xref: /openbmc/linux/arch/x86/xen/enlighten_pv.c (revision de167752a889d19b9bb018f8eecbc1ebbfe07b2f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Core of Xen paravirt_ops implementation.
4  *
5  * This file contains the xen_paravirt_ops structure itself, and the
6  * implementations for:
7  * - privileged instructions
8  * - interrupt flags
9  * - segment operations
10  * - booting and setup
11  *
12  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
13  */
14 
15 #include <linux/cpu.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/smp.h>
19 #include <linux/preempt.h>
20 #include <linux/hardirq.h>
21 #include <linux/percpu.h>
22 #include <linux/delay.h>
23 #include <linux/start_kernel.h>
24 #include <linux/sched.h>
25 #include <linux/kprobes.h>
26 #include <linux/bootmem.h>
27 #include <linux/export.h>
28 #include <linux/mm.h>
29 #include <linux/page-flags.h>
30 #include <linux/highmem.h>
31 #include <linux/console.h>
32 #include <linux/pci.h>
33 #include <linux/gfp.h>
34 #include <linux/memblock.h>
35 #include <linux/edd.h>
36 #include <linux/frame.h>
37 
38 #include <xen/xen.h>
39 #include <xen/events.h>
40 #include <xen/interface/xen.h>
41 #include <xen/interface/version.h>
42 #include <xen/interface/physdev.h>
43 #include <xen/interface/vcpu.h>
44 #include <xen/interface/memory.h>
45 #include <xen/interface/nmi.h>
46 #include <xen/interface/xen-mca.h>
47 #include <xen/features.h>
48 #include <xen/page.h>
49 #include <xen/hvc-console.h>
50 #include <xen/acpi.h>
51 
52 #include <asm/paravirt.h>
53 #include <asm/apic.h>
54 #include <asm/page.h>
55 #include <asm/xen/pci.h>
56 #include <asm/xen/hypercall.h>
57 #include <asm/xen/hypervisor.h>
58 #include <asm/xen/cpuid.h>
59 #include <asm/fixmap.h>
60 #include <asm/processor.h>
61 #include <asm/proto.h>
62 #include <asm/msr-index.h>
63 #include <asm/traps.h>
64 #include <asm/setup.h>
65 #include <asm/desc.h>
66 #include <asm/pgalloc.h>
67 #include <asm/pgtable.h>
68 #include <asm/tlbflush.h>
69 #include <asm/reboot.h>
70 #include <asm/stackprotector.h>
71 #include <asm/hypervisor.h>
72 #include <asm/mach_traps.h>
73 #include <asm/mwait.h>
74 #include <asm/pci_x86.h>
75 #include <asm/cpu.h>
76 
77 #ifdef CONFIG_ACPI
78 #include <linux/acpi.h>
79 #include <asm/acpi.h>
80 #include <acpi/pdc_intel.h>
81 #include <acpi/processor.h>
82 #include <xen/interface/platform.h>
83 #endif
84 
85 #include "xen-ops.h"
86 #include "mmu.h"
87 #include "smp.h"
88 #include "multicalls.h"
89 #include "pmu.h"
90 
91 #include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
92 
93 void *xen_initial_gdt;
94 
95 static int xen_cpu_up_prepare_pv(unsigned int cpu);
96 static int xen_cpu_dead_pv(unsigned int cpu);
97 
98 struct tls_descs {
99 	struct desc_struct desc[3];
100 };
101 
102 /*
103  * Updating the 3 TLS descriptors in the GDT on every task switch is
104  * surprisingly expensive so we avoid updating them if they haven't
105  * changed.  Since Xen writes different descriptors than the one
106  * passed in the update_descriptor hypercall we keep shadow copies to
107  * compare against.
108  */
109 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
110 
111 static void __init xen_banner(void)
112 {
113 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
114 	struct xen_extraversion extra;
115 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
116 
117 	pr_info("Booting paravirtualized kernel on %s\n", pv_info.name);
118 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
119 	       version >> 16, version & 0xffff, extra.extraversion,
120 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
121 }
122 /* Check if running on Xen version (major, minor) or later */
123 bool
124 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
125 {
126 	unsigned int version;
127 
128 	if (!xen_domain())
129 		return false;
130 
131 	version = HYPERVISOR_xen_version(XENVER_version, NULL);
132 	if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
133 		((version >> 16) > major))
134 		return true;
135 	return false;
136 }
137 
138 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
139 static __read_mostly unsigned int cpuid_leaf5_edx_val;
140 
141 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
142 		      unsigned int *cx, unsigned int *dx)
143 {
144 	unsigned maskebx = ~0;
145 
146 	/*
147 	 * Mask out inconvenient features, to try and disable as many
148 	 * unsupported kernel subsystems as possible.
149 	 */
150 	switch (*ax) {
151 	case CPUID_MWAIT_LEAF:
152 		/* Synthesize the values.. */
153 		*ax = 0;
154 		*bx = 0;
155 		*cx = cpuid_leaf5_ecx_val;
156 		*dx = cpuid_leaf5_edx_val;
157 		return;
158 
159 	case 0xb:
160 		/* Suppress extended topology stuff */
161 		maskebx = 0;
162 		break;
163 	}
164 
165 	asm(XEN_EMULATE_PREFIX "cpuid"
166 		: "=a" (*ax),
167 		  "=b" (*bx),
168 		  "=c" (*cx),
169 		  "=d" (*dx)
170 		: "0" (*ax), "2" (*cx));
171 
172 	*bx &= maskebx;
173 }
174 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
175 
176 static bool __init xen_check_mwait(void)
177 {
178 #ifdef CONFIG_ACPI
179 	struct xen_platform_op op = {
180 		.cmd			= XENPF_set_processor_pminfo,
181 		.u.set_pminfo.id	= -1,
182 		.u.set_pminfo.type	= XEN_PM_PDC,
183 	};
184 	uint32_t buf[3];
185 	unsigned int ax, bx, cx, dx;
186 	unsigned int mwait_mask;
187 
188 	/* We need to determine whether it is OK to expose the MWAIT
189 	 * capability to the kernel to harvest deeper than C3 states from ACPI
190 	 * _CST using the processor_harvest_xen.c module. For this to work, we
191 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
192 	 * checks against). The hypervisor won't expose the MWAIT flag because
193 	 * it would break backwards compatibility; so we will find out directly
194 	 * from the hardware and hypercall.
195 	 */
196 	if (!xen_initial_domain())
197 		return false;
198 
199 	/*
200 	 * When running under platform earlier than Xen4.2, do not expose
201 	 * mwait, to avoid the risk of loading native acpi pad driver
202 	 */
203 	if (!xen_running_on_version_or_later(4, 2))
204 		return false;
205 
206 	ax = 1;
207 	cx = 0;
208 
209 	native_cpuid(&ax, &bx, &cx, &dx);
210 
211 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
212 		     (1 << (X86_FEATURE_MWAIT % 32));
213 
214 	if ((cx & mwait_mask) != mwait_mask)
215 		return false;
216 
217 	/* We need to emulate the MWAIT_LEAF and for that we need both
218 	 * ecx and edx. The hypercall provides only partial information.
219 	 */
220 
221 	ax = CPUID_MWAIT_LEAF;
222 	bx = 0;
223 	cx = 0;
224 	dx = 0;
225 
226 	native_cpuid(&ax, &bx, &cx, &dx);
227 
228 	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
229 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
230 	 */
231 	buf[0] = ACPI_PDC_REVISION_ID;
232 	buf[1] = 1;
233 	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
234 
235 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
236 
237 	if ((HYPERVISOR_platform_op(&op) == 0) &&
238 	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
239 		cpuid_leaf5_ecx_val = cx;
240 		cpuid_leaf5_edx_val = dx;
241 	}
242 	return true;
243 #else
244 	return false;
245 #endif
246 }
247 
248 static bool __init xen_check_xsave(void)
249 {
250 	unsigned int cx, xsave_mask;
251 
252 	cx = cpuid_ecx(1);
253 
254 	xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
255 		     (1 << (X86_FEATURE_OSXSAVE % 32));
256 
257 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
258 	return (cx & xsave_mask) == xsave_mask;
259 }
260 
261 static void __init xen_init_capabilities(void)
262 {
263 	setup_force_cpu_cap(X86_FEATURE_XENPV);
264 	setup_clear_cpu_cap(X86_FEATURE_DCA);
265 	setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
266 	setup_clear_cpu_cap(X86_FEATURE_MTRR);
267 	setup_clear_cpu_cap(X86_FEATURE_ACC);
268 	setup_clear_cpu_cap(X86_FEATURE_X2APIC);
269 	setup_clear_cpu_cap(X86_FEATURE_SME);
270 
271 	/*
272 	 * Xen PV would need some work to support PCID: CR3 handling as well
273 	 * as xen_flush_tlb_others() would need updating.
274 	 */
275 	setup_clear_cpu_cap(X86_FEATURE_PCID);
276 
277 	if (!xen_initial_domain())
278 		setup_clear_cpu_cap(X86_FEATURE_ACPI);
279 
280 	if (xen_check_mwait())
281 		setup_force_cpu_cap(X86_FEATURE_MWAIT);
282 	else
283 		setup_clear_cpu_cap(X86_FEATURE_MWAIT);
284 
285 	if (!xen_check_xsave()) {
286 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
287 		setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
288 	}
289 }
290 
291 static void xen_set_debugreg(int reg, unsigned long val)
292 {
293 	HYPERVISOR_set_debugreg(reg, val);
294 }
295 
296 static unsigned long xen_get_debugreg(int reg)
297 {
298 	return HYPERVISOR_get_debugreg(reg);
299 }
300 
301 static void xen_end_context_switch(struct task_struct *next)
302 {
303 	xen_mc_flush();
304 	paravirt_end_context_switch(next);
305 }
306 
307 static unsigned long xen_store_tr(void)
308 {
309 	return 0;
310 }
311 
312 /*
313  * Set the page permissions for a particular virtual address.  If the
314  * address is a vmalloc mapping (or other non-linear mapping), then
315  * find the linear mapping of the page and also set its protections to
316  * match.
317  */
318 static void set_aliased_prot(void *v, pgprot_t prot)
319 {
320 	int level;
321 	pte_t *ptep;
322 	pte_t pte;
323 	unsigned long pfn;
324 	struct page *page;
325 	unsigned char dummy;
326 
327 	ptep = lookup_address((unsigned long)v, &level);
328 	BUG_ON(ptep == NULL);
329 
330 	pfn = pte_pfn(*ptep);
331 	page = pfn_to_page(pfn);
332 
333 	pte = pfn_pte(pfn, prot);
334 
335 	/*
336 	 * Careful: update_va_mapping() will fail if the virtual address
337 	 * we're poking isn't populated in the page tables.  We don't
338 	 * need to worry about the direct map (that's always in the page
339 	 * tables), but we need to be careful about vmap space.  In
340 	 * particular, the top level page table can lazily propagate
341 	 * entries between processes, so if we've switched mms since we
342 	 * vmapped the target in the first place, we might not have the
343 	 * top-level page table entry populated.
344 	 *
345 	 * We disable preemption because we want the same mm active when
346 	 * we probe the target and when we issue the hypercall.  We'll
347 	 * have the same nominal mm, but if we're a kernel thread, lazy
348 	 * mm dropping could change our pgd.
349 	 *
350 	 * Out of an abundance of caution, this uses __get_user() to fault
351 	 * in the target address just in case there's some obscure case
352 	 * in which the target address isn't readable.
353 	 */
354 
355 	preempt_disable();
356 
357 	probe_kernel_read(&dummy, v, 1);
358 
359 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
360 		BUG();
361 
362 	if (!PageHighMem(page)) {
363 		void *av = __va(PFN_PHYS(pfn));
364 
365 		if (av != v)
366 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
367 				BUG();
368 	} else
369 		kmap_flush_unused();
370 
371 	preempt_enable();
372 }
373 
374 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
375 {
376 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
377 	int i;
378 
379 	/*
380 	 * We need to mark the all aliases of the LDT pages RO.  We
381 	 * don't need to call vm_flush_aliases(), though, since that's
382 	 * only responsible for flushing aliases out the TLBs, not the
383 	 * page tables, and Xen will flush the TLB for us if needed.
384 	 *
385 	 * To avoid confusing future readers: none of this is necessary
386 	 * to load the LDT.  The hypervisor only checks this when the
387 	 * LDT is faulted in due to subsequent descriptor access.
388 	 */
389 
390 	for (i = 0; i < entries; i += entries_per_page)
391 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
392 }
393 
394 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
395 {
396 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
397 	int i;
398 
399 	for (i = 0; i < entries; i += entries_per_page)
400 		set_aliased_prot(ldt + i, PAGE_KERNEL);
401 }
402 
403 static void xen_set_ldt(const void *addr, unsigned entries)
404 {
405 	struct mmuext_op *op;
406 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
407 
408 	trace_xen_cpu_set_ldt(addr, entries);
409 
410 	op = mcs.args;
411 	op->cmd = MMUEXT_SET_LDT;
412 	op->arg1.linear_addr = (unsigned long)addr;
413 	op->arg2.nr_ents = entries;
414 
415 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
416 
417 	xen_mc_issue(PARAVIRT_LAZY_CPU);
418 }
419 
420 static void xen_load_gdt(const struct desc_ptr *dtr)
421 {
422 	unsigned long va = dtr->address;
423 	unsigned int size = dtr->size + 1;
424 	unsigned long pfn, mfn;
425 	int level;
426 	pte_t *ptep;
427 	void *virt;
428 
429 	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
430 	BUG_ON(size > PAGE_SIZE);
431 	BUG_ON(va & ~PAGE_MASK);
432 
433 	/*
434 	 * The GDT is per-cpu and is in the percpu data area.
435 	 * That can be virtually mapped, so we need to do a
436 	 * page-walk to get the underlying MFN for the
437 	 * hypercall.  The page can also be in the kernel's
438 	 * linear range, so we need to RO that mapping too.
439 	 */
440 	ptep = lookup_address(va, &level);
441 	BUG_ON(ptep == NULL);
442 
443 	pfn = pte_pfn(*ptep);
444 	mfn = pfn_to_mfn(pfn);
445 	virt = __va(PFN_PHYS(pfn));
446 
447 	make_lowmem_page_readonly((void *)va);
448 	make_lowmem_page_readonly(virt);
449 
450 	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
451 		BUG();
452 }
453 
454 /*
455  * load_gdt for early boot, when the gdt is only mapped once
456  */
457 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
458 {
459 	unsigned long va = dtr->address;
460 	unsigned int size = dtr->size + 1;
461 	unsigned long pfn, mfn;
462 	pte_t pte;
463 
464 	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
465 	BUG_ON(size > PAGE_SIZE);
466 	BUG_ON(va & ~PAGE_MASK);
467 
468 	pfn = virt_to_pfn(va);
469 	mfn = pfn_to_mfn(pfn);
470 
471 	pte = pfn_pte(pfn, PAGE_KERNEL_RO);
472 
473 	if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
474 		BUG();
475 
476 	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
477 		BUG();
478 }
479 
480 static inline bool desc_equal(const struct desc_struct *d1,
481 			      const struct desc_struct *d2)
482 {
483 	return !memcmp(d1, d2, sizeof(*d1));
484 }
485 
486 static void load_TLS_descriptor(struct thread_struct *t,
487 				unsigned int cpu, unsigned int i)
488 {
489 	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
490 	struct desc_struct *gdt;
491 	xmaddr_t maddr;
492 	struct multicall_space mc;
493 
494 	if (desc_equal(shadow, &t->tls_array[i]))
495 		return;
496 
497 	*shadow = t->tls_array[i];
498 
499 	gdt = get_cpu_gdt_rw(cpu);
500 	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
501 	mc = __xen_mc_entry(0);
502 
503 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
504 }
505 
506 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
507 {
508 	/*
509 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
510 	 * and lazy gs handling is enabled, it means we're in a
511 	 * context switch, and %gs has just been saved.  This means we
512 	 * can zero it out to prevent faults on exit from the
513 	 * hypervisor if the next process has no %gs.  Either way, it
514 	 * has been saved, and the new value will get loaded properly.
515 	 * This will go away as soon as Xen has been modified to not
516 	 * save/restore %gs for normal hypercalls.
517 	 *
518 	 * On x86_64, this hack is not used for %gs, because gs points
519 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
520 	 * must not zero %gs on x86_64
521 	 *
522 	 * For x86_64, we need to zero %fs, otherwise we may get an
523 	 * exception between the new %fs descriptor being loaded and
524 	 * %fs being effectively cleared at __switch_to().
525 	 */
526 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
527 #ifdef CONFIG_X86_32
528 		lazy_load_gs(0);
529 #else
530 		loadsegment(fs, 0);
531 #endif
532 	}
533 
534 	xen_mc_batch();
535 
536 	load_TLS_descriptor(t, cpu, 0);
537 	load_TLS_descriptor(t, cpu, 1);
538 	load_TLS_descriptor(t, cpu, 2);
539 
540 	xen_mc_issue(PARAVIRT_LAZY_CPU);
541 }
542 
543 #ifdef CONFIG_X86_64
544 static void xen_load_gs_index(unsigned int idx)
545 {
546 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
547 		BUG();
548 }
549 #endif
550 
551 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
552 				const void *ptr)
553 {
554 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
555 	u64 entry = *(u64 *)ptr;
556 
557 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
558 
559 	preempt_disable();
560 
561 	xen_mc_flush();
562 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
563 		BUG();
564 
565 	preempt_enable();
566 }
567 
568 #ifdef CONFIG_X86_64
569 struct trap_array_entry {
570 	void (*orig)(void);
571 	void (*xen)(void);
572 	bool ist_okay;
573 };
574 
575 static struct trap_array_entry trap_array[] = {
576 	{ debug,                       xen_xendebug,                    true },
577 	{ int3,                        xen_xenint3,                     true },
578 	{ double_fault,                xen_double_fault,                true },
579 #ifdef CONFIG_X86_MCE
580 	{ machine_check,               xen_machine_check,               true },
581 #endif
582 	{ nmi,                         xen_xennmi,                      true },
583 	{ overflow,                    xen_overflow,                    false },
584 #ifdef CONFIG_IA32_EMULATION
585 	{ entry_INT80_compat,          xen_entry_INT80_compat,          false },
586 #endif
587 	{ page_fault,                  xen_page_fault,                  false },
588 	{ divide_error,                xen_divide_error,                false },
589 	{ bounds,                      xen_bounds,                      false },
590 	{ invalid_op,                  xen_invalid_op,                  false },
591 	{ device_not_available,        xen_device_not_available,        false },
592 	{ coprocessor_segment_overrun, xen_coprocessor_segment_overrun, false },
593 	{ invalid_TSS,                 xen_invalid_TSS,                 false },
594 	{ segment_not_present,         xen_segment_not_present,         false },
595 	{ stack_segment,               xen_stack_segment,               false },
596 	{ general_protection,          xen_general_protection,          false },
597 	{ spurious_interrupt_bug,      xen_spurious_interrupt_bug,      false },
598 	{ coprocessor_error,           xen_coprocessor_error,           false },
599 	{ alignment_check,             xen_alignment_check,             false },
600 	{ simd_coprocessor_error,      xen_simd_coprocessor_error,      false },
601 };
602 
603 static bool __ref get_trap_addr(void **addr, unsigned int ist)
604 {
605 	unsigned int nr;
606 	bool ist_okay = false;
607 
608 	/*
609 	 * Replace trap handler addresses by Xen specific ones.
610 	 * Check for known traps using IST and whitelist them.
611 	 * The debugger ones are the only ones we care about.
612 	 * Xen will handle faults like double_fault, * so we should never see
613 	 * them.  Warn if there's an unexpected IST-using fault handler.
614 	 */
615 	for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
616 		struct trap_array_entry *entry = trap_array + nr;
617 
618 		if (*addr == entry->orig) {
619 			*addr = entry->xen;
620 			ist_okay = entry->ist_okay;
621 			break;
622 		}
623 	}
624 
625 	if (nr == ARRAY_SIZE(trap_array) &&
626 	    *addr >= (void *)early_idt_handler_array[0] &&
627 	    *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
628 		nr = (*addr - (void *)early_idt_handler_array[0]) /
629 		     EARLY_IDT_HANDLER_SIZE;
630 		*addr = (void *)xen_early_idt_handler_array[nr];
631 	}
632 
633 	if (WARN_ON(ist != 0 && !ist_okay))
634 		return false;
635 
636 	return true;
637 }
638 #endif
639 
640 static int cvt_gate_to_trap(int vector, const gate_desc *val,
641 			    struct trap_info *info)
642 {
643 	unsigned long addr;
644 
645 	if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
646 		return 0;
647 
648 	info->vector = vector;
649 
650 	addr = gate_offset(val);
651 #ifdef CONFIG_X86_64
652 	if (!get_trap_addr((void **)&addr, val->bits.ist))
653 		return 0;
654 #endif	/* CONFIG_X86_64 */
655 	info->address = addr;
656 
657 	info->cs = gate_segment(val);
658 	info->flags = val->bits.dpl;
659 	/* interrupt gates clear IF */
660 	if (val->bits.type == GATE_INTERRUPT)
661 		info->flags |= 1 << 2;
662 
663 	return 1;
664 }
665 
666 /* Locations of each CPU's IDT */
667 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
668 
669 /* Set an IDT entry.  If the entry is part of the current IDT, then
670    also update Xen. */
671 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
672 {
673 	unsigned long p = (unsigned long)&dt[entrynum];
674 	unsigned long start, end;
675 
676 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
677 
678 	preempt_disable();
679 
680 	start = __this_cpu_read(idt_desc.address);
681 	end = start + __this_cpu_read(idt_desc.size) + 1;
682 
683 	xen_mc_flush();
684 
685 	native_write_idt_entry(dt, entrynum, g);
686 
687 	if (p >= start && (p + 8) <= end) {
688 		struct trap_info info[2];
689 
690 		info[1].address = 0;
691 
692 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
693 			if (HYPERVISOR_set_trap_table(info))
694 				BUG();
695 	}
696 
697 	preempt_enable();
698 }
699 
700 static void xen_convert_trap_info(const struct desc_ptr *desc,
701 				  struct trap_info *traps)
702 {
703 	unsigned in, out, count;
704 
705 	count = (desc->size+1) / sizeof(gate_desc);
706 	BUG_ON(count > 256);
707 
708 	for (in = out = 0; in < count; in++) {
709 		gate_desc *entry = (gate_desc *)(desc->address) + in;
710 
711 		if (cvt_gate_to_trap(in, entry, &traps[out]))
712 			out++;
713 	}
714 	traps[out].address = 0;
715 }
716 
717 void xen_copy_trap_info(struct trap_info *traps)
718 {
719 	const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
720 
721 	xen_convert_trap_info(desc, traps);
722 }
723 
724 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
725    hold a spinlock to protect the static traps[] array (static because
726    it avoids allocation, and saves stack space). */
727 static void xen_load_idt(const struct desc_ptr *desc)
728 {
729 	static DEFINE_SPINLOCK(lock);
730 	static struct trap_info traps[257];
731 
732 	trace_xen_cpu_load_idt(desc);
733 
734 	spin_lock(&lock);
735 
736 	memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
737 
738 	xen_convert_trap_info(desc, traps);
739 
740 	xen_mc_flush();
741 	if (HYPERVISOR_set_trap_table(traps))
742 		BUG();
743 
744 	spin_unlock(&lock);
745 }
746 
747 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
748    they're handled differently. */
749 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
750 				const void *desc, int type)
751 {
752 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
753 
754 	preempt_disable();
755 
756 	switch (type) {
757 	case DESC_LDT:
758 	case DESC_TSS:
759 		/* ignore */
760 		break;
761 
762 	default: {
763 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
764 
765 		xen_mc_flush();
766 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
767 			BUG();
768 	}
769 
770 	}
771 
772 	preempt_enable();
773 }
774 
775 /*
776  * Version of write_gdt_entry for use at early boot-time needed to
777  * update an entry as simply as possible.
778  */
779 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
780 					    const void *desc, int type)
781 {
782 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
783 
784 	switch (type) {
785 	case DESC_LDT:
786 	case DESC_TSS:
787 		/* ignore */
788 		break;
789 
790 	default: {
791 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
792 
793 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
794 			dt[entry] = *(struct desc_struct *)desc;
795 	}
796 
797 	}
798 }
799 
800 static void xen_load_sp0(unsigned long sp0)
801 {
802 	struct multicall_space mcs;
803 
804 	mcs = xen_mc_entry(0);
805 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
806 	xen_mc_issue(PARAVIRT_LAZY_CPU);
807 	this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
808 }
809 
810 void xen_set_iopl_mask(unsigned mask)
811 {
812 	struct physdev_set_iopl set_iopl;
813 
814 	/* Force the change at ring 0. */
815 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
816 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
817 }
818 
819 static void xen_io_delay(void)
820 {
821 }
822 
823 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
824 
825 static unsigned long xen_read_cr0(void)
826 {
827 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
828 
829 	if (unlikely(cr0 == 0)) {
830 		cr0 = native_read_cr0();
831 		this_cpu_write(xen_cr0_value, cr0);
832 	}
833 
834 	return cr0;
835 }
836 
837 static void xen_write_cr0(unsigned long cr0)
838 {
839 	struct multicall_space mcs;
840 
841 	this_cpu_write(xen_cr0_value, cr0);
842 
843 	/* Only pay attention to cr0.TS; everything else is
844 	   ignored. */
845 	mcs = xen_mc_entry(0);
846 
847 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
848 
849 	xen_mc_issue(PARAVIRT_LAZY_CPU);
850 }
851 
852 static void xen_write_cr4(unsigned long cr4)
853 {
854 	cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
855 
856 	native_write_cr4(cr4);
857 }
858 #ifdef CONFIG_X86_64
859 static inline unsigned long xen_read_cr8(void)
860 {
861 	return 0;
862 }
863 static inline void xen_write_cr8(unsigned long val)
864 {
865 	BUG_ON(val);
866 }
867 #endif
868 
869 static u64 xen_read_msr_safe(unsigned int msr, int *err)
870 {
871 	u64 val;
872 
873 	if (pmu_msr_read(msr, &val, err))
874 		return val;
875 
876 	val = native_read_msr_safe(msr, err);
877 	switch (msr) {
878 	case MSR_IA32_APICBASE:
879 #ifdef CONFIG_X86_X2APIC
880 		if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
881 #endif
882 			val &= ~X2APIC_ENABLE;
883 		break;
884 	}
885 	return val;
886 }
887 
888 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
889 {
890 	int ret;
891 
892 	ret = 0;
893 
894 	switch (msr) {
895 #ifdef CONFIG_X86_64
896 		unsigned which;
897 		u64 base;
898 
899 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
900 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
901 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
902 
903 	set:
904 		base = ((u64)high << 32) | low;
905 		if (HYPERVISOR_set_segment_base(which, base) != 0)
906 			ret = -EIO;
907 		break;
908 #endif
909 
910 	case MSR_STAR:
911 	case MSR_CSTAR:
912 	case MSR_LSTAR:
913 	case MSR_SYSCALL_MASK:
914 	case MSR_IA32_SYSENTER_CS:
915 	case MSR_IA32_SYSENTER_ESP:
916 	case MSR_IA32_SYSENTER_EIP:
917 		/* Fast syscall setup is all done in hypercalls, so
918 		   these are all ignored.  Stub them out here to stop
919 		   Xen console noise. */
920 		break;
921 
922 	default:
923 		if (!pmu_msr_write(msr, low, high, &ret))
924 			ret = native_write_msr_safe(msr, low, high);
925 	}
926 
927 	return ret;
928 }
929 
930 static u64 xen_read_msr(unsigned int msr)
931 {
932 	/*
933 	 * This will silently swallow a #GP from RDMSR.  It may be worth
934 	 * changing that.
935 	 */
936 	int err;
937 
938 	return xen_read_msr_safe(msr, &err);
939 }
940 
941 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
942 {
943 	/*
944 	 * This will silently swallow a #GP from WRMSR.  It may be worth
945 	 * changing that.
946 	 */
947 	xen_write_msr_safe(msr, low, high);
948 }
949 
950 void xen_setup_shared_info(void)
951 {
952 	set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
953 
954 	HYPERVISOR_shared_info =
955 		(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
956 
957 	xen_setup_mfn_list_list();
958 
959 	if (system_state == SYSTEM_BOOTING) {
960 #ifndef CONFIG_SMP
961 		/*
962 		 * In UP this is as good a place as any to set up shared info.
963 		 * Limit this to boot only, at restore vcpu setup is done via
964 		 * xen_vcpu_restore().
965 		 */
966 		xen_setup_vcpu_info_placement();
967 #endif
968 		/*
969 		 * Now that shared info is set up we can start using routines
970 		 * that point to pvclock area.
971 		 */
972 		xen_init_time_ops();
973 	}
974 }
975 
976 /* This is called once we have the cpu_possible_mask */
977 void __ref xen_setup_vcpu_info_placement(void)
978 {
979 	int cpu;
980 
981 	for_each_possible_cpu(cpu) {
982 		/* Set up direct vCPU id mapping for PV guests. */
983 		per_cpu(xen_vcpu_id, cpu) = cpu;
984 
985 		/*
986 		 * xen_vcpu_setup(cpu) can fail  -- in which case it
987 		 * falls back to the shared_info version for cpus
988 		 * where xen_vcpu_nr(cpu) < MAX_VIRT_CPUS.
989 		 *
990 		 * xen_cpu_up_prepare_pv() handles the rest by failing
991 		 * them in hotplug.
992 		 */
993 		(void) xen_vcpu_setup(cpu);
994 	}
995 
996 	/*
997 	 * xen_vcpu_setup managed to place the vcpu_info within the
998 	 * percpu area for all cpus, so make use of it.
999 	 */
1000 	if (xen_have_vcpu_info_placement) {
1001 		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1002 		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1003 		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1004 		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1005 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1006 	}
1007 }
1008 
1009 static const struct pv_info xen_info __initconst = {
1010 	.shared_kernel_pmd = 0,
1011 
1012 #ifdef CONFIG_X86_64
1013 	.extra_user_64bit_cs = FLAT_USER_CS64,
1014 #endif
1015 	.name = "Xen",
1016 };
1017 
1018 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1019 	.cpuid = xen_cpuid,
1020 
1021 	.set_debugreg = xen_set_debugreg,
1022 	.get_debugreg = xen_get_debugreg,
1023 
1024 	.read_cr0 = xen_read_cr0,
1025 	.write_cr0 = xen_write_cr0,
1026 
1027 	.write_cr4 = xen_write_cr4,
1028 
1029 #ifdef CONFIG_X86_64
1030 	.read_cr8 = xen_read_cr8,
1031 	.write_cr8 = xen_write_cr8,
1032 #endif
1033 
1034 	.wbinvd = native_wbinvd,
1035 
1036 	.read_msr = xen_read_msr,
1037 	.write_msr = xen_write_msr,
1038 
1039 	.read_msr_safe = xen_read_msr_safe,
1040 	.write_msr_safe = xen_write_msr_safe,
1041 
1042 	.read_pmc = xen_read_pmc,
1043 
1044 	.iret = xen_iret,
1045 #ifdef CONFIG_X86_64
1046 	.usergs_sysret64 = xen_sysret64,
1047 #endif
1048 
1049 	.load_tr_desc = paravirt_nop,
1050 	.set_ldt = xen_set_ldt,
1051 	.load_gdt = xen_load_gdt,
1052 	.load_idt = xen_load_idt,
1053 	.load_tls = xen_load_tls,
1054 #ifdef CONFIG_X86_64
1055 	.load_gs_index = xen_load_gs_index,
1056 #endif
1057 
1058 	.alloc_ldt = xen_alloc_ldt,
1059 	.free_ldt = xen_free_ldt,
1060 
1061 	.store_tr = xen_store_tr,
1062 
1063 	.write_ldt_entry = xen_write_ldt_entry,
1064 	.write_gdt_entry = xen_write_gdt_entry,
1065 	.write_idt_entry = xen_write_idt_entry,
1066 	.load_sp0 = xen_load_sp0,
1067 
1068 	.set_iopl_mask = xen_set_iopl_mask,
1069 	.io_delay = xen_io_delay,
1070 
1071 	/* Xen takes care of %gs when switching to usermode for us */
1072 	.swapgs = paravirt_nop,
1073 
1074 	.start_context_switch = paravirt_start_context_switch,
1075 	.end_context_switch = xen_end_context_switch,
1076 };
1077 
1078 static void xen_restart(char *msg)
1079 {
1080 	xen_reboot(SHUTDOWN_reboot);
1081 }
1082 
1083 static void xen_machine_halt(void)
1084 {
1085 	xen_reboot(SHUTDOWN_poweroff);
1086 }
1087 
1088 static void xen_machine_power_off(void)
1089 {
1090 	if (pm_power_off)
1091 		pm_power_off();
1092 	xen_reboot(SHUTDOWN_poweroff);
1093 }
1094 
1095 static void xen_crash_shutdown(struct pt_regs *regs)
1096 {
1097 	xen_reboot(SHUTDOWN_crash);
1098 }
1099 
1100 static const struct machine_ops xen_machine_ops __initconst = {
1101 	.restart = xen_restart,
1102 	.halt = xen_machine_halt,
1103 	.power_off = xen_machine_power_off,
1104 	.shutdown = xen_machine_halt,
1105 	.crash_shutdown = xen_crash_shutdown,
1106 	.emergency_restart = xen_emergency_restart,
1107 };
1108 
1109 static unsigned char xen_get_nmi_reason(void)
1110 {
1111 	unsigned char reason = 0;
1112 
1113 	/* Construct a value which looks like it came from port 0x61. */
1114 	if (test_bit(_XEN_NMIREASON_io_error,
1115 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1116 		reason |= NMI_REASON_IOCHK;
1117 	if (test_bit(_XEN_NMIREASON_pci_serr,
1118 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1119 		reason |= NMI_REASON_SERR;
1120 
1121 	return reason;
1122 }
1123 
1124 static void __init xen_boot_params_init_edd(void)
1125 {
1126 #if IS_ENABLED(CONFIG_EDD)
1127 	struct xen_platform_op op;
1128 	struct edd_info *edd_info;
1129 	u32 *mbr_signature;
1130 	unsigned nr;
1131 	int ret;
1132 
1133 	edd_info = boot_params.eddbuf;
1134 	mbr_signature = boot_params.edd_mbr_sig_buffer;
1135 
1136 	op.cmd = XENPF_firmware_info;
1137 
1138 	op.u.firmware_info.type = XEN_FW_DISK_INFO;
1139 	for (nr = 0; nr < EDDMAXNR; nr++) {
1140 		struct edd_info *info = edd_info + nr;
1141 
1142 		op.u.firmware_info.index = nr;
1143 		info->params.length = sizeof(info->params);
1144 		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1145 				     &info->params);
1146 		ret = HYPERVISOR_platform_op(&op);
1147 		if (ret)
1148 			break;
1149 
1150 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1151 		C(device);
1152 		C(version);
1153 		C(interface_support);
1154 		C(legacy_max_cylinder);
1155 		C(legacy_max_head);
1156 		C(legacy_sectors_per_track);
1157 #undef C
1158 	}
1159 	boot_params.eddbuf_entries = nr;
1160 
1161 	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1162 	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1163 		op.u.firmware_info.index = nr;
1164 		ret = HYPERVISOR_platform_op(&op);
1165 		if (ret)
1166 			break;
1167 		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1168 	}
1169 	boot_params.edd_mbr_sig_buf_entries = nr;
1170 #endif
1171 }
1172 
1173 /*
1174  * Set up the GDT and segment registers for -fstack-protector.  Until
1175  * we do this, we have to be careful not to call any stack-protected
1176  * function, which is most of the kernel.
1177  */
1178 static void xen_setup_gdt(int cpu)
1179 {
1180 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1181 	pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1182 
1183 	setup_stack_canary_segment(0);
1184 	switch_to_new_gdt(0);
1185 
1186 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1187 	pv_cpu_ops.load_gdt = xen_load_gdt;
1188 }
1189 
1190 static void __init xen_dom0_set_legacy_features(void)
1191 {
1192 	x86_platform.legacy.rtc = 1;
1193 }
1194 
1195 /* First C function to be called on Xen boot */
1196 asmlinkage __visible void __init xen_start_kernel(void)
1197 {
1198 	struct physdev_set_iopl set_iopl;
1199 	unsigned long initrd_start = 0;
1200 	int rc;
1201 
1202 	if (!xen_start_info)
1203 		return;
1204 
1205 	xen_domain_type = XEN_PV_DOMAIN;
1206 	xen_start_flags = xen_start_info->flags;
1207 
1208 	xen_setup_features();
1209 
1210 	xen_setup_machphys_mapping();
1211 
1212 	/* Install Xen paravirt ops */
1213 	pv_info = xen_info;
1214 	pv_init_ops.patch = paravirt_patch_default;
1215 	pv_cpu_ops = xen_cpu_ops;
1216 
1217 	x86_platform.get_nmi_reason = xen_get_nmi_reason;
1218 
1219 	x86_init.resources.memory_setup = xen_memory_setup;
1220 	x86_init.irqs.intr_mode_init	= x86_init_noop;
1221 	x86_init.oem.arch_setup = xen_arch_setup;
1222 	x86_init.oem.banner = xen_banner;
1223 
1224 	/*
1225 	 * Set up some pagetable state before starting to set any ptes.
1226 	 */
1227 
1228 	xen_init_mmu_ops();
1229 
1230 	/* Prevent unwanted bits from being set in PTEs. */
1231 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1232 
1233 	/*
1234 	 * Prevent page tables from being allocated in highmem, even
1235 	 * if CONFIG_HIGHPTE is enabled.
1236 	 */
1237 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1238 
1239 	/* Get mfn list */
1240 	xen_build_dynamic_phys_to_machine();
1241 
1242 	/*
1243 	 * Set up kernel GDT and segment registers, mainly so that
1244 	 * -fstack-protector code can be executed.
1245 	 */
1246 	xen_setup_gdt(0);
1247 
1248 	/* Work out if we support NX */
1249 	get_cpu_cap(&boot_cpu_data);
1250 	x86_configure_nx();
1251 
1252 	xen_init_irq_ops();
1253 
1254 	/* Let's presume PV guests always boot on vCPU with id 0. */
1255 	per_cpu(xen_vcpu_id, 0) = 0;
1256 
1257 	/*
1258 	 * Setup xen_vcpu early because idt_setup_early_handler needs it for
1259 	 * local_irq_disable(), irqs_disabled().
1260 	 *
1261 	 * Don't do the full vcpu_info placement stuff until we have
1262 	 * the cpu_possible_mask and a non-dummy shared_info.
1263 	 */
1264 	xen_vcpu_info_reset(0);
1265 
1266 	idt_setup_early_handler();
1267 
1268 	xen_init_capabilities();
1269 
1270 #ifdef CONFIG_X86_LOCAL_APIC
1271 	/*
1272 	 * set up the basic apic ops.
1273 	 */
1274 	xen_init_apic();
1275 #endif
1276 
1277 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1278 		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1279 		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1280 	}
1281 
1282 	machine_ops = xen_machine_ops;
1283 
1284 	/*
1285 	 * The only reliable way to retain the initial address of the
1286 	 * percpu gdt_page is to remember it here, so we can go and
1287 	 * mark it RW later, when the initial percpu area is freed.
1288 	 */
1289 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1290 
1291 	xen_smp_init();
1292 
1293 #ifdef CONFIG_ACPI_NUMA
1294 	/*
1295 	 * The pages we from Xen are not related to machine pages, so
1296 	 * any NUMA information the kernel tries to get from ACPI will
1297 	 * be meaningless.  Prevent it from trying.
1298 	 */
1299 	acpi_numa = -1;
1300 #endif
1301 	WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1302 
1303 	local_irq_disable();
1304 	early_boot_irqs_disabled = true;
1305 
1306 	xen_raw_console_write("mapping kernel into physical memory\n");
1307 	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1308 				   xen_start_info->nr_pages);
1309 	xen_reserve_special_pages();
1310 
1311 	/* keep using Xen gdt for now; no urgent need to change it */
1312 
1313 #ifdef CONFIG_X86_32
1314 	pv_info.kernel_rpl = 1;
1315 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1316 		pv_info.kernel_rpl = 0;
1317 #else
1318 	pv_info.kernel_rpl = 0;
1319 #endif
1320 	/* set the limit of our address space */
1321 	xen_reserve_top();
1322 
1323 	/*
1324 	 * We used to do this in xen_arch_setup, but that is too late
1325 	 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1326 	 * early_amd_init which pokes 0xcf8 port.
1327 	 */
1328 	set_iopl.iopl = 1;
1329 	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1330 	if (rc != 0)
1331 		xen_raw_printk("physdev_op failed %d\n", rc);
1332 
1333 #ifdef CONFIG_X86_32
1334 	/* set up basic CPUID stuff */
1335 	cpu_detect(&new_cpu_data);
1336 	set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1337 	new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1338 #endif
1339 
1340 	if (xen_start_info->mod_start) {
1341 	    if (xen_start_info->flags & SIF_MOD_START_PFN)
1342 		initrd_start = PFN_PHYS(xen_start_info->mod_start);
1343 	    else
1344 		initrd_start = __pa(xen_start_info->mod_start);
1345 	}
1346 
1347 	/* Poke various useful things into boot_params */
1348 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1349 	boot_params.hdr.ramdisk_image = initrd_start;
1350 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1351 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1352 	boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1353 
1354 	if (!xen_initial_domain()) {
1355 		add_preferred_console("xenboot", 0, NULL);
1356 		if (pci_xen)
1357 			x86_init.pci.arch_init = pci_xen_init;
1358 	} else {
1359 		const struct dom0_vga_console_info *info =
1360 			(void *)((char *)xen_start_info +
1361 				 xen_start_info->console.dom0.info_off);
1362 		struct xen_platform_op op = {
1363 			.cmd = XENPF_firmware_info,
1364 			.interface_version = XENPF_INTERFACE_VERSION,
1365 			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1366 		};
1367 
1368 		x86_platform.set_legacy_features =
1369 				xen_dom0_set_legacy_features;
1370 		xen_init_vga(info, xen_start_info->console.dom0.info_size);
1371 		xen_start_info->console.domU.mfn = 0;
1372 		xen_start_info->console.domU.evtchn = 0;
1373 
1374 		if (HYPERVISOR_platform_op(&op) == 0)
1375 			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1376 
1377 		/* Make sure ACS will be enabled */
1378 		pci_request_acs();
1379 
1380 		xen_acpi_sleep_register();
1381 
1382 		/* Avoid searching for BIOS MP tables */
1383 		x86_init.mpparse.find_smp_config = x86_init_noop;
1384 		x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1385 
1386 		xen_boot_params_init_edd();
1387 	}
1388 
1389 	add_preferred_console("tty", 0, NULL);
1390 	add_preferred_console("hvc", 0, NULL);
1391 
1392 #ifdef CONFIG_PCI
1393 	/* PCI BIOS service won't work from a PV guest. */
1394 	pci_probe &= ~PCI_PROBE_BIOS;
1395 #endif
1396 	xen_raw_console_write("about to get started...\n");
1397 
1398 	/* We need this for printk timestamps */
1399 	xen_setup_runstate_info(0);
1400 
1401 	xen_efi_init();
1402 
1403 	/* Start the world */
1404 #ifdef CONFIG_X86_32
1405 	i386_start_kernel();
1406 #else
1407 	cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1408 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1409 #endif
1410 }
1411 
1412 static int xen_cpu_up_prepare_pv(unsigned int cpu)
1413 {
1414 	int rc;
1415 
1416 	if (per_cpu(xen_vcpu, cpu) == NULL)
1417 		return -ENODEV;
1418 
1419 	xen_setup_timer(cpu);
1420 
1421 	rc = xen_smp_intr_init(cpu);
1422 	if (rc) {
1423 		WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1424 		     cpu, rc);
1425 		return rc;
1426 	}
1427 
1428 	rc = xen_smp_intr_init_pv(cpu);
1429 	if (rc) {
1430 		WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1431 		     cpu, rc);
1432 		return rc;
1433 	}
1434 
1435 	return 0;
1436 }
1437 
1438 static int xen_cpu_dead_pv(unsigned int cpu)
1439 {
1440 	xen_smp_intr_free(cpu);
1441 	xen_smp_intr_free_pv(cpu);
1442 
1443 	xen_teardown_timer(cpu);
1444 
1445 	return 0;
1446 }
1447 
1448 static uint32_t __init xen_platform_pv(void)
1449 {
1450 	if (xen_pv_domain())
1451 		return xen_cpuid_base();
1452 
1453 	return 0;
1454 }
1455 
1456 const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1457 	.name                   = "Xen PV",
1458 	.detect                 = xen_platform_pv,
1459 	.type			= X86_HYPER_XEN_PV,
1460 	.runtime.pin_vcpu       = xen_pin_vcpu,
1461 };
1462