1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Core of Xen paravirt_ops implementation. 4 * 5 * This file contains the xen_paravirt_ops structure itself, and the 6 * implementations for: 7 * - privileged instructions 8 * - interrupt flags 9 * - segment operations 10 * - booting and setup 11 * 12 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 13 */ 14 15 #include <linux/cpu.h> 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/smp.h> 19 #include <linux/preempt.h> 20 #include <linux/hardirq.h> 21 #include <linux/percpu.h> 22 #include <linux/delay.h> 23 #include <linux/start_kernel.h> 24 #include <linux/sched.h> 25 #include <linux/kprobes.h> 26 #include <linux/bootmem.h> 27 #include <linux/export.h> 28 #include <linux/mm.h> 29 #include <linux/page-flags.h> 30 #include <linux/highmem.h> 31 #include <linux/console.h> 32 #include <linux/pci.h> 33 #include <linux/gfp.h> 34 #include <linux/memblock.h> 35 #include <linux/edd.h> 36 #include <linux/frame.h> 37 38 #include <xen/xen.h> 39 #include <xen/events.h> 40 #include <xen/interface/xen.h> 41 #include <xen/interface/version.h> 42 #include <xen/interface/physdev.h> 43 #include <xen/interface/vcpu.h> 44 #include <xen/interface/memory.h> 45 #include <xen/interface/nmi.h> 46 #include <xen/interface/xen-mca.h> 47 #include <xen/features.h> 48 #include <xen/page.h> 49 #include <xen/hvc-console.h> 50 #include <xen/acpi.h> 51 52 #include <asm/paravirt.h> 53 #include <asm/apic.h> 54 #include <asm/page.h> 55 #include <asm/xen/pci.h> 56 #include <asm/xen/hypercall.h> 57 #include <asm/xen/hypervisor.h> 58 #include <asm/xen/cpuid.h> 59 #include <asm/fixmap.h> 60 #include <asm/processor.h> 61 #include <asm/proto.h> 62 #include <asm/msr-index.h> 63 #include <asm/traps.h> 64 #include <asm/setup.h> 65 #include <asm/desc.h> 66 #include <asm/pgalloc.h> 67 #include <asm/pgtable.h> 68 #include <asm/tlbflush.h> 69 #include <asm/reboot.h> 70 #include <asm/stackprotector.h> 71 #include <asm/hypervisor.h> 72 #include <asm/mach_traps.h> 73 #include <asm/mwait.h> 74 #include <asm/pci_x86.h> 75 #include <asm/cpu.h> 76 77 #ifdef CONFIG_ACPI 78 #include <linux/acpi.h> 79 #include <asm/acpi.h> 80 #include <acpi/pdc_intel.h> 81 #include <acpi/processor.h> 82 #include <xen/interface/platform.h> 83 #endif 84 85 #include "xen-ops.h" 86 #include "mmu.h" 87 #include "smp.h" 88 #include "multicalls.h" 89 #include "pmu.h" 90 91 #include "../kernel/cpu/cpu.h" /* get_cpu_cap() */ 92 93 void *xen_initial_gdt; 94 95 static int xen_cpu_up_prepare_pv(unsigned int cpu); 96 static int xen_cpu_dead_pv(unsigned int cpu); 97 98 struct tls_descs { 99 struct desc_struct desc[3]; 100 }; 101 102 /* 103 * Updating the 3 TLS descriptors in the GDT on every task switch is 104 * surprisingly expensive so we avoid updating them if they haven't 105 * changed. Since Xen writes different descriptors than the one 106 * passed in the update_descriptor hypercall we keep shadow copies to 107 * compare against. 108 */ 109 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc); 110 111 static void __init xen_banner(void) 112 { 113 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL); 114 struct xen_extraversion extra; 115 HYPERVISOR_xen_version(XENVER_extraversion, &extra); 116 117 pr_info("Booting paravirtualized kernel on %s\n", pv_info.name); 118 printk(KERN_INFO "Xen version: %d.%d%s%s\n", 119 version >> 16, version & 0xffff, extra.extraversion, 120 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : ""); 121 } 122 123 static void __init xen_pv_init_platform(void) 124 { 125 set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info); 126 HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP); 127 128 /* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */ 129 xen_vcpu_info_reset(0); 130 131 /* pvclock is in shared info area */ 132 xen_init_time_ops(); 133 } 134 135 static void __init xen_pv_guest_late_init(void) 136 { 137 #ifndef CONFIG_SMP 138 /* Setup shared vcpu info for non-smp configurations */ 139 xen_setup_vcpu_info_placement(); 140 #endif 141 } 142 143 /* Check if running on Xen version (major, minor) or later */ 144 bool 145 xen_running_on_version_or_later(unsigned int major, unsigned int minor) 146 { 147 unsigned int version; 148 149 if (!xen_domain()) 150 return false; 151 152 version = HYPERVISOR_xen_version(XENVER_version, NULL); 153 if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) || 154 ((version >> 16) > major)) 155 return true; 156 return false; 157 } 158 159 static __read_mostly unsigned int cpuid_leaf5_ecx_val; 160 static __read_mostly unsigned int cpuid_leaf5_edx_val; 161 162 static void xen_cpuid(unsigned int *ax, unsigned int *bx, 163 unsigned int *cx, unsigned int *dx) 164 { 165 unsigned maskebx = ~0; 166 167 /* 168 * Mask out inconvenient features, to try and disable as many 169 * unsupported kernel subsystems as possible. 170 */ 171 switch (*ax) { 172 case CPUID_MWAIT_LEAF: 173 /* Synthesize the values.. */ 174 *ax = 0; 175 *bx = 0; 176 *cx = cpuid_leaf5_ecx_val; 177 *dx = cpuid_leaf5_edx_val; 178 return; 179 180 case 0xb: 181 /* Suppress extended topology stuff */ 182 maskebx = 0; 183 break; 184 } 185 186 asm(XEN_EMULATE_PREFIX "cpuid" 187 : "=a" (*ax), 188 "=b" (*bx), 189 "=c" (*cx), 190 "=d" (*dx) 191 : "0" (*ax), "2" (*cx)); 192 193 *bx &= maskebx; 194 } 195 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */ 196 197 static bool __init xen_check_mwait(void) 198 { 199 #ifdef CONFIG_ACPI 200 struct xen_platform_op op = { 201 .cmd = XENPF_set_processor_pminfo, 202 .u.set_pminfo.id = -1, 203 .u.set_pminfo.type = XEN_PM_PDC, 204 }; 205 uint32_t buf[3]; 206 unsigned int ax, bx, cx, dx; 207 unsigned int mwait_mask; 208 209 /* We need to determine whether it is OK to expose the MWAIT 210 * capability to the kernel to harvest deeper than C3 states from ACPI 211 * _CST using the processor_harvest_xen.c module. For this to work, we 212 * need to gather the MWAIT_LEAF values (which the cstate.c code 213 * checks against). The hypervisor won't expose the MWAIT flag because 214 * it would break backwards compatibility; so we will find out directly 215 * from the hardware and hypercall. 216 */ 217 if (!xen_initial_domain()) 218 return false; 219 220 /* 221 * When running under platform earlier than Xen4.2, do not expose 222 * mwait, to avoid the risk of loading native acpi pad driver 223 */ 224 if (!xen_running_on_version_or_later(4, 2)) 225 return false; 226 227 ax = 1; 228 cx = 0; 229 230 native_cpuid(&ax, &bx, &cx, &dx); 231 232 mwait_mask = (1 << (X86_FEATURE_EST % 32)) | 233 (1 << (X86_FEATURE_MWAIT % 32)); 234 235 if ((cx & mwait_mask) != mwait_mask) 236 return false; 237 238 /* We need to emulate the MWAIT_LEAF and for that we need both 239 * ecx and edx. The hypercall provides only partial information. 240 */ 241 242 ax = CPUID_MWAIT_LEAF; 243 bx = 0; 244 cx = 0; 245 dx = 0; 246 247 native_cpuid(&ax, &bx, &cx, &dx); 248 249 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so, 250 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3. 251 */ 252 buf[0] = ACPI_PDC_REVISION_ID; 253 buf[1] = 1; 254 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP); 255 256 set_xen_guest_handle(op.u.set_pminfo.pdc, buf); 257 258 if ((HYPERVISOR_platform_op(&op) == 0) && 259 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) { 260 cpuid_leaf5_ecx_val = cx; 261 cpuid_leaf5_edx_val = dx; 262 } 263 return true; 264 #else 265 return false; 266 #endif 267 } 268 269 static bool __init xen_check_xsave(void) 270 { 271 unsigned int cx, xsave_mask; 272 273 cx = cpuid_ecx(1); 274 275 xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) | 276 (1 << (X86_FEATURE_OSXSAVE % 32)); 277 278 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */ 279 return (cx & xsave_mask) == xsave_mask; 280 } 281 282 static void __init xen_init_capabilities(void) 283 { 284 setup_force_cpu_cap(X86_FEATURE_XENPV); 285 setup_clear_cpu_cap(X86_FEATURE_DCA); 286 setup_clear_cpu_cap(X86_FEATURE_APERFMPERF); 287 setup_clear_cpu_cap(X86_FEATURE_MTRR); 288 setup_clear_cpu_cap(X86_FEATURE_ACC); 289 setup_clear_cpu_cap(X86_FEATURE_X2APIC); 290 setup_clear_cpu_cap(X86_FEATURE_SME); 291 292 /* 293 * Xen PV would need some work to support PCID: CR3 handling as well 294 * as xen_flush_tlb_others() would need updating. 295 */ 296 setup_clear_cpu_cap(X86_FEATURE_PCID); 297 298 if (!xen_initial_domain()) 299 setup_clear_cpu_cap(X86_FEATURE_ACPI); 300 301 if (xen_check_mwait()) 302 setup_force_cpu_cap(X86_FEATURE_MWAIT); 303 else 304 setup_clear_cpu_cap(X86_FEATURE_MWAIT); 305 306 if (!xen_check_xsave()) { 307 setup_clear_cpu_cap(X86_FEATURE_XSAVE); 308 setup_clear_cpu_cap(X86_FEATURE_OSXSAVE); 309 } 310 } 311 312 static void xen_set_debugreg(int reg, unsigned long val) 313 { 314 HYPERVISOR_set_debugreg(reg, val); 315 } 316 317 static unsigned long xen_get_debugreg(int reg) 318 { 319 return HYPERVISOR_get_debugreg(reg); 320 } 321 322 static void xen_end_context_switch(struct task_struct *next) 323 { 324 xen_mc_flush(); 325 paravirt_end_context_switch(next); 326 } 327 328 static unsigned long xen_store_tr(void) 329 { 330 return 0; 331 } 332 333 /* 334 * Set the page permissions for a particular virtual address. If the 335 * address is a vmalloc mapping (or other non-linear mapping), then 336 * find the linear mapping of the page and also set its protections to 337 * match. 338 */ 339 static void set_aliased_prot(void *v, pgprot_t prot) 340 { 341 int level; 342 pte_t *ptep; 343 pte_t pte; 344 unsigned long pfn; 345 struct page *page; 346 unsigned char dummy; 347 348 ptep = lookup_address((unsigned long)v, &level); 349 BUG_ON(ptep == NULL); 350 351 pfn = pte_pfn(*ptep); 352 page = pfn_to_page(pfn); 353 354 pte = pfn_pte(pfn, prot); 355 356 /* 357 * Careful: update_va_mapping() will fail if the virtual address 358 * we're poking isn't populated in the page tables. We don't 359 * need to worry about the direct map (that's always in the page 360 * tables), but we need to be careful about vmap space. In 361 * particular, the top level page table can lazily propagate 362 * entries between processes, so if we've switched mms since we 363 * vmapped the target in the first place, we might not have the 364 * top-level page table entry populated. 365 * 366 * We disable preemption because we want the same mm active when 367 * we probe the target and when we issue the hypercall. We'll 368 * have the same nominal mm, but if we're a kernel thread, lazy 369 * mm dropping could change our pgd. 370 * 371 * Out of an abundance of caution, this uses __get_user() to fault 372 * in the target address just in case there's some obscure case 373 * in which the target address isn't readable. 374 */ 375 376 preempt_disable(); 377 378 probe_kernel_read(&dummy, v, 1); 379 380 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0)) 381 BUG(); 382 383 if (!PageHighMem(page)) { 384 void *av = __va(PFN_PHYS(pfn)); 385 386 if (av != v) 387 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0)) 388 BUG(); 389 } else 390 kmap_flush_unused(); 391 392 preempt_enable(); 393 } 394 395 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries) 396 { 397 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; 398 int i; 399 400 /* 401 * We need to mark the all aliases of the LDT pages RO. We 402 * don't need to call vm_flush_aliases(), though, since that's 403 * only responsible for flushing aliases out the TLBs, not the 404 * page tables, and Xen will flush the TLB for us if needed. 405 * 406 * To avoid confusing future readers: none of this is necessary 407 * to load the LDT. The hypervisor only checks this when the 408 * LDT is faulted in due to subsequent descriptor access. 409 */ 410 411 for (i = 0; i < entries; i += entries_per_page) 412 set_aliased_prot(ldt + i, PAGE_KERNEL_RO); 413 } 414 415 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries) 416 { 417 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; 418 int i; 419 420 for (i = 0; i < entries; i += entries_per_page) 421 set_aliased_prot(ldt + i, PAGE_KERNEL); 422 } 423 424 static void xen_set_ldt(const void *addr, unsigned entries) 425 { 426 struct mmuext_op *op; 427 struct multicall_space mcs = xen_mc_entry(sizeof(*op)); 428 429 trace_xen_cpu_set_ldt(addr, entries); 430 431 op = mcs.args; 432 op->cmd = MMUEXT_SET_LDT; 433 op->arg1.linear_addr = (unsigned long)addr; 434 op->arg2.nr_ents = entries; 435 436 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 437 438 xen_mc_issue(PARAVIRT_LAZY_CPU); 439 } 440 441 static void xen_load_gdt(const struct desc_ptr *dtr) 442 { 443 unsigned long va = dtr->address; 444 unsigned int size = dtr->size + 1; 445 unsigned long pfn, mfn; 446 int level; 447 pte_t *ptep; 448 void *virt; 449 450 /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */ 451 BUG_ON(size > PAGE_SIZE); 452 BUG_ON(va & ~PAGE_MASK); 453 454 /* 455 * The GDT is per-cpu and is in the percpu data area. 456 * That can be virtually mapped, so we need to do a 457 * page-walk to get the underlying MFN for the 458 * hypercall. The page can also be in the kernel's 459 * linear range, so we need to RO that mapping too. 460 */ 461 ptep = lookup_address(va, &level); 462 BUG_ON(ptep == NULL); 463 464 pfn = pte_pfn(*ptep); 465 mfn = pfn_to_mfn(pfn); 466 virt = __va(PFN_PHYS(pfn)); 467 468 make_lowmem_page_readonly((void *)va); 469 make_lowmem_page_readonly(virt); 470 471 if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct))) 472 BUG(); 473 } 474 475 /* 476 * load_gdt for early boot, when the gdt is only mapped once 477 */ 478 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr) 479 { 480 unsigned long va = dtr->address; 481 unsigned int size = dtr->size + 1; 482 unsigned long pfn, mfn; 483 pte_t pte; 484 485 /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */ 486 BUG_ON(size > PAGE_SIZE); 487 BUG_ON(va & ~PAGE_MASK); 488 489 pfn = virt_to_pfn(va); 490 mfn = pfn_to_mfn(pfn); 491 492 pte = pfn_pte(pfn, PAGE_KERNEL_RO); 493 494 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0)) 495 BUG(); 496 497 if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct))) 498 BUG(); 499 } 500 501 static inline bool desc_equal(const struct desc_struct *d1, 502 const struct desc_struct *d2) 503 { 504 return !memcmp(d1, d2, sizeof(*d1)); 505 } 506 507 static void load_TLS_descriptor(struct thread_struct *t, 508 unsigned int cpu, unsigned int i) 509 { 510 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i]; 511 struct desc_struct *gdt; 512 xmaddr_t maddr; 513 struct multicall_space mc; 514 515 if (desc_equal(shadow, &t->tls_array[i])) 516 return; 517 518 *shadow = t->tls_array[i]; 519 520 gdt = get_cpu_gdt_rw(cpu); 521 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]); 522 mc = __xen_mc_entry(0); 523 524 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]); 525 } 526 527 static void xen_load_tls(struct thread_struct *t, unsigned int cpu) 528 { 529 /* 530 * XXX sleazy hack: If we're being called in a lazy-cpu zone 531 * and lazy gs handling is enabled, it means we're in a 532 * context switch, and %gs has just been saved. This means we 533 * can zero it out to prevent faults on exit from the 534 * hypervisor if the next process has no %gs. Either way, it 535 * has been saved, and the new value will get loaded properly. 536 * This will go away as soon as Xen has been modified to not 537 * save/restore %gs for normal hypercalls. 538 * 539 * On x86_64, this hack is not used for %gs, because gs points 540 * to KERNEL_GS_BASE (and uses it for PDA references), so we 541 * must not zero %gs on x86_64 542 * 543 * For x86_64, we need to zero %fs, otherwise we may get an 544 * exception between the new %fs descriptor being loaded and 545 * %fs being effectively cleared at __switch_to(). 546 */ 547 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) { 548 #ifdef CONFIG_X86_32 549 lazy_load_gs(0); 550 #else 551 loadsegment(fs, 0); 552 #endif 553 } 554 555 xen_mc_batch(); 556 557 load_TLS_descriptor(t, cpu, 0); 558 load_TLS_descriptor(t, cpu, 1); 559 load_TLS_descriptor(t, cpu, 2); 560 561 xen_mc_issue(PARAVIRT_LAZY_CPU); 562 } 563 564 #ifdef CONFIG_X86_64 565 static void xen_load_gs_index(unsigned int idx) 566 { 567 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx)) 568 BUG(); 569 } 570 #endif 571 572 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum, 573 const void *ptr) 574 { 575 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]); 576 u64 entry = *(u64 *)ptr; 577 578 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry); 579 580 preempt_disable(); 581 582 xen_mc_flush(); 583 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry)) 584 BUG(); 585 586 preempt_enable(); 587 } 588 589 #ifdef CONFIG_X86_64 590 struct trap_array_entry { 591 void (*orig)(void); 592 void (*xen)(void); 593 bool ist_okay; 594 }; 595 596 static struct trap_array_entry trap_array[] = { 597 { debug, xen_xendebug, true }, 598 { int3, xen_xenint3, true }, 599 { double_fault, xen_double_fault, true }, 600 #ifdef CONFIG_X86_MCE 601 { machine_check, xen_machine_check, true }, 602 #endif 603 { nmi, xen_xennmi, true }, 604 { overflow, xen_overflow, false }, 605 #ifdef CONFIG_IA32_EMULATION 606 { entry_INT80_compat, xen_entry_INT80_compat, false }, 607 #endif 608 { page_fault, xen_page_fault, false }, 609 { divide_error, xen_divide_error, false }, 610 { bounds, xen_bounds, false }, 611 { invalid_op, xen_invalid_op, false }, 612 { device_not_available, xen_device_not_available, false }, 613 { coprocessor_segment_overrun, xen_coprocessor_segment_overrun, false }, 614 { invalid_TSS, xen_invalid_TSS, false }, 615 { segment_not_present, xen_segment_not_present, false }, 616 { stack_segment, xen_stack_segment, false }, 617 { general_protection, xen_general_protection, false }, 618 { spurious_interrupt_bug, xen_spurious_interrupt_bug, false }, 619 { coprocessor_error, xen_coprocessor_error, false }, 620 { alignment_check, xen_alignment_check, false }, 621 { simd_coprocessor_error, xen_simd_coprocessor_error, false }, 622 }; 623 624 static bool __ref get_trap_addr(void **addr, unsigned int ist) 625 { 626 unsigned int nr; 627 bool ist_okay = false; 628 629 /* 630 * Replace trap handler addresses by Xen specific ones. 631 * Check for known traps using IST and whitelist them. 632 * The debugger ones are the only ones we care about. 633 * Xen will handle faults like double_fault, * so we should never see 634 * them. Warn if there's an unexpected IST-using fault handler. 635 */ 636 for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) { 637 struct trap_array_entry *entry = trap_array + nr; 638 639 if (*addr == entry->orig) { 640 *addr = entry->xen; 641 ist_okay = entry->ist_okay; 642 break; 643 } 644 } 645 646 if (nr == ARRAY_SIZE(trap_array) && 647 *addr >= (void *)early_idt_handler_array[0] && 648 *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) { 649 nr = (*addr - (void *)early_idt_handler_array[0]) / 650 EARLY_IDT_HANDLER_SIZE; 651 *addr = (void *)xen_early_idt_handler_array[nr]; 652 } 653 654 if (WARN_ON(ist != 0 && !ist_okay)) 655 return false; 656 657 return true; 658 } 659 #endif 660 661 static int cvt_gate_to_trap(int vector, const gate_desc *val, 662 struct trap_info *info) 663 { 664 unsigned long addr; 665 666 if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT) 667 return 0; 668 669 info->vector = vector; 670 671 addr = gate_offset(val); 672 #ifdef CONFIG_X86_64 673 if (!get_trap_addr((void **)&addr, val->bits.ist)) 674 return 0; 675 #endif /* CONFIG_X86_64 */ 676 info->address = addr; 677 678 info->cs = gate_segment(val); 679 info->flags = val->bits.dpl; 680 /* interrupt gates clear IF */ 681 if (val->bits.type == GATE_INTERRUPT) 682 info->flags |= 1 << 2; 683 684 return 1; 685 } 686 687 /* Locations of each CPU's IDT */ 688 static DEFINE_PER_CPU(struct desc_ptr, idt_desc); 689 690 /* Set an IDT entry. If the entry is part of the current IDT, then 691 also update Xen. */ 692 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g) 693 { 694 unsigned long p = (unsigned long)&dt[entrynum]; 695 unsigned long start, end; 696 697 trace_xen_cpu_write_idt_entry(dt, entrynum, g); 698 699 preempt_disable(); 700 701 start = __this_cpu_read(idt_desc.address); 702 end = start + __this_cpu_read(idt_desc.size) + 1; 703 704 xen_mc_flush(); 705 706 native_write_idt_entry(dt, entrynum, g); 707 708 if (p >= start && (p + 8) <= end) { 709 struct trap_info info[2]; 710 711 info[1].address = 0; 712 713 if (cvt_gate_to_trap(entrynum, g, &info[0])) 714 if (HYPERVISOR_set_trap_table(info)) 715 BUG(); 716 } 717 718 preempt_enable(); 719 } 720 721 static void xen_convert_trap_info(const struct desc_ptr *desc, 722 struct trap_info *traps) 723 { 724 unsigned in, out, count; 725 726 count = (desc->size+1) / sizeof(gate_desc); 727 BUG_ON(count > 256); 728 729 for (in = out = 0; in < count; in++) { 730 gate_desc *entry = (gate_desc *)(desc->address) + in; 731 732 if (cvt_gate_to_trap(in, entry, &traps[out])) 733 out++; 734 } 735 traps[out].address = 0; 736 } 737 738 void xen_copy_trap_info(struct trap_info *traps) 739 { 740 const struct desc_ptr *desc = this_cpu_ptr(&idt_desc); 741 742 xen_convert_trap_info(desc, traps); 743 } 744 745 /* Load a new IDT into Xen. In principle this can be per-CPU, so we 746 hold a spinlock to protect the static traps[] array (static because 747 it avoids allocation, and saves stack space). */ 748 static void xen_load_idt(const struct desc_ptr *desc) 749 { 750 static DEFINE_SPINLOCK(lock); 751 static struct trap_info traps[257]; 752 753 trace_xen_cpu_load_idt(desc); 754 755 spin_lock(&lock); 756 757 memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc)); 758 759 xen_convert_trap_info(desc, traps); 760 761 xen_mc_flush(); 762 if (HYPERVISOR_set_trap_table(traps)) 763 BUG(); 764 765 spin_unlock(&lock); 766 } 767 768 /* Write a GDT descriptor entry. Ignore LDT descriptors, since 769 they're handled differently. */ 770 static void xen_write_gdt_entry(struct desc_struct *dt, int entry, 771 const void *desc, int type) 772 { 773 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type); 774 775 preempt_disable(); 776 777 switch (type) { 778 case DESC_LDT: 779 case DESC_TSS: 780 /* ignore */ 781 break; 782 783 default: { 784 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]); 785 786 xen_mc_flush(); 787 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) 788 BUG(); 789 } 790 791 } 792 793 preempt_enable(); 794 } 795 796 /* 797 * Version of write_gdt_entry for use at early boot-time needed to 798 * update an entry as simply as possible. 799 */ 800 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry, 801 const void *desc, int type) 802 { 803 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type); 804 805 switch (type) { 806 case DESC_LDT: 807 case DESC_TSS: 808 /* ignore */ 809 break; 810 811 default: { 812 xmaddr_t maddr = virt_to_machine(&dt[entry]); 813 814 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) 815 dt[entry] = *(struct desc_struct *)desc; 816 } 817 818 } 819 } 820 821 static void xen_load_sp0(unsigned long sp0) 822 { 823 struct multicall_space mcs; 824 825 mcs = xen_mc_entry(0); 826 MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0); 827 xen_mc_issue(PARAVIRT_LAZY_CPU); 828 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0); 829 } 830 831 void xen_set_iopl_mask(unsigned mask) 832 { 833 struct physdev_set_iopl set_iopl; 834 835 /* Force the change at ring 0. */ 836 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3; 837 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); 838 } 839 840 static void xen_io_delay(void) 841 { 842 } 843 844 static DEFINE_PER_CPU(unsigned long, xen_cr0_value); 845 846 static unsigned long xen_read_cr0(void) 847 { 848 unsigned long cr0 = this_cpu_read(xen_cr0_value); 849 850 if (unlikely(cr0 == 0)) { 851 cr0 = native_read_cr0(); 852 this_cpu_write(xen_cr0_value, cr0); 853 } 854 855 return cr0; 856 } 857 858 static void xen_write_cr0(unsigned long cr0) 859 { 860 struct multicall_space mcs; 861 862 this_cpu_write(xen_cr0_value, cr0); 863 864 /* Only pay attention to cr0.TS; everything else is 865 ignored. */ 866 mcs = xen_mc_entry(0); 867 868 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0); 869 870 xen_mc_issue(PARAVIRT_LAZY_CPU); 871 } 872 873 static void xen_write_cr4(unsigned long cr4) 874 { 875 cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE); 876 877 native_write_cr4(cr4); 878 } 879 #ifdef CONFIG_X86_64 880 static inline unsigned long xen_read_cr8(void) 881 { 882 return 0; 883 } 884 static inline void xen_write_cr8(unsigned long val) 885 { 886 BUG_ON(val); 887 } 888 #endif 889 890 static u64 xen_read_msr_safe(unsigned int msr, int *err) 891 { 892 u64 val; 893 894 if (pmu_msr_read(msr, &val, err)) 895 return val; 896 897 val = native_read_msr_safe(msr, err); 898 switch (msr) { 899 case MSR_IA32_APICBASE: 900 #ifdef CONFIG_X86_X2APIC 901 if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31)))) 902 #endif 903 val &= ~X2APIC_ENABLE; 904 break; 905 } 906 return val; 907 } 908 909 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high) 910 { 911 int ret; 912 913 ret = 0; 914 915 switch (msr) { 916 #ifdef CONFIG_X86_64 917 unsigned which; 918 u64 base; 919 920 case MSR_FS_BASE: which = SEGBASE_FS; goto set; 921 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set; 922 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set; 923 924 set: 925 base = ((u64)high << 32) | low; 926 if (HYPERVISOR_set_segment_base(which, base) != 0) 927 ret = -EIO; 928 break; 929 #endif 930 931 case MSR_STAR: 932 case MSR_CSTAR: 933 case MSR_LSTAR: 934 case MSR_SYSCALL_MASK: 935 case MSR_IA32_SYSENTER_CS: 936 case MSR_IA32_SYSENTER_ESP: 937 case MSR_IA32_SYSENTER_EIP: 938 /* Fast syscall setup is all done in hypercalls, so 939 these are all ignored. Stub them out here to stop 940 Xen console noise. */ 941 break; 942 943 default: 944 if (!pmu_msr_write(msr, low, high, &ret)) 945 ret = native_write_msr_safe(msr, low, high); 946 } 947 948 return ret; 949 } 950 951 static u64 xen_read_msr(unsigned int msr) 952 { 953 /* 954 * This will silently swallow a #GP from RDMSR. It may be worth 955 * changing that. 956 */ 957 int err; 958 959 return xen_read_msr_safe(msr, &err); 960 } 961 962 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high) 963 { 964 /* 965 * This will silently swallow a #GP from WRMSR. It may be worth 966 * changing that. 967 */ 968 xen_write_msr_safe(msr, low, high); 969 } 970 971 /* This is called once we have the cpu_possible_mask */ 972 void __init xen_setup_vcpu_info_placement(void) 973 { 974 int cpu; 975 976 for_each_possible_cpu(cpu) { 977 /* Set up direct vCPU id mapping for PV guests. */ 978 per_cpu(xen_vcpu_id, cpu) = cpu; 979 980 /* 981 * xen_vcpu_setup(cpu) can fail -- in which case it 982 * falls back to the shared_info version for cpus 983 * where xen_vcpu_nr(cpu) < MAX_VIRT_CPUS. 984 * 985 * xen_cpu_up_prepare_pv() handles the rest by failing 986 * them in hotplug. 987 */ 988 (void) xen_vcpu_setup(cpu); 989 } 990 991 /* 992 * xen_vcpu_setup managed to place the vcpu_info within the 993 * percpu area for all cpus, so make use of it. 994 */ 995 if (xen_have_vcpu_info_placement) { 996 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct); 997 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct); 998 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct); 999 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct); 1000 pv_mmu_ops.read_cr2 = xen_read_cr2_direct; 1001 } 1002 } 1003 1004 static const struct pv_info xen_info __initconst = { 1005 .shared_kernel_pmd = 0, 1006 1007 #ifdef CONFIG_X86_64 1008 .extra_user_64bit_cs = FLAT_USER_CS64, 1009 #endif 1010 .name = "Xen", 1011 }; 1012 1013 static const struct pv_cpu_ops xen_cpu_ops __initconst = { 1014 .cpuid = xen_cpuid, 1015 1016 .set_debugreg = xen_set_debugreg, 1017 .get_debugreg = xen_get_debugreg, 1018 1019 .read_cr0 = xen_read_cr0, 1020 .write_cr0 = xen_write_cr0, 1021 1022 .write_cr4 = xen_write_cr4, 1023 1024 #ifdef CONFIG_X86_64 1025 .read_cr8 = xen_read_cr8, 1026 .write_cr8 = xen_write_cr8, 1027 #endif 1028 1029 .wbinvd = native_wbinvd, 1030 1031 .read_msr = xen_read_msr, 1032 .write_msr = xen_write_msr, 1033 1034 .read_msr_safe = xen_read_msr_safe, 1035 .write_msr_safe = xen_write_msr_safe, 1036 1037 .read_pmc = xen_read_pmc, 1038 1039 .iret = xen_iret, 1040 #ifdef CONFIG_X86_64 1041 .usergs_sysret64 = xen_sysret64, 1042 #endif 1043 1044 .load_tr_desc = paravirt_nop, 1045 .set_ldt = xen_set_ldt, 1046 .load_gdt = xen_load_gdt, 1047 .load_idt = xen_load_idt, 1048 .load_tls = xen_load_tls, 1049 #ifdef CONFIG_X86_64 1050 .load_gs_index = xen_load_gs_index, 1051 #endif 1052 1053 .alloc_ldt = xen_alloc_ldt, 1054 .free_ldt = xen_free_ldt, 1055 1056 .store_tr = xen_store_tr, 1057 1058 .write_ldt_entry = xen_write_ldt_entry, 1059 .write_gdt_entry = xen_write_gdt_entry, 1060 .write_idt_entry = xen_write_idt_entry, 1061 .load_sp0 = xen_load_sp0, 1062 1063 .set_iopl_mask = xen_set_iopl_mask, 1064 .io_delay = xen_io_delay, 1065 1066 /* Xen takes care of %gs when switching to usermode for us */ 1067 .swapgs = paravirt_nop, 1068 1069 .start_context_switch = paravirt_start_context_switch, 1070 .end_context_switch = xen_end_context_switch, 1071 }; 1072 1073 static void xen_restart(char *msg) 1074 { 1075 xen_reboot(SHUTDOWN_reboot); 1076 } 1077 1078 static void xen_machine_halt(void) 1079 { 1080 xen_reboot(SHUTDOWN_poweroff); 1081 } 1082 1083 static void xen_machine_power_off(void) 1084 { 1085 if (pm_power_off) 1086 pm_power_off(); 1087 xen_reboot(SHUTDOWN_poweroff); 1088 } 1089 1090 static void xen_crash_shutdown(struct pt_regs *regs) 1091 { 1092 xen_reboot(SHUTDOWN_crash); 1093 } 1094 1095 static const struct machine_ops xen_machine_ops __initconst = { 1096 .restart = xen_restart, 1097 .halt = xen_machine_halt, 1098 .power_off = xen_machine_power_off, 1099 .shutdown = xen_machine_halt, 1100 .crash_shutdown = xen_crash_shutdown, 1101 .emergency_restart = xen_emergency_restart, 1102 }; 1103 1104 static unsigned char xen_get_nmi_reason(void) 1105 { 1106 unsigned char reason = 0; 1107 1108 /* Construct a value which looks like it came from port 0x61. */ 1109 if (test_bit(_XEN_NMIREASON_io_error, 1110 &HYPERVISOR_shared_info->arch.nmi_reason)) 1111 reason |= NMI_REASON_IOCHK; 1112 if (test_bit(_XEN_NMIREASON_pci_serr, 1113 &HYPERVISOR_shared_info->arch.nmi_reason)) 1114 reason |= NMI_REASON_SERR; 1115 1116 return reason; 1117 } 1118 1119 static void __init xen_boot_params_init_edd(void) 1120 { 1121 #if IS_ENABLED(CONFIG_EDD) 1122 struct xen_platform_op op; 1123 struct edd_info *edd_info; 1124 u32 *mbr_signature; 1125 unsigned nr; 1126 int ret; 1127 1128 edd_info = boot_params.eddbuf; 1129 mbr_signature = boot_params.edd_mbr_sig_buffer; 1130 1131 op.cmd = XENPF_firmware_info; 1132 1133 op.u.firmware_info.type = XEN_FW_DISK_INFO; 1134 for (nr = 0; nr < EDDMAXNR; nr++) { 1135 struct edd_info *info = edd_info + nr; 1136 1137 op.u.firmware_info.index = nr; 1138 info->params.length = sizeof(info->params); 1139 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params, 1140 &info->params); 1141 ret = HYPERVISOR_platform_op(&op); 1142 if (ret) 1143 break; 1144 1145 #define C(x) info->x = op.u.firmware_info.u.disk_info.x 1146 C(device); 1147 C(version); 1148 C(interface_support); 1149 C(legacy_max_cylinder); 1150 C(legacy_max_head); 1151 C(legacy_sectors_per_track); 1152 #undef C 1153 } 1154 boot_params.eddbuf_entries = nr; 1155 1156 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE; 1157 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) { 1158 op.u.firmware_info.index = nr; 1159 ret = HYPERVISOR_platform_op(&op); 1160 if (ret) 1161 break; 1162 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature; 1163 } 1164 boot_params.edd_mbr_sig_buf_entries = nr; 1165 #endif 1166 } 1167 1168 /* 1169 * Set up the GDT and segment registers for -fstack-protector. Until 1170 * we do this, we have to be careful not to call any stack-protected 1171 * function, which is most of the kernel. 1172 */ 1173 static void xen_setup_gdt(int cpu) 1174 { 1175 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot; 1176 pv_cpu_ops.load_gdt = xen_load_gdt_boot; 1177 1178 setup_stack_canary_segment(0); 1179 switch_to_new_gdt(0); 1180 1181 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry; 1182 pv_cpu_ops.load_gdt = xen_load_gdt; 1183 } 1184 1185 static void __init xen_dom0_set_legacy_features(void) 1186 { 1187 x86_platform.legacy.rtc = 1; 1188 } 1189 1190 /* First C function to be called on Xen boot */ 1191 asmlinkage __visible void __init xen_start_kernel(void) 1192 { 1193 struct physdev_set_iopl set_iopl; 1194 unsigned long initrd_start = 0; 1195 int rc; 1196 1197 if (!xen_start_info) 1198 return; 1199 1200 xen_domain_type = XEN_PV_DOMAIN; 1201 xen_start_flags = xen_start_info->flags; 1202 1203 xen_setup_features(); 1204 1205 /* Install Xen paravirt ops */ 1206 pv_info = xen_info; 1207 pv_init_ops.patch = paravirt_patch_default; 1208 pv_cpu_ops = xen_cpu_ops; 1209 xen_init_irq_ops(); 1210 1211 /* 1212 * Setup xen_vcpu early because it is needed for 1213 * local_irq_disable(), irqs_disabled(), e.g. in printk(). 1214 * 1215 * Don't do the full vcpu_info placement stuff until we have 1216 * the cpu_possible_mask and a non-dummy shared_info. 1217 */ 1218 xen_vcpu_info_reset(0); 1219 1220 x86_platform.get_nmi_reason = xen_get_nmi_reason; 1221 1222 x86_init.resources.memory_setup = xen_memory_setup; 1223 x86_init.irqs.intr_mode_init = x86_init_noop; 1224 x86_init.oem.arch_setup = xen_arch_setup; 1225 x86_init.oem.banner = xen_banner; 1226 x86_init.hyper.init_platform = xen_pv_init_platform; 1227 x86_init.hyper.guest_late_init = xen_pv_guest_late_init; 1228 1229 /* 1230 * Set up some pagetable state before starting to set any ptes. 1231 */ 1232 1233 xen_setup_machphys_mapping(); 1234 xen_init_mmu_ops(); 1235 1236 /* Prevent unwanted bits from being set in PTEs. */ 1237 __supported_pte_mask &= ~_PAGE_GLOBAL; 1238 __default_kernel_pte_mask &= ~_PAGE_GLOBAL; 1239 1240 /* 1241 * Prevent page tables from being allocated in highmem, even 1242 * if CONFIG_HIGHPTE is enabled. 1243 */ 1244 __userpte_alloc_gfp &= ~__GFP_HIGHMEM; 1245 1246 /* Get mfn list */ 1247 xen_build_dynamic_phys_to_machine(); 1248 1249 /* 1250 * Set up kernel GDT and segment registers, mainly so that 1251 * -fstack-protector code can be executed. 1252 */ 1253 xen_setup_gdt(0); 1254 1255 /* Work out if we support NX */ 1256 get_cpu_cap(&boot_cpu_data); 1257 x86_configure_nx(); 1258 1259 /* Determine virtual and physical address sizes */ 1260 get_cpu_address_sizes(&boot_cpu_data); 1261 1262 /* Let's presume PV guests always boot on vCPU with id 0. */ 1263 per_cpu(xen_vcpu_id, 0) = 0; 1264 1265 idt_setup_early_handler(); 1266 1267 xen_init_capabilities(); 1268 1269 #ifdef CONFIG_X86_LOCAL_APIC 1270 /* 1271 * set up the basic apic ops. 1272 */ 1273 xen_init_apic(); 1274 #endif 1275 1276 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) { 1277 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start; 1278 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit; 1279 } 1280 1281 machine_ops = xen_machine_ops; 1282 1283 /* 1284 * The only reliable way to retain the initial address of the 1285 * percpu gdt_page is to remember it here, so we can go and 1286 * mark it RW later, when the initial percpu area is freed. 1287 */ 1288 xen_initial_gdt = &per_cpu(gdt_page, 0); 1289 1290 xen_smp_init(); 1291 1292 #ifdef CONFIG_ACPI_NUMA 1293 /* 1294 * The pages we from Xen are not related to machine pages, so 1295 * any NUMA information the kernel tries to get from ACPI will 1296 * be meaningless. Prevent it from trying. 1297 */ 1298 acpi_numa = -1; 1299 #endif 1300 WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv)); 1301 1302 local_irq_disable(); 1303 early_boot_irqs_disabled = true; 1304 1305 xen_raw_console_write("mapping kernel into physical memory\n"); 1306 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, 1307 xen_start_info->nr_pages); 1308 xen_reserve_special_pages(); 1309 1310 /* keep using Xen gdt for now; no urgent need to change it */ 1311 1312 #ifdef CONFIG_X86_32 1313 pv_info.kernel_rpl = 1; 1314 if (xen_feature(XENFEAT_supervisor_mode_kernel)) 1315 pv_info.kernel_rpl = 0; 1316 #else 1317 pv_info.kernel_rpl = 0; 1318 #endif 1319 /* set the limit of our address space */ 1320 xen_reserve_top(); 1321 1322 /* 1323 * We used to do this in xen_arch_setup, but that is too late 1324 * on AMD were early_cpu_init (run before ->arch_setup()) calls 1325 * early_amd_init which pokes 0xcf8 port. 1326 */ 1327 set_iopl.iopl = 1; 1328 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); 1329 if (rc != 0) 1330 xen_raw_printk("physdev_op failed %d\n", rc); 1331 1332 #ifdef CONFIG_X86_32 1333 /* set up basic CPUID stuff */ 1334 cpu_detect(&new_cpu_data); 1335 set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU); 1336 new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1); 1337 #endif 1338 1339 if (xen_start_info->mod_start) { 1340 if (xen_start_info->flags & SIF_MOD_START_PFN) 1341 initrd_start = PFN_PHYS(xen_start_info->mod_start); 1342 else 1343 initrd_start = __pa(xen_start_info->mod_start); 1344 } 1345 1346 /* Poke various useful things into boot_params */ 1347 boot_params.hdr.type_of_loader = (9 << 4) | 0; 1348 boot_params.hdr.ramdisk_image = initrd_start; 1349 boot_params.hdr.ramdisk_size = xen_start_info->mod_len; 1350 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line); 1351 boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN; 1352 1353 if (!xen_initial_domain()) { 1354 add_preferred_console("xenboot", 0, NULL); 1355 if (pci_xen) 1356 x86_init.pci.arch_init = pci_xen_init; 1357 } else { 1358 const struct dom0_vga_console_info *info = 1359 (void *)((char *)xen_start_info + 1360 xen_start_info->console.dom0.info_off); 1361 struct xen_platform_op op = { 1362 .cmd = XENPF_firmware_info, 1363 .interface_version = XENPF_INTERFACE_VERSION, 1364 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS, 1365 }; 1366 1367 x86_platform.set_legacy_features = 1368 xen_dom0_set_legacy_features; 1369 xen_init_vga(info, xen_start_info->console.dom0.info_size); 1370 xen_start_info->console.domU.mfn = 0; 1371 xen_start_info->console.domU.evtchn = 0; 1372 1373 if (HYPERVISOR_platform_op(&op) == 0) 1374 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags; 1375 1376 /* Make sure ACS will be enabled */ 1377 pci_request_acs(); 1378 1379 xen_acpi_sleep_register(); 1380 1381 /* Avoid searching for BIOS MP tables */ 1382 x86_init.mpparse.find_smp_config = x86_init_noop; 1383 x86_init.mpparse.get_smp_config = x86_init_uint_noop; 1384 1385 xen_boot_params_init_edd(); 1386 } 1387 1388 add_preferred_console("tty", 0, NULL); 1389 add_preferred_console("hvc", 0, NULL); 1390 1391 #ifdef CONFIG_PCI 1392 /* PCI BIOS service won't work from a PV guest. */ 1393 pci_probe &= ~PCI_PROBE_BIOS; 1394 #endif 1395 xen_raw_console_write("about to get started...\n"); 1396 1397 /* We need this for printk timestamps */ 1398 xen_setup_runstate_info(0); 1399 1400 xen_efi_init(); 1401 1402 /* Start the world */ 1403 #ifdef CONFIG_X86_32 1404 i386_start_kernel(); 1405 #else 1406 cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */ 1407 x86_64_start_reservations((char *)__pa_symbol(&boot_params)); 1408 #endif 1409 } 1410 1411 static int xen_cpu_up_prepare_pv(unsigned int cpu) 1412 { 1413 int rc; 1414 1415 if (per_cpu(xen_vcpu, cpu) == NULL) 1416 return -ENODEV; 1417 1418 xen_setup_timer(cpu); 1419 1420 rc = xen_smp_intr_init(cpu); 1421 if (rc) { 1422 WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n", 1423 cpu, rc); 1424 return rc; 1425 } 1426 1427 rc = xen_smp_intr_init_pv(cpu); 1428 if (rc) { 1429 WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n", 1430 cpu, rc); 1431 return rc; 1432 } 1433 1434 return 0; 1435 } 1436 1437 static int xen_cpu_dead_pv(unsigned int cpu) 1438 { 1439 xen_smp_intr_free(cpu); 1440 xen_smp_intr_free_pv(cpu); 1441 1442 xen_teardown_timer(cpu); 1443 1444 return 0; 1445 } 1446 1447 static uint32_t __init xen_platform_pv(void) 1448 { 1449 if (xen_pv_domain()) 1450 return xen_cpuid_base(); 1451 1452 return 0; 1453 } 1454 1455 const __initconst struct hypervisor_x86 x86_hyper_xen_pv = { 1456 .name = "Xen PV", 1457 .detect = xen_platform_pv, 1458 .type = X86_HYPER_XEN_PV, 1459 .runtime.pin_vcpu = xen_pin_vcpu, 1460 }; 1461