcs = xen_mc_entry(sizeof(*u));
181 	u = mcs.args;
182 	u->ptr = virt_to_machine(ptr).maddr;
183 	u->val = pud_val_ma(val);
184 	MULTI_mmu_update(mcs.mc, u, 1, NULL, DOMID_SELF);
185 
186 	xen_mc_issue(PARAVIRT_LAZY_MMU);
187 
188 	preempt_enable();
189 }
190 
191 void xen_set_pte(pte_t *ptep, pte_t pte)
192 {
193 	ptep->pte_high = pte.pte_high;
194 	smp_wmb();
195 	ptep->pte_low = pte.pte_low;
196 }
197 
198 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
199 {
200 	set_64bit((u64 *)ptep, pte_val_ma(pte));
201 }
202 
203 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
204 {
205 	ptep->pte_low = 0;
206 	smp_wmb();		/* make sure low gets written first */
207 	ptep->pte_high = 0;
208 }
209 
210 void xen_pmd_clear(pmd_t *pmdp)
211 {
212 	xen_set_pmd(pmdp, __pmd(0));
213 }
214 
215 unsigned long long xen_pte_val(pte_t pte)
216 {
217 	unsigned long long ret = 0;
218 
219 	if (pte.pte_low) {
220 		ret = ((unsigned long long)pte.pte_high << 32) | pte.pte_low;
221 		ret = machine_to_phys(XMADDR(ret)).paddr | 1;
222 	}
223 
224 	return ret;
225 }
226 
227 unsigned long long xen_pmd_val(pmd_t pmd)
228 {
229 	unsigned long long ret = pmd.pmd;
230 	if (ret)
231 		ret = machine_to_phys(XMADDR(ret)).paddr | 1;
232 	return ret;
233 }
234 
235 unsigned long long xen_pgd_val(pgd_t pgd)
236 {
237 	unsigned long long ret = pgd.pgd;
238 	if (ret)
239 		ret = machine_to_phys(XMADDR(ret)).paddr | 1;
240 	return ret;
241 }
242 
243 pte_t xen_make_pte(unsigned long long pte)
244 {
245 	if (pte & 1)
246 		pte = phys_to_machine(XPADDR(pte)).maddr;
247 
248 	return (pte_t){ pte, pte >> 32 };
249 }
250 
251 pmd_t xen_make_pmd(unsigned long long pmd)
252 {
253 	if (pmd & 1)
254 		pmd = phys_to_machine(XPADDR(pmd)).maddr;
255 
256 	return (pmd_t){ pmd };
257 }
258 
259 pgd_t xen_make_pgd(unsigned long long pgd)
260 {
261 	if (pgd & _PAGE_PRESENT)
262 		pgd = phys_to_machine(XPADDR(pgd)).maddr;
263 
264 	return (pgd_t){ pgd };
265 }
266 #else  /* !PAE */
267 void xen_set_pte(pte_t *ptep, pte_t pte)
268 {
269 	*ptep = pte;
270 }
271 
272 unsigned long xen_pte_val(pte_t pte)
273 {
274 	unsigned long ret = pte.pte_low;
275 
276 	if (ret & _PAGE_PRESENT)
277 		ret = machine_to_phys(XMADDR(ret)).paddr;
278 
279 	return ret;
280 }
281 
282 unsigned long xen_pgd_val(pgd_t pgd)
283 {
284 	unsigned long ret = pgd.pgd;
285 	if (ret)
286 		ret = machine_to_phys(XMADDR(ret)).paddr | 1;
287 	return ret;
288 }
289 
290 pte_t xen_make_pte(unsigned long pte)
291 {
292 	if (pte & _PAGE_PRESENT)
293 		pte = phys_to_machine(XPADDR(pte)).maddr;
294 
295 	return (pte_t){ pte };
296 }
297 
298 pgd_t xen_make_pgd(unsigned long pgd)
299 {
300 	if (pgd & _PAGE_PRESENT)
301 		pgd = phys_to_machine(XPADDR(pgd)).maddr;
302 
303 	return (pgd_t){ pgd };
304 }
305 #endif	/* CONFIG_X86_PAE */
306 
307 
308 
309 /*
310   (Yet another) pagetable walker.  This one is intended for pinning a
311   pagetable.  This means that it walks a pagetable and calls the
312   callback function on each page it finds making up the page table,
313   at every level.  It walks the entire pagetable, but it only bothers
314   pinning pte pages which are below pte_limit.  In the normal case
315   this will be TASK_SIZE, but at boot we need to pin up to
316   FIXADDR_TOP.  But the important bit is that we don't pin beyond
317   there, because then we start getting into Xen's ptes.
318 */
319 static int pgd_walk(pgd_t *pgd_base, int (*func)(struct page *, unsigned),
320 		    unsigned long limit)
321 {
322 	pgd_t *pgd = pgd_base;
323 	int flush = 0;
324 	unsigned long addr = 0;
325 	unsigned long pgd_next;
326 
327 	BUG_ON(limit > FIXADDR_TOP);
328 
329 	if (xen_feature(XENFEAT_auto_translated_physmap))
330 		return 0;
331 
332 	for (; addr != FIXADDR_TOP; pgd++, addr = pgd_next) {
333 		pud_t *pud;
334 		unsigned long pud_limit, pud_next;
335 
336 		pgd_next = pud_limit = pgd_addr_end(addr, FIXADDR_TOP);
337 
338 		if (!pgd_val(*pgd))
339 			continue;
340 
341 		pud = pud_offset(pgd, 0);
342 
343 		if (PTRS_PER_PUD > 1) /* not folded */
344 			flush |= (*func)(virt_to_page(pud), 0);
345 
346 		for (; addr != pud_limit; pud++, addr = pud_next) {
347 			pmd_t *pmd;
348 			unsigned long pmd_limit;
349 
350 			pud_next = pud_addr_end(addr, pud_limit);
351 
352 			if (pud_next < limit)
353 				pmd_limit = pud_next;
354 			else
355 				pmd_limit = limit;
356 
357 			if (pud_none(*pud))
358 				continue;
359 
360 			pmd = pmd_offset(pud, 0);
361 
362 			if (PTRS_PER_PMD > 1) /* not folded */
363 				flush |= (*func)(virt_to_page(pmd), 0);
364 
365 			for (; addr != pmd_limit; pmd++) {
366 				addr += (PAGE_SIZE * PTRS_PER_PTE);
367 				if ((pmd_limit-1) < (addr-1)) {
368 					addr = pmd_limit;
369 					break;
370 				}
371 
372 				if (pmd_none(*pmd))
373 					continue;
374 
375 				flush |= (*func)(pmd_page(*pmd), 0);
376 			}
377 		}
378 	}
379 
380 	flush |= (*func)(virt_to_page(pgd_base), UVMF_TLB_FLUSH);
381 
382 	return flush;
383 }
384 
385 static int pin_page(struct page *page, unsigned flags)
386 {
387 	unsigned pgfl = test_and_set_bit(PG_pinned, &page->flags);
388 	int flush;
389 
390 	if (pgfl)
391 		flush = 0;		/* already pinned */
392 	else if (PageHighMem(page))
393 		/* kmaps need flushing if we found an unpinned
394 		   highpage */
395 		flush = 1;
396 	else {
397 		void *pt = lowmem_page_address(page);
398 		unsigned long pfn = page_to_pfn(page);
399 		struct multicall_space mcs = __xen_mc_entry(0);
400 
401 		flush = 0;
402 
403 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
404 					pfn_pte(pfn, PAGE_KERNEL_RO),
405 					flags);
406 	}
407 
408 	return flush;
409 }
410 
411 /* This is called just after a mm has been created, but it has not
412    been used yet.  We need to make sure that its pagetable is all
413    read-only, and can be pinned. */
414 void xen_pgd_pin(pgd_t *pgd)
415 {
416 	struct multicall_space mcs;
417 	struct mmuext_op *op;
418 
419 	xen_mc_batch();
420 
421 	if (pgd_walk(pgd, pin_page, TASK_SIZE)) {
422 		/* re-enable interrupts for kmap_flush_unused */
423 		xen_mc_issue(0);
424 		kmap_flush_unused();
425 		xen_mc_batch();
426 	}
427 
428 	mcs = __xen_mc_entry(sizeof(*op));
429 	op = mcs.args;
430 
431 #ifdef CONFIG_X86_PAE
432 	op->cmd = MMUEXT_PIN_L3_TABLE;
433 #else
434 	op->cmd = MMUEXT_PIN_L2_TABLE;
435 #endif
436 	op->arg1.mfn = pfn_to_mfn(PFN_DOWN(__pa(pgd)));
437 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
438 
439 	xen_mc_issue(0);
440 }
441 
442 /* The init_mm pagetable is really pinned as soon as its created, but
443    that's before we have page structures to store the bits.  So do all
444    the book-keeping now. */
445 static __init int mark_pinned(struct page *page, unsigned flags)
446 {
447 	SetPagePinned(page);
448 	return 0;
449 }
450 
451 void __init xen_mark_init_mm_pinned(void)
452 {
453 	pgd_walk(init_mm.pgd, mark_pinned, FIXADDR_TOP);
454 }
455 
456 static int unpin_page(struct page *page, unsigned flags)
457 {
458 	unsigned pgfl = test_and_clear_bit(PG_pinned, &page->flags);
459 
460 	if (pgfl && !PageHighMem(page)) {
461 		void *pt = lowmem_page_address(page);
462 		unsigned long pfn = page_to_pfn(page);
463 		struct multicall_space mcs = __xen_mc_entry(0);
464 
465 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
466 					pfn_pte(pfn, PAGE_KERNEL),
467 					flags);
468 	}
469 
470 	return 0;		/* never need to flush on unpin */
471 }
472 
473 /* Release a pagetables pages back as normal RW */
474 static void xen_pgd_unpin(pgd_t *pgd)
475 {
476 	struct mmuext_op *op;
477 	struct multicall_space mcs;
478 
479 	xen_mc_batch();
480 
481 	mcs = __xen_mc_entry(sizeof(*op));
482 
483 	op = mcs.args;
484 	op->cmd = MMUEXT_UNPIN_TABLE;
485 	op->arg1.mfn = pfn_to_mfn(PFN_DOWN(__pa(pgd)));
486 
487 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
488 
489 	pgd_walk(pgd, unpin_page, TASK_SIZE);
490 
491 	xen_mc_issue(0);
492 }
493 
494 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
495 {
496 	spin_lock(&next->page_table_lock);
497 	xen_pgd_pin(next->pgd);
498 	spin_unlock(&next->page_table_lock);
499 }
500 
501 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
502 {
503 	spin_lock(&mm->page_table_lock);
504 	xen_pgd_pin(mm->pgd);
505 	spin_unlock(&mm->page_table_lock);
506 }
507 
508 
509 #ifdef CONFIG_SMP
510 /* Another cpu may still have their %cr3 pointing at the pagetable, so
511    we need to repoint it somewhere else before we can unpin it. */
512 static void drop_other_mm_ref(void *info)
513 {
514 	struct mm_struct *mm = info;
515 
516 	if (__get_cpu_var(cpu_tlbstate).active_mm == mm)
517 		leave_mm(smp_processor_id());
518 }
519 
520 static void drop_mm_ref(struct mm_struct *mm)
521 {
522 	if (current->active_mm == mm) {
523 		if (current->mm == mm)
524 			load_cr3(swapper_pg_dir);
525 		else
526 			leave_mm(smp_processor_id());
527 	}
528 
529 	if (!cpus_empty(mm->cpu_vm_mask))
530 		xen_smp_call_function_mask(mm->cpu_vm_mask, drop_other_mm_ref,
531 					   mm, 1);
532 }
533 #else
534 static void drop_mm_ref(struct mm_struct *mm)
535 {
536 	if (current->active_mm == mm)
537 		load_cr3(swapper_pg_dir);
538 }
539 #endif
540 
541 /*
542  * While a process runs, Xen pins its pagetables, which means that the
543  * hypervisor forces it to be read-only, and it controls all updates
544  * to it.  This means that all pagetable updates have to go via the
545  * hypervisor, which is moderately expensive.
546  *
547  * Since we're pulling the pagetable down, we switch to use init_mm,
548  * unpin old process pagetable and mark it all read-write, which
549  * allows further operations on it to be simple memory accesses.
550  *
551  * The only subtle point is that another CPU may be still using the
552  * pagetable because of lazy tlb flushing.  This means we need need to
553  * switch all CPUs off this pagetable before we can unpin it.
554  */
555 void xen_exit_mmap(struct mm_struct *mm)
556 {
557 	get_cpu();		/* make sure we don't move around */
558 	drop_mm_ref(mm);
559 	put_cpu();
560 
561 	spin_lock(&mm->page_table_lock);
562 
563 	/* pgd may not be pinned in the error exit path of execve */
564 	if (PagePinned(virt_to_page(mm->pgd)))
565 		xen_pgd_unpin(mm->pgd);
566 	spin_unlock(&mm->page_table_lock);
567 }
568