xref: /openbmc/linux/arch/x86/xen/enlighten_pv.c (revision dc3401c8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Core of Xen paravirt_ops implementation.
4  *
5  * This file contains the xen_paravirt_ops structure itself, and the
6  * implementations for:
7  * - privileged instructions
8  * - interrupt flags
9  * - segment operations
10  * - booting and setup
11  *
12  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
13  */
14 
15 #include <linux/cpu.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/smp.h>
19 #include <linux/preempt.h>
20 #include <linux/hardirq.h>
21 #include <linux/percpu.h>
22 #include <linux/delay.h>
23 #include <linux/start_kernel.h>
24 #include <linux/sched.h>
25 #include <linux/kprobes.h>
26 #include <linux/memblock.h>
27 #include <linux/export.h>
28 #include <linux/mm.h>
29 #include <linux/page-flags.h>
30 #include <linux/highmem.h>
31 #include <linux/console.h>
32 #include <linux/pci.h>
33 #include <linux/gfp.h>
34 #include <linux/edd.h>
35 #include <linux/objtool.h>
36 
37 #include <xen/xen.h>
38 #include <xen/events.h>
39 #include <xen/interface/xen.h>
40 #include <xen/interface/version.h>
41 #include <xen/interface/physdev.h>
42 #include <xen/interface/vcpu.h>
43 #include <xen/interface/memory.h>
44 #include <xen/interface/nmi.h>
45 #include <xen/interface/xen-mca.h>
46 #include <xen/features.h>
47 #include <xen/page.h>
48 #include <xen/hvc-console.h>
49 #include <xen/acpi.h>
50 
51 #include <asm/paravirt.h>
52 #include <asm/apic.h>
53 #include <asm/page.h>
54 #include <asm/xen/pci.h>
55 #include <asm/xen/hypercall.h>
56 #include <asm/xen/hypervisor.h>
57 #include <asm/xen/cpuid.h>
58 #include <asm/fixmap.h>
59 #include <asm/processor.h>
60 #include <asm/proto.h>
61 #include <asm/msr-index.h>
62 #include <asm/traps.h>
63 #include <asm/setup.h>
64 #include <asm/desc.h>
65 #include <asm/pgalloc.h>
66 #include <asm/tlbflush.h>
67 #include <asm/reboot.h>
68 #include <asm/stackprotector.h>
69 #include <asm/hypervisor.h>
70 #include <asm/mach_traps.h>
71 #include <asm/mwait.h>
72 #include <asm/pci_x86.h>
73 #include <asm/cpu.h>
74 #ifdef CONFIG_X86_IOPL_IOPERM
75 #include <asm/io_bitmap.h>
76 #endif
77 
78 #ifdef CONFIG_ACPI
79 #include <linux/acpi.h>
80 #include <asm/acpi.h>
81 #include <acpi/pdc_intel.h>
82 #include <acpi/processor.h>
83 #include <xen/interface/platform.h>
84 #endif
85 
86 #include "xen-ops.h"
87 #include "mmu.h"
88 #include "smp.h"
89 #include "multicalls.h"
90 #include "pmu.h"
91 
92 #include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
93 
94 void *xen_initial_gdt;
95 
96 static int xen_cpu_up_prepare_pv(unsigned int cpu);
97 static int xen_cpu_dead_pv(unsigned int cpu);
98 
99 struct tls_descs {
100 	struct desc_struct desc[3];
101 };
102 
103 /*
104  * Updating the 3 TLS descriptors in the GDT on every task switch is
105  * surprisingly expensive so we avoid updating them if they haven't
106  * changed.  Since Xen writes different descriptors than the one
107  * passed in the update_descriptor hypercall we keep shadow copies to
108  * compare against.
109  */
110 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
111 
112 static void __init xen_banner(void)
113 {
114 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
115 	struct xen_extraversion extra;
116 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
117 
118 	pr_info("Booting paravirtualized kernel on %s\n", pv_info.name);
119 	pr_info("Xen version: %d.%d%s (preserve-AD)\n",
120 		version >> 16, version & 0xffff, extra.extraversion);
121 }
122 
123 static void __init xen_pv_init_platform(void)
124 {
125 	populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP));
126 
127 	set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
128 	HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
129 
130 	/* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */
131 	xen_vcpu_info_reset(0);
132 
133 	/* pvclock is in shared info area */
134 	xen_init_time_ops();
135 }
136 
137 static void __init xen_pv_guest_late_init(void)
138 {
139 #ifndef CONFIG_SMP
140 	/* Setup shared vcpu info for non-smp configurations */
141 	xen_setup_vcpu_info_placement();
142 #endif
143 }
144 
145 /* Check if running on Xen version (major, minor) or later */
146 bool
147 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
148 {
149 	unsigned int version;
150 
151 	if (!xen_domain())
152 		return false;
153 
154 	version = HYPERVISOR_xen_version(XENVER_version, NULL);
155 	if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
156 		((version >> 16) > major))
157 		return true;
158 	return false;
159 }
160 
161 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
162 static __read_mostly unsigned int cpuid_leaf5_edx_val;
163 
164 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
165 		      unsigned int *cx, unsigned int *dx)
166 {
167 	unsigned maskebx = ~0;
168 
169 	/*
170 	 * Mask out inconvenient features, to try and disable as many
171 	 * unsupported kernel subsystems as possible.
172 	 */
173 	switch (*ax) {
174 	case CPUID_MWAIT_LEAF:
175 		/* Synthesize the values.. */
176 		*ax = 0;
177 		*bx = 0;
178 		*cx = cpuid_leaf5_ecx_val;
179 		*dx = cpuid_leaf5_edx_val;
180 		return;
181 
182 	case 0xb:
183 		/* Suppress extended topology stuff */
184 		maskebx = 0;
185 		break;
186 	}
187 
188 	asm(XEN_EMULATE_PREFIX "cpuid"
189 		: "=a" (*ax),
190 		  "=b" (*bx),
191 		  "=c" (*cx),
192 		  "=d" (*dx)
193 		: "0" (*ax), "2" (*cx));
194 
195 	*bx &= maskebx;
196 }
197 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
198 
199 static bool __init xen_check_mwait(void)
200 {
201 #ifdef CONFIG_ACPI
202 	struct xen_platform_op op = {
203 		.cmd			= XENPF_set_processor_pminfo,
204 		.u.set_pminfo.id	= -1,
205 		.u.set_pminfo.type	= XEN_PM_PDC,
206 	};
207 	uint32_t buf[3];
208 	unsigned int ax, bx, cx, dx;
209 	unsigned int mwait_mask;
210 
211 	/* We need to determine whether it is OK to expose the MWAIT
212 	 * capability to the kernel to harvest deeper than C3 states from ACPI
213 	 * _CST using the processor_harvest_xen.c module. For this to work, we
214 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
215 	 * checks against). The hypervisor won't expose the MWAIT flag because
216 	 * it would break backwards compatibility; so we will find out directly
217 	 * from the hardware and hypercall.
218 	 */
219 	if (!xen_initial_domain())
220 		return false;
221 
222 	/*
223 	 * When running under platform earlier than Xen4.2, do not expose
224 	 * mwait, to avoid the risk of loading native acpi pad driver
225 	 */
226 	if (!xen_running_on_version_or_later(4, 2))
227 		return false;
228 
229 	ax = 1;
230 	cx = 0;
231 
232 	native_cpuid(&ax, &bx, &cx, &dx);
233 
234 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
235 		     (1 << (X86_FEATURE_MWAIT % 32));
236 
237 	if ((cx & mwait_mask) != mwait_mask)
238 		return false;
239 
240 	/* We need to emulate the MWAIT_LEAF and for that we need both
241 	 * ecx and edx. The hypercall provides only partial information.
242 	 */
243 
244 	ax = CPUID_MWAIT_LEAF;
245 	bx = 0;
246 	cx = 0;
247 	dx = 0;
248 
249 	native_cpuid(&ax, &bx, &cx, &dx);
250 
251 	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
252 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
253 	 */
254 	buf[0] = ACPI_PDC_REVISION_ID;
255 	buf[1] = 1;
256 	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
257 
258 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
259 
260 	if ((HYPERVISOR_platform_op(&op) == 0) &&
261 	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
262 		cpuid_leaf5_ecx_val = cx;
263 		cpuid_leaf5_edx_val = dx;
264 	}
265 	return true;
266 #else
267 	return false;
268 #endif
269 }
270 
271 static bool __init xen_check_xsave(void)
272 {
273 	unsigned int cx, xsave_mask;
274 
275 	cx = cpuid_ecx(1);
276 
277 	xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
278 		     (1 << (X86_FEATURE_OSXSAVE % 32));
279 
280 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
281 	return (cx & xsave_mask) == xsave_mask;
282 }
283 
284 static void __init xen_init_capabilities(void)
285 {
286 	setup_force_cpu_cap(X86_FEATURE_XENPV);
287 	setup_clear_cpu_cap(X86_FEATURE_DCA);
288 	setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
289 	setup_clear_cpu_cap(X86_FEATURE_MTRR);
290 	setup_clear_cpu_cap(X86_FEATURE_ACC);
291 	setup_clear_cpu_cap(X86_FEATURE_X2APIC);
292 	setup_clear_cpu_cap(X86_FEATURE_SME);
293 
294 	/*
295 	 * Xen PV would need some work to support PCID: CR3 handling as well
296 	 * as xen_flush_tlb_others() would need updating.
297 	 */
298 	setup_clear_cpu_cap(X86_FEATURE_PCID);
299 
300 	if (!xen_initial_domain())
301 		setup_clear_cpu_cap(X86_FEATURE_ACPI);
302 
303 	if (xen_check_mwait())
304 		setup_force_cpu_cap(X86_FEATURE_MWAIT);
305 	else
306 		setup_clear_cpu_cap(X86_FEATURE_MWAIT);
307 
308 	if (!xen_check_xsave()) {
309 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
310 		setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
311 	}
312 }
313 
314 static void xen_set_debugreg(int reg, unsigned long val)
315 {
316 	HYPERVISOR_set_debugreg(reg, val);
317 }
318 
319 static unsigned long xen_get_debugreg(int reg)
320 {
321 	return HYPERVISOR_get_debugreg(reg);
322 }
323 
324 static void xen_end_context_switch(struct task_struct *next)
325 {
326 	xen_mc_flush();
327 	paravirt_end_context_switch(next);
328 }
329 
330 static unsigned long xen_store_tr(void)
331 {
332 	return 0;
333 }
334 
335 /*
336  * Set the page permissions for a particular virtual address.  If the
337  * address is a vmalloc mapping (or other non-linear mapping), then
338  * find the linear mapping of the page and also set its protections to
339  * match.
340  */
341 static void set_aliased_prot(void *v, pgprot_t prot)
342 {
343 	int level;
344 	pte_t *ptep;
345 	pte_t pte;
346 	unsigned long pfn;
347 	unsigned char dummy;
348 	void *va;
349 
350 	ptep = lookup_address((unsigned long)v, &level);
351 	BUG_ON(ptep == NULL);
352 
353 	pfn = pte_pfn(*ptep);
354 	pte = pfn_pte(pfn, prot);
355 
356 	/*
357 	 * Careful: update_va_mapping() will fail if the virtual address
358 	 * we're poking isn't populated in the page tables.  We don't
359 	 * need to worry about the direct map (that's always in the page
360 	 * tables), but we need to be careful about vmap space.  In
361 	 * particular, the top level page table can lazily propagate
362 	 * entries between processes, so if we've switched mms since we
363 	 * vmapped the target in the first place, we might not have the
364 	 * top-level page table entry populated.
365 	 *
366 	 * We disable preemption because we want the same mm active when
367 	 * we probe the target and when we issue the hypercall.  We'll
368 	 * have the same nominal mm, but if we're a kernel thread, lazy
369 	 * mm dropping could change our pgd.
370 	 *
371 	 * Out of an abundance of caution, this uses __get_user() to fault
372 	 * in the target address just in case there's some obscure case
373 	 * in which the target address isn't readable.
374 	 */
375 
376 	preempt_disable();
377 
378 	copy_from_kernel_nofault(&dummy, v, 1);
379 
380 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
381 		BUG();
382 
383 	va = __va(PFN_PHYS(pfn));
384 
385 	if (va != v && HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
386 		BUG();
387 
388 	preempt_enable();
389 }
390 
391 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
392 {
393 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
394 	int i;
395 
396 	/*
397 	 * We need to mark the all aliases of the LDT pages RO.  We
398 	 * don't need to call vm_flush_aliases(), though, since that's
399 	 * only responsible for flushing aliases out the TLBs, not the
400 	 * page tables, and Xen will flush the TLB for us if needed.
401 	 *
402 	 * To avoid confusing future readers: none of this is necessary
403 	 * to load the LDT.  The hypervisor only checks this when the
404 	 * LDT is faulted in due to subsequent descriptor access.
405 	 */
406 
407 	for (i = 0; i < entries; i += entries_per_page)
408 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
409 }
410 
411 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
412 {
413 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
414 	int i;
415 
416 	for (i = 0; i < entries; i += entries_per_page)
417 		set_aliased_prot(ldt + i, PAGE_KERNEL);
418 }
419 
420 static void xen_set_ldt(const void *addr, unsigned entries)
421 {
422 	struct mmuext_op *op;
423 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
424 
425 	trace_xen_cpu_set_ldt(addr, entries);
426 
427 	op = mcs.args;
428 	op->cmd = MMUEXT_SET_LDT;
429 	op->arg1.linear_addr = (unsigned long)addr;
430 	op->arg2.nr_ents = entries;
431 
432 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
433 
434 	xen_mc_issue(PARAVIRT_LAZY_CPU);
435 }
436 
437 static void xen_load_gdt(const struct desc_ptr *dtr)
438 {
439 	unsigned long va = dtr->address;
440 	unsigned int size = dtr->size + 1;
441 	unsigned long pfn, mfn;
442 	int level;
443 	pte_t *ptep;
444 	void *virt;
445 
446 	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
447 	BUG_ON(size > PAGE_SIZE);
448 	BUG_ON(va & ~PAGE_MASK);
449 
450 	/*
451 	 * The GDT is per-cpu and is in the percpu data area.
452 	 * That can be virtually mapped, so we need to do a
453 	 * page-walk to get the underlying MFN for the
454 	 * hypercall.  The page can also be in the kernel's
455 	 * linear range, so we need to RO that mapping too.
456 	 */
457 	ptep = lookup_address(va, &level);
458 	BUG_ON(ptep == NULL);
459 
460 	pfn = pte_pfn(*ptep);
461 	mfn = pfn_to_mfn(pfn);
462 	virt = __va(PFN_PHYS(pfn));
463 
464 	make_lowmem_page_readonly((void *)va);
465 	make_lowmem_page_readonly(virt);
466 
467 	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
468 		BUG();
469 }
470 
471 /*
472  * load_gdt for early boot, when the gdt is only mapped once
473  */
474 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
475 {
476 	unsigned long va = dtr->address;
477 	unsigned int size = dtr->size + 1;
478 	unsigned long pfn, mfn;
479 	pte_t pte;
480 
481 	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
482 	BUG_ON(size > PAGE_SIZE);
483 	BUG_ON(va & ~PAGE_MASK);
484 
485 	pfn = virt_to_pfn(va);
486 	mfn = pfn_to_mfn(pfn);
487 
488 	pte = pfn_pte(pfn, PAGE_KERNEL_RO);
489 
490 	if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
491 		BUG();
492 
493 	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
494 		BUG();
495 }
496 
497 static inline bool desc_equal(const struct desc_struct *d1,
498 			      const struct desc_struct *d2)
499 {
500 	return !memcmp(d1, d2, sizeof(*d1));
501 }
502 
503 static void load_TLS_descriptor(struct thread_struct *t,
504 				unsigned int cpu, unsigned int i)
505 {
506 	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
507 	struct desc_struct *gdt;
508 	xmaddr_t maddr;
509 	struct multicall_space mc;
510 
511 	if (desc_equal(shadow, &t->tls_array[i]))
512 		return;
513 
514 	*shadow = t->tls_array[i];
515 
516 	gdt = get_cpu_gdt_rw(cpu);
517 	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
518 	mc = __xen_mc_entry(0);
519 
520 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
521 }
522 
523 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
524 {
525 	/*
526 	 * In lazy mode we need to zero %fs, otherwise we may get an
527 	 * exception between the new %fs descriptor being loaded and
528 	 * %fs being effectively cleared at __switch_to().
529 	 */
530 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
531 		loadsegment(fs, 0);
532 
533 	xen_mc_batch();
534 
535 	load_TLS_descriptor(t, cpu, 0);
536 	load_TLS_descriptor(t, cpu, 1);
537 	load_TLS_descriptor(t, cpu, 2);
538 
539 	xen_mc_issue(PARAVIRT_LAZY_CPU);
540 }
541 
542 static void xen_load_gs_index(unsigned int idx)
543 {
544 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
545 		BUG();
546 }
547 
548 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
549 				const void *ptr)
550 {
551 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
552 	u64 entry = *(u64 *)ptr;
553 
554 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
555 
556 	preempt_disable();
557 
558 	xen_mc_flush();
559 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
560 		BUG();
561 
562 	preempt_enable();
563 }
564 
565 void noist_exc_debug(struct pt_regs *regs);
566 
567 DEFINE_IDTENTRY_RAW(xenpv_exc_nmi)
568 {
569 	/* On Xen PV, NMI doesn't use IST.  The C part is the same as native. */
570 	exc_nmi(regs);
571 }
572 
573 DEFINE_IDTENTRY_RAW_ERRORCODE(xenpv_exc_double_fault)
574 {
575 	/* On Xen PV, DF doesn't use IST.  The C part is the same as native. */
576 	exc_double_fault(regs, error_code);
577 }
578 
579 DEFINE_IDTENTRY_RAW(xenpv_exc_debug)
580 {
581 	/*
582 	 * There's no IST on Xen PV, but we still need to dispatch
583 	 * to the correct handler.
584 	 */
585 	if (user_mode(regs))
586 		noist_exc_debug(regs);
587 	else
588 		exc_debug(regs);
589 }
590 
591 DEFINE_IDTENTRY_RAW(exc_xen_unknown_trap)
592 {
593 	/* This should never happen and there is no way to handle it. */
594 	instrumentation_begin();
595 	pr_err("Unknown trap in Xen PV mode.");
596 	BUG();
597 	instrumentation_end();
598 }
599 
600 #ifdef CONFIG_X86_MCE
601 DEFINE_IDTENTRY_RAW(xenpv_exc_machine_check)
602 {
603 	/*
604 	 * There's no IST on Xen PV, but we still need to dispatch
605 	 * to the correct handler.
606 	 */
607 	if (user_mode(regs))
608 		noist_exc_machine_check(regs);
609 	else
610 		exc_machine_check(regs);
611 }
612 #endif
613 
614 struct trap_array_entry {
615 	void (*orig)(void);
616 	void (*xen)(void);
617 	bool ist_okay;
618 };
619 
620 #define TRAP_ENTRY(func, ist_ok) {			\
621 	.orig		= asm_##func,			\
622 	.xen		= xen_asm_##func,		\
623 	.ist_okay	= ist_ok }
624 
625 #define TRAP_ENTRY_REDIR(func, ist_ok) {		\
626 	.orig		= asm_##func,			\
627 	.xen		= xen_asm_xenpv_##func,		\
628 	.ist_okay	= ist_ok }
629 
630 static struct trap_array_entry trap_array[] = {
631 	TRAP_ENTRY_REDIR(exc_debug,			true  ),
632 	TRAP_ENTRY_REDIR(exc_double_fault,		true  ),
633 #ifdef CONFIG_X86_MCE
634 	TRAP_ENTRY_REDIR(exc_machine_check,		true  ),
635 #endif
636 	TRAP_ENTRY_REDIR(exc_nmi,			true  ),
637 	TRAP_ENTRY(exc_int3,				false ),
638 	TRAP_ENTRY(exc_overflow,			false ),
639 #ifdef CONFIG_IA32_EMULATION
640 	{ entry_INT80_compat,          xen_entry_INT80_compat,          false },
641 #endif
642 	TRAP_ENTRY(exc_page_fault,			false ),
643 	TRAP_ENTRY(exc_divide_error,			false ),
644 	TRAP_ENTRY(exc_bounds,				false ),
645 	TRAP_ENTRY(exc_invalid_op,			false ),
646 	TRAP_ENTRY(exc_device_not_available,		false ),
647 	TRAP_ENTRY(exc_coproc_segment_overrun,		false ),
648 	TRAP_ENTRY(exc_invalid_tss,			false ),
649 	TRAP_ENTRY(exc_segment_not_present,		false ),
650 	TRAP_ENTRY(exc_stack_segment,			false ),
651 	TRAP_ENTRY(exc_general_protection,		false ),
652 	TRAP_ENTRY(exc_spurious_interrupt_bug,		false ),
653 	TRAP_ENTRY(exc_coprocessor_error,		false ),
654 	TRAP_ENTRY(exc_alignment_check,			false ),
655 	TRAP_ENTRY(exc_simd_coprocessor_error,		false ),
656 };
657 
658 static bool __ref get_trap_addr(void **addr, unsigned int ist)
659 {
660 	unsigned int nr;
661 	bool ist_okay = false;
662 	bool found = false;
663 
664 	/*
665 	 * Replace trap handler addresses by Xen specific ones.
666 	 * Check for known traps using IST and whitelist them.
667 	 * The debugger ones are the only ones we care about.
668 	 * Xen will handle faults like double_fault, so we should never see
669 	 * them.  Warn if there's an unexpected IST-using fault handler.
670 	 */
671 	for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
672 		struct trap_array_entry *entry = trap_array + nr;
673 
674 		if (*addr == entry->orig) {
675 			*addr = entry->xen;
676 			ist_okay = entry->ist_okay;
677 			found = true;
678 			break;
679 		}
680 	}
681 
682 	if (nr == ARRAY_SIZE(trap_array) &&
683 	    *addr >= (void *)early_idt_handler_array[0] &&
684 	    *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
685 		nr = (*addr - (void *)early_idt_handler_array[0]) /
686 		     EARLY_IDT_HANDLER_SIZE;
687 		*addr = (void *)xen_early_idt_handler_array[nr];
688 		found = true;
689 	}
690 
691 	if (!found)
692 		*addr = (void *)xen_asm_exc_xen_unknown_trap;
693 
694 	if (WARN_ON(found && ist != 0 && !ist_okay))
695 		return false;
696 
697 	return true;
698 }
699 
700 static int cvt_gate_to_trap(int vector, const gate_desc *val,
701 			    struct trap_info *info)
702 {
703 	unsigned long addr;
704 
705 	if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
706 		return 0;
707 
708 	info->vector = vector;
709 
710 	addr = gate_offset(val);
711 	if (!get_trap_addr((void **)&addr, val->bits.ist))
712 		return 0;
713 	info->address = addr;
714 
715 	info->cs = gate_segment(val);
716 	info->flags = val->bits.dpl;
717 	/* interrupt gates clear IF */
718 	if (val->bits.type == GATE_INTERRUPT)
719 		info->flags |= 1 << 2;
720 
721 	return 1;
722 }
723 
724 /* Locations of each CPU's IDT */
725 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
726 
727 /* Set an IDT entry.  If the entry is part of the current IDT, then
728    also update Xen. */
729 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
730 {
731 	unsigned long p = (unsigned long)&dt[entrynum];
732 	unsigned long start, end;
733 
734 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
735 
736 	preempt_disable();
737 
738 	start = __this_cpu_read(idt_desc.address);
739 	end = start + __this_cpu_read(idt_desc.size) + 1;
740 
741 	xen_mc_flush();
742 
743 	native_write_idt_entry(dt, entrynum, g);
744 
745 	if (p >= start && (p + 8) <= end) {
746 		struct trap_info info[2];
747 
748 		info[1].address = 0;
749 
750 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
751 			if (HYPERVISOR_set_trap_table(info))
752 				BUG();
753 	}
754 
755 	preempt_enable();
756 }
757 
758 static void xen_convert_trap_info(const struct desc_ptr *desc,
759 				  struct trap_info *traps)
760 {
761 	unsigned in, out, count;
762 
763 	count = (desc->size+1) / sizeof(gate_desc);
764 	BUG_ON(count > 256);
765 
766 	for (in = out = 0; in < count; in++) {
767 		gate_desc *entry = (gate_desc *)(desc->address) + in;
768 
769 		if (cvt_gate_to_trap(in, entry, &traps[out]))
770 			out++;
771 	}
772 	traps[out].address = 0;
773 }
774 
775 void xen_copy_trap_info(struct trap_info *traps)
776 {
777 	const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
778 
779 	xen_convert_trap_info(desc, traps);
780 }
781 
782 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
783    hold a spinlock to protect the static traps[] array (static because
784    it avoids allocation, and saves stack space). */
785 static void xen_load_idt(const struct desc_ptr *desc)
786 {
787 	static DEFINE_SPINLOCK(lock);
788 	static struct trap_info traps[257];
789 
790 	trace_xen_cpu_load_idt(desc);
791 
792 	spin_lock(&lock);
793 
794 	memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
795 
796 	xen_convert_trap_info(desc, traps);
797 
798 	xen_mc_flush();
799 	if (HYPERVISOR_set_trap_table(traps))
800 		BUG();
801 
802 	spin_unlock(&lock);
803 }
804 
805 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
806    they're handled differently. */
807 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
808 				const void *desc, int type)
809 {
810 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
811 
812 	preempt_disable();
813 
814 	switch (type) {
815 	case DESC_LDT:
816 	case DESC_TSS:
817 		/* ignore */
818 		break;
819 
820 	default: {
821 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
822 
823 		xen_mc_flush();
824 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
825 			BUG();
826 	}
827 
828 	}
829 
830 	preempt_enable();
831 }
832 
833 /*
834  * Version of write_gdt_entry for use at early boot-time needed to
835  * update an entry as simply as possible.
836  */
837 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
838 					    const void *desc, int type)
839 {
840 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
841 
842 	switch (type) {
843 	case DESC_LDT:
844 	case DESC_TSS:
845 		/* ignore */
846 		break;
847 
848 	default: {
849 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
850 
851 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
852 			dt[entry] = *(struct desc_struct *)desc;
853 	}
854 
855 	}
856 }
857 
858 static void xen_load_sp0(unsigned long sp0)
859 {
860 	struct multicall_space mcs;
861 
862 	mcs = xen_mc_entry(0);
863 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
864 	xen_mc_issue(PARAVIRT_LAZY_CPU);
865 	this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
866 }
867 
868 #ifdef CONFIG_X86_IOPL_IOPERM
869 static void xen_invalidate_io_bitmap(void)
870 {
871 	struct physdev_set_iobitmap iobitmap = {
872 		.bitmap = NULL,
873 		.nr_ports = 0,
874 	};
875 
876 	native_tss_invalidate_io_bitmap();
877 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
878 }
879 
880 static void xen_update_io_bitmap(void)
881 {
882 	struct physdev_set_iobitmap iobitmap;
883 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
884 
885 	native_tss_update_io_bitmap();
886 
887 	iobitmap.bitmap = (uint8_t *)(&tss->x86_tss) +
888 			  tss->x86_tss.io_bitmap_base;
889 	if (tss->x86_tss.io_bitmap_base == IO_BITMAP_OFFSET_INVALID)
890 		iobitmap.nr_ports = 0;
891 	else
892 		iobitmap.nr_ports = IO_BITMAP_BITS;
893 
894 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
895 }
896 #endif
897 
898 static void xen_io_delay(void)
899 {
900 }
901 
902 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
903 
904 static unsigned long xen_read_cr0(void)
905 {
906 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
907 
908 	if (unlikely(cr0 == 0)) {
909 		cr0 = native_read_cr0();
910 		this_cpu_write(xen_cr0_value, cr0);
911 	}
912 
913 	return cr0;
914 }
915 
916 static void xen_write_cr0(unsigned long cr0)
917 {
918 	struct multicall_space mcs;
919 
920 	this_cpu_write(xen_cr0_value, cr0);
921 
922 	/* Only pay attention to cr0.TS; everything else is
923 	   ignored. */
924 	mcs = xen_mc_entry(0);
925 
926 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
927 
928 	xen_mc_issue(PARAVIRT_LAZY_CPU);
929 }
930 
931 static void xen_write_cr4(unsigned long cr4)
932 {
933 	cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
934 
935 	native_write_cr4(cr4);
936 }
937 
938 static u64 xen_read_msr_safe(unsigned int msr, int *err)
939 {
940 	u64 val;
941 
942 	if (pmu_msr_read(msr, &val, err))
943 		return val;
944 
945 	val = native_read_msr_safe(msr, err);
946 	switch (msr) {
947 	case MSR_IA32_APICBASE:
948 		val &= ~X2APIC_ENABLE;
949 		break;
950 	}
951 	return val;
952 }
953 
954 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
955 {
956 	int ret;
957 	unsigned int which;
958 	u64 base;
959 
960 	ret = 0;
961 
962 	switch (msr) {
963 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
964 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
965 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
966 
967 	set:
968 		base = ((u64)high << 32) | low;
969 		if (HYPERVISOR_set_segment_base(which, base) != 0)
970 			ret = -EIO;
971 		break;
972 
973 	case MSR_STAR:
974 	case MSR_CSTAR:
975 	case MSR_LSTAR:
976 	case MSR_SYSCALL_MASK:
977 	case MSR_IA32_SYSENTER_CS:
978 	case MSR_IA32_SYSENTER_ESP:
979 	case MSR_IA32_SYSENTER_EIP:
980 		/* Fast syscall setup is all done in hypercalls, so
981 		   these are all ignored.  Stub them out here to stop
982 		   Xen console noise. */
983 		break;
984 
985 	default:
986 		if (!pmu_msr_write(msr, low, high, &ret))
987 			ret = native_write_msr_safe(msr, low, high);
988 	}
989 
990 	return ret;
991 }
992 
993 static u64 xen_read_msr(unsigned int msr)
994 {
995 	/*
996 	 * This will silently swallow a #GP from RDMSR.  It may be worth
997 	 * changing that.
998 	 */
999 	int err;
1000 
1001 	return xen_read_msr_safe(msr, &err);
1002 }
1003 
1004 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
1005 {
1006 	/*
1007 	 * This will silently swallow a #GP from WRMSR.  It may be worth
1008 	 * changing that.
1009 	 */
1010 	xen_write_msr_safe(msr, low, high);
1011 }
1012 
1013 /* This is called once we have the cpu_possible_mask */
1014 void __init xen_setup_vcpu_info_placement(void)
1015 {
1016 	int cpu;
1017 
1018 	for_each_possible_cpu(cpu) {
1019 		/* Set up direct vCPU id mapping for PV guests. */
1020 		per_cpu(xen_vcpu_id, cpu) = cpu;
1021 
1022 		/*
1023 		 * xen_vcpu_setup(cpu) can fail  -- in which case it
1024 		 * falls back to the shared_info version for cpus
1025 		 * where xen_vcpu_nr(cpu) < MAX_VIRT_CPUS.
1026 		 *
1027 		 * xen_cpu_up_prepare_pv() handles the rest by failing
1028 		 * them in hotplug.
1029 		 */
1030 		(void) xen_vcpu_setup(cpu);
1031 	}
1032 
1033 	/*
1034 	 * xen_vcpu_setup managed to place the vcpu_info within the
1035 	 * percpu area for all cpus, so make use of it.
1036 	 */
1037 	if (xen_have_vcpu_info_placement) {
1038 		pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1039 		pv_ops.irq.irq_disable =
1040 			__PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1041 		pv_ops.irq.irq_enable =
1042 			__PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1043 		pv_ops.mmu.read_cr2 =
1044 			__PV_IS_CALLEE_SAVE(xen_read_cr2_direct);
1045 	}
1046 }
1047 
1048 static const struct pv_info xen_info __initconst = {
1049 	.extra_user_64bit_cs = FLAT_USER_CS64,
1050 	.name = "Xen",
1051 };
1052 
1053 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1054 	.cpuid = xen_cpuid,
1055 
1056 	.set_debugreg = xen_set_debugreg,
1057 	.get_debugreg = xen_get_debugreg,
1058 
1059 	.read_cr0 = xen_read_cr0,
1060 	.write_cr0 = xen_write_cr0,
1061 
1062 	.write_cr4 = xen_write_cr4,
1063 
1064 	.wbinvd = native_wbinvd,
1065 
1066 	.read_msr = xen_read_msr,
1067 	.write_msr = xen_write_msr,
1068 
1069 	.read_msr_safe = xen_read_msr_safe,
1070 	.write_msr_safe = xen_write_msr_safe,
1071 
1072 	.read_pmc = xen_read_pmc,
1073 
1074 	.load_tr_desc = paravirt_nop,
1075 	.set_ldt = xen_set_ldt,
1076 	.load_gdt = xen_load_gdt,
1077 	.load_idt = xen_load_idt,
1078 	.load_tls = xen_load_tls,
1079 	.load_gs_index = xen_load_gs_index,
1080 
1081 	.alloc_ldt = xen_alloc_ldt,
1082 	.free_ldt = xen_free_ldt,
1083 
1084 	.store_tr = xen_store_tr,
1085 
1086 	.write_ldt_entry = xen_write_ldt_entry,
1087 	.write_gdt_entry = xen_write_gdt_entry,
1088 	.write_idt_entry = xen_write_idt_entry,
1089 	.load_sp0 = xen_load_sp0,
1090 
1091 #ifdef CONFIG_X86_IOPL_IOPERM
1092 	.invalidate_io_bitmap = xen_invalidate_io_bitmap,
1093 	.update_io_bitmap = xen_update_io_bitmap,
1094 #endif
1095 	.io_delay = xen_io_delay,
1096 
1097 	.start_context_switch = paravirt_start_context_switch,
1098 	.end_context_switch = xen_end_context_switch,
1099 };
1100 
1101 static void xen_restart(char *msg)
1102 {
1103 	xen_reboot(SHUTDOWN_reboot);
1104 }
1105 
1106 static void xen_machine_halt(void)
1107 {
1108 	xen_reboot(SHUTDOWN_poweroff);
1109 }
1110 
1111 static void xen_machine_power_off(void)
1112 {
1113 	if (pm_power_off)
1114 		pm_power_off();
1115 	xen_reboot(SHUTDOWN_poweroff);
1116 }
1117 
1118 static void xen_crash_shutdown(struct pt_regs *regs)
1119 {
1120 	xen_reboot(SHUTDOWN_crash);
1121 }
1122 
1123 static const struct machine_ops xen_machine_ops __initconst = {
1124 	.restart = xen_restart,
1125 	.halt = xen_machine_halt,
1126 	.power_off = xen_machine_power_off,
1127 	.shutdown = xen_machine_halt,
1128 	.crash_shutdown = xen_crash_shutdown,
1129 	.emergency_restart = xen_emergency_restart,
1130 };
1131 
1132 static unsigned char xen_get_nmi_reason(void)
1133 {
1134 	unsigned char reason = 0;
1135 
1136 	/* Construct a value which looks like it came from port 0x61. */
1137 	if (test_bit(_XEN_NMIREASON_io_error,
1138 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1139 		reason |= NMI_REASON_IOCHK;
1140 	if (test_bit(_XEN_NMIREASON_pci_serr,
1141 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1142 		reason |= NMI_REASON_SERR;
1143 
1144 	return reason;
1145 }
1146 
1147 static void __init xen_boot_params_init_edd(void)
1148 {
1149 #if IS_ENABLED(CONFIG_EDD)
1150 	struct xen_platform_op op;
1151 	struct edd_info *edd_info;
1152 	u32 *mbr_signature;
1153 	unsigned nr;
1154 	int ret;
1155 
1156 	edd_info = boot_params.eddbuf;
1157 	mbr_signature = boot_params.edd_mbr_sig_buffer;
1158 
1159 	op.cmd = XENPF_firmware_info;
1160 
1161 	op.u.firmware_info.type = XEN_FW_DISK_INFO;
1162 	for (nr = 0; nr < EDDMAXNR; nr++) {
1163 		struct edd_info *info = edd_info + nr;
1164 
1165 		op.u.firmware_info.index = nr;
1166 		info->params.length = sizeof(info->params);
1167 		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1168 				     &info->params);
1169 		ret = HYPERVISOR_platform_op(&op);
1170 		if (ret)
1171 			break;
1172 
1173 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1174 		C(device);
1175 		C(version);
1176 		C(interface_support);
1177 		C(legacy_max_cylinder);
1178 		C(legacy_max_head);
1179 		C(legacy_sectors_per_track);
1180 #undef C
1181 	}
1182 	boot_params.eddbuf_entries = nr;
1183 
1184 	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1185 	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1186 		op.u.firmware_info.index = nr;
1187 		ret = HYPERVISOR_platform_op(&op);
1188 		if (ret)
1189 			break;
1190 		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1191 	}
1192 	boot_params.edd_mbr_sig_buf_entries = nr;
1193 #endif
1194 }
1195 
1196 /*
1197  * Set up the GDT and segment registers for -fstack-protector.  Until
1198  * we do this, we have to be careful not to call any stack-protected
1199  * function, which is most of the kernel.
1200  */
1201 static void __init xen_setup_gdt(int cpu)
1202 {
1203 	pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot;
1204 	pv_ops.cpu.load_gdt = xen_load_gdt_boot;
1205 
1206 	switch_to_new_gdt(cpu);
1207 
1208 	pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry;
1209 	pv_ops.cpu.load_gdt = xen_load_gdt;
1210 }
1211 
1212 static void __init xen_dom0_set_legacy_features(void)
1213 {
1214 	x86_platform.legacy.rtc = 1;
1215 }
1216 
1217 /* First C function to be called on Xen boot */
1218 asmlinkage __visible void __init xen_start_kernel(void)
1219 {
1220 	struct physdev_set_iopl set_iopl;
1221 	unsigned long initrd_start = 0;
1222 	int rc;
1223 
1224 	if (!xen_start_info)
1225 		return;
1226 
1227 	xen_domain_type = XEN_PV_DOMAIN;
1228 	xen_start_flags = xen_start_info->flags;
1229 
1230 	xen_setup_features();
1231 
1232 	/* Install Xen paravirt ops */
1233 	pv_info = xen_info;
1234 	pv_ops.cpu = xen_cpu_ops;
1235 	paravirt_iret = xen_iret;
1236 	xen_init_irq_ops();
1237 
1238 	/*
1239 	 * Setup xen_vcpu early because it is needed for
1240 	 * local_irq_disable(), irqs_disabled(), e.g. in printk().
1241 	 *
1242 	 * Don't do the full vcpu_info placement stuff until we have
1243 	 * the cpu_possible_mask and a non-dummy shared_info.
1244 	 */
1245 	xen_vcpu_info_reset(0);
1246 
1247 	x86_platform.get_nmi_reason = xen_get_nmi_reason;
1248 
1249 	x86_init.resources.memory_setup = xen_memory_setup;
1250 	x86_init.irqs.intr_mode_select	= x86_init_noop;
1251 	x86_init.irqs.intr_mode_init	= x86_init_noop;
1252 	x86_init.oem.arch_setup = xen_arch_setup;
1253 	x86_init.oem.banner = xen_banner;
1254 	x86_init.hyper.init_platform = xen_pv_init_platform;
1255 	x86_init.hyper.guest_late_init = xen_pv_guest_late_init;
1256 
1257 	/*
1258 	 * Set up some pagetable state before starting to set any ptes.
1259 	 */
1260 
1261 	xen_setup_machphys_mapping();
1262 	xen_init_mmu_ops();
1263 
1264 	/* Prevent unwanted bits from being set in PTEs. */
1265 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1266 	__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
1267 
1268 	/*
1269 	 * Prevent page tables from being allocated in highmem, even
1270 	 * if CONFIG_HIGHPTE is enabled.
1271 	 */
1272 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1273 
1274 	/* Get mfn list */
1275 	xen_build_dynamic_phys_to_machine();
1276 
1277 	/* Work out if we support NX */
1278 	get_cpu_cap(&boot_cpu_data);
1279 	x86_configure_nx();
1280 
1281 	/*
1282 	 * Set up kernel GDT and segment registers, mainly so that
1283 	 * -fstack-protector code can be executed.
1284 	 */
1285 	xen_setup_gdt(0);
1286 
1287 	/* Determine virtual and physical address sizes */
1288 	get_cpu_address_sizes(&boot_cpu_data);
1289 
1290 	/* Let's presume PV guests always boot on vCPU with id 0. */
1291 	per_cpu(xen_vcpu_id, 0) = 0;
1292 
1293 	idt_setup_early_handler();
1294 
1295 	xen_init_capabilities();
1296 
1297 #ifdef CONFIG_X86_LOCAL_APIC
1298 	/*
1299 	 * set up the basic apic ops.
1300 	 */
1301 	xen_init_apic();
1302 #endif
1303 
1304 	machine_ops = xen_machine_ops;
1305 
1306 	/*
1307 	 * The only reliable way to retain the initial address of the
1308 	 * percpu gdt_page is to remember it here, so we can go and
1309 	 * mark it RW later, when the initial percpu area is freed.
1310 	 */
1311 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1312 
1313 	xen_smp_init();
1314 
1315 #ifdef CONFIG_ACPI_NUMA
1316 	/*
1317 	 * The pages we from Xen are not related to machine pages, so
1318 	 * any NUMA information the kernel tries to get from ACPI will
1319 	 * be meaningless.  Prevent it from trying.
1320 	 */
1321 	disable_srat();
1322 #endif
1323 	WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1324 
1325 	local_irq_disable();
1326 	early_boot_irqs_disabled = true;
1327 
1328 	xen_raw_console_write("mapping kernel into physical memory\n");
1329 	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1330 				   xen_start_info->nr_pages);
1331 	xen_reserve_special_pages();
1332 
1333 	/*
1334 	 * We used to do this in xen_arch_setup, but that is too late
1335 	 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1336 	 * early_amd_init which pokes 0xcf8 port.
1337 	 */
1338 	set_iopl.iopl = 1;
1339 	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1340 	if (rc != 0)
1341 		xen_raw_printk("physdev_op failed %d\n", rc);
1342 
1343 
1344 	if (xen_start_info->mod_start) {
1345 	    if (xen_start_info->flags & SIF_MOD_START_PFN)
1346 		initrd_start = PFN_PHYS(xen_start_info->mod_start);
1347 	    else
1348 		initrd_start = __pa(xen_start_info->mod_start);
1349 	}
1350 
1351 	/* Poke various useful things into boot_params */
1352 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1353 	boot_params.hdr.ramdisk_image = initrd_start;
1354 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1355 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1356 	boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1357 
1358 	if (!xen_initial_domain()) {
1359 		add_preferred_console("xenboot", 0, NULL);
1360 		if (pci_xen)
1361 			x86_init.pci.arch_init = pci_xen_init;
1362 	} else {
1363 		const struct dom0_vga_console_info *info =
1364 			(void *)((char *)xen_start_info +
1365 				 xen_start_info->console.dom0.info_off);
1366 		struct xen_platform_op op = {
1367 			.cmd = XENPF_firmware_info,
1368 			.interface_version = XENPF_INTERFACE_VERSION,
1369 			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1370 		};
1371 
1372 		x86_platform.set_legacy_features =
1373 				xen_dom0_set_legacy_features;
1374 		xen_init_vga(info, xen_start_info->console.dom0.info_size);
1375 		xen_start_info->console.domU.mfn = 0;
1376 		xen_start_info->console.domU.evtchn = 0;
1377 
1378 		if (HYPERVISOR_platform_op(&op) == 0)
1379 			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1380 
1381 		/* Make sure ACS will be enabled */
1382 		pci_request_acs();
1383 
1384 		xen_acpi_sleep_register();
1385 
1386 		/* Avoid searching for BIOS MP tables */
1387 		x86_init.mpparse.find_smp_config = x86_init_noop;
1388 		x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1389 
1390 		xen_boot_params_init_edd();
1391 
1392 #ifdef CONFIG_ACPI
1393 		/*
1394 		 * Disable selecting "Firmware First mode" for correctable
1395 		 * memory errors, as this is the duty of the hypervisor to
1396 		 * decide.
1397 		 */
1398 		acpi_disable_cmcff = 1;
1399 #endif
1400 	}
1401 
1402 	if (!boot_params.screen_info.orig_video_isVGA)
1403 		add_preferred_console("tty", 0, NULL);
1404 	add_preferred_console("hvc", 0, NULL);
1405 	if (boot_params.screen_info.orig_video_isVGA)
1406 		add_preferred_console("tty", 0, NULL);
1407 
1408 #ifdef CONFIG_PCI
1409 	/* PCI BIOS service won't work from a PV guest. */
1410 	pci_probe &= ~PCI_PROBE_BIOS;
1411 #endif
1412 	xen_raw_console_write("about to get started...\n");
1413 
1414 	/* We need this for printk timestamps */
1415 	xen_setup_runstate_info(0);
1416 
1417 	xen_efi_init(&boot_params);
1418 
1419 	/* Start the world */
1420 	cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1421 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1422 }
1423 
1424 static int xen_cpu_up_prepare_pv(unsigned int cpu)
1425 {
1426 	int rc;
1427 
1428 	if (per_cpu(xen_vcpu, cpu) == NULL)
1429 		return -ENODEV;
1430 
1431 	xen_setup_timer(cpu);
1432 
1433 	rc = xen_smp_intr_init(cpu);
1434 	if (rc) {
1435 		WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1436 		     cpu, rc);
1437 		return rc;
1438 	}
1439 
1440 	rc = xen_smp_intr_init_pv(cpu);
1441 	if (rc) {
1442 		WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1443 		     cpu, rc);
1444 		return rc;
1445 	}
1446 
1447 	return 0;
1448 }
1449 
1450 static int xen_cpu_dead_pv(unsigned int cpu)
1451 {
1452 	xen_smp_intr_free(cpu);
1453 	xen_smp_intr_free_pv(cpu);
1454 
1455 	xen_teardown_timer(cpu);
1456 
1457 	return 0;
1458 }
1459 
1460 static uint32_t __init xen_platform_pv(void)
1461 {
1462 	if (xen_pv_domain())
1463 		return xen_cpuid_base();
1464 
1465 	return 0;
1466 }
1467 
1468 const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1469 	.name                   = "Xen PV",
1470 	.detect                 = xen_platform_pv,
1471 	.type			= X86_HYPER_XEN_PV,
1472 	.runtime.pin_vcpu       = xen_pin_vcpu,
1473 	.ignore_nopv		= true,
1474 };
1475