xref: /openbmc/linux/arch/x86/xen/enlighten_pv.c (revision cb3908c133f1285069673f11ad651d14ae0406cf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Core of Xen paravirt_ops implementation.
4  *
5  * This file contains the xen_paravirt_ops structure itself, and the
6  * implementations for:
7  * - privileged instructions
8  * - interrupt flags
9  * - segment operations
10  * - booting and setup
11  *
12  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
13  */
14 
15 #include <linux/cpu.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/smp.h>
19 #include <linux/preempt.h>
20 #include <linux/hardirq.h>
21 #include <linux/percpu.h>
22 #include <linux/delay.h>
23 #include <linux/start_kernel.h>
24 #include <linux/sched.h>
25 #include <linux/kprobes.h>
26 #include <linux/memblock.h>
27 #include <linux/export.h>
28 #include <linux/mm.h>
29 #include <linux/page-flags.h>
30 #include <linux/highmem.h>
31 #include <linux/console.h>
32 #include <linux/pci.h>
33 #include <linux/gfp.h>
34 #include <linux/edd.h>
35 #include <linux/frame.h>
36 
37 #include <xen/xen.h>
38 #include <xen/events.h>
39 #include <xen/interface/xen.h>
40 #include <xen/interface/version.h>
41 #include <xen/interface/physdev.h>
42 #include <xen/interface/vcpu.h>
43 #include <xen/interface/memory.h>
44 #include <xen/interface/nmi.h>
45 #include <xen/interface/xen-mca.h>
46 #include <xen/features.h>
47 #include <xen/page.h>
48 #include <xen/hvc-console.h>
49 #include <xen/acpi.h>
50 
51 #include <asm/paravirt.h>
52 #include <asm/apic.h>
53 #include <asm/page.h>
54 #include <asm/xen/pci.h>
55 #include <asm/xen/hypercall.h>
56 #include <asm/xen/hypervisor.h>
57 #include <asm/xen/cpuid.h>
58 #include <asm/fixmap.h>
59 #include <asm/processor.h>
60 #include <asm/proto.h>
61 #include <asm/msr-index.h>
62 #include <asm/traps.h>
63 #include <asm/setup.h>
64 #include <asm/desc.h>
65 #include <asm/pgalloc.h>
66 #include <asm/pgtable.h>
67 #include <asm/tlbflush.h>
68 #include <asm/reboot.h>
69 #include <asm/stackprotector.h>
70 #include <asm/hypervisor.h>
71 #include <asm/mach_traps.h>
72 #include <asm/mwait.h>
73 #include <asm/pci_x86.h>
74 #include <asm/cpu.h>
75 
76 #ifdef CONFIG_ACPI
77 #include <linux/acpi.h>
78 #include <asm/acpi.h>
79 #include <acpi/pdc_intel.h>
80 #include <acpi/processor.h>
81 #include <xen/interface/platform.h>
82 #endif
83 
84 #include "xen-ops.h"
85 #include "mmu.h"
86 #include "smp.h"
87 #include "multicalls.h"
88 #include "pmu.h"
89 
90 #include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
91 
92 void *xen_initial_gdt;
93 
94 static int xen_cpu_up_prepare_pv(unsigned int cpu);
95 static int xen_cpu_dead_pv(unsigned int cpu);
96 
97 struct tls_descs {
98 	struct desc_struct desc[3];
99 };
100 
101 /*
102  * Updating the 3 TLS descriptors in the GDT on every task switch is
103  * surprisingly expensive so we avoid updating them if they haven't
104  * changed.  Since Xen writes different descriptors than the one
105  * passed in the update_descriptor hypercall we keep shadow copies to
106  * compare against.
107  */
108 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
109 
110 static void __init xen_banner(void)
111 {
112 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
113 	struct xen_extraversion extra;
114 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
115 
116 	pr_info("Booting paravirtualized kernel on %s\n", pv_info.name);
117 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
118 	       version >> 16, version & 0xffff, extra.extraversion,
119 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
120 }
121 
122 static void __init xen_pv_init_platform(void)
123 {
124 	populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP));
125 
126 	set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
127 	HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
128 
129 	/* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */
130 	xen_vcpu_info_reset(0);
131 
132 	/* pvclock is in shared info area */
133 	xen_init_time_ops();
134 }
135 
136 static void __init xen_pv_guest_late_init(void)
137 {
138 #ifndef CONFIG_SMP
139 	/* Setup shared vcpu info for non-smp configurations */
140 	xen_setup_vcpu_info_placement();
141 #endif
142 }
143 
144 /* Check if running on Xen version (major, minor) or later */
145 bool
146 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
147 {
148 	unsigned int version;
149 
150 	if (!xen_domain())
151 		return false;
152 
153 	version = HYPERVISOR_xen_version(XENVER_version, NULL);
154 	if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
155 		((version >> 16) > major))
156 		return true;
157 	return false;
158 }
159 
160 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
161 static __read_mostly unsigned int cpuid_leaf5_edx_val;
162 
163 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
164 		      unsigned int *cx, unsigned int *dx)
165 {
166 	unsigned maskebx = ~0;
167 
168 	/*
169 	 * Mask out inconvenient features, to try and disable as many
170 	 * unsupported kernel subsystems as possible.
171 	 */
172 	switch (*ax) {
173 	case CPUID_MWAIT_LEAF:
174 		/* Synthesize the values.. */
175 		*ax = 0;
176 		*bx = 0;
177 		*cx = cpuid_leaf5_ecx_val;
178 		*dx = cpuid_leaf5_edx_val;
179 		return;
180 
181 	case 0xb:
182 		/* Suppress extended topology stuff */
183 		maskebx = 0;
184 		break;
185 	}
186 
187 	asm(XEN_EMULATE_PREFIX "cpuid"
188 		: "=a" (*ax),
189 		  "=b" (*bx),
190 		  "=c" (*cx),
191 		  "=d" (*dx)
192 		: "0" (*ax), "2" (*cx));
193 
194 	*bx &= maskebx;
195 }
196 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
197 
198 static bool __init xen_check_mwait(void)
199 {
200 #ifdef CONFIG_ACPI
201 	struct xen_platform_op op = {
202 		.cmd			= XENPF_set_processor_pminfo,
203 		.u.set_pminfo.id	= -1,
204 		.u.set_pminfo.type	= XEN_PM_PDC,
205 	};
206 	uint32_t buf[3];
207 	unsigned int ax, bx, cx, dx;
208 	unsigned int mwait_mask;
209 
210 	/* We need to determine whether it is OK to expose the MWAIT
211 	 * capability to the kernel to harvest deeper than C3 states from ACPI
212 	 * _CST using the processor_harvest_xen.c module. For this to work, we
213 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
214 	 * checks against). The hypervisor won't expose the MWAIT flag because
215 	 * it would break backwards compatibility; so we will find out directly
216 	 * from the hardware and hypercall.
217 	 */
218 	if (!xen_initial_domain())
219 		return false;
220 
221 	/*
222 	 * When running under platform earlier than Xen4.2, do not expose
223 	 * mwait, to avoid the risk of loading native acpi pad driver
224 	 */
225 	if (!xen_running_on_version_or_later(4, 2))
226 		return false;
227 
228 	ax = 1;
229 	cx = 0;
230 
231 	native_cpuid(&ax, &bx, &cx, &dx);
232 
233 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
234 		     (1 << (X86_FEATURE_MWAIT % 32));
235 
236 	if ((cx & mwait_mask) != mwait_mask)
237 		return false;
238 
239 	/* We need to emulate the MWAIT_LEAF and for that we need both
240 	 * ecx and edx. The hypercall provides only partial information.
241 	 */
242 
243 	ax = CPUID_MWAIT_LEAF;
244 	bx = 0;
245 	cx = 0;
246 	dx = 0;
247 
248 	native_cpuid(&ax, &bx, &cx, &dx);
249 
250 	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
251 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
252 	 */
253 	buf[0] = ACPI_PDC_REVISION_ID;
254 	buf[1] = 1;
255 	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
256 
257 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
258 
259 	if ((HYPERVISOR_platform_op(&op) == 0) &&
260 	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
261 		cpuid_leaf5_ecx_val = cx;
262 		cpuid_leaf5_edx_val = dx;
263 	}
264 	return true;
265 #else
266 	return false;
267 #endif
268 }
269 
270 static bool __init xen_check_xsave(void)
271 {
272 	unsigned int cx, xsave_mask;
273 
274 	cx = cpuid_ecx(1);
275 
276 	xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
277 		     (1 << (X86_FEATURE_OSXSAVE % 32));
278 
279 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
280 	return (cx & xsave_mask) == xsave_mask;
281 }
282 
283 static void __init xen_init_capabilities(void)
284 {
285 	setup_force_cpu_cap(X86_FEATURE_XENPV);
286 	setup_clear_cpu_cap(X86_FEATURE_DCA);
287 	setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
288 	setup_clear_cpu_cap(X86_FEATURE_MTRR);
289 	setup_clear_cpu_cap(X86_FEATURE_ACC);
290 	setup_clear_cpu_cap(X86_FEATURE_X2APIC);
291 	setup_clear_cpu_cap(X86_FEATURE_SME);
292 
293 	/*
294 	 * Xen PV would need some work to support PCID: CR3 handling as well
295 	 * as xen_flush_tlb_others() would need updating.
296 	 */
297 	setup_clear_cpu_cap(X86_FEATURE_PCID);
298 
299 	if (!xen_initial_domain())
300 		setup_clear_cpu_cap(X86_FEATURE_ACPI);
301 
302 	if (xen_check_mwait())
303 		setup_force_cpu_cap(X86_FEATURE_MWAIT);
304 	else
305 		setup_clear_cpu_cap(X86_FEATURE_MWAIT);
306 
307 	if (!xen_check_xsave()) {
308 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
309 		setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
310 	}
311 }
312 
313 static void xen_set_debugreg(int reg, unsigned long val)
314 {
315 	HYPERVISOR_set_debugreg(reg, val);
316 }
317 
318 static unsigned long xen_get_debugreg(int reg)
319 {
320 	return HYPERVISOR_get_debugreg(reg);
321 }
322 
323 static void xen_end_context_switch(struct task_struct *next)
324 {
325 	xen_mc_flush();
326 	paravirt_end_context_switch(next);
327 }
328 
329 static unsigned long xen_store_tr(void)
330 {
331 	return 0;
332 }
333 
334 /*
335  * Set the page permissions for a particular virtual address.  If the
336  * address is a vmalloc mapping (or other non-linear mapping), then
337  * find the linear mapping of the page and also set its protections to
338  * match.
339  */
340 static void set_aliased_prot(void *v, pgprot_t prot)
341 {
342 	int level;
343 	pte_t *ptep;
344 	pte_t pte;
345 	unsigned long pfn;
346 	struct page *page;
347 	unsigned char dummy;
348 
349 	ptep = lookup_address((unsigned long)v, &level);
350 	BUG_ON(ptep == NULL);
351 
352 	pfn = pte_pfn(*ptep);
353 	page = pfn_to_page(pfn);
354 
355 	pte = pfn_pte(pfn, prot);
356 
357 	/*
358 	 * Careful: update_va_mapping() will fail if the virtual address
359 	 * we're poking isn't populated in the page tables.  We don't
360 	 * need to worry about the direct map (that's always in the page
361 	 * tables), but we need to be careful about vmap space.  In
362 	 * particular, the top level page table can lazily propagate
363 	 * entries between processes, so if we've switched mms since we
364 	 * vmapped the target in the first place, we might not have the
365 	 * top-level page table entry populated.
366 	 *
367 	 * We disable preemption because we want the same mm active when
368 	 * we probe the target and when we issue the hypercall.  We'll
369 	 * have the same nominal mm, but if we're a kernel thread, lazy
370 	 * mm dropping could change our pgd.
371 	 *
372 	 * Out of an abundance of caution, this uses __get_user() to fault
373 	 * in the target address just in case there's some obscure case
374 	 * in which the target address isn't readable.
375 	 */
376 
377 	preempt_disable();
378 
379 	probe_kernel_read(&dummy, v, 1);
380 
381 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
382 		BUG();
383 
384 	if (!PageHighMem(page)) {
385 		void *av = __va(PFN_PHYS(pfn));
386 
387 		if (av != v)
388 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
389 				BUG();
390 	} else
391 		kmap_flush_unused();
392 
393 	preempt_enable();
394 }
395 
396 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
397 {
398 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
399 	int i;
400 
401 	/*
402 	 * We need to mark the all aliases of the LDT pages RO.  We
403 	 * don't need to call vm_flush_aliases(), though, since that's
404 	 * only responsible for flushing aliases out the TLBs, not the
405 	 * page tables, and Xen will flush the TLB for us if needed.
406 	 *
407 	 * To avoid confusing future readers: none of this is necessary
408 	 * to load the LDT.  The hypervisor only checks this when the
409 	 * LDT is faulted in due to subsequent descriptor access.
410 	 */
411 
412 	for (i = 0; i < entries; i += entries_per_page)
413 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
414 }
415 
416 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
417 {
418 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
419 	int i;
420 
421 	for (i = 0; i < entries; i += entries_per_page)
422 		set_aliased_prot(ldt + i, PAGE_KERNEL);
423 }
424 
425 static void xen_set_ldt(const void *addr, unsigned entries)
426 {
427 	struct mmuext_op *op;
428 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
429 
430 	trace_xen_cpu_set_ldt(addr, entries);
431 
432 	op = mcs.args;
433 	op->cmd = MMUEXT_SET_LDT;
434 	op->arg1.linear_addr = (unsigned long)addr;
435 	op->arg2.nr_ents = entries;
436 
437 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
438 
439 	xen_mc_issue(PARAVIRT_LAZY_CPU);
440 }
441 
442 static void xen_load_gdt(const struct desc_ptr *dtr)
443 {
444 	unsigned long va = dtr->address;
445 	unsigned int size = dtr->size + 1;
446 	unsigned long pfn, mfn;
447 	int level;
448 	pte_t *ptep;
449 	void *virt;
450 
451 	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
452 	BUG_ON(size > PAGE_SIZE);
453 	BUG_ON(va & ~PAGE_MASK);
454 
455 	/*
456 	 * The GDT is per-cpu and is in the percpu data area.
457 	 * That can be virtually mapped, so we need to do a
458 	 * page-walk to get the underlying MFN for the
459 	 * hypercall.  The page can also be in the kernel's
460 	 * linear range, so we need to RO that mapping too.
461 	 */
462 	ptep = lookup_address(va, &level);
463 	BUG_ON(ptep == NULL);
464 
465 	pfn = pte_pfn(*ptep);
466 	mfn = pfn_to_mfn(pfn);
467 	virt = __va(PFN_PHYS(pfn));
468 
469 	make_lowmem_page_readonly((void *)va);
470 	make_lowmem_page_readonly(virt);
471 
472 	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
473 		BUG();
474 }
475 
476 /*
477  * load_gdt for early boot, when the gdt is only mapped once
478  */
479 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
480 {
481 	unsigned long va = dtr->address;
482 	unsigned int size = dtr->size + 1;
483 	unsigned long pfn, mfn;
484 	pte_t pte;
485 
486 	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
487 	BUG_ON(size > PAGE_SIZE);
488 	BUG_ON(va & ~PAGE_MASK);
489 
490 	pfn = virt_to_pfn(va);
491 	mfn = pfn_to_mfn(pfn);
492 
493 	pte = pfn_pte(pfn, PAGE_KERNEL_RO);
494 
495 	if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
496 		BUG();
497 
498 	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
499 		BUG();
500 }
501 
502 static inline bool desc_equal(const struct desc_struct *d1,
503 			      const struct desc_struct *d2)
504 {
505 	return !memcmp(d1, d2, sizeof(*d1));
506 }
507 
508 static void load_TLS_descriptor(struct thread_struct *t,
509 				unsigned int cpu, unsigned int i)
510 {
511 	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
512 	struct desc_struct *gdt;
513 	xmaddr_t maddr;
514 	struct multicall_space mc;
515 
516 	if (desc_equal(shadow, &t->tls_array[i]))
517 		return;
518 
519 	*shadow = t->tls_array[i];
520 
521 	gdt = get_cpu_gdt_rw(cpu);
522 	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
523 	mc = __xen_mc_entry(0);
524 
525 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
526 }
527 
528 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
529 {
530 	/*
531 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
532 	 * and lazy gs handling is enabled, it means we're in a
533 	 * context switch, and %gs has just been saved.  This means we
534 	 * can zero it out to prevent faults on exit from the
535 	 * hypervisor if the next process has no %gs.  Either way, it
536 	 * has been saved, and the new value will get loaded properly.
537 	 * This will go away as soon as Xen has been modified to not
538 	 * save/restore %gs for normal hypercalls.
539 	 *
540 	 * On x86_64, this hack is not used for %gs, because gs points
541 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
542 	 * must not zero %gs on x86_64
543 	 *
544 	 * For x86_64, we need to zero %fs, otherwise we may get an
545 	 * exception between the new %fs descriptor being loaded and
546 	 * %fs being effectively cleared at __switch_to().
547 	 */
548 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
549 #ifdef CONFIG_X86_32
550 		lazy_load_gs(0);
551 #else
552 		loadsegment(fs, 0);
553 #endif
554 	}
555 
556 	xen_mc_batch();
557 
558 	load_TLS_descriptor(t, cpu, 0);
559 	load_TLS_descriptor(t, cpu, 1);
560 	load_TLS_descriptor(t, cpu, 2);
561 
562 	xen_mc_issue(PARAVIRT_LAZY_CPU);
563 }
564 
565 #ifdef CONFIG_X86_64
566 static void xen_load_gs_index(unsigned int idx)
567 {
568 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
569 		BUG();
570 }
571 #endif
572 
573 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
574 				const void *ptr)
575 {
576 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
577 	u64 entry = *(u64 *)ptr;
578 
579 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
580 
581 	preempt_disable();
582 
583 	xen_mc_flush();
584 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
585 		BUG();
586 
587 	preempt_enable();
588 }
589 
590 #ifdef CONFIG_X86_64
591 struct trap_array_entry {
592 	void (*orig)(void);
593 	void (*xen)(void);
594 	bool ist_okay;
595 };
596 
597 static struct trap_array_entry trap_array[] = {
598 	{ debug,                       xen_xendebug,                    true },
599 	{ int3,                        xen_xenint3,                     true },
600 	{ double_fault,                xen_double_fault,                true },
601 #ifdef CONFIG_X86_MCE
602 	{ machine_check,               xen_machine_check,               true },
603 #endif
604 	{ nmi,                         xen_xennmi,                      true },
605 	{ overflow,                    xen_overflow,                    false },
606 #ifdef CONFIG_IA32_EMULATION
607 	{ entry_INT80_compat,          xen_entry_INT80_compat,          false },
608 #endif
609 	{ page_fault,                  xen_page_fault,                  false },
610 	{ divide_error,                xen_divide_error,                false },
611 	{ bounds,                      xen_bounds,                      false },
612 	{ invalid_op,                  xen_invalid_op,                  false },
613 	{ device_not_available,        xen_device_not_available,        false },
614 	{ coprocessor_segment_overrun, xen_coprocessor_segment_overrun, false },
615 	{ invalid_TSS,                 xen_invalid_TSS,                 false },
616 	{ segment_not_present,         xen_segment_not_present,         false },
617 	{ stack_segment,               xen_stack_segment,               false },
618 	{ general_protection,          xen_general_protection,          false },
619 	{ spurious_interrupt_bug,      xen_spurious_interrupt_bug,      false },
620 	{ coprocessor_error,           xen_coprocessor_error,           false },
621 	{ alignment_check,             xen_alignment_check,             false },
622 	{ simd_coprocessor_error,      xen_simd_coprocessor_error,      false },
623 };
624 
625 static bool __ref get_trap_addr(void **addr, unsigned int ist)
626 {
627 	unsigned int nr;
628 	bool ist_okay = false;
629 
630 	/*
631 	 * Replace trap handler addresses by Xen specific ones.
632 	 * Check for known traps using IST and whitelist them.
633 	 * The debugger ones are the only ones we care about.
634 	 * Xen will handle faults like double_fault, * so we should never see
635 	 * them.  Warn if there's an unexpected IST-using fault handler.
636 	 */
637 	for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
638 		struct trap_array_entry *entry = trap_array + nr;
639 
640 		if (*addr == entry->orig) {
641 			*addr = entry->xen;
642 			ist_okay = entry->ist_okay;
643 			break;
644 		}
645 	}
646 
647 	if (nr == ARRAY_SIZE(trap_array) &&
648 	    *addr >= (void *)early_idt_handler_array[0] &&
649 	    *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
650 		nr = (*addr - (void *)early_idt_handler_array[0]) /
651 		     EARLY_IDT_HANDLER_SIZE;
652 		*addr = (void *)xen_early_idt_handler_array[nr];
653 	}
654 
655 	if (WARN_ON(ist != 0 && !ist_okay))
656 		return false;
657 
658 	return true;
659 }
660 #endif
661 
662 static int cvt_gate_to_trap(int vector, const gate_desc *val,
663 			    struct trap_info *info)
664 {
665 	unsigned long addr;
666 
667 	if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
668 		return 0;
669 
670 	info->vector = vector;
671 
672 	addr = gate_offset(val);
673 #ifdef CONFIG_X86_64
674 	if (!get_trap_addr((void **)&addr, val->bits.ist))
675 		return 0;
676 #endif	/* CONFIG_X86_64 */
677 	info->address = addr;
678 
679 	info->cs = gate_segment(val);
680 	info->flags = val->bits.dpl;
681 	/* interrupt gates clear IF */
682 	if (val->bits.type == GATE_INTERRUPT)
683 		info->flags |= 1 << 2;
684 
685 	return 1;
686 }
687 
688 /* Locations of each CPU's IDT */
689 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
690 
691 /* Set an IDT entry.  If the entry is part of the current IDT, then
692    also update Xen. */
693 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
694 {
695 	unsigned long p = (unsigned long)&dt[entrynum];
696 	unsigned long start, end;
697 
698 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
699 
700 	preempt_disable();
701 
702 	start = __this_cpu_read(idt_desc.address);
703 	end = start + __this_cpu_read(idt_desc.size) + 1;
704 
705 	xen_mc_flush();
706 
707 	native_write_idt_entry(dt, entrynum, g);
708 
709 	if (p >= start && (p + 8) <= end) {
710 		struct trap_info info[2];
711 
712 		info[1].address = 0;
713 
714 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
715 			if (HYPERVISOR_set_trap_table(info))
716 				BUG();
717 	}
718 
719 	preempt_enable();
720 }
721 
722 static void xen_convert_trap_info(const struct desc_ptr *desc,
723 				  struct trap_info *traps)
724 {
725 	unsigned in, out, count;
726 
727 	count = (desc->size+1) / sizeof(gate_desc);
728 	BUG_ON(count > 256);
729 
730 	for (in = out = 0; in < count; in++) {
731 		gate_desc *entry = (gate_desc *)(desc->address) + in;
732 
733 		if (cvt_gate_to_trap(in, entry, &traps[out]))
734 			out++;
735 	}
736 	traps[out].address = 0;
737 }
738 
739 void xen_copy_trap_info(struct trap_info *traps)
740 {
741 	const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
742 
743 	xen_convert_trap_info(desc, traps);
744 }
745 
746 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
747    hold a spinlock to protect the static traps[] array (static because
748    it avoids allocation, and saves stack space). */
749 static void xen_load_idt(const struct desc_ptr *desc)
750 {
751 	static DEFINE_SPINLOCK(lock);
752 	static struct trap_info traps[257];
753 
754 	trace_xen_cpu_load_idt(desc);
755 
756 	spin_lock(&lock);
757 
758 	memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
759 
760 	xen_convert_trap_info(desc, traps);
761 
762 	xen_mc_flush();
763 	if (HYPERVISOR_set_trap_table(traps))
764 		BUG();
765 
766 	spin_unlock(&lock);
767 }
768 
769 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
770    they're handled differently. */
771 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
772 				const void *desc, int type)
773 {
774 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
775 
776 	preempt_disable();
777 
778 	switch (type) {
779 	case DESC_LDT:
780 	case DESC_TSS:
781 		/* ignore */
782 		break;
783 
784 	default: {
785 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
786 
787 		xen_mc_flush();
788 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
789 			BUG();
790 	}
791 
792 	}
793 
794 	preempt_enable();
795 }
796 
797 /*
798  * Version of write_gdt_entry for use at early boot-time needed to
799  * update an entry as simply as possible.
800  */
801 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
802 					    const void *desc, int type)
803 {
804 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
805 
806 	switch (type) {
807 	case DESC_LDT:
808 	case DESC_TSS:
809 		/* ignore */
810 		break;
811 
812 	default: {
813 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
814 
815 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
816 			dt[entry] = *(struct desc_struct *)desc;
817 	}
818 
819 	}
820 }
821 
822 static void xen_load_sp0(unsigned long sp0)
823 {
824 	struct multicall_space mcs;
825 
826 	mcs = xen_mc_entry(0);
827 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
828 	xen_mc_issue(PARAVIRT_LAZY_CPU);
829 	this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
830 }
831 
832 void xen_set_iopl_mask(unsigned mask)
833 {
834 	struct physdev_set_iopl set_iopl;
835 
836 	/* Force the change at ring 0. */
837 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
838 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
839 }
840 
841 static void xen_io_delay(void)
842 {
843 }
844 
845 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
846 
847 static unsigned long xen_read_cr0(void)
848 {
849 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
850 
851 	if (unlikely(cr0 == 0)) {
852 		cr0 = native_read_cr0();
853 		this_cpu_write(xen_cr0_value, cr0);
854 	}
855 
856 	return cr0;
857 }
858 
859 static void xen_write_cr0(unsigned long cr0)
860 {
861 	struct multicall_space mcs;
862 
863 	this_cpu_write(xen_cr0_value, cr0);
864 
865 	/* Only pay attention to cr0.TS; everything else is
866 	   ignored. */
867 	mcs = xen_mc_entry(0);
868 
869 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
870 
871 	xen_mc_issue(PARAVIRT_LAZY_CPU);
872 }
873 
874 static void xen_write_cr4(unsigned long cr4)
875 {
876 	cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
877 
878 	native_write_cr4(cr4);
879 }
880 #ifdef CONFIG_X86_64
881 static inline unsigned long xen_read_cr8(void)
882 {
883 	return 0;
884 }
885 static inline void xen_write_cr8(unsigned long val)
886 {
887 	BUG_ON(val);
888 }
889 #endif
890 
891 static u64 xen_read_msr_safe(unsigned int msr, int *err)
892 {
893 	u64 val;
894 
895 	if (pmu_msr_read(msr, &val, err))
896 		return val;
897 
898 	val = native_read_msr_safe(msr, err);
899 	switch (msr) {
900 	case MSR_IA32_APICBASE:
901 		val &= ~X2APIC_ENABLE;
902 		break;
903 	}
904 	return val;
905 }
906 
907 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
908 {
909 	int ret;
910 
911 	ret = 0;
912 
913 	switch (msr) {
914 #ifdef CONFIG_X86_64
915 		unsigned which;
916 		u64 base;
917 
918 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
919 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
920 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
921 
922 	set:
923 		base = ((u64)high << 32) | low;
924 		if (HYPERVISOR_set_segment_base(which, base) != 0)
925 			ret = -EIO;
926 		break;
927 #endif
928 
929 	case MSR_STAR:
930 	case MSR_CSTAR:
931 	case MSR_LSTAR:
932 	case MSR_SYSCALL_MASK:
933 	case MSR_IA32_SYSENTER_CS:
934 	case MSR_IA32_SYSENTER_ESP:
935 	case MSR_IA32_SYSENTER_EIP:
936 		/* Fast syscall setup is all done in hypercalls, so
937 		   these are all ignored.  Stub them out here to stop
938 		   Xen console noise. */
939 		break;
940 
941 	default:
942 		if (!pmu_msr_write(msr, low, high, &ret))
943 			ret = native_write_msr_safe(msr, low, high);
944 	}
945 
946 	return ret;
947 }
948 
949 static u64 xen_read_msr(unsigned int msr)
950 {
951 	/*
952 	 * This will silently swallow a #GP from RDMSR.  It may be worth
953 	 * changing that.
954 	 */
955 	int err;
956 
957 	return xen_read_msr_safe(msr, &err);
958 }
959 
960 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
961 {
962 	/*
963 	 * This will silently swallow a #GP from WRMSR.  It may be worth
964 	 * changing that.
965 	 */
966 	xen_write_msr_safe(msr, low, high);
967 }
968 
969 /* This is called once we have the cpu_possible_mask */
970 void __init xen_setup_vcpu_info_placement(void)
971 {
972 	int cpu;
973 
974 	for_each_possible_cpu(cpu) {
975 		/* Set up direct vCPU id mapping for PV guests. */
976 		per_cpu(xen_vcpu_id, cpu) = cpu;
977 
978 		/*
979 		 * xen_vcpu_setup(cpu) can fail  -- in which case it
980 		 * falls back to the shared_info version for cpus
981 		 * where xen_vcpu_nr(cpu) < MAX_VIRT_CPUS.
982 		 *
983 		 * xen_cpu_up_prepare_pv() handles the rest by failing
984 		 * them in hotplug.
985 		 */
986 		(void) xen_vcpu_setup(cpu);
987 	}
988 
989 	/*
990 	 * xen_vcpu_setup managed to place the vcpu_info within the
991 	 * percpu area for all cpus, so make use of it.
992 	 */
993 	if (xen_have_vcpu_info_placement) {
994 		pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
995 		pv_ops.irq.restore_fl =
996 			__PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
997 		pv_ops.irq.irq_disable =
998 			__PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
999 		pv_ops.irq.irq_enable =
1000 			__PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1001 		pv_ops.mmu.read_cr2 = xen_read_cr2_direct;
1002 	}
1003 }
1004 
1005 static const struct pv_info xen_info __initconst = {
1006 	.shared_kernel_pmd = 0,
1007 
1008 #ifdef CONFIG_X86_64
1009 	.extra_user_64bit_cs = FLAT_USER_CS64,
1010 #endif
1011 	.name = "Xen",
1012 };
1013 
1014 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1015 	.cpuid = xen_cpuid,
1016 
1017 	.set_debugreg = xen_set_debugreg,
1018 	.get_debugreg = xen_get_debugreg,
1019 
1020 	.read_cr0 = xen_read_cr0,
1021 	.write_cr0 = xen_write_cr0,
1022 
1023 	.write_cr4 = xen_write_cr4,
1024 
1025 #ifdef CONFIG_X86_64
1026 	.read_cr8 = xen_read_cr8,
1027 	.write_cr8 = xen_write_cr8,
1028 #endif
1029 
1030 	.wbinvd = native_wbinvd,
1031 
1032 	.read_msr = xen_read_msr,
1033 	.write_msr = xen_write_msr,
1034 
1035 	.read_msr_safe = xen_read_msr_safe,
1036 	.write_msr_safe = xen_write_msr_safe,
1037 
1038 	.read_pmc = xen_read_pmc,
1039 
1040 	.iret = xen_iret,
1041 #ifdef CONFIG_X86_64
1042 	.usergs_sysret64 = xen_sysret64,
1043 #endif
1044 
1045 	.load_tr_desc = paravirt_nop,
1046 	.set_ldt = xen_set_ldt,
1047 	.load_gdt = xen_load_gdt,
1048 	.load_idt = xen_load_idt,
1049 	.load_tls = xen_load_tls,
1050 #ifdef CONFIG_X86_64
1051 	.load_gs_index = xen_load_gs_index,
1052 #endif
1053 
1054 	.alloc_ldt = xen_alloc_ldt,
1055 	.free_ldt = xen_free_ldt,
1056 
1057 	.store_tr = xen_store_tr,
1058 
1059 	.write_ldt_entry = xen_write_ldt_entry,
1060 	.write_gdt_entry = xen_write_gdt_entry,
1061 	.write_idt_entry = xen_write_idt_entry,
1062 	.load_sp0 = xen_load_sp0,
1063 
1064 	.set_iopl_mask = xen_set_iopl_mask,
1065 	.io_delay = xen_io_delay,
1066 
1067 	/* Xen takes care of %gs when switching to usermode for us */
1068 	.swapgs = paravirt_nop,
1069 
1070 	.start_context_switch = paravirt_start_context_switch,
1071 	.end_context_switch = xen_end_context_switch,
1072 };
1073 
1074 static void xen_restart(char *msg)
1075 {
1076 	xen_reboot(SHUTDOWN_reboot);
1077 }
1078 
1079 static void xen_machine_halt(void)
1080 {
1081 	xen_reboot(SHUTDOWN_poweroff);
1082 }
1083 
1084 static void xen_machine_power_off(void)
1085 {
1086 	if (pm_power_off)
1087 		pm_power_off();
1088 	xen_reboot(SHUTDOWN_poweroff);
1089 }
1090 
1091 static void xen_crash_shutdown(struct pt_regs *regs)
1092 {
1093 	xen_reboot(SHUTDOWN_crash);
1094 }
1095 
1096 static const struct machine_ops xen_machine_ops __initconst = {
1097 	.restart = xen_restart,
1098 	.halt = xen_machine_halt,
1099 	.power_off = xen_machine_power_off,
1100 	.shutdown = xen_machine_halt,
1101 	.crash_shutdown = xen_crash_shutdown,
1102 	.emergency_restart = xen_emergency_restart,
1103 };
1104 
1105 static unsigned char xen_get_nmi_reason(void)
1106 {
1107 	unsigned char reason = 0;
1108 
1109 	/* Construct a value which looks like it came from port 0x61. */
1110 	if (test_bit(_XEN_NMIREASON_io_error,
1111 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1112 		reason |= NMI_REASON_IOCHK;
1113 	if (test_bit(_XEN_NMIREASON_pci_serr,
1114 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1115 		reason |= NMI_REASON_SERR;
1116 
1117 	return reason;
1118 }
1119 
1120 static void __init xen_boot_params_init_edd(void)
1121 {
1122 #if IS_ENABLED(CONFIG_EDD)
1123 	struct xen_platform_op op;
1124 	struct edd_info *edd_info;
1125 	u32 *mbr_signature;
1126 	unsigned nr;
1127 	int ret;
1128 
1129 	edd_info = boot_params.eddbuf;
1130 	mbr_signature = boot_params.edd_mbr_sig_buffer;
1131 
1132 	op.cmd = XENPF_firmware_info;
1133 
1134 	op.u.firmware_info.type = XEN_FW_DISK_INFO;
1135 	for (nr = 0; nr < EDDMAXNR; nr++) {
1136 		struct edd_info *info = edd_info + nr;
1137 
1138 		op.u.firmware_info.index = nr;
1139 		info->params.length = sizeof(info->params);
1140 		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1141 				     &info->params);
1142 		ret = HYPERVISOR_platform_op(&op);
1143 		if (ret)
1144 			break;
1145 
1146 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1147 		C(device);
1148 		C(version);
1149 		C(interface_support);
1150 		C(legacy_max_cylinder);
1151 		C(legacy_max_head);
1152 		C(legacy_sectors_per_track);
1153 #undef C
1154 	}
1155 	boot_params.eddbuf_entries = nr;
1156 
1157 	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1158 	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1159 		op.u.firmware_info.index = nr;
1160 		ret = HYPERVISOR_platform_op(&op);
1161 		if (ret)
1162 			break;
1163 		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1164 	}
1165 	boot_params.edd_mbr_sig_buf_entries = nr;
1166 #endif
1167 }
1168 
1169 /*
1170  * Set up the GDT and segment registers for -fstack-protector.  Until
1171  * we do this, we have to be careful not to call any stack-protected
1172  * function, which is most of the kernel.
1173  */
1174 static void __init xen_setup_gdt(int cpu)
1175 {
1176 	pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot;
1177 	pv_ops.cpu.load_gdt = xen_load_gdt_boot;
1178 
1179 	setup_stack_canary_segment(cpu);
1180 	switch_to_new_gdt(cpu);
1181 
1182 	pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry;
1183 	pv_ops.cpu.load_gdt = xen_load_gdt;
1184 }
1185 
1186 static void __init xen_dom0_set_legacy_features(void)
1187 {
1188 	x86_platform.legacy.rtc = 1;
1189 }
1190 
1191 /* First C function to be called on Xen boot */
1192 asmlinkage __visible void __init xen_start_kernel(void)
1193 {
1194 	struct physdev_set_iopl set_iopl;
1195 	unsigned long initrd_start = 0;
1196 	int rc;
1197 
1198 	if (!xen_start_info)
1199 		return;
1200 
1201 	xen_domain_type = XEN_PV_DOMAIN;
1202 	xen_start_flags = xen_start_info->flags;
1203 
1204 	xen_setup_features();
1205 
1206 	/* Install Xen paravirt ops */
1207 	pv_info = xen_info;
1208 	pv_ops.init.patch = paravirt_patch_default;
1209 	pv_ops.cpu = xen_cpu_ops;
1210 	xen_init_irq_ops();
1211 
1212 	/*
1213 	 * Setup xen_vcpu early because it is needed for
1214 	 * local_irq_disable(), irqs_disabled(), e.g. in printk().
1215 	 *
1216 	 * Don't do the full vcpu_info placement stuff until we have
1217 	 * the cpu_possible_mask and a non-dummy shared_info.
1218 	 */
1219 	xen_vcpu_info_reset(0);
1220 
1221 	x86_platform.get_nmi_reason = xen_get_nmi_reason;
1222 
1223 	x86_init.resources.memory_setup = xen_memory_setup;
1224 	x86_init.irqs.intr_mode_init	= x86_init_noop;
1225 	x86_init.oem.arch_setup = xen_arch_setup;
1226 	x86_init.oem.banner = xen_banner;
1227 	x86_init.hyper.init_platform = xen_pv_init_platform;
1228 	x86_init.hyper.guest_late_init = xen_pv_guest_late_init;
1229 
1230 	/*
1231 	 * Set up some pagetable state before starting to set any ptes.
1232 	 */
1233 
1234 	xen_setup_machphys_mapping();
1235 	xen_init_mmu_ops();
1236 
1237 	/* Prevent unwanted bits from being set in PTEs. */
1238 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1239 	__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
1240 
1241 	/*
1242 	 * Prevent page tables from being allocated in highmem, even
1243 	 * if CONFIG_HIGHPTE is enabled.
1244 	 */
1245 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1246 
1247 	/* Get mfn list */
1248 	xen_build_dynamic_phys_to_machine();
1249 
1250 	/*
1251 	 * Set up kernel GDT and segment registers, mainly so that
1252 	 * -fstack-protector code can be executed.
1253 	 */
1254 	xen_setup_gdt(0);
1255 
1256 	/* Work out if we support NX */
1257 	get_cpu_cap(&boot_cpu_data);
1258 	x86_configure_nx();
1259 
1260 	/* Determine virtual and physical address sizes */
1261 	get_cpu_address_sizes(&boot_cpu_data);
1262 
1263 	/* Let's presume PV guests always boot on vCPU with id 0. */
1264 	per_cpu(xen_vcpu_id, 0) = 0;
1265 
1266 	idt_setup_early_handler();
1267 
1268 	xen_init_capabilities();
1269 
1270 #ifdef CONFIG_X86_LOCAL_APIC
1271 	/*
1272 	 * set up the basic apic ops.
1273 	 */
1274 	xen_init_apic();
1275 #endif
1276 
1277 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1278 		pv_ops.mmu.ptep_modify_prot_start =
1279 			xen_ptep_modify_prot_start;
1280 		pv_ops.mmu.ptep_modify_prot_commit =
1281 			xen_ptep_modify_prot_commit;
1282 	}
1283 
1284 	machine_ops = xen_machine_ops;
1285 
1286 	/*
1287 	 * The only reliable way to retain the initial address of the
1288 	 * percpu gdt_page is to remember it here, so we can go and
1289 	 * mark it RW later, when the initial percpu area is freed.
1290 	 */
1291 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1292 
1293 	xen_smp_init();
1294 
1295 #ifdef CONFIG_ACPI_NUMA
1296 	/*
1297 	 * The pages we from Xen are not related to machine pages, so
1298 	 * any NUMA information the kernel tries to get from ACPI will
1299 	 * be meaningless.  Prevent it from trying.
1300 	 */
1301 	acpi_numa = -1;
1302 #endif
1303 	WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1304 
1305 	local_irq_disable();
1306 	early_boot_irqs_disabled = true;
1307 
1308 	xen_raw_console_write("mapping kernel into physical memory\n");
1309 	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1310 				   xen_start_info->nr_pages);
1311 	xen_reserve_special_pages();
1312 
1313 	/* keep using Xen gdt for now; no urgent need to change it */
1314 
1315 #ifdef CONFIG_X86_32
1316 	pv_info.kernel_rpl = 1;
1317 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1318 		pv_info.kernel_rpl = 0;
1319 #else
1320 	pv_info.kernel_rpl = 0;
1321 #endif
1322 	/* set the limit of our address space */
1323 	xen_reserve_top();
1324 
1325 	/*
1326 	 * We used to do this in xen_arch_setup, but that is too late
1327 	 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1328 	 * early_amd_init which pokes 0xcf8 port.
1329 	 */
1330 	set_iopl.iopl = 1;
1331 	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1332 	if (rc != 0)
1333 		xen_raw_printk("physdev_op failed %d\n", rc);
1334 
1335 #ifdef CONFIG_X86_32
1336 	/* set up basic CPUID stuff */
1337 	cpu_detect(&new_cpu_data);
1338 	set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1339 	new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1340 #endif
1341 
1342 	if (xen_start_info->mod_start) {
1343 	    if (xen_start_info->flags & SIF_MOD_START_PFN)
1344 		initrd_start = PFN_PHYS(xen_start_info->mod_start);
1345 	    else
1346 		initrd_start = __pa(xen_start_info->mod_start);
1347 	}
1348 
1349 	/* Poke various useful things into boot_params */
1350 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1351 	boot_params.hdr.ramdisk_image = initrd_start;
1352 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1353 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1354 	boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1355 
1356 	if (!xen_initial_domain()) {
1357 		add_preferred_console("xenboot", 0, NULL);
1358 		if (pci_xen)
1359 			x86_init.pci.arch_init = pci_xen_init;
1360 	} else {
1361 		const struct dom0_vga_console_info *info =
1362 			(void *)((char *)xen_start_info +
1363 				 xen_start_info->console.dom0.info_off);
1364 		struct xen_platform_op op = {
1365 			.cmd = XENPF_firmware_info,
1366 			.interface_version = XENPF_INTERFACE_VERSION,
1367 			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1368 		};
1369 
1370 		x86_platform.set_legacy_features =
1371 				xen_dom0_set_legacy_features;
1372 		xen_init_vga(info, xen_start_info->console.dom0.info_size);
1373 		xen_start_info->console.domU.mfn = 0;
1374 		xen_start_info->console.domU.evtchn = 0;
1375 
1376 		if (HYPERVISOR_platform_op(&op) == 0)
1377 			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1378 
1379 		/* Make sure ACS will be enabled */
1380 		pci_request_acs();
1381 
1382 		xen_acpi_sleep_register();
1383 
1384 		/* Avoid searching for BIOS MP tables */
1385 		x86_init.mpparse.find_smp_config = x86_init_noop;
1386 		x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1387 
1388 		xen_boot_params_init_edd();
1389 	}
1390 
1391 	if (!boot_params.screen_info.orig_video_isVGA)
1392 		add_preferred_console("tty", 0, NULL);
1393 	add_preferred_console("hvc", 0, NULL);
1394 	if (boot_params.screen_info.orig_video_isVGA)
1395 		add_preferred_console("tty", 0, NULL);
1396 
1397 #ifdef CONFIG_PCI
1398 	/* PCI BIOS service won't work from a PV guest. */
1399 	pci_probe &= ~PCI_PROBE_BIOS;
1400 #endif
1401 	xen_raw_console_write("about to get started...\n");
1402 
1403 	/* We need this for printk timestamps */
1404 	xen_setup_runstate_info(0);
1405 
1406 	xen_efi_init(&boot_params);
1407 
1408 	/* Start the world */
1409 #ifdef CONFIG_X86_32
1410 	i386_start_kernel();
1411 #else
1412 	cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1413 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1414 #endif
1415 }
1416 
1417 static int xen_cpu_up_prepare_pv(unsigned int cpu)
1418 {
1419 	int rc;
1420 
1421 	if (per_cpu(xen_vcpu, cpu) == NULL)
1422 		return -ENODEV;
1423 
1424 	xen_setup_timer(cpu);
1425 
1426 	rc = xen_smp_intr_init(cpu);
1427 	if (rc) {
1428 		WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1429 		     cpu, rc);
1430 		return rc;
1431 	}
1432 
1433 	rc = xen_smp_intr_init_pv(cpu);
1434 	if (rc) {
1435 		WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1436 		     cpu, rc);
1437 		return rc;
1438 	}
1439 
1440 	return 0;
1441 }
1442 
1443 static int xen_cpu_dead_pv(unsigned int cpu)
1444 {
1445 	xen_smp_intr_free(cpu);
1446 	xen_smp_intr_free_pv(cpu);
1447 
1448 	xen_teardown_timer(cpu);
1449 
1450 	return 0;
1451 }
1452 
1453 static uint32_t __init xen_platform_pv(void)
1454 {
1455 	if (xen_pv_domain())
1456 		return xen_cpuid_base();
1457 
1458 	return 0;
1459 }
1460 
1461 const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1462 	.name                   = "Xen PV",
1463 	.detect                 = xen_platform_pv,
1464 	.type			= X86_HYPER_XEN_PV,
1465 	.runtime.pin_vcpu       = xen_pin_vcpu,
1466 };
1467