xref: /openbmc/linux/arch/x86/xen/enlighten_pv.c (revision be122522)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Core of Xen paravirt_ops implementation.
4  *
5  * This file contains the xen_paravirt_ops structure itself, and the
6  * implementations for:
7  * - privileged instructions
8  * - interrupt flags
9  * - segment operations
10  * - booting and setup
11  *
12  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
13  */
14 
15 #include <linux/cpu.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/smp.h>
19 #include <linux/preempt.h>
20 #include <linux/hardirq.h>
21 #include <linux/percpu.h>
22 #include <linux/delay.h>
23 #include <linux/start_kernel.h>
24 #include <linux/sched.h>
25 #include <linux/kprobes.h>
26 #include <linux/memblock.h>
27 #include <linux/export.h>
28 #include <linux/mm.h>
29 #include <linux/page-flags.h>
30 #include <linux/highmem.h>
31 #include <linux/console.h>
32 #include <linux/pci.h>
33 #include <linux/gfp.h>
34 #include <linux/edd.h>
35 #include <linux/frame.h>
36 
37 #include <xen/xen.h>
38 #include <xen/events.h>
39 #include <xen/interface/xen.h>
40 #include <xen/interface/version.h>
41 #include <xen/interface/physdev.h>
42 #include <xen/interface/vcpu.h>
43 #include <xen/interface/memory.h>
44 #include <xen/interface/nmi.h>
45 #include <xen/interface/xen-mca.h>
46 #include <xen/features.h>
47 #include <xen/page.h>
48 #include <xen/hvc-console.h>
49 #include <xen/acpi.h>
50 
51 #include <asm/paravirt.h>
52 #include <asm/apic.h>
53 #include <asm/page.h>
54 #include <asm/xen/pci.h>
55 #include <asm/xen/hypercall.h>
56 #include <asm/xen/hypervisor.h>
57 #include <asm/xen/cpuid.h>
58 #include <asm/fixmap.h>
59 #include <asm/processor.h>
60 #include <asm/proto.h>
61 #include <asm/msr-index.h>
62 #include <asm/traps.h>
63 #include <asm/setup.h>
64 #include <asm/desc.h>
65 #include <asm/pgalloc.h>
66 #include <asm/pgtable.h>
67 #include <asm/tlbflush.h>
68 #include <asm/reboot.h>
69 #include <asm/stackprotector.h>
70 #include <asm/hypervisor.h>
71 #include <asm/mach_traps.h>
72 #include <asm/mwait.h>
73 #include <asm/pci_x86.h>
74 #include <asm/cpu.h>
75 
76 #ifdef CONFIG_ACPI
77 #include <linux/acpi.h>
78 #include <asm/acpi.h>
79 #include <acpi/pdc_intel.h>
80 #include <acpi/processor.h>
81 #include <xen/interface/platform.h>
82 #endif
83 
84 #include "xen-ops.h"
85 #include "mmu.h"
86 #include "smp.h"
87 #include "multicalls.h"
88 #include "pmu.h"
89 
90 #include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
91 
92 void *xen_initial_gdt;
93 
94 static int xen_cpu_up_prepare_pv(unsigned int cpu);
95 static int xen_cpu_dead_pv(unsigned int cpu);
96 
97 struct tls_descs {
98 	struct desc_struct desc[3];
99 };
100 
101 /*
102  * Updating the 3 TLS descriptors in the GDT on every task switch is
103  * surprisingly expensive so we avoid updating them if they haven't
104  * changed.  Since Xen writes different descriptors than the one
105  * passed in the update_descriptor hypercall we keep shadow copies to
106  * compare against.
107  */
108 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
109 
110 static void __init xen_banner(void)
111 {
112 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
113 	struct xen_extraversion extra;
114 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
115 
116 	pr_info("Booting paravirtualized kernel on %s\n", pv_info.name);
117 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
118 	       version >> 16, version & 0xffff, extra.extraversion,
119 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
120 
121 #ifdef CONFIG_X86_32
122 	pr_warn("WARNING! WARNING! WARNING! WARNING! WARNING! WARNING! WARNING!\n"
123 		"Support for running as 32-bit PV-guest under Xen will soon be removed\n"
124 		"from the Linux kernel!\n"
125 		"Please use either a 64-bit kernel or switch to HVM or PVH mode!\n"
126 		"WARNING! WARNING! WARNING! WARNING! WARNING! WARNING! WARNING!\n");
127 #endif
128 }
129 
130 static void __init xen_pv_init_platform(void)
131 {
132 	populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP));
133 
134 	set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
135 	HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
136 
137 	/* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */
138 	xen_vcpu_info_reset(0);
139 
140 	/* pvclock is in shared info area */
141 	xen_init_time_ops();
142 }
143 
144 static void __init xen_pv_guest_late_init(void)
145 {
146 #ifndef CONFIG_SMP
147 	/* Setup shared vcpu info for non-smp configurations */
148 	xen_setup_vcpu_info_placement();
149 #endif
150 }
151 
152 /* Check if running on Xen version (major, minor) or later */
153 bool
154 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
155 {
156 	unsigned int version;
157 
158 	if (!xen_domain())
159 		return false;
160 
161 	version = HYPERVISOR_xen_version(XENVER_version, NULL);
162 	if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
163 		((version >> 16) > major))
164 		return true;
165 	return false;
166 }
167 
168 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
169 static __read_mostly unsigned int cpuid_leaf5_edx_val;
170 
171 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
172 		      unsigned int *cx, unsigned int *dx)
173 {
174 	unsigned maskebx = ~0;
175 
176 	/*
177 	 * Mask out inconvenient features, to try and disable as many
178 	 * unsupported kernel subsystems as possible.
179 	 */
180 	switch (*ax) {
181 	case CPUID_MWAIT_LEAF:
182 		/* Synthesize the values.. */
183 		*ax = 0;
184 		*bx = 0;
185 		*cx = cpuid_leaf5_ecx_val;
186 		*dx = cpuid_leaf5_edx_val;
187 		return;
188 
189 	case 0xb:
190 		/* Suppress extended topology stuff */
191 		maskebx = 0;
192 		break;
193 	}
194 
195 	asm(XEN_EMULATE_PREFIX "cpuid"
196 		: "=a" (*ax),
197 		  "=b" (*bx),
198 		  "=c" (*cx),
199 		  "=d" (*dx)
200 		: "0" (*ax), "2" (*cx));
201 
202 	*bx &= maskebx;
203 }
204 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
205 
206 static bool __init xen_check_mwait(void)
207 {
208 #ifdef CONFIG_ACPI
209 	struct xen_platform_op op = {
210 		.cmd			= XENPF_set_processor_pminfo,
211 		.u.set_pminfo.id	= -1,
212 		.u.set_pminfo.type	= XEN_PM_PDC,
213 	};
214 	uint32_t buf[3];
215 	unsigned int ax, bx, cx, dx;
216 	unsigned int mwait_mask;
217 
218 	/* We need to determine whether it is OK to expose the MWAIT
219 	 * capability to the kernel to harvest deeper than C3 states from ACPI
220 	 * _CST using the processor_harvest_xen.c module. For this to work, we
221 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
222 	 * checks against). The hypervisor won't expose the MWAIT flag because
223 	 * it would break backwards compatibility; so we will find out directly
224 	 * from the hardware and hypercall.
225 	 */
226 	if (!xen_initial_domain())
227 		return false;
228 
229 	/*
230 	 * When running under platform earlier than Xen4.2, do not expose
231 	 * mwait, to avoid the risk of loading native acpi pad driver
232 	 */
233 	if (!xen_running_on_version_or_later(4, 2))
234 		return false;
235 
236 	ax = 1;
237 	cx = 0;
238 
239 	native_cpuid(&ax, &bx, &cx, &dx);
240 
241 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
242 		     (1 << (X86_FEATURE_MWAIT % 32));
243 
244 	if ((cx & mwait_mask) != mwait_mask)
245 		return false;
246 
247 	/* We need to emulate the MWAIT_LEAF and for that we need both
248 	 * ecx and edx. The hypercall provides only partial information.
249 	 */
250 
251 	ax = CPUID_MWAIT_LEAF;
252 	bx = 0;
253 	cx = 0;
254 	dx = 0;
255 
256 	native_cpuid(&ax, &bx, &cx, &dx);
257 
258 	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
259 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
260 	 */
261 	buf[0] = ACPI_PDC_REVISION_ID;
262 	buf[1] = 1;
263 	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
264 
265 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
266 
267 	if ((HYPERVISOR_platform_op(&op) == 0) &&
268 	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
269 		cpuid_leaf5_ecx_val = cx;
270 		cpuid_leaf5_edx_val = dx;
271 	}
272 	return true;
273 #else
274 	return false;
275 #endif
276 }
277 
278 static bool __init xen_check_xsave(void)
279 {
280 	unsigned int cx, xsave_mask;
281 
282 	cx = cpuid_ecx(1);
283 
284 	xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
285 		     (1 << (X86_FEATURE_OSXSAVE % 32));
286 
287 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
288 	return (cx & xsave_mask) == xsave_mask;
289 }
290 
291 static void __init xen_init_capabilities(void)
292 {
293 	setup_force_cpu_cap(X86_FEATURE_XENPV);
294 	setup_clear_cpu_cap(X86_FEATURE_DCA);
295 	setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
296 	setup_clear_cpu_cap(X86_FEATURE_MTRR);
297 	setup_clear_cpu_cap(X86_FEATURE_ACC);
298 	setup_clear_cpu_cap(X86_FEATURE_X2APIC);
299 	setup_clear_cpu_cap(X86_FEATURE_SME);
300 
301 	/*
302 	 * Xen PV would need some work to support PCID: CR3 handling as well
303 	 * as xen_flush_tlb_others() would need updating.
304 	 */
305 	setup_clear_cpu_cap(X86_FEATURE_PCID);
306 
307 	if (!xen_initial_domain())
308 		setup_clear_cpu_cap(X86_FEATURE_ACPI);
309 
310 	if (xen_check_mwait())
311 		setup_force_cpu_cap(X86_FEATURE_MWAIT);
312 	else
313 		setup_clear_cpu_cap(X86_FEATURE_MWAIT);
314 
315 	if (!xen_check_xsave()) {
316 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
317 		setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
318 	}
319 }
320 
321 static void xen_set_debugreg(int reg, unsigned long val)
322 {
323 	HYPERVISOR_set_debugreg(reg, val);
324 }
325 
326 static unsigned long xen_get_debugreg(int reg)
327 {
328 	return HYPERVISOR_get_debugreg(reg);
329 }
330 
331 static void xen_end_context_switch(struct task_struct *next)
332 {
333 	xen_mc_flush();
334 	paravirt_end_context_switch(next);
335 }
336 
337 static unsigned long xen_store_tr(void)
338 {
339 	return 0;
340 }
341 
342 /*
343  * Set the page permissions for a particular virtual address.  If the
344  * address is a vmalloc mapping (or other non-linear mapping), then
345  * find the linear mapping of the page and also set its protections to
346  * match.
347  */
348 static void set_aliased_prot(void *v, pgprot_t prot)
349 {
350 	int level;
351 	pte_t *ptep;
352 	pte_t pte;
353 	unsigned long pfn;
354 	struct page *page;
355 	unsigned char dummy;
356 
357 	ptep = lookup_address((unsigned long)v, &level);
358 	BUG_ON(ptep == NULL);
359 
360 	pfn = pte_pfn(*ptep);
361 	page = pfn_to_page(pfn);
362 
363 	pte = pfn_pte(pfn, prot);
364 
365 	/*
366 	 * Careful: update_va_mapping() will fail if the virtual address
367 	 * we're poking isn't populated in the page tables.  We don't
368 	 * need to worry about the direct map (that's always in the page
369 	 * tables), but we need to be careful about vmap space.  In
370 	 * particular, the top level page table can lazily propagate
371 	 * entries between processes, so if we've switched mms since we
372 	 * vmapped the target in the first place, we might not have the
373 	 * top-level page table entry populated.
374 	 *
375 	 * We disable preemption because we want the same mm active when
376 	 * we probe the target and when we issue the hypercall.  We'll
377 	 * have the same nominal mm, but if we're a kernel thread, lazy
378 	 * mm dropping could change our pgd.
379 	 *
380 	 * Out of an abundance of caution, this uses __get_user() to fault
381 	 * in the target address just in case there's some obscure case
382 	 * in which the target address isn't readable.
383 	 */
384 
385 	preempt_disable();
386 
387 	probe_kernel_read(&dummy, v, 1);
388 
389 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
390 		BUG();
391 
392 	if (!PageHighMem(page)) {
393 		void *av = __va(PFN_PHYS(pfn));
394 
395 		if (av != v)
396 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
397 				BUG();
398 	} else
399 		kmap_flush_unused();
400 
401 	preempt_enable();
402 }
403 
404 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
405 {
406 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
407 	int i;
408 
409 	/*
410 	 * We need to mark the all aliases of the LDT pages RO.  We
411 	 * don't need to call vm_flush_aliases(), though, since that's
412 	 * only responsible for flushing aliases out the TLBs, not the
413 	 * page tables, and Xen will flush the TLB for us if needed.
414 	 *
415 	 * To avoid confusing future readers: none of this is necessary
416 	 * to load the LDT.  The hypervisor only checks this when the
417 	 * LDT is faulted in due to subsequent descriptor access.
418 	 */
419 
420 	for (i = 0; i < entries; i += entries_per_page)
421 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
422 }
423 
424 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
425 {
426 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
427 	int i;
428 
429 	for (i = 0; i < entries; i += entries_per_page)
430 		set_aliased_prot(ldt + i, PAGE_KERNEL);
431 }
432 
433 static void xen_set_ldt(const void *addr, unsigned entries)
434 {
435 	struct mmuext_op *op;
436 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
437 
438 	trace_xen_cpu_set_ldt(addr, entries);
439 
440 	op = mcs.args;
441 	op->cmd = MMUEXT_SET_LDT;
442 	op->arg1.linear_addr = (unsigned long)addr;
443 	op->arg2.nr_ents = entries;
444 
445 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
446 
447 	xen_mc_issue(PARAVIRT_LAZY_CPU);
448 }
449 
450 static void xen_load_gdt(const struct desc_ptr *dtr)
451 {
452 	unsigned long va = dtr->address;
453 	unsigned int size = dtr->size + 1;
454 	unsigned long pfn, mfn;
455 	int level;
456 	pte_t *ptep;
457 	void *virt;
458 
459 	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
460 	BUG_ON(size > PAGE_SIZE);
461 	BUG_ON(va & ~PAGE_MASK);
462 
463 	/*
464 	 * The GDT is per-cpu and is in the percpu data area.
465 	 * That can be virtually mapped, so we need to do a
466 	 * page-walk to get the underlying MFN for the
467 	 * hypercall.  The page can also be in the kernel's
468 	 * linear range, so we need to RO that mapping too.
469 	 */
470 	ptep = lookup_address(va, &level);
471 	BUG_ON(ptep == NULL);
472 
473 	pfn = pte_pfn(*ptep);
474 	mfn = pfn_to_mfn(pfn);
475 	virt = __va(PFN_PHYS(pfn));
476 
477 	make_lowmem_page_readonly((void *)va);
478 	make_lowmem_page_readonly(virt);
479 
480 	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
481 		BUG();
482 }
483 
484 /*
485  * load_gdt for early boot, when the gdt is only mapped once
486  */
487 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
488 {
489 	unsigned long va = dtr->address;
490 	unsigned int size = dtr->size + 1;
491 	unsigned long pfn, mfn;
492 	pte_t pte;
493 
494 	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
495 	BUG_ON(size > PAGE_SIZE);
496 	BUG_ON(va & ~PAGE_MASK);
497 
498 	pfn = virt_to_pfn(va);
499 	mfn = pfn_to_mfn(pfn);
500 
501 	pte = pfn_pte(pfn, PAGE_KERNEL_RO);
502 
503 	if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
504 		BUG();
505 
506 	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
507 		BUG();
508 }
509 
510 static inline bool desc_equal(const struct desc_struct *d1,
511 			      const struct desc_struct *d2)
512 {
513 	return !memcmp(d1, d2, sizeof(*d1));
514 }
515 
516 static void load_TLS_descriptor(struct thread_struct *t,
517 				unsigned int cpu, unsigned int i)
518 {
519 	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
520 	struct desc_struct *gdt;
521 	xmaddr_t maddr;
522 	struct multicall_space mc;
523 
524 	if (desc_equal(shadow, &t->tls_array[i]))
525 		return;
526 
527 	*shadow = t->tls_array[i];
528 
529 	gdt = get_cpu_gdt_rw(cpu);
530 	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
531 	mc = __xen_mc_entry(0);
532 
533 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
534 }
535 
536 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
537 {
538 	/*
539 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
540 	 * and lazy gs handling is enabled, it means we're in a
541 	 * context switch, and %gs has just been saved.  This means we
542 	 * can zero it out to prevent faults on exit from the
543 	 * hypervisor if the next process has no %gs.  Either way, it
544 	 * has been saved, and the new value will get loaded properly.
545 	 * This will go away as soon as Xen has been modified to not
546 	 * save/restore %gs for normal hypercalls.
547 	 *
548 	 * On x86_64, this hack is not used for %gs, because gs points
549 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
550 	 * must not zero %gs on x86_64
551 	 *
552 	 * For x86_64, we need to zero %fs, otherwise we may get an
553 	 * exception between the new %fs descriptor being loaded and
554 	 * %fs being effectively cleared at __switch_to().
555 	 */
556 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
557 #ifdef CONFIG_X86_32
558 		lazy_load_gs(0);
559 #else
560 		loadsegment(fs, 0);
561 #endif
562 	}
563 
564 	xen_mc_batch();
565 
566 	load_TLS_descriptor(t, cpu, 0);
567 	load_TLS_descriptor(t, cpu, 1);
568 	load_TLS_descriptor(t, cpu, 2);
569 
570 	xen_mc_issue(PARAVIRT_LAZY_CPU);
571 }
572 
573 #ifdef CONFIG_X86_64
574 static void xen_load_gs_index(unsigned int idx)
575 {
576 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
577 		BUG();
578 }
579 #endif
580 
581 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
582 				const void *ptr)
583 {
584 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
585 	u64 entry = *(u64 *)ptr;
586 
587 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
588 
589 	preempt_disable();
590 
591 	xen_mc_flush();
592 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
593 		BUG();
594 
595 	preempt_enable();
596 }
597 
598 #ifdef CONFIG_X86_64
599 struct trap_array_entry {
600 	void (*orig)(void);
601 	void (*xen)(void);
602 	bool ist_okay;
603 };
604 
605 static struct trap_array_entry trap_array[] = {
606 	{ debug,                       xen_xendebug,                    true },
607 	{ double_fault,                xen_double_fault,                true },
608 #ifdef CONFIG_X86_MCE
609 	{ machine_check,               xen_machine_check,               true },
610 #endif
611 	{ nmi,                         xen_xennmi,                      true },
612 	{ int3,                        xen_int3,                        false },
613 	{ overflow,                    xen_overflow,                    false },
614 #ifdef CONFIG_IA32_EMULATION
615 	{ entry_INT80_compat,          xen_entry_INT80_compat,          false },
616 #endif
617 	{ page_fault,                  xen_page_fault,                  false },
618 	{ divide_error,                xen_divide_error,                false },
619 	{ bounds,                      xen_bounds,                      false },
620 	{ invalid_op,                  xen_invalid_op,                  false },
621 	{ device_not_available,        xen_device_not_available,        false },
622 	{ coprocessor_segment_overrun, xen_coprocessor_segment_overrun, false },
623 	{ invalid_TSS,                 xen_invalid_TSS,                 false },
624 	{ segment_not_present,         xen_segment_not_present,         false },
625 	{ stack_segment,               xen_stack_segment,               false },
626 	{ general_protection,          xen_general_protection,          false },
627 	{ spurious_interrupt_bug,      xen_spurious_interrupt_bug,      false },
628 	{ coprocessor_error,           xen_coprocessor_error,           false },
629 	{ alignment_check,             xen_alignment_check,             false },
630 	{ simd_coprocessor_error,      xen_simd_coprocessor_error,      false },
631 };
632 
633 static bool __ref get_trap_addr(void **addr, unsigned int ist)
634 {
635 	unsigned int nr;
636 	bool ist_okay = false;
637 
638 	/*
639 	 * Replace trap handler addresses by Xen specific ones.
640 	 * Check for known traps using IST and whitelist them.
641 	 * The debugger ones are the only ones we care about.
642 	 * Xen will handle faults like double_fault, * so we should never see
643 	 * them.  Warn if there's an unexpected IST-using fault handler.
644 	 */
645 	for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
646 		struct trap_array_entry *entry = trap_array + nr;
647 
648 		if (*addr == entry->orig) {
649 			*addr = entry->xen;
650 			ist_okay = entry->ist_okay;
651 			break;
652 		}
653 	}
654 
655 	if (nr == ARRAY_SIZE(trap_array) &&
656 	    *addr >= (void *)early_idt_handler_array[0] &&
657 	    *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
658 		nr = (*addr - (void *)early_idt_handler_array[0]) /
659 		     EARLY_IDT_HANDLER_SIZE;
660 		*addr = (void *)xen_early_idt_handler_array[nr];
661 	}
662 
663 	if (WARN_ON(ist != 0 && !ist_okay))
664 		return false;
665 
666 	return true;
667 }
668 #endif
669 
670 static int cvt_gate_to_trap(int vector, const gate_desc *val,
671 			    struct trap_info *info)
672 {
673 	unsigned long addr;
674 
675 	if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
676 		return 0;
677 
678 	info->vector = vector;
679 
680 	addr = gate_offset(val);
681 #ifdef CONFIG_X86_64
682 	if (!get_trap_addr((void **)&addr, val->bits.ist))
683 		return 0;
684 #endif	/* CONFIG_X86_64 */
685 	info->address = addr;
686 
687 	info->cs = gate_segment(val);
688 	info->flags = val->bits.dpl;
689 	/* interrupt gates clear IF */
690 	if (val->bits.type == GATE_INTERRUPT)
691 		info->flags |= 1 << 2;
692 
693 	return 1;
694 }
695 
696 /* Locations of each CPU's IDT */
697 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
698 
699 /* Set an IDT entry.  If the entry is part of the current IDT, then
700    also update Xen. */
701 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
702 {
703 	unsigned long p = (unsigned long)&dt[entrynum];
704 	unsigned long start, end;
705 
706 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
707 
708 	preempt_disable();
709 
710 	start = __this_cpu_read(idt_desc.address);
711 	end = start + __this_cpu_read(idt_desc.size) + 1;
712 
713 	xen_mc_flush();
714 
715 	native_write_idt_entry(dt, entrynum, g);
716 
717 	if (p >= start && (p + 8) <= end) {
718 		struct trap_info info[2];
719 
720 		info[1].address = 0;
721 
722 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
723 			if (HYPERVISOR_set_trap_table(info))
724 				BUG();
725 	}
726 
727 	preempt_enable();
728 }
729 
730 static void xen_convert_trap_info(const struct desc_ptr *desc,
731 				  struct trap_info *traps)
732 {
733 	unsigned in, out, count;
734 
735 	count = (desc->size+1) / sizeof(gate_desc);
736 	BUG_ON(count > 256);
737 
738 	for (in = out = 0; in < count; in++) {
739 		gate_desc *entry = (gate_desc *)(desc->address) + in;
740 
741 		if (cvt_gate_to_trap(in, entry, &traps[out]))
742 			out++;
743 	}
744 	traps[out].address = 0;
745 }
746 
747 void xen_copy_trap_info(struct trap_info *traps)
748 {
749 	const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
750 
751 	xen_convert_trap_info(desc, traps);
752 }
753 
754 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
755    hold a spinlock to protect the static traps[] array (static because
756    it avoids allocation, and saves stack space). */
757 static void xen_load_idt(const struct desc_ptr *desc)
758 {
759 	static DEFINE_SPINLOCK(lock);
760 	static struct trap_info traps[257];
761 
762 	trace_xen_cpu_load_idt(desc);
763 
764 	spin_lock(&lock);
765 
766 	memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
767 
768 	xen_convert_trap_info(desc, traps);
769 
770 	xen_mc_flush();
771 	if (HYPERVISOR_set_trap_table(traps))
772 		BUG();
773 
774 	spin_unlock(&lock);
775 }
776 
777 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
778    they're handled differently. */
779 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
780 				const void *desc, int type)
781 {
782 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
783 
784 	preempt_disable();
785 
786 	switch (type) {
787 	case DESC_LDT:
788 	case DESC_TSS:
789 		/* ignore */
790 		break;
791 
792 	default: {
793 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
794 
795 		xen_mc_flush();
796 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
797 			BUG();
798 	}
799 
800 	}
801 
802 	preempt_enable();
803 }
804 
805 /*
806  * Version of write_gdt_entry for use at early boot-time needed to
807  * update an entry as simply as possible.
808  */
809 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
810 					    const void *desc, int type)
811 {
812 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
813 
814 	switch (type) {
815 	case DESC_LDT:
816 	case DESC_TSS:
817 		/* ignore */
818 		break;
819 
820 	default: {
821 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
822 
823 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
824 			dt[entry] = *(struct desc_struct *)desc;
825 	}
826 
827 	}
828 }
829 
830 static void xen_load_sp0(unsigned long sp0)
831 {
832 	struct multicall_space mcs;
833 
834 	mcs = xen_mc_entry(0);
835 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
836 	xen_mc_issue(PARAVIRT_LAZY_CPU);
837 	this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
838 }
839 
840 static void xen_io_delay(void)
841 {
842 }
843 
844 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
845 
846 static unsigned long xen_read_cr0(void)
847 {
848 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
849 
850 	if (unlikely(cr0 == 0)) {
851 		cr0 = native_read_cr0();
852 		this_cpu_write(xen_cr0_value, cr0);
853 	}
854 
855 	return cr0;
856 }
857 
858 static void xen_write_cr0(unsigned long cr0)
859 {
860 	struct multicall_space mcs;
861 
862 	this_cpu_write(xen_cr0_value, cr0);
863 
864 	/* Only pay attention to cr0.TS; everything else is
865 	   ignored. */
866 	mcs = xen_mc_entry(0);
867 
868 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
869 
870 	xen_mc_issue(PARAVIRT_LAZY_CPU);
871 }
872 
873 static void xen_write_cr4(unsigned long cr4)
874 {
875 	cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
876 
877 	native_write_cr4(cr4);
878 }
879 
880 static u64 xen_read_msr_safe(unsigned int msr, int *err)
881 {
882 	u64 val;
883 
884 	if (pmu_msr_read(msr, &val, err))
885 		return val;
886 
887 	val = native_read_msr_safe(msr, err);
888 	switch (msr) {
889 	case MSR_IA32_APICBASE:
890 		val &= ~X2APIC_ENABLE;
891 		break;
892 	}
893 	return val;
894 }
895 
896 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
897 {
898 	int ret;
899 
900 	ret = 0;
901 
902 	switch (msr) {
903 #ifdef CONFIG_X86_64
904 		unsigned which;
905 		u64 base;
906 
907 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
908 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
909 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
910 
911 	set:
912 		base = ((u64)high << 32) | low;
913 		if (HYPERVISOR_set_segment_base(which, base) != 0)
914 			ret = -EIO;
915 		break;
916 #endif
917 
918 	case MSR_STAR:
919 	case MSR_CSTAR:
920 	case MSR_LSTAR:
921 	case MSR_SYSCALL_MASK:
922 	case MSR_IA32_SYSENTER_CS:
923 	case MSR_IA32_SYSENTER_ESP:
924 	case MSR_IA32_SYSENTER_EIP:
925 		/* Fast syscall setup is all done in hypercalls, so
926 		   these are all ignored.  Stub them out here to stop
927 		   Xen console noise. */
928 		break;
929 
930 	default:
931 		if (!pmu_msr_write(msr, low, high, &ret))
932 			ret = native_write_msr_safe(msr, low, high);
933 	}
934 
935 	return ret;
936 }
937 
938 static u64 xen_read_msr(unsigned int msr)
939 {
940 	/*
941 	 * This will silently swallow a #GP from RDMSR.  It may be worth
942 	 * changing that.
943 	 */
944 	int err;
945 
946 	return xen_read_msr_safe(msr, &err);
947 }
948 
949 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
950 {
951 	/*
952 	 * This will silently swallow a #GP from WRMSR.  It may be worth
953 	 * changing that.
954 	 */
955 	xen_write_msr_safe(msr, low, high);
956 }
957 
958 /* This is called once we have the cpu_possible_mask */
959 void __init xen_setup_vcpu_info_placement(void)
960 {
961 	int cpu;
962 
963 	for_each_possible_cpu(cpu) {
964 		/* Set up direct vCPU id mapping for PV guests. */
965 		per_cpu(xen_vcpu_id, cpu) = cpu;
966 
967 		/*
968 		 * xen_vcpu_setup(cpu) can fail  -- in which case it
969 		 * falls back to the shared_info version for cpus
970 		 * where xen_vcpu_nr(cpu) < MAX_VIRT_CPUS.
971 		 *
972 		 * xen_cpu_up_prepare_pv() handles the rest by failing
973 		 * them in hotplug.
974 		 */
975 		(void) xen_vcpu_setup(cpu);
976 	}
977 
978 	/*
979 	 * xen_vcpu_setup managed to place the vcpu_info within the
980 	 * percpu area for all cpus, so make use of it.
981 	 */
982 	if (xen_have_vcpu_info_placement) {
983 		pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
984 		pv_ops.irq.restore_fl =
985 			__PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
986 		pv_ops.irq.irq_disable =
987 			__PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
988 		pv_ops.irq.irq_enable =
989 			__PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
990 		pv_ops.mmu.read_cr2 =
991 			__PV_IS_CALLEE_SAVE(xen_read_cr2_direct);
992 	}
993 }
994 
995 static const struct pv_info xen_info __initconst = {
996 	.shared_kernel_pmd = 0,
997 
998 #ifdef CONFIG_X86_64
999 	.extra_user_64bit_cs = FLAT_USER_CS64,
1000 #endif
1001 	.name = "Xen",
1002 };
1003 
1004 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1005 	.cpuid = xen_cpuid,
1006 
1007 	.set_debugreg = xen_set_debugreg,
1008 	.get_debugreg = xen_get_debugreg,
1009 
1010 	.read_cr0 = xen_read_cr0,
1011 	.write_cr0 = xen_write_cr0,
1012 
1013 	.write_cr4 = xen_write_cr4,
1014 
1015 	.wbinvd = native_wbinvd,
1016 
1017 	.read_msr = xen_read_msr,
1018 	.write_msr = xen_write_msr,
1019 
1020 	.read_msr_safe = xen_read_msr_safe,
1021 	.write_msr_safe = xen_write_msr_safe,
1022 
1023 	.read_pmc = xen_read_pmc,
1024 
1025 	.iret = xen_iret,
1026 #ifdef CONFIG_X86_64
1027 	.usergs_sysret64 = xen_sysret64,
1028 #endif
1029 
1030 	.load_tr_desc = paravirt_nop,
1031 	.set_ldt = xen_set_ldt,
1032 	.load_gdt = xen_load_gdt,
1033 	.load_idt = xen_load_idt,
1034 	.load_tls = xen_load_tls,
1035 #ifdef CONFIG_X86_64
1036 	.load_gs_index = xen_load_gs_index,
1037 #endif
1038 
1039 	.alloc_ldt = xen_alloc_ldt,
1040 	.free_ldt = xen_free_ldt,
1041 
1042 	.store_tr = xen_store_tr,
1043 
1044 	.write_ldt_entry = xen_write_ldt_entry,
1045 	.write_gdt_entry = xen_write_gdt_entry,
1046 	.write_idt_entry = xen_write_idt_entry,
1047 	.load_sp0 = xen_load_sp0,
1048 
1049 	.io_delay = xen_io_delay,
1050 
1051 	/* Xen takes care of %gs when switching to usermode for us */
1052 	.swapgs = paravirt_nop,
1053 
1054 	.start_context_switch = paravirt_start_context_switch,
1055 	.end_context_switch = xen_end_context_switch,
1056 };
1057 
1058 static void xen_restart(char *msg)
1059 {
1060 	xen_reboot(SHUTDOWN_reboot);
1061 }
1062 
1063 static void xen_machine_halt(void)
1064 {
1065 	xen_reboot(SHUTDOWN_poweroff);
1066 }
1067 
1068 static void xen_machine_power_off(void)
1069 {
1070 	if (pm_power_off)
1071 		pm_power_off();
1072 	xen_reboot(SHUTDOWN_poweroff);
1073 }
1074 
1075 static void xen_crash_shutdown(struct pt_regs *regs)
1076 {
1077 	xen_reboot(SHUTDOWN_crash);
1078 }
1079 
1080 static const struct machine_ops xen_machine_ops __initconst = {
1081 	.restart = xen_restart,
1082 	.halt = xen_machine_halt,
1083 	.power_off = xen_machine_power_off,
1084 	.shutdown = xen_machine_halt,
1085 	.crash_shutdown = xen_crash_shutdown,
1086 	.emergency_restart = xen_emergency_restart,
1087 };
1088 
1089 static unsigned char xen_get_nmi_reason(void)
1090 {
1091 	unsigned char reason = 0;
1092 
1093 	/* Construct a value which looks like it came from port 0x61. */
1094 	if (test_bit(_XEN_NMIREASON_io_error,
1095 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1096 		reason |= NMI_REASON_IOCHK;
1097 	if (test_bit(_XEN_NMIREASON_pci_serr,
1098 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1099 		reason |= NMI_REASON_SERR;
1100 
1101 	return reason;
1102 }
1103 
1104 static void __init xen_boot_params_init_edd(void)
1105 {
1106 #if IS_ENABLED(CONFIG_EDD)
1107 	struct xen_platform_op op;
1108 	struct edd_info *edd_info;
1109 	u32 *mbr_signature;
1110 	unsigned nr;
1111 	int ret;
1112 
1113 	edd_info = boot_params.eddbuf;
1114 	mbr_signature = boot_params.edd_mbr_sig_buffer;
1115 
1116 	op.cmd = XENPF_firmware_info;
1117 
1118 	op.u.firmware_info.type = XEN_FW_DISK_INFO;
1119 	for (nr = 0; nr < EDDMAXNR; nr++) {
1120 		struct edd_info *info = edd_info + nr;
1121 
1122 		op.u.firmware_info.index = nr;
1123 		info->params.length = sizeof(info->params);
1124 		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1125 				     &info->params);
1126 		ret = HYPERVISOR_platform_op(&op);
1127 		if (ret)
1128 			break;
1129 
1130 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1131 		C(device);
1132 		C(version);
1133 		C(interface_support);
1134 		C(legacy_max_cylinder);
1135 		C(legacy_max_head);
1136 		C(legacy_sectors_per_track);
1137 #undef C
1138 	}
1139 	boot_params.eddbuf_entries = nr;
1140 
1141 	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1142 	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1143 		op.u.firmware_info.index = nr;
1144 		ret = HYPERVISOR_platform_op(&op);
1145 		if (ret)
1146 			break;
1147 		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1148 	}
1149 	boot_params.edd_mbr_sig_buf_entries = nr;
1150 #endif
1151 }
1152 
1153 /*
1154  * Set up the GDT and segment registers for -fstack-protector.  Until
1155  * we do this, we have to be careful not to call any stack-protected
1156  * function, which is most of the kernel.
1157  */
1158 static void __init xen_setup_gdt(int cpu)
1159 {
1160 	pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot;
1161 	pv_ops.cpu.load_gdt = xen_load_gdt_boot;
1162 
1163 	setup_stack_canary_segment(cpu);
1164 	switch_to_new_gdt(cpu);
1165 
1166 	pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry;
1167 	pv_ops.cpu.load_gdt = xen_load_gdt;
1168 }
1169 
1170 static void __init xen_dom0_set_legacy_features(void)
1171 {
1172 	x86_platform.legacy.rtc = 1;
1173 }
1174 
1175 /* First C function to be called on Xen boot */
1176 asmlinkage __visible void __init xen_start_kernel(void)
1177 {
1178 	struct physdev_set_iopl set_iopl;
1179 	unsigned long initrd_start = 0;
1180 	int rc;
1181 
1182 	if (!xen_start_info)
1183 		return;
1184 
1185 	xen_domain_type = XEN_PV_DOMAIN;
1186 	xen_start_flags = xen_start_info->flags;
1187 
1188 	xen_setup_features();
1189 
1190 	/* Install Xen paravirt ops */
1191 	pv_info = xen_info;
1192 	pv_ops.init.patch = paravirt_patch_default;
1193 	pv_ops.cpu = xen_cpu_ops;
1194 	xen_init_irq_ops();
1195 
1196 	/*
1197 	 * Setup xen_vcpu early because it is needed for
1198 	 * local_irq_disable(), irqs_disabled(), e.g. in printk().
1199 	 *
1200 	 * Don't do the full vcpu_info placement stuff until we have
1201 	 * the cpu_possible_mask and a non-dummy shared_info.
1202 	 */
1203 	xen_vcpu_info_reset(0);
1204 
1205 	x86_platform.get_nmi_reason = xen_get_nmi_reason;
1206 
1207 	x86_init.resources.memory_setup = xen_memory_setup;
1208 	x86_init.irqs.intr_mode_init	= x86_init_noop;
1209 	x86_init.oem.arch_setup = xen_arch_setup;
1210 	x86_init.oem.banner = xen_banner;
1211 	x86_init.hyper.init_platform = xen_pv_init_platform;
1212 	x86_init.hyper.guest_late_init = xen_pv_guest_late_init;
1213 
1214 	/*
1215 	 * Set up some pagetable state before starting to set any ptes.
1216 	 */
1217 
1218 	xen_setup_machphys_mapping();
1219 	xen_init_mmu_ops();
1220 
1221 	/* Prevent unwanted bits from being set in PTEs. */
1222 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1223 	__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
1224 
1225 	/*
1226 	 * Prevent page tables from being allocated in highmem, even
1227 	 * if CONFIG_HIGHPTE is enabled.
1228 	 */
1229 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1230 
1231 	/* Get mfn list */
1232 	xen_build_dynamic_phys_to_machine();
1233 
1234 	/*
1235 	 * Set up kernel GDT and segment registers, mainly so that
1236 	 * -fstack-protector code can be executed.
1237 	 */
1238 	xen_setup_gdt(0);
1239 
1240 	/* Work out if we support NX */
1241 	get_cpu_cap(&boot_cpu_data);
1242 	x86_configure_nx();
1243 
1244 	/* Determine virtual and physical address sizes */
1245 	get_cpu_address_sizes(&boot_cpu_data);
1246 
1247 	/* Let's presume PV guests always boot on vCPU with id 0. */
1248 	per_cpu(xen_vcpu_id, 0) = 0;
1249 
1250 	idt_setup_early_handler();
1251 
1252 	xen_init_capabilities();
1253 
1254 #ifdef CONFIG_X86_LOCAL_APIC
1255 	/*
1256 	 * set up the basic apic ops.
1257 	 */
1258 	xen_init_apic();
1259 #endif
1260 
1261 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1262 		pv_ops.mmu.ptep_modify_prot_start =
1263 			xen_ptep_modify_prot_start;
1264 		pv_ops.mmu.ptep_modify_prot_commit =
1265 			xen_ptep_modify_prot_commit;
1266 	}
1267 
1268 	machine_ops = xen_machine_ops;
1269 
1270 	/*
1271 	 * The only reliable way to retain the initial address of the
1272 	 * percpu gdt_page is to remember it here, so we can go and
1273 	 * mark it RW later, when the initial percpu area is freed.
1274 	 */
1275 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1276 
1277 	xen_smp_init();
1278 
1279 #ifdef CONFIG_ACPI_NUMA
1280 	/*
1281 	 * The pages we from Xen are not related to machine pages, so
1282 	 * any NUMA information the kernel tries to get from ACPI will
1283 	 * be meaningless.  Prevent it from trying.
1284 	 */
1285 	acpi_numa = -1;
1286 #endif
1287 	WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1288 
1289 	local_irq_disable();
1290 	early_boot_irqs_disabled = true;
1291 
1292 	xen_raw_console_write("mapping kernel into physical memory\n");
1293 	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1294 				   xen_start_info->nr_pages);
1295 	xen_reserve_special_pages();
1296 
1297 	/* keep using Xen gdt for now; no urgent need to change it */
1298 
1299 #ifdef CONFIG_X86_32
1300 	pv_info.kernel_rpl = 1;
1301 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1302 		pv_info.kernel_rpl = 0;
1303 #else
1304 	pv_info.kernel_rpl = 0;
1305 #endif
1306 	/* set the limit of our address space */
1307 	xen_reserve_top();
1308 
1309 	/*
1310 	 * We used to do this in xen_arch_setup, but that is too late
1311 	 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1312 	 * early_amd_init which pokes 0xcf8 port.
1313 	 */
1314 	set_iopl.iopl = 1;
1315 	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1316 	if (rc != 0)
1317 		xen_raw_printk("physdev_op failed %d\n", rc);
1318 
1319 #ifdef CONFIG_X86_32
1320 	/* set up basic CPUID stuff */
1321 	cpu_detect(&new_cpu_data);
1322 	set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1323 	new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1324 #endif
1325 
1326 	if (xen_start_info->mod_start) {
1327 	    if (xen_start_info->flags & SIF_MOD_START_PFN)
1328 		initrd_start = PFN_PHYS(xen_start_info->mod_start);
1329 	    else
1330 		initrd_start = __pa(xen_start_info->mod_start);
1331 	}
1332 
1333 	/* Poke various useful things into boot_params */
1334 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1335 	boot_params.hdr.ramdisk_image = initrd_start;
1336 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1337 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1338 	boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1339 
1340 	if (!xen_initial_domain()) {
1341 		add_preferred_console("xenboot", 0, NULL);
1342 		if (pci_xen)
1343 			x86_init.pci.arch_init = pci_xen_init;
1344 	} else {
1345 		const struct dom0_vga_console_info *info =
1346 			(void *)((char *)xen_start_info +
1347 				 xen_start_info->console.dom0.info_off);
1348 		struct xen_platform_op op = {
1349 			.cmd = XENPF_firmware_info,
1350 			.interface_version = XENPF_INTERFACE_VERSION,
1351 			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1352 		};
1353 
1354 		x86_platform.set_legacy_features =
1355 				xen_dom0_set_legacy_features;
1356 		xen_init_vga(info, xen_start_info->console.dom0.info_size);
1357 		xen_start_info->console.domU.mfn = 0;
1358 		xen_start_info->console.domU.evtchn = 0;
1359 
1360 		if (HYPERVISOR_platform_op(&op) == 0)
1361 			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1362 
1363 		/* Make sure ACS will be enabled */
1364 		pci_request_acs();
1365 
1366 		xen_acpi_sleep_register();
1367 
1368 		/* Avoid searching for BIOS MP tables */
1369 		x86_init.mpparse.find_smp_config = x86_init_noop;
1370 		x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1371 
1372 		xen_boot_params_init_edd();
1373 	}
1374 
1375 	if (!boot_params.screen_info.orig_video_isVGA)
1376 		add_preferred_console("tty", 0, NULL);
1377 	add_preferred_console("hvc", 0, NULL);
1378 	if (boot_params.screen_info.orig_video_isVGA)
1379 		add_preferred_console("tty", 0, NULL);
1380 
1381 #ifdef CONFIG_PCI
1382 	/* PCI BIOS service won't work from a PV guest. */
1383 	pci_probe &= ~PCI_PROBE_BIOS;
1384 #endif
1385 	xen_raw_console_write("about to get started...\n");
1386 
1387 	/* We need this for printk timestamps */
1388 	xen_setup_runstate_info(0);
1389 
1390 	xen_efi_init(&boot_params);
1391 
1392 	/* Start the world */
1393 #ifdef CONFIG_X86_32
1394 	i386_start_kernel();
1395 #else
1396 	cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1397 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1398 #endif
1399 }
1400 
1401 static int xen_cpu_up_prepare_pv(unsigned int cpu)
1402 {
1403 	int rc;
1404 
1405 	if (per_cpu(xen_vcpu, cpu) == NULL)
1406 		return -ENODEV;
1407 
1408 	xen_setup_timer(cpu);
1409 
1410 	rc = xen_smp_intr_init(cpu);
1411 	if (rc) {
1412 		WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1413 		     cpu, rc);
1414 		return rc;
1415 	}
1416 
1417 	rc = xen_smp_intr_init_pv(cpu);
1418 	if (rc) {
1419 		WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1420 		     cpu, rc);
1421 		return rc;
1422 	}
1423 
1424 	return 0;
1425 }
1426 
1427 static int xen_cpu_dead_pv(unsigned int cpu)
1428 {
1429 	xen_smp_intr_free(cpu);
1430 	xen_smp_intr_free_pv(cpu);
1431 
1432 	xen_teardown_timer(cpu);
1433 
1434 	return 0;
1435 }
1436 
1437 static uint32_t __init xen_platform_pv(void)
1438 {
1439 	if (xen_pv_domain())
1440 		return xen_cpuid_base();
1441 
1442 	return 0;
1443 }
1444 
1445 const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1446 	.name                   = "Xen PV",
1447 	.detect                 = xen_platform_pv,
1448 	.type			= X86_HYPER_XEN_PV,
1449 	.runtime.pin_vcpu       = xen_pin_vcpu,
1450 	.ignore_nopv		= true,
1451 };
1452