xref: /openbmc/linux/arch/x86/xen/enlighten_pv.c (revision 8cb5d748)
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13 
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/export.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 #include <linux/edd.h>
35 #include <linux/frame.h>
36 
37 #include <xen/xen.h>
38 #include <xen/events.h>
39 #include <xen/interface/xen.h>
40 #include <xen/interface/version.h>
41 #include <xen/interface/physdev.h>
42 #include <xen/interface/vcpu.h>
43 #include <xen/interface/memory.h>
44 #include <xen/interface/nmi.h>
45 #include <xen/interface/xen-mca.h>
46 #include <xen/features.h>
47 #include <xen/page.h>
48 #include <xen/hvc-console.h>
49 #include <xen/acpi.h>
50 
51 #include <asm/paravirt.h>
52 #include <asm/apic.h>
53 #include <asm/page.h>
54 #include <asm/xen/pci.h>
55 #include <asm/xen/hypercall.h>
56 #include <asm/xen/hypervisor.h>
57 #include <asm/xen/cpuid.h>
58 #include <asm/fixmap.h>
59 #include <asm/processor.h>
60 #include <asm/proto.h>
61 #include <asm/msr-index.h>
62 #include <asm/traps.h>
63 #include <asm/setup.h>
64 #include <asm/desc.h>
65 #include <asm/pgalloc.h>
66 #include <asm/pgtable.h>
67 #include <asm/tlbflush.h>
68 #include <asm/reboot.h>
69 #include <asm/stackprotector.h>
70 #include <asm/hypervisor.h>
71 #include <asm/mach_traps.h>
72 #include <asm/mwait.h>
73 #include <asm/pci_x86.h>
74 #include <asm/cpu.h>
75 
76 #ifdef CONFIG_ACPI
77 #include <linux/acpi.h>
78 #include <asm/acpi.h>
79 #include <acpi/pdc_intel.h>
80 #include <acpi/processor.h>
81 #include <xen/interface/platform.h>
82 #endif
83 
84 #include "xen-ops.h"
85 #include "mmu.h"
86 #include "smp.h"
87 #include "multicalls.h"
88 #include "pmu.h"
89 
90 void *xen_initial_gdt;
91 
92 static int xen_cpu_up_prepare_pv(unsigned int cpu);
93 static int xen_cpu_dead_pv(unsigned int cpu);
94 
95 struct tls_descs {
96 	struct desc_struct desc[3];
97 };
98 
99 /*
100  * Updating the 3 TLS descriptors in the GDT on every task switch is
101  * surprisingly expensive so we avoid updating them if they haven't
102  * changed.  Since Xen writes different descriptors than the one
103  * passed in the update_descriptor hypercall we keep shadow copies to
104  * compare against.
105  */
106 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
107 
108 static void __init xen_banner(void)
109 {
110 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
111 	struct xen_extraversion extra;
112 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
113 
114 	pr_info("Booting paravirtualized kernel on %s\n", pv_info.name);
115 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
116 	       version >> 16, version & 0xffff, extra.extraversion,
117 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
118 }
119 /* Check if running on Xen version (major, minor) or later */
120 bool
121 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
122 {
123 	unsigned int version;
124 
125 	if (!xen_domain())
126 		return false;
127 
128 	version = HYPERVISOR_xen_version(XENVER_version, NULL);
129 	if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
130 		((version >> 16) > major))
131 		return true;
132 	return false;
133 }
134 
135 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
136 static __read_mostly unsigned int cpuid_leaf5_edx_val;
137 
138 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
139 		      unsigned int *cx, unsigned int *dx)
140 {
141 	unsigned maskebx = ~0;
142 
143 	/*
144 	 * Mask out inconvenient features, to try and disable as many
145 	 * unsupported kernel subsystems as possible.
146 	 */
147 	switch (*ax) {
148 	case CPUID_MWAIT_LEAF:
149 		/* Synthesize the values.. */
150 		*ax = 0;
151 		*bx = 0;
152 		*cx = cpuid_leaf5_ecx_val;
153 		*dx = cpuid_leaf5_edx_val;
154 		return;
155 
156 	case 0xb:
157 		/* Suppress extended topology stuff */
158 		maskebx = 0;
159 		break;
160 	}
161 
162 	asm(XEN_EMULATE_PREFIX "cpuid"
163 		: "=a" (*ax),
164 		  "=b" (*bx),
165 		  "=c" (*cx),
166 		  "=d" (*dx)
167 		: "0" (*ax), "2" (*cx));
168 
169 	*bx &= maskebx;
170 }
171 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
172 
173 static bool __init xen_check_mwait(void)
174 {
175 #ifdef CONFIG_ACPI
176 	struct xen_platform_op op = {
177 		.cmd			= XENPF_set_processor_pminfo,
178 		.u.set_pminfo.id	= -1,
179 		.u.set_pminfo.type	= XEN_PM_PDC,
180 	};
181 	uint32_t buf[3];
182 	unsigned int ax, bx, cx, dx;
183 	unsigned int mwait_mask;
184 
185 	/* We need to determine whether it is OK to expose the MWAIT
186 	 * capability to the kernel to harvest deeper than C3 states from ACPI
187 	 * _CST using the processor_harvest_xen.c module. For this to work, we
188 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
189 	 * checks against). The hypervisor won't expose the MWAIT flag because
190 	 * it would break backwards compatibility; so we will find out directly
191 	 * from the hardware and hypercall.
192 	 */
193 	if (!xen_initial_domain())
194 		return false;
195 
196 	/*
197 	 * When running under platform earlier than Xen4.2, do not expose
198 	 * mwait, to avoid the risk of loading native acpi pad driver
199 	 */
200 	if (!xen_running_on_version_or_later(4, 2))
201 		return false;
202 
203 	ax = 1;
204 	cx = 0;
205 
206 	native_cpuid(&ax, &bx, &cx, &dx);
207 
208 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
209 		     (1 << (X86_FEATURE_MWAIT % 32));
210 
211 	if ((cx & mwait_mask) != mwait_mask)
212 		return false;
213 
214 	/* We need to emulate the MWAIT_LEAF and for that we need both
215 	 * ecx and edx. The hypercall provides only partial information.
216 	 */
217 
218 	ax = CPUID_MWAIT_LEAF;
219 	bx = 0;
220 	cx = 0;
221 	dx = 0;
222 
223 	native_cpuid(&ax, &bx, &cx, &dx);
224 
225 	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
226 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
227 	 */
228 	buf[0] = ACPI_PDC_REVISION_ID;
229 	buf[1] = 1;
230 	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
231 
232 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
233 
234 	if ((HYPERVISOR_platform_op(&op) == 0) &&
235 	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
236 		cpuid_leaf5_ecx_val = cx;
237 		cpuid_leaf5_edx_val = dx;
238 	}
239 	return true;
240 #else
241 	return false;
242 #endif
243 }
244 
245 static bool __init xen_check_xsave(void)
246 {
247 	unsigned int cx, xsave_mask;
248 
249 	cx = cpuid_ecx(1);
250 
251 	xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
252 		     (1 << (X86_FEATURE_OSXSAVE % 32));
253 
254 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
255 	return (cx & xsave_mask) == xsave_mask;
256 }
257 
258 static void __init xen_init_capabilities(void)
259 {
260 	setup_force_cpu_cap(X86_FEATURE_XENPV);
261 	setup_clear_cpu_cap(X86_FEATURE_DCA);
262 	setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
263 	setup_clear_cpu_cap(X86_FEATURE_MTRR);
264 	setup_clear_cpu_cap(X86_FEATURE_ACC);
265 	setup_clear_cpu_cap(X86_FEATURE_X2APIC);
266 	setup_clear_cpu_cap(X86_FEATURE_SME);
267 
268 	/*
269 	 * Xen PV would need some work to support PCID: CR3 handling as well
270 	 * as xen_flush_tlb_others() would need updating.
271 	 */
272 	setup_clear_cpu_cap(X86_FEATURE_PCID);
273 
274 	if (!xen_initial_domain())
275 		setup_clear_cpu_cap(X86_FEATURE_ACPI);
276 
277 	if (xen_check_mwait())
278 		setup_force_cpu_cap(X86_FEATURE_MWAIT);
279 	else
280 		setup_clear_cpu_cap(X86_FEATURE_MWAIT);
281 
282 	if (!xen_check_xsave()) {
283 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
284 		setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
285 	}
286 }
287 
288 static void xen_set_debugreg(int reg, unsigned long val)
289 {
290 	HYPERVISOR_set_debugreg(reg, val);
291 }
292 
293 static unsigned long xen_get_debugreg(int reg)
294 {
295 	return HYPERVISOR_get_debugreg(reg);
296 }
297 
298 static void xen_end_context_switch(struct task_struct *next)
299 {
300 	xen_mc_flush();
301 	paravirt_end_context_switch(next);
302 }
303 
304 static unsigned long xen_store_tr(void)
305 {
306 	return 0;
307 }
308 
309 /*
310  * Set the page permissions for a particular virtual address.  If the
311  * address is a vmalloc mapping (or other non-linear mapping), then
312  * find the linear mapping of the page and also set its protections to
313  * match.
314  */
315 static void set_aliased_prot(void *v, pgprot_t prot)
316 {
317 	int level;
318 	pte_t *ptep;
319 	pte_t pte;
320 	unsigned long pfn;
321 	struct page *page;
322 	unsigned char dummy;
323 
324 	ptep = lookup_address((unsigned long)v, &level);
325 	BUG_ON(ptep == NULL);
326 
327 	pfn = pte_pfn(*ptep);
328 	page = pfn_to_page(pfn);
329 
330 	pte = pfn_pte(pfn, prot);
331 
332 	/*
333 	 * Careful: update_va_mapping() will fail if the virtual address
334 	 * we're poking isn't populated in the page tables.  We don't
335 	 * need to worry about the direct map (that's always in the page
336 	 * tables), but we need to be careful about vmap space.  In
337 	 * particular, the top level page table can lazily propagate
338 	 * entries between processes, so if we've switched mms since we
339 	 * vmapped the target in the first place, we might not have the
340 	 * top-level page table entry populated.
341 	 *
342 	 * We disable preemption because we want the same mm active when
343 	 * we probe the target and when we issue the hypercall.  We'll
344 	 * have the same nominal mm, but if we're a kernel thread, lazy
345 	 * mm dropping could change our pgd.
346 	 *
347 	 * Out of an abundance of caution, this uses __get_user() to fault
348 	 * in the target address just in case there's some obscure case
349 	 * in which the target address isn't readable.
350 	 */
351 
352 	preempt_disable();
353 
354 	probe_kernel_read(&dummy, v, 1);
355 
356 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
357 		BUG();
358 
359 	if (!PageHighMem(page)) {
360 		void *av = __va(PFN_PHYS(pfn));
361 
362 		if (av != v)
363 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
364 				BUG();
365 	} else
366 		kmap_flush_unused();
367 
368 	preempt_enable();
369 }
370 
371 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
372 {
373 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
374 	int i;
375 
376 	/*
377 	 * We need to mark the all aliases of the LDT pages RO.  We
378 	 * don't need to call vm_flush_aliases(), though, since that's
379 	 * only responsible for flushing aliases out the TLBs, not the
380 	 * page tables, and Xen will flush the TLB for us if needed.
381 	 *
382 	 * To avoid confusing future readers: none of this is necessary
383 	 * to load the LDT.  The hypervisor only checks this when the
384 	 * LDT is faulted in due to subsequent descriptor access.
385 	 */
386 
387 	for (i = 0; i < entries; i += entries_per_page)
388 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
389 }
390 
391 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
392 {
393 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
394 	int i;
395 
396 	for (i = 0; i < entries; i += entries_per_page)
397 		set_aliased_prot(ldt + i, PAGE_KERNEL);
398 }
399 
400 static void xen_set_ldt(const void *addr, unsigned entries)
401 {
402 	struct mmuext_op *op;
403 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
404 
405 	trace_xen_cpu_set_ldt(addr, entries);
406 
407 	op = mcs.args;
408 	op->cmd = MMUEXT_SET_LDT;
409 	op->arg1.linear_addr = (unsigned long)addr;
410 	op->arg2.nr_ents = entries;
411 
412 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
413 
414 	xen_mc_issue(PARAVIRT_LAZY_CPU);
415 }
416 
417 static void xen_load_gdt(const struct desc_ptr *dtr)
418 {
419 	unsigned long va = dtr->address;
420 	unsigned int size = dtr->size + 1;
421 	unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
422 	unsigned long frames[pages];
423 	int f;
424 
425 	/*
426 	 * A GDT can be up to 64k in size, which corresponds to 8192
427 	 * 8-byte entries, or 16 4k pages..
428 	 */
429 
430 	BUG_ON(size > 65536);
431 	BUG_ON(va & ~PAGE_MASK);
432 
433 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
434 		int level;
435 		pte_t *ptep;
436 		unsigned long pfn, mfn;
437 		void *virt;
438 
439 		/*
440 		 * The GDT is per-cpu and is in the percpu data area.
441 		 * That can be virtually mapped, so we need to do a
442 		 * page-walk to get the underlying MFN for the
443 		 * hypercall.  The page can also be in the kernel's
444 		 * linear range, so we need to RO that mapping too.
445 		 */
446 		ptep = lookup_address(va, &level);
447 		BUG_ON(ptep == NULL);
448 
449 		pfn = pte_pfn(*ptep);
450 		mfn = pfn_to_mfn(pfn);
451 		virt = __va(PFN_PHYS(pfn));
452 
453 		frames[f] = mfn;
454 
455 		make_lowmem_page_readonly((void *)va);
456 		make_lowmem_page_readonly(virt);
457 	}
458 
459 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
460 		BUG();
461 }
462 
463 /*
464  * load_gdt for early boot, when the gdt is only mapped once
465  */
466 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
467 {
468 	unsigned long va = dtr->address;
469 	unsigned int size = dtr->size + 1;
470 	unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
471 	unsigned long frames[pages];
472 	int f;
473 
474 	/*
475 	 * A GDT can be up to 64k in size, which corresponds to 8192
476 	 * 8-byte entries, or 16 4k pages..
477 	 */
478 
479 	BUG_ON(size > 65536);
480 	BUG_ON(va & ~PAGE_MASK);
481 
482 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
483 		pte_t pte;
484 		unsigned long pfn, mfn;
485 
486 		pfn = virt_to_pfn(va);
487 		mfn = pfn_to_mfn(pfn);
488 
489 		pte = pfn_pte(pfn, PAGE_KERNEL_RO);
490 
491 		if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
492 			BUG();
493 
494 		frames[f] = mfn;
495 	}
496 
497 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
498 		BUG();
499 }
500 
501 static inline bool desc_equal(const struct desc_struct *d1,
502 			      const struct desc_struct *d2)
503 {
504 	return !memcmp(d1, d2, sizeof(*d1));
505 }
506 
507 static void load_TLS_descriptor(struct thread_struct *t,
508 				unsigned int cpu, unsigned int i)
509 {
510 	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
511 	struct desc_struct *gdt;
512 	xmaddr_t maddr;
513 	struct multicall_space mc;
514 
515 	if (desc_equal(shadow, &t->tls_array[i]))
516 		return;
517 
518 	*shadow = t->tls_array[i];
519 
520 	gdt = get_cpu_gdt_rw(cpu);
521 	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
522 	mc = __xen_mc_entry(0);
523 
524 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
525 }
526 
527 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
528 {
529 	/*
530 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
531 	 * and lazy gs handling is enabled, it means we're in a
532 	 * context switch, and %gs has just been saved.  This means we
533 	 * can zero it out to prevent faults on exit from the
534 	 * hypervisor if the next process has no %gs.  Either way, it
535 	 * has been saved, and the new value will get loaded properly.
536 	 * This will go away as soon as Xen has been modified to not
537 	 * save/restore %gs for normal hypercalls.
538 	 *
539 	 * On x86_64, this hack is not used for %gs, because gs points
540 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
541 	 * must not zero %gs on x86_64
542 	 *
543 	 * For x86_64, we need to zero %fs, otherwise we may get an
544 	 * exception between the new %fs descriptor being loaded and
545 	 * %fs being effectively cleared at __switch_to().
546 	 */
547 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
548 #ifdef CONFIG_X86_32
549 		lazy_load_gs(0);
550 #else
551 		loadsegment(fs, 0);
552 #endif
553 	}
554 
555 	xen_mc_batch();
556 
557 	load_TLS_descriptor(t, cpu, 0);
558 	load_TLS_descriptor(t, cpu, 1);
559 	load_TLS_descriptor(t, cpu, 2);
560 
561 	xen_mc_issue(PARAVIRT_LAZY_CPU);
562 }
563 
564 #ifdef CONFIG_X86_64
565 static void xen_load_gs_index(unsigned int idx)
566 {
567 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
568 		BUG();
569 }
570 #endif
571 
572 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
573 				const void *ptr)
574 {
575 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
576 	u64 entry = *(u64 *)ptr;
577 
578 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
579 
580 	preempt_disable();
581 
582 	xen_mc_flush();
583 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
584 		BUG();
585 
586 	preempt_enable();
587 }
588 
589 #ifdef CONFIG_X86_64
590 struct trap_array_entry {
591 	void (*orig)(void);
592 	void (*xen)(void);
593 	bool ist_okay;
594 };
595 
596 static struct trap_array_entry trap_array[] = {
597 	{ debug,                       xen_xendebug,                    true },
598 	{ int3,                        xen_xenint3,                     true },
599 	{ double_fault,                xen_double_fault,                true },
600 #ifdef CONFIG_X86_MCE
601 	{ machine_check,               xen_machine_check,               true },
602 #endif
603 	{ nmi,                         xen_nmi,                         true },
604 	{ overflow,                    xen_overflow,                    false },
605 #ifdef CONFIG_IA32_EMULATION
606 	{ entry_INT80_compat,          xen_entry_INT80_compat,          false },
607 #endif
608 	{ page_fault,                  xen_page_fault,                  false },
609 	{ divide_error,                xen_divide_error,                false },
610 	{ bounds,                      xen_bounds,                      false },
611 	{ invalid_op,                  xen_invalid_op,                  false },
612 	{ device_not_available,        xen_device_not_available,        false },
613 	{ coprocessor_segment_overrun, xen_coprocessor_segment_overrun, false },
614 	{ invalid_TSS,                 xen_invalid_TSS,                 false },
615 	{ segment_not_present,         xen_segment_not_present,         false },
616 	{ stack_segment,               xen_stack_segment,               false },
617 	{ general_protection,          xen_general_protection,          false },
618 	{ spurious_interrupt_bug,      xen_spurious_interrupt_bug,      false },
619 	{ coprocessor_error,           xen_coprocessor_error,           false },
620 	{ alignment_check,             xen_alignment_check,             false },
621 	{ simd_coprocessor_error,      xen_simd_coprocessor_error,      false },
622 };
623 
624 static bool get_trap_addr(void **addr, unsigned int ist)
625 {
626 	unsigned int nr;
627 	bool ist_okay = false;
628 
629 	/*
630 	 * Replace trap handler addresses by Xen specific ones.
631 	 * Check for known traps using IST and whitelist them.
632 	 * The debugger ones are the only ones we care about.
633 	 * Xen will handle faults like double_fault, * so we should never see
634 	 * them.  Warn if there's an unexpected IST-using fault handler.
635 	 */
636 	for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
637 		struct trap_array_entry *entry = trap_array + nr;
638 
639 		if (*addr == entry->orig) {
640 			*addr = entry->xen;
641 			ist_okay = entry->ist_okay;
642 			break;
643 		}
644 	}
645 
646 	if (WARN_ON(ist != 0 && !ist_okay))
647 		return false;
648 
649 	return true;
650 }
651 #endif
652 
653 static int cvt_gate_to_trap(int vector, const gate_desc *val,
654 			    struct trap_info *info)
655 {
656 	unsigned long addr;
657 
658 	if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
659 		return 0;
660 
661 	info->vector = vector;
662 
663 	addr = gate_offset(val);
664 #ifdef CONFIG_X86_64
665 	if (!get_trap_addr((void **)&addr, val->bits.ist))
666 		return 0;
667 #endif	/* CONFIG_X86_64 */
668 	info->address = addr;
669 
670 	info->cs = gate_segment(val);
671 	info->flags = val->bits.dpl;
672 	/* interrupt gates clear IF */
673 	if (val->bits.type == GATE_INTERRUPT)
674 		info->flags |= 1 << 2;
675 
676 	return 1;
677 }
678 
679 /* Locations of each CPU's IDT */
680 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
681 
682 /* Set an IDT entry.  If the entry is part of the current IDT, then
683    also update Xen. */
684 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
685 {
686 	unsigned long p = (unsigned long)&dt[entrynum];
687 	unsigned long start, end;
688 
689 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
690 
691 	preempt_disable();
692 
693 	start = __this_cpu_read(idt_desc.address);
694 	end = start + __this_cpu_read(idt_desc.size) + 1;
695 
696 	xen_mc_flush();
697 
698 	native_write_idt_entry(dt, entrynum, g);
699 
700 	if (p >= start && (p + 8) <= end) {
701 		struct trap_info info[2];
702 
703 		info[1].address = 0;
704 
705 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
706 			if (HYPERVISOR_set_trap_table(info))
707 				BUG();
708 	}
709 
710 	preempt_enable();
711 }
712 
713 static void xen_convert_trap_info(const struct desc_ptr *desc,
714 				  struct trap_info *traps)
715 {
716 	unsigned in, out, count;
717 
718 	count = (desc->size+1) / sizeof(gate_desc);
719 	BUG_ON(count > 256);
720 
721 	for (in = out = 0; in < count; in++) {
722 		gate_desc *entry = (gate_desc *)(desc->address) + in;
723 
724 		if (cvt_gate_to_trap(in, entry, &traps[out]))
725 			out++;
726 	}
727 	traps[out].address = 0;
728 }
729 
730 void xen_copy_trap_info(struct trap_info *traps)
731 {
732 	const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
733 
734 	xen_convert_trap_info(desc, traps);
735 }
736 
737 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
738    hold a spinlock to protect the static traps[] array (static because
739    it avoids allocation, and saves stack space). */
740 static void xen_load_idt(const struct desc_ptr *desc)
741 {
742 	static DEFINE_SPINLOCK(lock);
743 	static struct trap_info traps[257];
744 
745 	trace_xen_cpu_load_idt(desc);
746 
747 	spin_lock(&lock);
748 
749 	memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
750 
751 	xen_convert_trap_info(desc, traps);
752 
753 	xen_mc_flush();
754 	if (HYPERVISOR_set_trap_table(traps))
755 		BUG();
756 
757 	spin_unlock(&lock);
758 }
759 
760 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
761    they're handled differently. */
762 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
763 				const void *desc, int type)
764 {
765 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
766 
767 	preempt_disable();
768 
769 	switch (type) {
770 	case DESC_LDT:
771 	case DESC_TSS:
772 		/* ignore */
773 		break;
774 
775 	default: {
776 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
777 
778 		xen_mc_flush();
779 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
780 			BUG();
781 	}
782 
783 	}
784 
785 	preempt_enable();
786 }
787 
788 /*
789  * Version of write_gdt_entry for use at early boot-time needed to
790  * update an entry as simply as possible.
791  */
792 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
793 					    const void *desc, int type)
794 {
795 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
796 
797 	switch (type) {
798 	case DESC_LDT:
799 	case DESC_TSS:
800 		/* ignore */
801 		break;
802 
803 	default: {
804 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
805 
806 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
807 			dt[entry] = *(struct desc_struct *)desc;
808 	}
809 
810 	}
811 }
812 
813 static void xen_load_sp0(struct tss_struct *tss,
814 			 struct thread_struct *thread)
815 {
816 	struct multicall_space mcs;
817 
818 	mcs = xen_mc_entry(0);
819 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
820 	xen_mc_issue(PARAVIRT_LAZY_CPU);
821 	tss->x86_tss.sp0 = thread->sp0;
822 }
823 
824 void xen_set_iopl_mask(unsigned mask)
825 {
826 	struct physdev_set_iopl set_iopl;
827 
828 	/* Force the change at ring 0. */
829 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
830 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
831 }
832 
833 static void xen_io_delay(void)
834 {
835 }
836 
837 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
838 
839 static unsigned long xen_read_cr0(void)
840 {
841 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
842 
843 	if (unlikely(cr0 == 0)) {
844 		cr0 = native_read_cr0();
845 		this_cpu_write(xen_cr0_value, cr0);
846 	}
847 
848 	return cr0;
849 }
850 
851 static void xen_write_cr0(unsigned long cr0)
852 {
853 	struct multicall_space mcs;
854 
855 	this_cpu_write(xen_cr0_value, cr0);
856 
857 	/* Only pay attention to cr0.TS; everything else is
858 	   ignored. */
859 	mcs = xen_mc_entry(0);
860 
861 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
862 
863 	xen_mc_issue(PARAVIRT_LAZY_CPU);
864 }
865 
866 static void xen_write_cr4(unsigned long cr4)
867 {
868 	cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
869 
870 	native_write_cr4(cr4);
871 }
872 #ifdef CONFIG_X86_64
873 static inline unsigned long xen_read_cr8(void)
874 {
875 	return 0;
876 }
877 static inline void xen_write_cr8(unsigned long val)
878 {
879 	BUG_ON(val);
880 }
881 #endif
882 
883 static u64 xen_read_msr_safe(unsigned int msr, int *err)
884 {
885 	u64 val;
886 
887 	if (pmu_msr_read(msr, &val, err))
888 		return val;
889 
890 	val = native_read_msr_safe(msr, err);
891 	switch (msr) {
892 	case MSR_IA32_APICBASE:
893 #ifdef CONFIG_X86_X2APIC
894 		if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
895 #endif
896 			val &= ~X2APIC_ENABLE;
897 		break;
898 	}
899 	return val;
900 }
901 
902 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
903 {
904 	int ret;
905 
906 	ret = 0;
907 
908 	switch (msr) {
909 #ifdef CONFIG_X86_64
910 		unsigned which;
911 		u64 base;
912 
913 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
914 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
915 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
916 
917 	set:
918 		base = ((u64)high << 32) | low;
919 		if (HYPERVISOR_set_segment_base(which, base) != 0)
920 			ret = -EIO;
921 		break;
922 #endif
923 
924 	case MSR_STAR:
925 	case MSR_CSTAR:
926 	case MSR_LSTAR:
927 	case MSR_SYSCALL_MASK:
928 	case MSR_IA32_SYSENTER_CS:
929 	case MSR_IA32_SYSENTER_ESP:
930 	case MSR_IA32_SYSENTER_EIP:
931 		/* Fast syscall setup is all done in hypercalls, so
932 		   these are all ignored.  Stub them out here to stop
933 		   Xen console noise. */
934 		break;
935 
936 	default:
937 		if (!pmu_msr_write(msr, low, high, &ret))
938 			ret = native_write_msr_safe(msr, low, high);
939 	}
940 
941 	return ret;
942 }
943 
944 static u64 xen_read_msr(unsigned int msr)
945 {
946 	/*
947 	 * This will silently swallow a #GP from RDMSR.  It may be worth
948 	 * changing that.
949 	 */
950 	int err;
951 
952 	return xen_read_msr_safe(msr, &err);
953 }
954 
955 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
956 {
957 	/*
958 	 * This will silently swallow a #GP from WRMSR.  It may be worth
959 	 * changing that.
960 	 */
961 	xen_write_msr_safe(msr, low, high);
962 }
963 
964 void xen_setup_shared_info(void)
965 {
966 	set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
967 
968 	HYPERVISOR_shared_info =
969 		(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
970 
971 	xen_setup_mfn_list_list();
972 
973 	if (system_state == SYSTEM_BOOTING) {
974 #ifndef CONFIG_SMP
975 		/*
976 		 * In UP this is as good a place as any to set up shared info.
977 		 * Limit this to boot only, at restore vcpu setup is done via
978 		 * xen_vcpu_restore().
979 		 */
980 		xen_setup_vcpu_info_placement();
981 #endif
982 		/*
983 		 * Now that shared info is set up we can start using routines
984 		 * that point to pvclock area.
985 		 */
986 		xen_init_time_ops();
987 	}
988 }
989 
990 /* This is called once we have the cpu_possible_mask */
991 void __ref xen_setup_vcpu_info_placement(void)
992 {
993 	int cpu;
994 
995 	for_each_possible_cpu(cpu) {
996 		/* Set up direct vCPU id mapping for PV guests. */
997 		per_cpu(xen_vcpu_id, cpu) = cpu;
998 
999 		/*
1000 		 * xen_vcpu_setup(cpu) can fail  -- in which case it
1001 		 * falls back to the shared_info version for cpus
1002 		 * where xen_vcpu_nr(cpu) < MAX_VIRT_CPUS.
1003 		 *
1004 		 * xen_cpu_up_prepare_pv() handles the rest by failing
1005 		 * them in hotplug.
1006 		 */
1007 		(void) xen_vcpu_setup(cpu);
1008 	}
1009 
1010 	/*
1011 	 * xen_vcpu_setup managed to place the vcpu_info within the
1012 	 * percpu area for all cpus, so make use of it.
1013 	 */
1014 	if (xen_have_vcpu_info_placement) {
1015 		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1016 		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1017 		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1018 		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1019 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1020 	}
1021 }
1022 
1023 static const struct pv_info xen_info __initconst = {
1024 	.shared_kernel_pmd = 0,
1025 
1026 #ifdef CONFIG_X86_64
1027 	.extra_user_64bit_cs = FLAT_USER_CS64,
1028 #endif
1029 	.name = "Xen",
1030 };
1031 
1032 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1033 	.cpuid = xen_cpuid,
1034 
1035 	.set_debugreg = xen_set_debugreg,
1036 	.get_debugreg = xen_get_debugreg,
1037 
1038 	.read_cr0 = xen_read_cr0,
1039 	.write_cr0 = xen_write_cr0,
1040 
1041 	.write_cr4 = xen_write_cr4,
1042 
1043 #ifdef CONFIG_X86_64
1044 	.read_cr8 = xen_read_cr8,
1045 	.write_cr8 = xen_write_cr8,
1046 #endif
1047 
1048 	.wbinvd = native_wbinvd,
1049 
1050 	.read_msr = xen_read_msr,
1051 	.write_msr = xen_write_msr,
1052 
1053 	.read_msr_safe = xen_read_msr_safe,
1054 	.write_msr_safe = xen_write_msr_safe,
1055 
1056 	.read_pmc = xen_read_pmc,
1057 
1058 	.iret = xen_iret,
1059 #ifdef CONFIG_X86_64
1060 	.usergs_sysret64 = xen_sysret64,
1061 #endif
1062 
1063 	.load_tr_desc = paravirt_nop,
1064 	.set_ldt = xen_set_ldt,
1065 	.load_gdt = xen_load_gdt,
1066 	.load_idt = xen_load_idt,
1067 	.load_tls = xen_load_tls,
1068 #ifdef CONFIG_X86_64
1069 	.load_gs_index = xen_load_gs_index,
1070 #endif
1071 
1072 	.alloc_ldt = xen_alloc_ldt,
1073 	.free_ldt = xen_free_ldt,
1074 
1075 	.store_tr = xen_store_tr,
1076 
1077 	.write_ldt_entry = xen_write_ldt_entry,
1078 	.write_gdt_entry = xen_write_gdt_entry,
1079 	.write_idt_entry = xen_write_idt_entry,
1080 	.load_sp0 = xen_load_sp0,
1081 
1082 	.set_iopl_mask = xen_set_iopl_mask,
1083 	.io_delay = xen_io_delay,
1084 
1085 	/* Xen takes care of %gs when switching to usermode for us */
1086 	.swapgs = paravirt_nop,
1087 
1088 	.start_context_switch = paravirt_start_context_switch,
1089 	.end_context_switch = xen_end_context_switch,
1090 };
1091 
1092 static void xen_restart(char *msg)
1093 {
1094 	xen_reboot(SHUTDOWN_reboot);
1095 }
1096 
1097 static void xen_machine_halt(void)
1098 {
1099 	xen_reboot(SHUTDOWN_poweroff);
1100 }
1101 
1102 static void xen_machine_power_off(void)
1103 {
1104 	if (pm_power_off)
1105 		pm_power_off();
1106 	xen_reboot(SHUTDOWN_poweroff);
1107 }
1108 
1109 static void xen_crash_shutdown(struct pt_regs *regs)
1110 {
1111 	xen_reboot(SHUTDOWN_crash);
1112 }
1113 
1114 static const struct machine_ops xen_machine_ops __initconst = {
1115 	.restart = xen_restart,
1116 	.halt = xen_machine_halt,
1117 	.power_off = xen_machine_power_off,
1118 	.shutdown = xen_machine_halt,
1119 	.crash_shutdown = xen_crash_shutdown,
1120 	.emergency_restart = xen_emergency_restart,
1121 };
1122 
1123 static unsigned char xen_get_nmi_reason(void)
1124 {
1125 	unsigned char reason = 0;
1126 
1127 	/* Construct a value which looks like it came from port 0x61. */
1128 	if (test_bit(_XEN_NMIREASON_io_error,
1129 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1130 		reason |= NMI_REASON_IOCHK;
1131 	if (test_bit(_XEN_NMIREASON_pci_serr,
1132 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1133 		reason |= NMI_REASON_SERR;
1134 
1135 	return reason;
1136 }
1137 
1138 static void __init xen_boot_params_init_edd(void)
1139 {
1140 #if IS_ENABLED(CONFIG_EDD)
1141 	struct xen_platform_op op;
1142 	struct edd_info *edd_info;
1143 	u32 *mbr_signature;
1144 	unsigned nr;
1145 	int ret;
1146 
1147 	edd_info = boot_params.eddbuf;
1148 	mbr_signature = boot_params.edd_mbr_sig_buffer;
1149 
1150 	op.cmd = XENPF_firmware_info;
1151 
1152 	op.u.firmware_info.type = XEN_FW_DISK_INFO;
1153 	for (nr = 0; nr < EDDMAXNR; nr++) {
1154 		struct edd_info *info = edd_info + nr;
1155 
1156 		op.u.firmware_info.index = nr;
1157 		info->params.length = sizeof(info->params);
1158 		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1159 				     &info->params);
1160 		ret = HYPERVISOR_platform_op(&op);
1161 		if (ret)
1162 			break;
1163 
1164 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1165 		C(device);
1166 		C(version);
1167 		C(interface_support);
1168 		C(legacy_max_cylinder);
1169 		C(legacy_max_head);
1170 		C(legacy_sectors_per_track);
1171 #undef C
1172 	}
1173 	boot_params.eddbuf_entries = nr;
1174 
1175 	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1176 	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1177 		op.u.firmware_info.index = nr;
1178 		ret = HYPERVISOR_platform_op(&op);
1179 		if (ret)
1180 			break;
1181 		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1182 	}
1183 	boot_params.edd_mbr_sig_buf_entries = nr;
1184 #endif
1185 }
1186 
1187 /*
1188  * Set up the GDT and segment registers for -fstack-protector.  Until
1189  * we do this, we have to be careful not to call any stack-protected
1190  * function, which is most of the kernel.
1191  */
1192 static void xen_setup_gdt(int cpu)
1193 {
1194 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1195 	pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1196 
1197 	setup_stack_canary_segment(0);
1198 	switch_to_new_gdt(0);
1199 
1200 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1201 	pv_cpu_ops.load_gdt = xen_load_gdt;
1202 }
1203 
1204 static void __init xen_dom0_set_legacy_features(void)
1205 {
1206 	x86_platform.legacy.rtc = 1;
1207 }
1208 
1209 /* First C function to be called on Xen boot */
1210 asmlinkage __visible void __init xen_start_kernel(void)
1211 {
1212 	struct physdev_set_iopl set_iopl;
1213 	unsigned long initrd_start = 0;
1214 	int rc;
1215 
1216 	if (!xen_start_info)
1217 		return;
1218 
1219 	xen_domain_type = XEN_PV_DOMAIN;
1220 
1221 	xen_setup_features();
1222 
1223 	xen_setup_machphys_mapping();
1224 
1225 	/* Install Xen paravirt ops */
1226 	pv_info = xen_info;
1227 	pv_init_ops.patch = paravirt_patch_default;
1228 	pv_cpu_ops = xen_cpu_ops;
1229 
1230 	x86_platform.get_nmi_reason = xen_get_nmi_reason;
1231 
1232 	x86_init.resources.memory_setup = xen_memory_setup;
1233 	x86_init.oem.arch_setup = xen_arch_setup;
1234 	x86_init.oem.banner = xen_banner;
1235 
1236 	/*
1237 	 * Set up some pagetable state before starting to set any ptes.
1238 	 */
1239 
1240 	xen_init_mmu_ops();
1241 
1242 	/* Prevent unwanted bits from being set in PTEs. */
1243 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1244 
1245 	/*
1246 	 * Prevent page tables from being allocated in highmem, even
1247 	 * if CONFIG_HIGHPTE is enabled.
1248 	 */
1249 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1250 
1251 	/* Work out if we support NX */
1252 	x86_configure_nx();
1253 
1254 	/* Get mfn list */
1255 	xen_build_dynamic_phys_to_machine();
1256 
1257 	/*
1258 	 * Set up kernel GDT and segment registers, mainly so that
1259 	 * -fstack-protector code can be executed.
1260 	 */
1261 	xen_setup_gdt(0);
1262 
1263 	xen_init_irq_ops();
1264 	xen_init_capabilities();
1265 
1266 #ifdef CONFIG_X86_LOCAL_APIC
1267 	/*
1268 	 * set up the basic apic ops.
1269 	 */
1270 	xen_init_apic();
1271 #endif
1272 
1273 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1274 		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1275 		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1276 	}
1277 
1278 	machine_ops = xen_machine_ops;
1279 
1280 	/*
1281 	 * The only reliable way to retain the initial address of the
1282 	 * percpu gdt_page is to remember it here, so we can go and
1283 	 * mark it RW later, when the initial percpu area is freed.
1284 	 */
1285 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1286 
1287 	xen_smp_init();
1288 
1289 #ifdef CONFIG_ACPI_NUMA
1290 	/*
1291 	 * The pages we from Xen are not related to machine pages, so
1292 	 * any NUMA information the kernel tries to get from ACPI will
1293 	 * be meaningless.  Prevent it from trying.
1294 	 */
1295 	acpi_numa = -1;
1296 #endif
1297 	/* Let's presume PV guests always boot on vCPU with id 0. */
1298 	per_cpu(xen_vcpu_id, 0) = 0;
1299 
1300 	/*
1301 	 * Setup xen_vcpu early because start_kernel needs it for
1302 	 * local_irq_disable(), irqs_disabled().
1303 	 *
1304 	 * Don't do the full vcpu_info placement stuff until we have
1305 	 * the cpu_possible_mask and a non-dummy shared_info.
1306 	 */
1307 	xen_vcpu_info_reset(0);
1308 
1309 	WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1310 
1311 	local_irq_disable();
1312 	early_boot_irqs_disabled = true;
1313 
1314 	xen_raw_console_write("mapping kernel into physical memory\n");
1315 	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1316 				   xen_start_info->nr_pages);
1317 	xen_reserve_special_pages();
1318 
1319 	/* keep using Xen gdt for now; no urgent need to change it */
1320 
1321 #ifdef CONFIG_X86_32
1322 	pv_info.kernel_rpl = 1;
1323 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1324 		pv_info.kernel_rpl = 0;
1325 #else
1326 	pv_info.kernel_rpl = 0;
1327 #endif
1328 	/* set the limit of our address space */
1329 	xen_reserve_top();
1330 
1331 	/*
1332 	 * We used to do this in xen_arch_setup, but that is too late
1333 	 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1334 	 * early_amd_init which pokes 0xcf8 port.
1335 	 */
1336 	set_iopl.iopl = 1;
1337 	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1338 	if (rc != 0)
1339 		xen_raw_printk("physdev_op failed %d\n", rc);
1340 
1341 #ifdef CONFIG_X86_32
1342 	/* set up basic CPUID stuff */
1343 	cpu_detect(&new_cpu_data);
1344 	set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1345 	new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1346 #endif
1347 
1348 	if (xen_start_info->mod_start) {
1349 	    if (xen_start_info->flags & SIF_MOD_START_PFN)
1350 		initrd_start = PFN_PHYS(xen_start_info->mod_start);
1351 	    else
1352 		initrd_start = __pa(xen_start_info->mod_start);
1353 	}
1354 
1355 	/* Poke various useful things into boot_params */
1356 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1357 	boot_params.hdr.ramdisk_image = initrd_start;
1358 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1359 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1360 	boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1361 
1362 	if (!xen_initial_domain()) {
1363 		add_preferred_console("xenboot", 0, NULL);
1364 		add_preferred_console("tty", 0, NULL);
1365 		add_preferred_console("hvc", 0, NULL);
1366 		if (pci_xen)
1367 			x86_init.pci.arch_init = pci_xen_init;
1368 	} else {
1369 		const struct dom0_vga_console_info *info =
1370 			(void *)((char *)xen_start_info +
1371 				 xen_start_info->console.dom0.info_off);
1372 		struct xen_platform_op op = {
1373 			.cmd = XENPF_firmware_info,
1374 			.interface_version = XENPF_INTERFACE_VERSION,
1375 			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1376 		};
1377 
1378 		x86_platform.set_legacy_features =
1379 				xen_dom0_set_legacy_features;
1380 		xen_init_vga(info, xen_start_info->console.dom0.info_size);
1381 		xen_start_info->console.domU.mfn = 0;
1382 		xen_start_info->console.domU.evtchn = 0;
1383 
1384 		if (HYPERVISOR_platform_op(&op) == 0)
1385 			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1386 
1387 		/* Make sure ACS will be enabled */
1388 		pci_request_acs();
1389 
1390 		xen_acpi_sleep_register();
1391 
1392 		/* Avoid searching for BIOS MP tables */
1393 		x86_init.mpparse.find_smp_config = x86_init_noop;
1394 		x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1395 
1396 		xen_boot_params_init_edd();
1397 	}
1398 #ifdef CONFIG_PCI
1399 	/* PCI BIOS service won't work from a PV guest. */
1400 	pci_probe &= ~PCI_PROBE_BIOS;
1401 #endif
1402 	xen_raw_console_write("about to get started...\n");
1403 
1404 	/* We need this for printk timestamps */
1405 	xen_setup_runstate_info(0);
1406 
1407 	xen_efi_init();
1408 
1409 	/* Start the world */
1410 #ifdef CONFIG_X86_32
1411 	i386_start_kernel();
1412 #else
1413 	cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1414 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1415 #endif
1416 }
1417 
1418 static int xen_cpu_up_prepare_pv(unsigned int cpu)
1419 {
1420 	int rc;
1421 
1422 	if (per_cpu(xen_vcpu, cpu) == NULL)
1423 		return -ENODEV;
1424 
1425 	xen_setup_timer(cpu);
1426 
1427 	rc = xen_smp_intr_init(cpu);
1428 	if (rc) {
1429 		WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1430 		     cpu, rc);
1431 		return rc;
1432 	}
1433 
1434 	rc = xen_smp_intr_init_pv(cpu);
1435 	if (rc) {
1436 		WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1437 		     cpu, rc);
1438 		return rc;
1439 	}
1440 
1441 	return 0;
1442 }
1443 
1444 static int xen_cpu_dead_pv(unsigned int cpu)
1445 {
1446 	xen_smp_intr_free(cpu);
1447 	xen_smp_intr_free_pv(cpu);
1448 
1449 	xen_teardown_timer(cpu);
1450 
1451 	return 0;
1452 }
1453 
1454 static uint32_t __init xen_platform_pv(void)
1455 {
1456 	if (xen_pv_domain())
1457 		return xen_cpuid_base();
1458 
1459 	return 0;
1460 }
1461 
1462 const struct hypervisor_x86 x86_hyper_xen_pv = {
1463 	.name                   = "Xen PV",
1464 	.detect                 = xen_platform_pv,
1465 	.pin_vcpu               = xen_pin_vcpu,
1466 };
1467 EXPORT_SYMBOL(x86_hyper_xen_pv);
1468