1 /* 2 * Core of Xen paravirt_ops implementation. 3 * 4 * This file contains the xen_paravirt_ops structure itself, and the 5 * implementations for: 6 * - privileged instructions 7 * - interrupt flags 8 * - segment operations 9 * - booting and setup 10 * 11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 12 */ 13 14 #include <linux/cpu.h> 15 #include <linux/kernel.h> 16 #include <linux/init.h> 17 #include <linux/smp.h> 18 #include <linux/preempt.h> 19 #include <linux/hardirq.h> 20 #include <linux/percpu.h> 21 #include <linux/delay.h> 22 #include <linux/start_kernel.h> 23 #include <linux/sched.h> 24 #include <linux/kprobes.h> 25 #include <linux/bootmem.h> 26 #include <linux/export.h> 27 #include <linux/mm.h> 28 #include <linux/page-flags.h> 29 #include <linux/highmem.h> 30 #include <linux/console.h> 31 #include <linux/pci.h> 32 #include <linux/gfp.h> 33 #include <linux/memblock.h> 34 #include <linux/edd.h> 35 #include <linux/frame.h> 36 37 #include <xen/xen.h> 38 #include <xen/events.h> 39 #include <xen/interface/xen.h> 40 #include <xen/interface/version.h> 41 #include <xen/interface/physdev.h> 42 #include <xen/interface/vcpu.h> 43 #include <xen/interface/memory.h> 44 #include <xen/interface/nmi.h> 45 #include <xen/interface/xen-mca.h> 46 #include <xen/features.h> 47 #include <xen/page.h> 48 #include <xen/hvc-console.h> 49 #include <xen/acpi.h> 50 51 #include <asm/paravirt.h> 52 #include <asm/apic.h> 53 #include <asm/page.h> 54 #include <asm/xen/pci.h> 55 #include <asm/xen/hypercall.h> 56 #include <asm/xen/hypervisor.h> 57 #include <asm/xen/cpuid.h> 58 #include <asm/fixmap.h> 59 #include <asm/processor.h> 60 #include <asm/proto.h> 61 #include <asm/msr-index.h> 62 #include <asm/traps.h> 63 #include <asm/setup.h> 64 #include <asm/desc.h> 65 #include <asm/pgalloc.h> 66 #include <asm/pgtable.h> 67 #include <asm/tlbflush.h> 68 #include <asm/reboot.h> 69 #include <asm/stackprotector.h> 70 #include <asm/hypervisor.h> 71 #include <asm/mach_traps.h> 72 #include <asm/mwait.h> 73 #include <asm/pci_x86.h> 74 #include <asm/cpu.h> 75 76 #ifdef CONFIG_ACPI 77 #include <linux/acpi.h> 78 #include <asm/acpi.h> 79 #include <acpi/pdc_intel.h> 80 #include <acpi/processor.h> 81 #include <xen/interface/platform.h> 82 #endif 83 84 #include "xen-ops.h" 85 #include "mmu.h" 86 #include "smp.h" 87 #include "multicalls.h" 88 #include "pmu.h" 89 90 void *xen_initial_gdt; 91 92 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE); 93 94 static int xen_cpu_up_prepare_pv(unsigned int cpu); 95 static int xen_cpu_dead_pv(unsigned int cpu); 96 97 struct tls_descs { 98 struct desc_struct desc[3]; 99 }; 100 101 /* 102 * Updating the 3 TLS descriptors in the GDT on every task switch is 103 * surprisingly expensive so we avoid updating them if they haven't 104 * changed. Since Xen writes different descriptors than the one 105 * passed in the update_descriptor hypercall we keep shadow copies to 106 * compare against. 107 */ 108 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc); 109 110 /* 111 * On restore, set the vcpu placement up again. 112 * If it fails, then we're in a bad state, since 113 * we can't back out from using it... 114 */ 115 void xen_vcpu_restore(void) 116 { 117 int cpu; 118 119 for_each_possible_cpu(cpu) { 120 bool other_cpu = (cpu != smp_processor_id()); 121 bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, xen_vcpu_nr(cpu), 122 NULL); 123 124 if (other_cpu && is_up && 125 HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(cpu), NULL)) 126 BUG(); 127 128 xen_setup_runstate_info(cpu); 129 130 if (xen_have_vcpu_info_placement) 131 xen_vcpu_setup(cpu); 132 133 if (other_cpu && is_up && 134 HYPERVISOR_vcpu_op(VCPUOP_up, xen_vcpu_nr(cpu), NULL)) 135 BUG(); 136 } 137 } 138 139 static void __init xen_banner(void) 140 { 141 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL); 142 struct xen_extraversion extra; 143 HYPERVISOR_xen_version(XENVER_extraversion, &extra); 144 145 pr_info("Booting paravirtualized kernel on %s\n", pv_info.name); 146 printk(KERN_INFO "Xen version: %d.%d%s%s\n", 147 version >> 16, version & 0xffff, extra.extraversion, 148 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : ""); 149 } 150 /* Check if running on Xen version (major, minor) or later */ 151 bool 152 xen_running_on_version_or_later(unsigned int major, unsigned int minor) 153 { 154 unsigned int version; 155 156 if (!xen_domain()) 157 return false; 158 159 version = HYPERVISOR_xen_version(XENVER_version, NULL); 160 if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) || 161 ((version >> 16) > major)) 162 return true; 163 return false; 164 } 165 166 static __read_mostly unsigned int cpuid_leaf5_ecx_val; 167 static __read_mostly unsigned int cpuid_leaf5_edx_val; 168 169 static void xen_cpuid(unsigned int *ax, unsigned int *bx, 170 unsigned int *cx, unsigned int *dx) 171 { 172 unsigned maskebx = ~0; 173 174 /* 175 * Mask out inconvenient features, to try and disable as many 176 * unsupported kernel subsystems as possible. 177 */ 178 switch (*ax) { 179 case CPUID_MWAIT_LEAF: 180 /* Synthesize the values.. */ 181 *ax = 0; 182 *bx = 0; 183 *cx = cpuid_leaf5_ecx_val; 184 *dx = cpuid_leaf5_edx_val; 185 return; 186 187 case 0xb: 188 /* Suppress extended topology stuff */ 189 maskebx = 0; 190 break; 191 } 192 193 asm(XEN_EMULATE_PREFIX "cpuid" 194 : "=a" (*ax), 195 "=b" (*bx), 196 "=c" (*cx), 197 "=d" (*dx) 198 : "0" (*ax), "2" (*cx)); 199 200 *bx &= maskebx; 201 } 202 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */ 203 204 static bool __init xen_check_mwait(void) 205 { 206 #ifdef CONFIG_ACPI 207 struct xen_platform_op op = { 208 .cmd = XENPF_set_processor_pminfo, 209 .u.set_pminfo.id = -1, 210 .u.set_pminfo.type = XEN_PM_PDC, 211 }; 212 uint32_t buf[3]; 213 unsigned int ax, bx, cx, dx; 214 unsigned int mwait_mask; 215 216 /* We need to determine whether it is OK to expose the MWAIT 217 * capability to the kernel to harvest deeper than C3 states from ACPI 218 * _CST using the processor_harvest_xen.c module. For this to work, we 219 * need to gather the MWAIT_LEAF values (which the cstate.c code 220 * checks against). The hypervisor won't expose the MWAIT flag because 221 * it would break backwards compatibility; so we will find out directly 222 * from the hardware and hypercall. 223 */ 224 if (!xen_initial_domain()) 225 return false; 226 227 /* 228 * When running under platform earlier than Xen4.2, do not expose 229 * mwait, to avoid the risk of loading native acpi pad driver 230 */ 231 if (!xen_running_on_version_or_later(4, 2)) 232 return false; 233 234 ax = 1; 235 cx = 0; 236 237 native_cpuid(&ax, &bx, &cx, &dx); 238 239 mwait_mask = (1 << (X86_FEATURE_EST % 32)) | 240 (1 << (X86_FEATURE_MWAIT % 32)); 241 242 if ((cx & mwait_mask) != mwait_mask) 243 return false; 244 245 /* We need to emulate the MWAIT_LEAF and for that we need both 246 * ecx and edx. The hypercall provides only partial information. 247 */ 248 249 ax = CPUID_MWAIT_LEAF; 250 bx = 0; 251 cx = 0; 252 dx = 0; 253 254 native_cpuid(&ax, &bx, &cx, &dx); 255 256 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so, 257 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3. 258 */ 259 buf[0] = ACPI_PDC_REVISION_ID; 260 buf[1] = 1; 261 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP); 262 263 set_xen_guest_handle(op.u.set_pminfo.pdc, buf); 264 265 if ((HYPERVISOR_platform_op(&op) == 0) && 266 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) { 267 cpuid_leaf5_ecx_val = cx; 268 cpuid_leaf5_edx_val = dx; 269 } 270 return true; 271 #else 272 return false; 273 #endif 274 } 275 276 static bool __init xen_check_xsave(void) 277 { 278 unsigned int cx, xsave_mask; 279 280 cx = cpuid_ecx(1); 281 282 xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) | 283 (1 << (X86_FEATURE_OSXSAVE % 32)); 284 285 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */ 286 return (cx & xsave_mask) == xsave_mask; 287 } 288 289 static void __init xen_init_capabilities(void) 290 { 291 setup_force_cpu_cap(X86_FEATURE_XENPV); 292 setup_clear_cpu_cap(X86_FEATURE_DCA); 293 setup_clear_cpu_cap(X86_FEATURE_APERFMPERF); 294 setup_clear_cpu_cap(X86_FEATURE_MTRR); 295 setup_clear_cpu_cap(X86_FEATURE_ACC); 296 setup_clear_cpu_cap(X86_FEATURE_X2APIC); 297 298 if (!xen_initial_domain()) 299 setup_clear_cpu_cap(X86_FEATURE_ACPI); 300 301 if (xen_check_mwait()) 302 setup_force_cpu_cap(X86_FEATURE_MWAIT); 303 else 304 setup_clear_cpu_cap(X86_FEATURE_MWAIT); 305 306 if (!xen_check_xsave()) { 307 setup_clear_cpu_cap(X86_FEATURE_XSAVE); 308 setup_clear_cpu_cap(X86_FEATURE_OSXSAVE); 309 } 310 } 311 312 static void xen_set_debugreg(int reg, unsigned long val) 313 { 314 HYPERVISOR_set_debugreg(reg, val); 315 } 316 317 static unsigned long xen_get_debugreg(int reg) 318 { 319 return HYPERVISOR_get_debugreg(reg); 320 } 321 322 static void xen_end_context_switch(struct task_struct *next) 323 { 324 xen_mc_flush(); 325 paravirt_end_context_switch(next); 326 } 327 328 static unsigned long xen_store_tr(void) 329 { 330 return 0; 331 } 332 333 /* 334 * Set the page permissions for a particular virtual address. If the 335 * address is a vmalloc mapping (or other non-linear mapping), then 336 * find the linear mapping of the page and also set its protections to 337 * match. 338 */ 339 static void set_aliased_prot(void *v, pgprot_t prot) 340 { 341 int level; 342 pte_t *ptep; 343 pte_t pte; 344 unsigned long pfn; 345 struct page *page; 346 unsigned char dummy; 347 348 ptep = lookup_address((unsigned long)v, &level); 349 BUG_ON(ptep == NULL); 350 351 pfn = pte_pfn(*ptep); 352 page = pfn_to_page(pfn); 353 354 pte = pfn_pte(pfn, prot); 355 356 /* 357 * Careful: update_va_mapping() will fail if the virtual address 358 * we're poking isn't populated in the page tables. We don't 359 * need to worry about the direct map (that's always in the page 360 * tables), but we need to be careful about vmap space. In 361 * particular, the top level page table can lazily propagate 362 * entries between processes, so if we've switched mms since we 363 * vmapped the target in the first place, we might not have the 364 * top-level page table entry populated. 365 * 366 * We disable preemption because we want the same mm active when 367 * we probe the target and when we issue the hypercall. We'll 368 * have the same nominal mm, but if we're a kernel thread, lazy 369 * mm dropping could change our pgd. 370 * 371 * Out of an abundance of caution, this uses __get_user() to fault 372 * in the target address just in case there's some obscure case 373 * in which the target address isn't readable. 374 */ 375 376 preempt_disable(); 377 378 probe_kernel_read(&dummy, v, 1); 379 380 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0)) 381 BUG(); 382 383 if (!PageHighMem(page)) { 384 void *av = __va(PFN_PHYS(pfn)); 385 386 if (av != v) 387 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0)) 388 BUG(); 389 } else 390 kmap_flush_unused(); 391 392 preempt_enable(); 393 } 394 395 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries) 396 { 397 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; 398 int i; 399 400 /* 401 * We need to mark the all aliases of the LDT pages RO. We 402 * don't need to call vm_flush_aliases(), though, since that's 403 * only responsible for flushing aliases out the TLBs, not the 404 * page tables, and Xen will flush the TLB for us if needed. 405 * 406 * To avoid confusing future readers: none of this is necessary 407 * to load the LDT. The hypervisor only checks this when the 408 * LDT is faulted in due to subsequent descriptor access. 409 */ 410 411 for (i = 0; i < entries; i += entries_per_page) 412 set_aliased_prot(ldt + i, PAGE_KERNEL_RO); 413 } 414 415 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries) 416 { 417 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; 418 int i; 419 420 for (i = 0; i < entries; i += entries_per_page) 421 set_aliased_prot(ldt + i, PAGE_KERNEL); 422 } 423 424 static void xen_set_ldt(const void *addr, unsigned entries) 425 { 426 struct mmuext_op *op; 427 struct multicall_space mcs = xen_mc_entry(sizeof(*op)); 428 429 trace_xen_cpu_set_ldt(addr, entries); 430 431 op = mcs.args; 432 op->cmd = MMUEXT_SET_LDT; 433 op->arg1.linear_addr = (unsigned long)addr; 434 op->arg2.nr_ents = entries; 435 436 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 437 438 xen_mc_issue(PARAVIRT_LAZY_CPU); 439 } 440 441 static void xen_load_gdt(const struct desc_ptr *dtr) 442 { 443 unsigned long va = dtr->address; 444 unsigned int size = dtr->size + 1; 445 unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE); 446 unsigned long frames[pages]; 447 int f; 448 449 /* 450 * A GDT can be up to 64k in size, which corresponds to 8192 451 * 8-byte entries, or 16 4k pages.. 452 */ 453 454 BUG_ON(size > 65536); 455 BUG_ON(va & ~PAGE_MASK); 456 457 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) { 458 int level; 459 pte_t *ptep; 460 unsigned long pfn, mfn; 461 void *virt; 462 463 /* 464 * The GDT is per-cpu and is in the percpu data area. 465 * That can be virtually mapped, so we need to do a 466 * page-walk to get the underlying MFN for the 467 * hypercall. The page can also be in the kernel's 468 * linear range, so we need to RO that mapping too. 469 */ 470 ptep = lookup_address(va, &level); 471 BUG_ON(ptep == NULL); 472 473 pfn = pte_pfn(*ptep); 474 mfn = pfn_to_mfn(pfn); 475 virt = __va(PFN_PHYS(pfn)); 476 477 frames[f] = mfn; 478 479 make_lowmem_page_readonly((void *)va); 480 make_lowmem_page_readonly(virt); 481 } 482 483 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct))) 484 BUG(); 485 } 486 487 /* 488 * load_gdt for early boot, when the gdt is only mapped once 489 */ 490 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr) 491 { 492 unsigned long va = dtr->address; 493 unsigned int size = dtr->size + 1; 494 unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE); 495 unsigned long frames[pages]; 496 int f; 497 498 /* 499 * A GDT can be up to 64k in size, which corresponds to 8192 500 * 8-byte entries, or 16 4k pages.. 501 */ 502 503 BUG_ON(size > 65536); 504 BUG_ON(va & ~PAGE_MASK); 505 506 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) { 507 pte_t pte; 508 unsigned long pfn, mfn; 509 510 pfn = virt_to_pfn(va); 511 mfn = pfn_to_mfn(pfn); 512 513 pte = pfn_pte(pfn, PAGE_KERNEL_RO); 514 515 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0)) 516 BUG(); 517 518 frames[f] = mfn; 519 } 520 521 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct))) 522 BUG(); 523 } 524 525 static inline bool desc_equal(const struct desc_struct *d1, 526 const struct desc_struct *d2) 527 { 528 return d1->a == d2->a && d1->b == d2->b; 529 } 530 531 static void load_TLS_descriptor(struct thread_struct *t, 532 unsigned int cpu, unsigned int i) 533 { 534 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i]; 535 struct desc_struct *gdt; 536 xmaddr_t maddr; 537 struct multicall_space mc; 538 539 if (desc_equal(shadow, &t->tls_array[i])) 540 return; 541 542 *shadow = t->tls_array[i]; 543 544 gdt = get_cpu_gdt_rw(cpu); 545 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]); 546 mc = __xen_mc_entry(0); 547 548 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]); 549 } 550 551 static void xen_load_tls(struct thread_struct *t, unsigned int cpu) 552 { 553 /* 554 * XXX sleazy hack: If we're being called in a lazy-cpu zone 555 * and lazy gs handling is enabled, it means we're in a 556 * context switch, and %gs has just been saved. This means we 557 * can zero it out to prevent faults on exit from the 558 * hypervisor if the next process has no %gs. Either way, it 559 * has been saved, and the new value will get loaded properly. 560 * This will go away as soon as Xen has been modified to not 561 * save/restore %gs for normal hypercalls. 562 * 563 * On x86_64, this hack is not used for %gs, because gs points 564 * to KERNEL_GS_BASE (and uses it for PDA references), so we 565 * must not zero %gs on x86_64 566 * 567 * For x86_64, we need to zero %fs, otherwise we may get an 568 * exception between the new %fs descriptor being loaded and 569 * %fs being effectively cleared at __switch_to(). 570 */ 571 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) { 572 #ifdef CONFIG_X86_32 573 lazy_load_gs(0); 574 #else 575 loadsegment(fs, 0); 576 #endif 577 } 578 579 xen_mc_batch(); 580 581 load_TLS_descriptor(t, cpu, 0); 582 load_TLS_descriptor(t, cpu, 1); 583 load_TLS_descriptor(t, cpu, 2); 584 585 xen_mc_issue(PARAVIRT_LAZY_CPU); 586 } 587 588 #ifdef CONFIG_X86_64 589 static void xen_load_gs_index(unsigned int idx) 590 { 591 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx)) 592 BUG(); 593 } 594 #endif 595 596 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum, 597 const void *ptr) 598 { 599 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]); 600 u64 entry = *(u64 *)ptr; 601 602 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry); 603 604 preempt_disable(); 605 606 xen_mc_flush(); 607 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry)) 608 BUG(); 609 610 preempt_enable(); 611 } 612 613 static int cvt_gate_to_trap(int vector, const gate_desc *val, 614 struct trap_info *info) 615 { 616 unsigned long addr; 617 618 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT) 619 return 0; 620 621 info->vector = vector; 622 623 addr = gate_offset(*val); 624 #ifdef CONFIG_X86_64 625 /* 626 * Look for known traps using IST, and substitute them 627 * appropriately. The debugger ones are the only ones we care 628 * about. Xen will handle faults like double_fault, 629 * so we should never see them. Warn if 630 * there's an unexpected IST-using fault handler. 631 */ 632 if (addr == (unsigned long)debug) 633 addr = (unsigned long)xen_debug; 634 else if (addr == (unsigned long)int3) 635 addr = (unsigned long)xen_int3; 636 else if (addr == (unsigned long)stack_segment) 637 addr = (unsigned long)xen_stack_segment; 638 else if (addr == (unsigned long)double_fault) { 639 /* Don't need to handle these */ 640 return 0; 641 #ifdef CONFIG_X86_MCE 642 } else if (addr == (unsigned long)machine_check) { 643 /* 644 * when xen hypervisor inject vMCE to guest, 645 * use native mce handler to handle it 646 */ 647 ; 648 #endif 649 } else if (addr == (unsigned long)nmi) 650 /* 651 * Use the native version as well. 652 */ 653 ; 654 else { 655 /* Some other trap using IST? */ 656 if (WARN_ON(val->ist != 0)) 657 return 0; 658 } 659 #endif /* CONFIG_X86_64 */ 660 info->address = addr; 661 662 info->cs = gate_segment(*val); 663 info->flags = val->dpl; 664 /* interrupt gates clear IF */ 665 if (val->type == GATE_INTERRUPT) 666 info->flags |= 1 << 2; 667 668 return 1; 669 } 670 671 /* Locations of each CPU's IDT */ 672 static DEFINE_PER_CPU(struct desc_ptr, idt_desc); 673 674 /* Set an IDT entry. If the entry is part of the current IDT, then 675 also update Xen. */ 676 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g) 677 { 678 unsigned long p = (unsigned long)&dt[entrynum]; 679 unsigned long start, end; 680 681 trace_xen_cpu_write_idt_entry(dt, entrynum, g); 682 683 preempt_disable(); 684 685 start = __this_cpu_read(idt_desc.address); 686 end = start + __this_cpu_read(idt_desc.size) + 1; 687 688 xen_mc_flush(); 689 690 native_write_idt_entry(dt, entrynum, g); 691 692 if (p >= start && (p + 8) <= end) { 693 struct trap_info info[2]; 694 695 info[1].address = 0; 696 697 if (cvt_gate_to_trap(entrynum, g, &info[0])) 698 if (HYPERVISOR_set_trap_table(info)) 699 BUG(); 700 } 701 702 preempt_enable(); 703 } 704 705 static void xen_convert_trap_info(const struct desc_ptr *desc, 706 struct trap_info *traps) 707 { 708 unsigned in, out, count; 709 710 count = (desc->size+1) / sizeof(gate_desc); 711 BUG_ON(count > 256); 712 713 for (in = out = 0; in < count; in++) { 714 gate_desc *entry = (gate_desc *)(desc->address) + in; 715 716 if (cvt_gate_to_trap(in, entry, &traps[out])) 717 out++; 718 } 719 traps[out].address = 0; 720 } 721 722 void xen_copy_trap_info(struct trap_info *traps) 723 { 724 const struct desc_ptr *desc = this_cpu_ptr(&idt_desc); 725 726 xen_convert_trap_info(desc, traps); 727 } 728 729 /* Load a new IDT into Xen. In principle this can be per-CPU, so we 730 hold a spinlock to protect the static traps[] array (static because 731 it avoids allocation, and saves stack space). */ 732 static void xen_load_idt(const struct desc_ptr *desc) 733 { 734 static DEFINE_SPINLOCK(lock); 735 static struct trap_info traps[257]; 736 737 trace_xen_cpu_load_idt(desc); 738 739 spin_lock(&lock); 740 741 memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc)); 742 743 xen_convert_trap_info(desc, traps); 744 745 xen_mc_flush(); 746 if (HYPERVISOR_set_trap_table(traps)) 747 BUG(); 748 749 spin_unlock(&lock); 750 } 751 752 /* Write a GDT descriptor entry. Ignore LDT descriptors, since 753 they're handled differently. */ 754 static void xen_write_gdt_entry(struct desc_struct *dt, int entry, 755 const void *desc, int type) 756 { 757 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type); 758 759 preempt_disable(); 760 761 switch (type) { 762 case DESC_LDT: 763 case DESC_TSS: 764 /* ignore */ 765 break; 766 767 default: { 768 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]); 769 770 xen_mc_flush(); 771 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) 772 BUG(); 773 } 774 775 } 776 777 preempt_enable(); 778 } 779 780 /* 781 * Version of write_gdt_entry for use at early boot-time needed to 782 * update an entry as simply as possible. 783 */ 784 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry, 785 const void *desc, int type) 786 { 787 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type); 788 789 switch (type) { 790 case DESC_LDT: 791 case DESC_TSS: 792 /* ignore */ 793 break; 794 795 default: { 796 xmaddr_t maddr = virt_to_machine(&dt[entry]); 797 798 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) 799 dt[entry] = *(struct desc_struct *)desc; 800 } 801 802 } 803 } 804 805 static void xen_load_sp0(struct tss_struct *tss, 806 struct thread_struct *thread) 807 { 808 struct multicall_space mcs; 809 810 mcs = xen_mc_entry(0); 811 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0); 812 xen_mc_issue(PARAVIRT_LAZY_CPU); 813 tss->x86_tss.sp0 = thread->sp0; 814 } 815 816 void xen_set_iopl_mask(unsigned mask) 817 { 818 struct physdev_set_iopl set_iopl; 819 820 /* Force the change at ring 0. */ 821 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3; 822 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); 823 } 824 825 static void xen_io_delay(void) 826 { 827 } 828 829 static DEFINE_PER_CPU(unsigned long, xen_cr0_value); 830 831 static unsigned long xen_read_cr0(void) 832 { 833 unsigned long cr0 = this_cpu_read(xen_cr0_value); 834 835 if (unlikely(cr0 == 0)) { 836 cr0 = native_read_cr0(); 837 this_cpu_write(xen_cr0_value, cr0); 838 } 839 840 return cr0; 841 } 842 843 static void xen_write_cr0(unsigned long cr0) 844 { 845 struct multicall_space mcs; 846 847 this_cpu_write(xen_cr0_value, cr0); 848 849 /* Only pay attention to cr0.TS; everything else is 850 ignored. */ 851 mcs = xen_mc_entry(0); 852 853 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0); 854 855 xen_mc_issue(PARAVIRT_LAZY_CPU); 856 } 857 858 static void xen_write_cr4(unsigned long cr4) 859 { 860 cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE); 861 862 native_write_cr4(cr4); 863 } 864 #ifdef CONFIG_X86_64 865 static inline unsigned long xen_read_cr8(void) 866 { 867 return 0; 868 } 869 static inline void xen_write_cr8(unsigned long val) 870 { 871 BUG_ON(val); 872 } 873 #endif 874 875 static u64 xen_read_msr_safe(unsigned int msr, int *err) 876 { 877 u64 val; 878 879 if (pmu_msr_read(msr, &val, err)) 880 return val; 881 882 val = native_read_msr_safe(msr, err); 883 switch (msr) { 884 case MSR_IA32_APICBASE: 885 #ifdef CONFIG_X86_X2APIC 886 if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31)))) 887 #endif 888 val &= ~X2APIC_ENABLE; 889 break; 890 } 891 return val; 892 } 893 894 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high) 895 { 896 int ret; 897 898 ret = 0; 899 900 switch (msr) { 901 #ifdef CONFIG_X86_64 902 unsigned which; 903 u64 base; 904 905 case MSR_FS_BASE: which = SEGBASE_FS; goto set; 906 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set; 907 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set; 908 909 set: 910 base = ((u64)high << 32) | low; 911 if (HYPERVISOR_set_segment_base(which, base) != 0) 912 ret = -EIO; 913 break; 914 #endif 915 916 case MSR_STAR: 917 case MSR_CSTAR: 918 case MSR_LSTAR: 919 case MSR_SYSCALL_MASK: 920 case MSR_IA32_SYSENTER_CS: 921 case MSR_IA32_SYSENTER_ESP: 922 case MSR_IA32_SYSENTER_EIP: 923 /* Fast syscall setup is all done in hypercalls, so 924 these are all ignored. Stub them out here to stop 925 Xen console noise. */ 926 break; 927 928 default: 929 if (!pmu_msr_write(msr, low, high, &ret)) 930 ret = native_write_msr_safe(msr, low, high); 931 } 932 933 return ret; 934 } 935 936 static u64 xen_read_msr(unsigned int msr) 937 { 938 /* 939 * This will silently swallow a #GP from RDMSR. It may be worth 940 * changing that. 941 */ 942 int err; 943 944 return xen_read_msr_safe(msr, &err); 945 } 946 947 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high) 948 { 949 /* 950 * This will silently swallow a #GP from WRMSR. It may be worth 951 * changing that. 952 */ 953 xen_write_msr_safe(msr, low, high); 954 } 955 956 void xen_setup_shared_info(void) 957 { 958 set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info); 959 960 HYPERVISOR_shared_info = 961 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP); 962 963 #ifndef CONFIG_SMP 964 /* In UP this is as good a place as any to set up shared info */ 965 xen_setup_vcpu_info_placement(); 966 #endif 967 968 xen_setup_mfn_list_list(); 969 970 /* 971 * Now that shared info is set up we can start using routines that 972 * point to pvclock area. 973 */ 974 if (system_state == SYSTEM_BOOTING) 975 xen_init_time_ops(); 976 } 977 978 /* This is called once we have the cpu_possible_mask */ 979 void xen_setup_vcpu_info_placement(void) 980 { 981 int cpu; 982 983 for_each_possible_cpu(cpu) { 984 /* Set up direct vCPU id mapping for PV guests. */ 985 per_cpu(xen_vcpu_id, cpu) = cpu; 986 xen_vcpu_setup(cpu); 987 } 988 989 /* 990 * xen_vcpu_setup managed to place the vcpu_info within the 991 * percpu area for all cpus, so make use of it. 992 */ 993 if (xen_have_vcpu_info_placement) { 994 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct); 995 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct); 996 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct); 997 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct); 998 pv_mmu_ops.read_cr2 = xen_read_cr2_direct; 999 } 1000 } 1001 1002 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf, 1003 unsigned long addr, unsigned len) 1004 { 1005 char *start, *end, *reloc; 1006 unsigned ret; 1007 1008 start = end = reloc = NULL; 1009 1010 #define SITE(op, x) \ 1011 case PARAVIRT_PATCH(op.x): \ 1012 if (xen_have_vcpu_info_placement) { \ 1013 start = (char *)xen_##x##_direct; \ 1014 end = xen_##x##_direct_end; \ 1015 reloc = xen_##x##_direct_reloc; \ 1016 } \ 1017 goto patch_site 1018 1019 switch (type) { 1020 SITE(pv_irq_ops, irq_enable); 1021 SITE(pv_irq_ops, irq_disable); 1022 SITE(pv_irq_ops, save_fl); 1023 SITE(pv_irq_ops, restore_fl); 1024 #undef SITE 1025 1026 patch_site: 1027 if (start == NULL || (end-start) > len) 1028 goto default_patch; 1029 1030 ret = paravirt_patch_insns(insnbuf, len, start, end); 1031 1032 /* Note: because reloc is assigned from something that 1033 appears to be an array, gcc assumes it's non-null, 1034 but doesn't know its relationship with start and 1035 end. */ 1036 if (reloc > start && reloc < end) { 1037 int reloc_off = reloc - start; 1038 long *relocp = (long *)(insnbuf + reloc_off); 1039 long delta = start - (char *)addr; 1040 1041 *relocp += delta; 1042 } 1043 break; 1044 1045 default_patch: 1046 default: 1047 ret = paravirt_patch_default(type, clobbers, insnbuf, 1048 addr, len); 1049 break; 1050 } 1051 1052 return ret; 1053 } 1054 1055 static const struct pv_info xen_info __initconst = { 1056 .shared_kernel_pmd = 0, 1057 1058 #ifdef CONFIG_X86_64 1059 .extra_user_64bit_cs = FLAT_USER_CS64, 1060 #endif 1061 .name = "Xen", 1062 }; 1063 1064 static const struct pv_init_ops xen_init_ops __initconst = { 1065 .patch = xen_patch, 1066 }; 1067 1068 static const struct pv_cpu_ops xen_cpu_ops __initconst = { 1069 .cpuid = xen_cpuid, 1070 1071 .set_debugreg = xen_set_debugreg, 1072 .get_debugreg = xen_get_debugreg, 1073 1074 .read_cr0 = xen_read_cr0, 1075 .write_cr0 = xen_write_cr0, 1076 1077 .read_cr4 = native_read_cr4, 1078 .write_cr4 = xen_write_cr4, 1079 1080 #ifdef CONFIG_X86_64 1081 .read_cr8 = xen_read_cr8, 1082 .write_cr8 = xen_write_cr8, 1083 #endif 1084 1085 .wbinvd = native_wbinvd, 1086 1087 .read_msr = xen_read_msr, 1088 .write_msr = xen_write_msr, 1089 1090 .read_msr_safe = xen_read_msr_safe, 1091 .write_msr_safe = xen_write_msr_safe, 1092 1093 .read_pmc = xen_read_pmc, 1094 1095 .iret = xen_iret, 1096 #ifdef CONFIG_X86_64 1097 .usergs_sysret64 = xen_sysret64, 1098 #endif 1099 1100 .load_tr_desc = paravirt_nop, 1101 .set_ldt = xen_set_ldt, 1102 .load_gdt = xen_load_gdt, 1103 .load_idt = xen_load_idt, 1104 .load_tls = xen_load_tls, 1105 #ifdef CONFIG_X86_64 1106 .load_gs_index = xen_load_gs_index, 1107 #endif 1108 1109 .alloc_ldt = xen_alloc_ldt, 1110 .free_ldt = xen_free_ldt, 1111 1112 .store_idt = native_store_idt, 1113 .store_tr = xen_store_tr, 1114 1115 .write_ldt_entry = xen_write_ldt_entry, 1116 .write_gdt_entry = xen_write_gdt_entry, 1117 .write_idt_entry = xen_write_idt_entry, 1118 .load_sp0 = xen_load_sp0, 1119 1120 .set_iopl_mask = xen_set_iopl_mask, 1121 .io_delay = xen_io_delay, 1122 1123 /* Xen takes care of %gs when switching to usermode for us */ 1124 .swapgs = paravirt_nop, 1125 1126 .start_context_switch = paravirt_start_context_switch, 1127 .end_context_switch = xen_end_context_switch, 1128 }; 1129 1130 static void xen_restart(char *msg) 1131 { 1132 xen_reboot(SHUTDOWN_reboot); 1133 } 1134 1135 static void xen_machine_halt(void) 1136 { 1137 xen_reboot(SHUTDOWN_poweroff); 1138 } 1139 1140 static void xen_machine_power_off(void) 1141 { 1142 if (pm_power_off) 1143 pm_power_off(); 1144 xen_reboot(SHUTDOWN_poweroff); 1145 } 1146 1147 static void xen_crash_shutdown(struct pt_regs *regs) 1148 { 1149 xen_reboot(SHUTDOWN_crash); 1150 } 1151 1152 static const struct machine_ops xen_machine_ops __initconst = { 1153 .restart = xen_restart, 1154 .halt = xen_machine_halt, 1155 .power_off = xen_machine_power_off, 1156 .shutdown = xen_machine_halt, 1157 .crash_shutdown = xen_crash_shutdown, 1158 .emergency_restart = xen_emergency_restart, 1159 }; 1160 1161 static unsigned char xen_get_nmi_reason(void) 1162 { 1163 unsigned char reason = 0; 1164 1165 /* Construct a value which looks like it came from port 0x61. */ 1166 if (test_bit(_XEN_NMIREASON_io_error, 1167 &HYPERVISOR_shared_info->arch.nmi_reason)) 1168 reason |= NMI_REASON_IOCHK; 1169 if (test_bit(_XEN_NMIREASON_pci_serr, 1170 &HYPERVISOR_shared_info->arch.nmi_reason)) 1171 reason |= NMI_REASON_SERR; 1172 1173 return reason; 1174 } 1175 1176 static void __init xen_boot_params_init_edd(void) 1177 { 1178 #if IS_ENABLED(CONFIG_EDD) 1179 struct xen_platform_op op; 1180 struct edd_info *edd_info; 1181 u32 *mbr_signature; 1182 unsigned nr; 1183 int ret; 1184 1185 edd_info = boot_params.eddbuf; 1186 mbr_signature = boot_params.edd_mbr_sig_buffer; 1187 1188 op.cmd = XENPF_firmware_info; 1189 1190 op.u.firmware_info.type = XEN_FW_DISK_INFO; 1191 for (nr = 0; nr < EDDMAXNR; nr++) { 1192 struct edd_info *info = edd_info + nr; 1193 1194 op.u.firmware_info.index = nr; 1195 info->params.length = sizeof(info->params); 1196 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params, 1197 &info->params); 1198 ret = HYPERVISOR_platform_op(&op); 1199 if (ret) 1200 break; 1201 1202 #define C(x) info->x = op.u.firmware_info.u.disk_info.x 1203 C(device); 1204 C(version); 1205 C(interface_support); 1206 C(legacy_max_cylinder); 1207 C(legacy_max_head); 1208 C(legacy_sectors_per_track); 1209 #undef C 1210 } 1211 boot_params.eddbuf_entries = nr; 1212 1213 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE; 1214 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) { 1215 op.u.firmware_info.index = nr; 1216 ret = HYPERVISOR_platform_op(&op); 1217 if (ret) 1218 break; 1219 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature; 1220 } 1221 boot_params.edd_mbr_sig_buf_entries = nr; 1222 #endif 1223 } 1224 1225 /* 1226 * Set up the GDT and segment registers for -fstack-protector. Until 1227 * we do this, we have to be careful not to call any stack-protected 1228 * function, which is most of the kernel. 1229 */ 1230 static void xen_setup_gdt(int cpu) 1231 { 1232 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot; 1233 pv_cpu_ops.load_gdt = xen_load_gdt_boot; 1234 1235 setup_stack_canary_segment(0); 1236 switch_to_new_gdt(0); 1237 1238 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry; 1239 pv_cpu_ops.load_gdt = xen_load_gdt; 1240 } 1241 1242 static void __init xen_dom0_set_legacy_features(void) 1243 { 1244 x86_platform.legacy.rtc = 1; 1245 } 1246 1247 /* First C function to be called on Xen boot */ 1248 asmlinkage __visible void __init xen_start_kernel(void) 1249 { 1250 struct physdev_set_iopl set_iopl; 1251 unsigned long initrd_start = 0; 1252 int rc; 1253 1254 if (!xen_start_info) 1255 return; 1256 1257 xen_domain_type = XEN_PV_DOMAIN; 1258 1259 xen_setup_features(); 1260 1261 xen_setup_machphys_mapping(); 1262 1263 /* Install Xen paravirt ops */ 1264 pv_info = xen_info; 1265 pv_init_ops = xen_init_ops; 1266 pv_cpu_ops = xen_cpu_ops; 1267 1268 x86_platform.get_nmi_reason = xen_get_nmi_reason; 1269 1270 x86_init.resources.memory_setup = xen_memory_setup; 1271 x86_init.oem.arch_setup = xen_arch_setup; 1272 x86_init.oem.banner = xen_banner; 1273 1274 /* 1275 * Set up some pagetable state before starting to set any ptes. 1276 */ 1277 1278 xen_init_mmu_ops(); 1279 1280 /* Prevent unwanted bits from being set in PTEs. */ 1281 __supported_pte_mask &= ~_PAGE_GLOBAL; 1282 1283 /* 1284 * Prevent page tables from being allocated in highmem, even 1285 * if CONFIG_HIGHPTE is enabled. 1286 */ 1287 __userpte_alloc_gfp &= ~__GFP_HIGHMEM; 1288 1289 /* Work out if we support NX */ 1290 x86_configure_nx(); 1291 1292 /* Get mfn list */ 1293 xen_build_dynamic_phys_to_machine(); 1294 1295 /* 1296 * Set up kernel GDT and segment registers, mainly so that 1297 * -fstack-protector code can be executed. 1298 */ 1299 xen_setup_gdt(0); 1300 1301 xen_init_irq_ops(); 1302 xen_init_capabilities(); 1303 1304 #ifdef CONFIG_X86_LOCAL_APIC 1305 /* 1306 * set up the basic apic ops. 1307 */ 1308 xen_init_apic(); 1309 #endif 1310 1311 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) { 1312 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start; 1313 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit; 1314 } 1315 1316 machine_ops = xen_machine_ops; 1317 1318 /* 1319 * The only reliable way to retain the initial address of the 1320 * percpu gdt_page is to remember it here, so we can go and 1321 * mark it RW later, when the initial percpu area is freed. 1322 */ 1323 xen_initial_gdt = &per_cpu(gdt_page, 0); 1324 1325 xen_smp_init(); 1326 1327 #ifdef CONFIG_ACPI_NUMA 1328 /* 1329 * The pages we from Xen are not related to machine pages, so 1330 * any NUMA information the kernel tries to get from ACPI will 1331 * be meaningless. Prevent it from trying. 1332 */ 1333 acpi_numa = -1; 1334 #endif 1335 /* Don't do the full vcpu_info placement stuff until we have a 1336 possible map and a non-dummy shared_info. */ 1337 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0]; 1338 1339 WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv)); 1340 1341 local_irq_disable(); 1342 early_boot_irqs_disabled = true; 1343 1344 xen_raw_console_write("mapping kernel into physical memory\n"); 1345 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, 1346 xen_start_info->nr_pages); 1347 xen_reserve_special_pages(); 1348 1349 /* keep using Xen gdt for now; no urgent need to change it */ 1350 1351 #ifdef CONFIG_X86_32 1352 pv_info.kernel_rpl = 1; 1353 if (xen_feature(XENFEAT_supervisor_mode_kernel)) 1354 pv_info.kernel_rpl = 0; 1355 #else 1356 pv_info.kernel_rpl = 0; 1357 #endif 1358 /* set the limit of our address space */ 1359 xen_reserve_top(); 1360 1361 /* 1362 * We used to do this in xen_arch_setup, but that is too late 1363 * on AMD were early_cpu_init (run before ->arch_setup()) calls 1364 * early_amd_init which pokes 0xcf8 port. 1365 */ 1366 set_iopl.iopl = 1; 1367 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); 1368 if (rc != 0) 1369 xen_raw_printk("physdev_op failed %d\n", rc); 1370 1371 #ifdef CONFIG_X86_32 1372 /* set up basic CPUID stuff */ 1373 cpu_detect(&new_cpu_data); 1374 set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU); 1375 new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1); 1376 #endif 1377 1378 if (xen_start_info->mod_start) { 1379 if (xen_start_info->flags & SIF_MOD_START_PFN) 1380 initrd_start = PFN_PHYS(xen_start_info->mod_start); 1381 else 1382 initrd_start = __pa(xen_start_info->mod_start); 1383 } 1384 1385 /* Poke various useful things into boot_params */ 1386 boot_params.hdr.type_of_loader = (9 << 4) | 0; 1387 boot_params.hdr.ramdisk_image = initrd_start; 1388 boot_params.hdr.ramdisk_size = xen_start_info->mod_len; 1389 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line); 1390 boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN; 1391 1392 if (!xen_initial_domain()) { 1393 add_preferred_console("xenboot", 0, NULL); 1394 add_preferred_console("tty", 0, NULL); 1395 add_preferred_console("hvc", 0, NULL); 1396 if (pci_xen) 1397 x86_init.pci.arch_init = pci_xen_init; 1398 } else { 1399 const struct dom0_vga_console_info *info = 1400 (void *)((char *)xen_start_info + 1401 xen_start_info->console.dom0.info_off); 1402 struct xen_platform_op op = { 1403 .cmd = XENPF_firmware_info, 1404 .interface_version = XENPF_INTERFACE_VERSION, 1405 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS, 1406 }; 1407 1408 x86_platform.set_legacy_features = 1409 xen_dom0_set_legacy_features; 1410 xen_init_vga(info, xen_start_info->console.dom0.info_size); 1411 xen_start_info->console.domU.mfn = 0; 1412 xen_start_info->console.domU.evtchn = 0; 1413 1414 if (HYPERVISOR_platform_op(&op) == 0) 1415 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags; 1416 1417 /* Make sure ACS will be enabled */ 1418 pci_request_acs(); 1419 1420 xen_acpi_sleep_register(); 1421 1422 /* Avoid searching for BIOS MP tables */ 1423 x86_init.mpparse.find_smp_config = x86_init_noop; 1424 x86_init.mpparse.get_smp_config = x86_init_uint_noop; 1425 1426 xen_boot_params_init_edd(); 1427 } 1428 #ifdef CONFIG_PCI 1429 /* PCI BIOS service won't work from a PV guest. */ 1430 pci_probe &= ~PCI_PROBE_BIOS; 1431 #endif 1432 xen_raw_console_write("about to get started...\n"); 1433 1434 /* Let's presume PV guests always boot on vCPU with id 0. */ 1435 per_cpu(xen_vcpu_id, 0) = 0; 1436 1437 xen_setup_runstate_info(0); 1438 1439 xen_efi_init(); 1440 1441 /* Start the world */ 1442 #ifdef CONFIG_X86_32 1443 i386_start_kernel(); 1444 #else 1445 cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */ 1446 x86_64_start_reservations((char *)__pa_symbol(&boot_params)); 1447 #endif 1448 } 1449 1450 static int xen_cpu_up_prepare_pv(unsigned int cpu) 1451 { 1452 int rc; 1453 1454 xen_setup_timer(cpu); 1455 1456 rc = xen_smp_intr_init(cpu); 1457 if (rc) { 1458 WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n", 1459 cpu, rc); 1460 return rc; 1461 } 1462 1463 rc = xen_smp_intr_init_pv(cpu); 1464 if (rc) { 1465 WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n", 1466 cpu, rc); 1467 return rc; 1468 } 1469 1470 return 0; 1471 } 1472 1473 static int xen_cpu_dead_pv(unsigned int cpu) 1474 { 1475 xen_smp_intr_free(cpu); 1476 xen_smp_intr_free_pv(cpu); 1477 1478 xen_teardown_timer(cpu); 1479 1480 return 0; 1481 } 1482 1483 static uint32_t __init xen_platform_pv(void) 1484 { 1485 if (xen_pv_domain()) 1486 return xen_cpuid_base(); 1487 1488 return 0; 1489 } 1490 1491 const struct hypervisor_x86 x86_hyper_xen_pv = { 1492 .name = "Xen PV", 1493 .detect = xen_platform_pv, 1494 .pin_vcpu = xen_pin_vcpu, 1495 }; 1496 EXPORT_SYMBOL(x86_hyper_xen_pv); 1497