1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Core of Xen paravirt_ops implementation. 4 * 5 * This file contains the xen_paravirt_ops structure itself, and the 6 * implementations for: 7 * - privileged instructions 8 * - interrupt flags 9 * - segment operations 10 * - booting and setup 11 * 12 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 13 */ 14 15 #include <linux/cpu.h> 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/smp.h> 19 #include <linux/preempt.h> 20 #include <linux/hardirq.h> 21 #include <linux/percpu.h> 22 #include <linux/delay.h> 23 #include <linux/start_kernel.h> 24 #include <linux/sched.h> 25 #include <linux/kprobes.h> 26 #include <linux/memblock.h> 27 #include <linux/export.h> 28 #include <linux/mm.h> 29 #include <linux/page-flags.h> 30 #include <linux/highmem.h> 31 #include <linux/console.h> 32 #include <linux/pci.h> 33 #include <linux/gfp.h> 34 #include <linux/edd.h> 35 #include <linux/objtool.h> 36 37 #include <xen/xen.h> 38 #include <xen/events.h> 39 #include <xen/interface/xen.h> 40 #include <xen/interface/version.h> 41 #include <xen/interface/physdev.h> 42 #include <xen/interface/vcpu.h> 43 #include <xen/interface/memory.h> 44 #include <xen/interface/nmi.h> 45 #include <xen/interface/xen-mca.h> 46 #include <xen/features.h> 47 #include <xen/page.h> 48 #include <xen/hvc-console.h> 49 #include <xen/acpi.h> 50 51 #include <asm/paravirt.h> 52 #include <asm/apic.h> 53 #include <asm/page.h> 54 #include <asm/xen/pci.h> 55 #include <asm/xen/hypercall.h> 56 #include <asm/xen/hypervisor.h> 57 #include <asm/xen/cpuid.h> 58 #include <asm/fixmap.h> 59 #include <asm/processor.h> 60 #include <asm/proto.h> 61 #include <asm/msr-index.h> 62 #include <asm/traps.h> 63 #include <asm/setup.h> 64 #include <asm/desc.h> 65 #include <asm/pgalloc.h> 66 #include <asm/tlbflush.h> 67 #include <asm/reboot.h> 68 #include <asm/stackprotector.h> 69 #include <asm/hypervisor.h> 70 #include <asm/mach_traps.h> 71 #include <asm/mwait.h> 72 #include <asm/pci_x86.h> 73 #include <asm/cpu.h> 74 #ifdef CONFIG_X86_IOPL_IOPERM 75 #include <asm/io_bitmap.h> 76 #endif 77 78 #ifdef CONFIG_ACPI 79 #include <linux/acpi.h> 80 #include <asm/acpi.h> 81 #include <acpi/pdc_intel.h> 82 #include <acpi/processor.h> 83 #include <xen/interface/platform.h> 84 #endif 85 86 #include "xen-ops.h" 87 #include "mmu.h" 88 #include "smp.h" 89 #include "multicalls.h" 90 #include "pmu.h" 91 92 #include "../kernel/cpu/cpu.h" /* get_cpu_cap() */ 93 94 void *xen_initial_gdt; 95 96 static int xen_cpu_up_prepare_pv(unsigned int cpu); 97 static int xen_cpu_dead_pv(unsigned int cpu); 98 99 struct tls_descs { 100 struct desc_struct desc[3]; 101 }; 102 103 /* 104 * Updating the 3 TLS descriptors in the GDT on every task switch is 105 * surprisingly expensive so we avoid updating them if they haven't 106 * changed. Since Xen writes different descriptors than the one 107 * passed in the update_descriptor hypercall we keep shadow copies to 108 * compare against. 109 */ 110 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc); 111 112 static void __init xen_banner(void) 113 { 114 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL); 115 struct xen_extraversion extra; 116 HYPERVISOR_xen_version(XENVER_extraversion, &extra); 117 118 pr_info("Booting paravirtualized kernel on %s\n", pv_info.name); 119 printk(KERN_INFO "Xen version: %d.%d%s%s\n", 120 version >> 16, version & 0xffff, extra.extraversion, 121 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : ""); 122 } 123 124 static void __init xen_pv_init_platform(void) 125 { 126 populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP)); 127 128 set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info); 129 HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP); 130 131 /* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */ 132 xen_vcpu_info_reset(0); 133 134 /* pvclock is in shared info area */ 135 xen_init_time_ops(); 136 } 137 138 static void __init xen_pv_guest_late_init(void) 139 { 140 #ifndef CONFIG_SMP 141 /* Setup shared vcpu info for non-smp configurations */ 142 xen_setup_vcpu_info_placement(); 143 #endif 144 } 145 146 /* Check if running on Xen version (major, minor) or later */ 147 bool 148 xen_running_on_version_or_later(unsigned int major, unsigned int minor) 149 { 150 unsigned int version; 151 152 if (!xen_domain()) 153 return false; 154 155 version = HYPERVISOR_xen_version(XENVER_version, NULL); 156 if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) || 157 ((version >> 16) > major)) 158 return true; 159 return false; 160 } 161 162 static __read_mostly unsigned int cpuid_leaf5_ecx_val; 163 static __read_mostly unsigned int cpuid_leaf5_edx_val; 164 165 static void xen_cpuid(unsigned int *ax, unsigned int *bx, 166 unsigned int *cx, unsigned int *dx) 167 { 168 unsigned maskebx = ~0; 169 170 /* 171 * Mask out inconvenient features, to try and disable as many 172 * unsupported kernel subsystems as possible. 173 */ 174 switch (*ax) { 175 case CPUID_MWAIT_LEAF: 176 /* Synthesize the values.. */ 177 *ax = 0; 178 *bx = 0; 179 *cx = cpuid_leaf5_ecx_val; 180 *dx = cpuid_leaf5_edx_val; 181 return; 182 183 case 0xb: 184 /* Suppress extended topology stuff */ 185 maskebx = 0; 186 break; 187 } 188 189 asm(XEN_EMULATE_PREFIX "cpuid" 190 : "=a" (*ax), 191 "=b" (*bx), 192 "=c" (*cx), 193 "=d" (*dx) 194 : "0" (*ax), "2" (*cx)); 195 196 *bx &= maskebx; 197 } 198 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */ 199 200 static bool __init xen_check_mwait(void) 201 { 202 #ifdef CONFIG_ACPI 203 struct xen_platform_op op = { 204 .cmd = XENPF_set_processor_pminfo, 205 .u.set_pminfo.id = -1, 206 .u.set_pminfo.type = XEN_PM_PDC, 207 }; 208 uint32_t buf[3]; 209 unsigned int ax, bx, cx, dx; 210 unsigned int mwait_mask; 211 212 /* We need to determine whether it is OK to expose the MWAIT 213 * capability to the kernel to harvest deeper than C3 states from ACPI 214 * _CST using the processor_harvest_xen.c module. For this to work, we 215 * need to gather the MWAIT_LEAF values (which the cstate.c code 216 * checks against). The hypervisor won't expose the MWAIT flag because 217 * it would break backwards compatibility; so we will find out directly 218 * from the hardware and hypercall. 219 */ 220 if (!xen_initial_domain()) 221 return false; 222 223 /* 224 * When running under platform earlier than Xen4.2, do not expose 225 * mwait, to avoid the risk of loading native acpi pad driver 226 */ 227 if (!xen_running_on_version_or_later(4, 2)) 228 return false; 229 230 ax = 1; 231 cx = 0; 232 233 native_cpuid(&ax, &bx, &cx, &dx); 234 235 mwait_mask = (1 << (X86_FEATURE_EST % 32)) | 236 (1 << (X86_FEATURE_MWAIT % 32)); 237 238 if ((cx & mwait_mask) != mwait_mask) 239 return false; 240 241 /* We need to emulate the MWAIT_LEAF and for that we need both 242 * ecx and edx. The hypercall provides only partial information. 243 */ 244 245 ax = CPUID_MWAIT_LEAF; 246 bx = 0; 247 cx = 0; 248 dx = 0; 249 250 native_cpuid(&ax, &bx, &cx, &dx); 251 252 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so, 253 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3. 254 */ 255 buf[0] = ACPI_PDC_REVISION_ID; 256 buf[1] = 1; 257 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP); 258 259 set_xen_guest_handle(op.u.set_pminfo.pdc, buf); 260 261 if ((HYPERVISOR_platform_op(&op) == 0) && 262 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) { 263 cpuid_leaf5_ecx_val = cx; 264 cpuid_leaf5_edx_val = dx; 265 } 266 return true; 267 #else 268 return false; 269 #endif 270 } 271 272 static bool __init xen_check_xsave(void) 273 { 274 unsigned int cx, xsave_mask; 275 276 cx = cpuid_ecx(1); 277 278 xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) | 279 (1 << (X86_FEATURE_OSXSAVE % 32)); 280 281 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */ 282 return (cx & xsave_mask) == xsave_mask; 283 } 284 285 static void __init xen_init_capabilities(void) 286 { 287 setup_force_cpu_cap(X86_FEATURE_XENPV); 288 setup_clear_cpu_cap(X86_FEATURE_DCA); 289 setup_clear_cpu_cap(X86_FEATURE_APERFMPERF); 290 setup_clear_cpu_cap(X86_FEATURE_MTRR); 291 setup_clear_cpu_cap(X86_FEATURE_ACC); 292 setup_clear_cpu_cap(X86_FEATURE_X2APIC); 293 setup_clear_cpu_cap(X86_FEATURE_SME); 294 295 /* 296 * Xen PV would need some work to support PCID: CR3 handling as well 297 * as xen_flush_tlb_others() would need updating. 298 */ 299 setup_clear_cpu_cap(X86_FEATURE_PCID); 300 301 if (!xen_initial_domain()) 302 setup_clear_cpu_cap(X86_FEATURE_ACPI); 303 304 if (xen_check_mwait()) 305 setup_force_cpu_cap(X86_FEATURE_MWAIT); 306 else 307 setup_clear_cpu_cap(X86_FEATURE_MWAIT); 308 309 if (!xen_check_xsave()) { 310 setup_clear_cpu_cap(X86_FEATURE_XSAVE); 311 setup_clear_cpu_cap(X86_FEATURE_OSXSAVE); 312 } 313 } 314 315 static void xen_set_debugreg(int reg, unsigned long val) 316 { 317 HYPERVISOR_set_debugreg(reg, val); 318 } 319 320 static unsigned long xen_get_debugreg(int reg) 321 { 322 return HYPERVISOR_get_debugreg(reg); 323 } 324 325 static void xen_end_context_switch(struct task_struct *next) 326 { 327 xen_mc_flush(); 328 paravirt_end_context_switch(next); 329 } 330 331 static unsigned long xen_store_tr(void) 332 { 333 return 0; 334 } 335 336 /* 337 * Set the page permissions for a particular virtual address. If the 338 * address is a vmalloc mapping (or other non-linear mapping), then 339 * find the linear mapping of the page and also set its protections to 340 * match. 341 */ 342 static void set_aliased_prot(void *v, pgprot_t prot) 343 { 344 int level; 345 pte_t *ptep; 346 pte_t pte; 347 unsigned long pfn; 348 unsigned char dummy; 349 void *va; 350 351 ptep = lookup_address((unsigned long)v, &level); 352 BUG_ON(ptep == NULL); 353 354 pfn = pte_pfn(*ptep); 355 pte = pfn_pte(pfn, prot); 356 357 /* 358 * Careful: update_va_mapping() will fail if the virtual address 359 * we're poking isn't populated in the page tables. We don't 360 * need to worry about the direct map (that's always in the page 361 * tables), but we need to be careful about vmap space. In 362 * particular, the top level page table can lazily propagate 363 * entries between processes, so if we've switched mms since we 364 * vmapped the target in the first place, we might not have the 365 * top-level page table entry populated. 366 * 367 * We disable preemption because we want the same mm active when 368 * we probe the target and when we issue the hypercall. We'll 369 * have the same nominal mm, but if we're a kernel thread, lazy 370 * mm dropping could change our pgd. 371 * 372 * Out of an abundance of caution, this uses __get_user() to fault 373 * in the target address just in case there's some obscure case 374 * in which the target address isn't readable. 375 */ 376 377 preempt_disable(); 378 379 copy_from_kernel_nofault(&dummy, v, 1); 380 381 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0)) 382 BUG(); 383 384 va = __va(PFN_PHYS(pfn)); 385 386 if (va != v && HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0)) 387 BUG(); 388 389 preempt_enable(); 390 } 391 392 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries) 393 { 394 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; 395 int i; 396 397 /* 398 * We need to mark the all aliases of the LDT pages RO. We 399 * don't need to call vm_flush_aliases(), though, since that's 400 * only responsible for flushing aliases out the TLBs, not the 401 * page tables, and Xen will flush the TLB for us if needed. 402 * 403 * To avoid confusing future readers: none of this is necessary 404 * to load the LDT. The hypervisor only checks this when the 405 * LDT is faulted in due to subsequent descriptor access. 406 */ 407 408 for (i = 0; i < entries; i += entries_per_page) 409 set_aliased_prot(ldt + i, PAGE_KERNEL_RO); 410 } 411 412 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries) 413 { 414 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; 415 int i; 416 417 for (i = 0; i < entries; i += entries_per_page) 418 set_aliased_prot(ldt + i, PAGE_KERNEL); 419 } 420 421 static void xen_set_ldt(const void *addr, unsigned entries) 422 { 423 struct mmuext_op *op; 424 struct multicall_space mcs = xen_mc_entry(sizeof(*op)); 425 426 trace_xen_cpu_set_ldt(addr, entries); 427 428 op = mcs.args; 429 op->cmd = MMUEXT_SET_LDT; 430 op->arg1.linear_addr = (unsigned long)addr; 431 op->arg2.nr_ents = entries; 432 433 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 434 435 xen_mc_issue(PARAVIRT_LAZY_CPU); 436 } 437 438 static void xen_load_gdt(const struct desc_ptr *dtr) 439 { 440 unsigned long va = dtr->address; 441 unsigned int size = dtr->size + 1; 442 unsigned long pfn, mfn; 443 int level; 444 pte_t *ptep; 445 void *virt; 446 447 /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */ 448 BUG_ON(size > PAGE_SIZE); 449 BUG_ON(va & ~PAGE_MASK); 450 451 /* 452 * The GDT is per-cpu and is in the percpu data area. 453 * That can be virtually mapped, so we need to do a 454 * page-walk to get the underlying MFN for the 455 * hypercall. The page can also be in the kernel's 456 * linear range, so we need to RO that mapping too. 457 */ 458 ptep = lookup_address(va, &level); 459 BUG_ON(ptep == NULL); 460 461 pfn = pte_pfn(*ptep); 462 mfn = pfn_to_mfn(pfn); 463 virt = __va(PFN_PHYS(pfn)); 464 465 make_lowmem_page_readonly((void *)va); 466 make_lowmem_page_readonly(virt); 467 468 if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct))) 469 BUG(); 470 } 471 472 /* 473 * load_gdt for early boot, when the gdt is only mapped once 474 */ 475 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr) 476 { 477 unsigned long va = dtr->address; 478 unsigned int size = dtr->size + 1; 479 unsigned long pfn, mfn; 480 pte_t pte; 481 482 /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */ 483 BUG_ON(size > PAGE_SIZE); 484 BUG_ON(va & ~PAGE_MASK); 485 486 pfn = virt_to_pfn(va); 487 mfn = pfn_to_mfn(pfn); 488 489 pte = pfn_pte(pfn, PAGE_KERNEL_RO); 490 491 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0)) 492 BUG(); 493 494 if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct))) 495 BUG(); 496 } 497 498 static inline bool desc_equal(const struct desc_struct *d1, 499 const struct desc_struct *d2) 500 { 501 return !memcmp(d1, d2, sizeof(*d1)); 502 } 503 504 static void load_TLS_descriptor(struct thread_struct *t, 505 unsigned int cpu, unsigned int i) 506 { 507 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i]; 508 struct desc_struct *gdt; 509 xmaddr_t maddr; 510 struct multicall_space mc; 511 512 if (desc_equal(shadow, &t->tls_array[i])) 513 return; 514 515 *shadow = t->tls_array[i]; 516 517 gdt = get_cpu_gdt_rw(cpu); 518 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]); 519 mc = __xen_mc_entry(0); 520 521 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]); 522 } 523 524 static void xen_load_tls(struct thread_struct *t, unsigned int cpu) 525 { 526 /* 527 * In lazy mode we need to zero %fs, otherwise we may get an 528 * exception between the new %fs descriptor being loaded and 529 * %fs being effectively cleared at __switch_to(). 530 */ 531 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) 532 loadsegment(fs, 0); 533 534 xen_mc_batch(); 535 536 load_TLS_descriptor(t, cpu, 0); 537 load_TLS_descriptor(t, cpu, 1); 538 load_TLS_descriptor(t, cpu, 2); 539 540 xen_mc_issue(PARAVIRT_LAZY_CPU); 541 } 542 543 static void xen_load_gs_index(unsigned int idx) 544 { 545 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx)) 546 BUG(); 547 } 548 549 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum, 550 const void *ptr) 551 { 552 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]); 553 u64 entry = *(u64 *)ptr; 554 555 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry); 556 557 preempt_disable(); 558 559 xen_mc_flush(); 560 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry)) 561 BUG(); 562 563 preempt_enable(); 564 } 565 566 void noist_exc_debug(struct pt_regs *regs); 567 568 DEFINE_IDTENTRY_RAW(xenpv_exc_nmi) 569 { 570 /* On Xen PV, NMI doesn't use IST. The C part is the sane as native. */ 571 exc_nmi(regs); 572 } 573 574 DEFINE_IDTENTRY_RAW(xenpv_exc_debug) 575 { 576 /* 577 * There's no IST on Xen PV, but we still need to dispatch 578 * to the correct handler. 579 */ 580 if (user_mode(regs)) 581 noist_exc_debug(regs); 582 else 583 exc_debug(regs); 584 } 585 586 DEFINE_IDTENTRY_RAW(exc_xen_unknown_trap) 587 { 588 /* This should never happen and there is no way to handle it. */ 589 pr_err("Unknown trap in Xen PV mode."); 590 BUG(); 591 } 592 593 struct trap_array_entry { 594 void (*orig)(void); 595 void (*xen)(void); 596 bool ist_okay; 597 }; 598 599 #define TRAP_ENTRY(func, ist_ok) { \ 600 .orig = asm_##func, \ 601 .xen = xen_asm_##func, \ 602 .ist_okay = ist_ok } 603 604 #define TRAP_ENTRY_REDIR(func, ist_ok) { \ 605 .orig = asm_##func, \ 606 .xen = xen_asm_xenpv_##func, \ 607 .ist_okay = ist_ok } 608 609 static struct trap_array_entry trap_array[] = { 610 TRAP_ENTRY_REDIR(exc_debug, true ), 611 TRAP_ENTRY(exc_double_fault, true ), 612 #ifdef CONFIG_X86_MCE 613 TRAP_ENTRY(exc_machine_check, true ), 614 #endif 615 TRAP_ENTRY_REDIR(exc_nmi, true ), 616 TRAP_ENTRY(exc_int3, false ), 617 TRAP_ENTRY(exc_overflow, false ), 618 #ifdef CONFIG_IA32_EMULATION 619 { entry_INT80_compat, xen_entry_INT80_compat, false }, 620 #endif 621 TRAP_ENTRY(exc_page_fault, false ), 622 TRAP_ENTRY(exc_divide_error, false ), 623 TRAP_ENTRY(exc_bounds, false ), 624 TRAP_ENTRY(exc_invalid_op, false ), 625 TRAP_ENTRY(exc_device_not_available, false ), 626 TRAP_ENTRY(exc_coproc_segment_overrun, false ), 627 TRAP_ENTRY(exc_invalid_tss, false ), 628 TRAP_ENTRY(exc_segment_not_present, false ), 629 TRAP_ENTRY(exc_stack_segment, false ), 630 TRAP_ENTRY(exc_general_protection, false ), 631 TRAP_ENTRY(exc_spurious_interrupt_bug, false ), 632 TRAP_ENTRY(exc_coprocessor_error, false ), 633 TRAP_ENTRY(exc_alignment_check, false ), 634 TRAP_ENTRY(exc_simd_coprocessor_error, false ), 635 }; 636 637 static bool __ref get_trap_addr(void **addr, unsigned int ist) 638 { 639 unsigned int nr; 640 bool ist_okay = false; 641 bool found = false; 642 643 /* 644 * Replace trap handler addresses by Xen specific ones. 645 * Check for known traps using IST and whitelist them. 646 * The debugger ones are the only ones we care about. 647 * Xen will handle faults like double_fault, so we should never see 648 * them. Warn if there's an unexpected IST-using fault handler. 649 */ 650 for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) { 651 struct trap_array_entry *entry = trap_array + nr; 652 653 if (*addr == entry->orig) { 654 *addr = entry->xen; 655 ist_okay = entry->ist_okay; 656 found = true; 657 break; 658 } 659 } 660 661 if (nr == ARRAY_SIZE(trap_array) && 662 *addr >= (void *)early_idt_handler_array[0] && 663 *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) { 664 nr = (*addr - (void *)early_idt_handler_array[0]) / 665 EARLY_IDT_HANDLER_SIZE; 666 *addr = (void *)xen_early_idt_handler_array[nr]; 667 found = true; 668 } 669 670 if (!found) 671 *addr = (void *)xen_asm_exc_xen_unknown_trap; 672 673 if (WARN_ON(found && ist != 0 && !ist_okay)) 674 return false; 675 676 return true; 677 } 678 679 static int cvt_gate_to_trap(int vector, const gate_desc *val, 680 struct trap_info *info) 681 { 682 unsigned long addr; 683 684 if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT) 685 return 0; 686 687 info->vector = vector; 688 689 addr = gate_offset(val); 690 if (!get_trap_addr((void **)&addr, val->bits.ist)) 691 return 0; 692 info->address = addr; 693 694 info->cs = gate_segment(val); 695 info->flags = val->bits.dpl; 696 /* interrupt gates clear IF */ 697 if (val->bits.type == GATE_INTERRUPT) 698 info->flags |= 1 << 2; 699 700 return 1; 701 } 702 703 /* Locations of each CPU's IDT */ 704 static DEFINE_PER_CPU(struct desc_ptr, idt_desc); 705 706 /* Set an IDT entry. If the entry is part of the current IDT, then 707 also update Xen. */ 708 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g) 709 { 710 unsigned long p = (unsigned long)&dt[entrynum]; 711 unsigned long start, end; 712 713 trace_xen_cpu_write_idt_entry(dt, entrynum, g); 714 715 preempt_disable(); 716 717 start = __this_cpu_read(idt_desc.address); 718 end = start + __this_cpu_read(idt_desc.size) + 1; 719 720 xen_mc_flush(); 721 722 native_write_idt_entry(dt, entrynum, g); 723 724 if (p >= start && (p + 8) <= end) { 725 struct trap_info info[2]; 726 727 info[1].address = 0; 728 729 if (cvt_gate_to_trap(entrynum, g, &info[0])) 730 if (HYPERVISOR_set_trap_table(info)) 731 BUG(); 732 } 733 734 preempt_enable(); 735 } 736 737 static void xen_convert_trap_info(const struct desc_ptr *desc, 738 struct trap_info *traps) 739 { 740 unsigned in, out, count; 741 742 count = (desc->size+1) / sizeof(gate_desc); 743 BUG_ON(count > 256); 744 745 for (in = out = 0; in < count; in++) { 746 gate_desc *entry = (gate_desc *)(desc->address) + in; 747 748 if (cvt_gate_to_trap(in, entry, &traps[out])) 749 out++; 750 } 751 traps[out].address = 0; 752 } 753 754 void xen_copy_trap_info(struct trap_info *traps) 755 { 756 const struct desc_ptr *desc = this_cpu_ptr(&idt_desc); 757 758 xen_convert_trap_info(desc, traps); 759 } 760 761 /* Load a new IDT into Xen. In principle this can be per-CPU, so we 762 hold a spinlock to protect the static traps[] array (static because 763 it avoids allocation, and saves stack space). */ 764 static void xen_load_idt(const struct desc_ptr *desc) 765 { 766 static DEFINE_SPINLOCK(lock); 767 static struct trap_info traps[257]; 768 769 trace_xen_cpu_load_idt(desc); 770 771 spin_lock(&lock); 772 773 memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc)); 774 775 xen_convert_trap_info(desc, traps); 776 777 xen_mc_flush(); 778 if (HYPERVISOR_set_trap_table(traps)) 779 BUG(); 780 781 spin_unlock(&lock); 782 } 783 784 /* Write a GDT descriptor entry. Ignore LDT descriptors, since 785 they're handled differently. */ 786 static void xen_write_gdt_entry(struct desc_struct *dt, int entry, 787 const void *desc, int type) 788 { 789 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type); 790 791 preempt_disable(); 792 793 switch (type) { 794 case DESC_LDT: 795 case DESC_TSS: 796 /* ignore */ 797 break; 798 799 default: { 800 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]); 801 802 xen_mc_flush(); 803 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) 804 BUG(); 805 } 806 807 } 808 809 preempt_enable(); 810 } 811 812 /* 813 * Version of write_gdt_entry for use at early boot-time needed to 814 * update an entry as simply as possible. 815 */ 816 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry, 817 const void *desc, int type) 818 { 819 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type); 820 821 switch (type) { 822 case DESC_LDT: 823 case DESC_TSS: 824 /* ignore */ 825 break; 826 827 default: { 828 xmaddr_t maddr = virt_to_machine(&dt[entry]); 829 830 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) 831 dt[entry] = *(struct desc_struct *)desc; 832 } 833 834 } 835 } 836 837 static void xen_load_sp0(unsigned long sp0) 838 { 839 struct multicall_space mcs; 840 841 mcs = xen_mc_entry(0); 842 MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0); 843 xen_mc_issue(PARAVIRT_LAZY_CPU); 844 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0); 845 } 846 847 #ifdef CONFIG_X86_IOPL_IOPERM 848 static void xen_invalidate_io_bitmap(void) 849 { 850 struct physdev_set_iobitmap iobitmap = { 851 .bitmap = NULL, 852 .nr_ports = 0, 853 }; 854 855 native_tss_invalidate_io_bitmap(); 856 HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap); 857 } 858 859 static void xen_update_io_bitmap(void) 860 { 861 struct physdev_set_iobitmap iobitmap; 862 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw); 863 864 native_tss_update_io_bitmap(); 865 866 iobitmap.bitmap = (uint8_t *)(&tss->x86_tss) + 867 tss->x86_tss.io_bitmap_base; 868 if (tss->x86_tss.io_bitmap_base == IO_BITMAP_OFFSET_INVALID) 869 iobitmap.nr_ports = 0; 870 else 871 iobitmap.nr_ports = IO_BITMAP_BITS; 872 873 HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap); 874 } 875 #endif 876 877 static void xen_io_delay(void) 878 { 879 } 880 881 static DEFINE_PER_CPU(unsigned long, xen_cr0_value); 882 883 static unsigned long xen_read_cr0(void) 884 { 885 unsigned long cr0 = this_cpu_read(xen_cr0_value); 886 887 if (unlikely(cr0 == 0)) { 888 cr0 = native_read_cr0(); 889 this_cpu_write(xen_cr0_value, cr0); 890 } 891 892 return cr0; 893 } 894 895 static void xen_write_cr0(unsigned long cr0) 896 { 897 struct multicall_space mcs; 898 899 this_cpu_write(xen_cr0_value, cr0); 900 901 /* Only pay attention to cr0.TS; everything else is 902 ignored. */ 903 mcs = xen_mc_entry(0); 904 905 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0); 906 907 xen_mc_issue(PARAVIRT_LAZY_CPU); 908 } 909 910 static void xen_write_cr4(unsigned long cr4) 911 { 912 cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE); 913 914 native_write_cr4(cr4); 915 } 916 917 static u64 xen_read_msr_safe(unsigned int msr, int *err) 918 { 919 u64 val; 920 921 if (pmu_msr_read(msr, &val, err)) 922 return val; 923 924 val = native_read_msr_safe(msr, err); 925 switch (msr) { 926 case MSR_IA32_APICBASE: 927 val &= ~X2APIC_ENABLE; 928 break; 929 } 930 return val; 931 } 932 933 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high) 934 { 935 int ret; 936 unsigned int which; 937 u64 base; 938 939 ret = 0; 940 941 switch (msr) { 942 case MSR_FS_BASE: which = SEGBASE_FS; goto set; 943 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set; 944 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set; 945 946 set: 947 base = ((u64)high << 32) | low; 948 if (HYPERVISOR_set_segment_base(which, base) != 0) 949 ret = -EIO; 950 break; 951 952 case MSR_STAR: 953 case MSR_CSTAR: 954 case MSR_LSTAR: 955 case MSR_SYSCALL_MASK: 956 case MSR_IA32_SYSENTER_CS: 957 case MSR_IA32_SYSENTER_ESP: 958 case MSR_IA32_SYSENTER_EIP: 959 /* Fast syscall setup is all done in hypercalls, so 960 these are all ignored. Stub them out here to stop 961 Xen console noise. */ 962 break; 963 964 default: 965 if (!pmu_msr_write(msr, low, high, &ret)) 966 ret = native_write_msr_safe(msr, low, high); 967 } 968 969 return ret; 970 } 971 972 static u64 xen_read_msr(unsigned int msr) 973 { 974 /* 975 * This will silently swallow a #GP from RDMSR. It may be worth 976 * changing that. 977 */ 978 int err; 979 980 return xen_read_msr_safe(msr, &err); 981 } 982 983 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high) 984 { 985 /* 986 * This will silently swallow a #GP from WRMSR. It may be worth 987 * changing that. 988 */ 989 xen_write_msr_safe(msr, low, high); 990 } 991 992 /* This is called once we have the cpu_possible_mask */ 993 void __init xen_setup_vcpu_info_placement(void) 994 { 995 int cpu; 996 997 for_each_possible_cpu(cpu) { 998 /* Set up direct vCPU id mapping for PV guests. */ 999 per_cpu(xen_vcpu_id, cpu) = cpu; 1000 1001 /* 1002 * xen_vcpu_setup(cpu) can fail -- in which case it 1003 * falls back to the shared_info version for cpus 1004 * where xen_vcpu_nr(cpu) < MAX_VIRT_CPUS. 1005 * 1006 * xen_cpu_up_prepare_pv() handles the rest by failing 1007 * them in hotplug. 1008 */ 1009 (void) xen_vcpu_setup(cpu); 1010 } 1011 1012 /* 1013 * xen_vcpu_setup managed to place the vcpu_info within the 1014 * percpu area for all cpus, so make use of it. 1015 */ 1016 if (xen_have_vcpu_info_placement) { 1017 pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct); 1018 pv_ops.irq.restore_fl = 1019 __PV_IS_CALLEE_SAVE(xen_restore_fl_direct); 1020 pv_ops.irq.irq_disable = 1021 __PV_IS_CALLEE_SAVE(xen_irq_disable_direct); 1022 pv_ops.irq.irq_enable = 1023 __PV_IS_CALLEE_SAVE(xen_irq_enable_direct); 1024 pv_ops.mmu.read_cr2 = 1025 __PV_IS_CALLEE_SAVE(xen_read_cr2_direct); 1026 } 1027 } 1028 1029 static const struct pv_info xen_info __initconst = { 1030 .extra_user_64bit_cs = FLAT_USER_CS64, 1031 .name = "Xen", 1032 }; 1033 1034 static const struct pv_cpu_ops xen_cpu_ops __initconst = { 1035 .cpuid = xen_cpuid, 1036 1037 .set_debugreg = xen_set_debugreg, 1038 .get_debugreg = xen_get_debugreg, 1039 1040 .read_cr0 = xen_read_cr0, 1041 .write_cr0 = xen_write_cr0, 1042 1043 .write_cr4 = xen_write_cr4, 1044 1045 .wbinvd = native_wbinvd, 1046 1047 .read_msr = xen_read_msr, 1048 .write_msr = xen_write_msr, 1049 1050 .read_msr_safe = xen_read_msr_safe, 1051 .write_msr_safe = xen_write_msr_safe, 1052 1053 .read_pmc = xen_read_pmc, 1054 1055 .iret = xen_iret, 1056 .usergs_sysret64 = xen_sysret64, 1057 1058 .load_tr_desc = paravirt_nop, 1059 .set_ldt = xen_set_ldt, 1060 .load_gdt = xen_load_gdt, 1061 .load_idt = xen_load_idt, 1062 .load_tls = xen_load_tls, 1063 .load_gs_index = xen_load_gs_index, 1064 1065 .alloc_ldt = xen_alloc_ldt, 1066 .free_ldt = xen_free_ldt, 1067 1068 .store_tr = xen_store_tr, 1069 1070 .write_ldt_entry = xen_write_ldt_entry, 1071 .write_gdt_entry = xen_write_gdt_entry, 1072 .write_idt_entry = xen_write_idt_entry, 1073 .load_sp0 = xen_load_sp0, 1074 1075 #ifdef CONFIG_X86_IOPL_IOPERM 1076 .invalidate_io_bitmap = xen_invalidate_io_bitmap, 1077 .update_io_bitmap = xen_update_io_bitmap, 1078 #endif 1079 .io_delay = xen_io_delay, 1080 1081 /* Xen takes care of %gs when switching to usermode for us */ 1082 .swapgs = paravirt_nop, 1083 1084 .start_context_switch = paravirt_start_context_switch, 1085 .end_context_switch = xen_end_context_switch, 1086 }; 1087 1088 static void xen_restart(char *msg) 1089 { 1090 xen_reboot(SHUTDOWN_reboot); 1091 } 1092 1093 static void xen_machine_halt(void) 1094 { 1095 xen_reboot(SHUTDOWN_poweroff); 1096 } 1097 1098 static void xen_machine_power_off(void) 1099 { 1100 if (pm_power_off) 1101 pm_power_off(); 1102 xen_reboot(SHUTDOWN_poweroff); 1103 } 1104 1105 static void xen_crash_shutdown(struct pt_regs *regs) 1106 { 1107 xen_reboot(SHUTDOWN_crash); 1108 } 1109 1110 static const struct machine_ops xen_machine_ops __initconst = { 1111 .restart = xen_restart, 1112 .halt = xen_machine_halt, 1113 .power_off = xen_machine_power_off, 1114 .shutdown = xen_machine_halt, 1115 .crash_shutdown = xen_crash_shutdown, 1116 .emergency_restart = xen_emergency_restart, 1117 }; 1118 1119 static unsigned char xen_get_nmi_reason(void) 1120 { 1121 unsigned char reason = 0; 1122 1123 /* Construct a value which looks like it came from port 0x61. */ 1124 if (test_bit(_XEN_NMIREASON_io_error, 1125 &HYPERVISOR_shared_info->arch.nmi_reason)) 1126 reason |= NMI_REASON_IOCHK; 1127 if (test_bit(_XEN_NMIREASON_pci_serr, 1128 &HYPERVISOR_shared_info->arch.nmi_reason)) 1129 reason |= NMI_REASON_SERR; 1130 1131 return reason; 1132 } 1133 1134 static void __init xen_boot_params_init_edd(void) 1135 { 1136 #if IS_ENABLED(CONFIG_EDD) 1137 struct xen_platform_op op; 1138 struct edd_info *edd_info; 1139 u32 *mbr_signature; 1140 unsigned nr; 1141 int ret; 1142 1143 edd_info = boot_params.eddbuf; 1144 mbr_signature = boot_params.edd_mbr_sig_buffer; 1145 1146 op.cmd = XENPF_firmware_info; 1147 1148 op.u.firmware_info.type = XEN_FW_DISK_INFO; 1149 for (nr = 0; nr < EDDMAXNR; nr++) { 1150 struct edd_info *info = edd_info + nr; 1151 1152 op.u.firmware_info.index = nr; 1153 info->params.length = sizeof(info->params); 1154 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params, 1155 &info->params); 1156 ret = HYPERVISOR_platform_op(&op); 1157 if (ret) 1158 break; 1159 1160 #define C(x) info->x = op.u.firmware_info.u.disk_info.x 1161 C(device); 1162 C(version); 1163 C(interface_support); 1164 C(legacy_max_cylinder); 1165 C(legacy_max_head); 1166 C(legacy_sectors_per_track); 1167 #undef C 1168 } 1169 boot_params.eddbuf_entries = nr; 1170 1171 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE; 1172 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) { 1173 op.u.firmware_info.index = nr; 1174 ret = HYPERVISOR_platform_op(&op); 1175 if (ret) 1176 break; 1177 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature; 1178 } 1179 boot_params.edd_mbr_sig_buf_entries = nr; 1180 #endif 1181 } 1182 1183 /* 1184 * Set up the GDT and segment registers for -fstack-protector. Until 1185 * we do this, we have to be careful not to call any stack-protected 1186 * function, which is most of the kernel. 1187 */ 1188 static void __init xen_setup_gdt(int cpu) 1189 { 1190 pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot; 1191 pv_ops.cpu.load_gdt = xen_load_gdt_boot; 1192 1193 setup_stack_canary_segment(cpu); 1194 switch_to_new_gdt(cpu); 1195 1196 pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry; 1197 pv_ops.cpu.load_gdt = xen_load_gdt; 1198 } 1199 1200 static void __init xen_dom0_set_legacy_features(void) 1201 { 1202 x86_platform.legacy.rtc = 1; 1203 } 1204 1205 /* First C function to be called on Xen boot */ 1206 asmlinkage __visible void __init xen_start_kernel(void) 1207 { 1208 struct physdev_set_iopl set_iopl; 1209 unsigned long initrd_start = 0; 1210 int rc; 1211 1212 if (!xen_start_info) 1213 return; 1214 1215 xen_domain_type = XEN_PV_DOMAIN; 1216 xen_start_flags = xen_start_info->flags; 1217 1218 xen_setup_features(); 1219 1220 /* Install Xen paravirt ops */ 1221 pv_info = xen_info; 1222 pv_ops.init.patch = paravirt_patch_default; 1223 pv_ops.cpu = xen_cpu_ops; 1224 xen_init_irq_ops(); 1225 1226 /* 1227 * Setup xen_vcpu early because it is needed for 1228 * local_irq_disable(), irqs_disabled(), e.g. in printk(). 1229 * 1230 * Don't do the full vcpu_info placement stuff until we have 1231 * the cpu_possible_mask and a non-dummy shared_info. 1232 */ 1233 xen_vcpu_info_reset(0); 1234 1235 x86_platform.get_nmi_reason = xen_get_nmi_reason; 1236 1237 x86_init.resources.memory_setup = xen_memory_setup; 1238 x86_init.irqs.intr_mode_select = x86_init_noop; 1239 x86_init.irqs.intr_mode_init = x86_init_noop; 1240 x86_init.oem.arch_setup = xen_arch_setup; 1241 x86_init.oem.banner = xen_banner; 1242 x86_init.hyper.init_platform = xen_pv_init_platform; 1243 x86_init.hyper.guest_late_init = xen_pv_guest_late_init; 1244 1245 /* 1246 * Set up some pagetable state before starting to set any ptes. 1247 */ 1248 1249 xen_setup_machphys_mapping(); 1250 xen_init_mmu_ops(); 1251 1252 /* Prevent unwanted bits from being set in PTEs. */ 1253 __supported_pte_mask &= ~_PAGE_GLOBAL; 1254 __default_kernel_pte_mask &= ~_PAGE_GLOBAL; 1255 1256 /* 1257 * Prevent page tables from being allocated in highmem, even 1258 * if CONFIG_HIGHPTE is enabled. 1259 */ 1260 __userpte_alloc_gfp &= ~__GFP_HIGHMEM; 1261 1262 /* Get mfn list */ 1263 xen_build_dynamic_phys_to_machine(); 1264 1265 /* 1266 * Set up kernel GDT and segment registers, mainly so that 1267 * -fstack-protector code can be executed. 1268 */ 1269 xen_setup_gdt(0); 1270 1271 /* Work out if we support NX */ 1272 get_cpu_cap(&boot_cpu_data); 1273 x86_configure_nx(); 1274 1275 /* Determine virtual and physical address sizes */ 1276 get_cpu_address_sizes(&boot_cpu_data); 1277 1278 /* Let's presume PV guests always boot on vCPU with id 0. */ 1279 per_cpu(xen_vcpu_id, 0) = 0; 1280 1281 idt_setup_early_handler(); 1282 1283 xen_init_capabilities(); 1284 1285 #ifdef CONFIG_X86_LOCAL_APIC 1286 /* 1287 * set up the basic apic ops. 1288 */ 1289 xen_init_apic(); 1290 #endif 1291 1292 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) { 1293 pv_ops.mmu.ptep_modify_prot_start = 1294 xen_ptep_modify_prot_start; 1295 pv_ops.mmu.ptep_modify_prot_commit = 1296 xen_ptep_modify_prot_commit; 1297 } 1298 1299 machine_ops = xen_machine_ops; 1300 1301 /* 1302 * The only reliable way to retain the initial address of the 1303 * percpu gdt_page is to remember it here, so we can go and 1304 * mark it RW later, when the initial percpu area is freed. 1305 */ 1306 xen_initial_gdt = &per_cpu(gdt_page, 0); 1307 1308 xen_smp_init(); 1309 1310 #ifdef CONFIG_ACPI_NUMA 1311 /* 1312 * The pages we from Xen are not related to machine pages, so 1313 * any NUMA information the kernel tries to get from ACPI will 1314 * be meaningless. Prevent it from trying. 1315 */ 1316 disable_srat(); 1317 #endif 1318 WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv)); 1319 1320 local_irq_disable(); 1321 early_boot_irqs_disabled = true; 1322 1323 xen_raw_console_write("mapping kernel into physical memory\n"); 1324 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, 1325 xen_start_info->nr_pages); 1326 xen_reserve_special_pages(); 1327 1328 /* 1329 * We used to do this in xen_arch_setup, but that is too late 1330 * on AMD were early_cpu_init (run before ->arch_setup()) calls 1331 * early_amd_init which pokes 0xcf8 port. 1332 */ 1333 set_iopl.iopl = 1; 1334 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); 1335 if (rc != 0) 1336 xen_raw_printk("physdev_op failed %d\n", rc); 1337 1338 1339 if (xen_start_info->mod_start) { 1340 if (xen_start_info->flags & SIF_MOD_START_PFN) 1341 initrd_start = PFN_PHYS(xen_start_info->mod_start); 1342 else 1343 initrd_start = __pa(xen_start_info->mod_start); 1344 } 1345 1346 /* Poke various useful things into boot_params */ 1347 boot_params.hdr.type_of_loader = (9 << 4) | 0; 1348 boot_params.hdr.ramdisk_image = initrd_start; 1349 boot_params.hdr.ramdisk_size = xen_start_info->mod_len; 1350 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line); 1351 boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN; 1352 1353 if (!xen_initial_domain()) { 1354 add_preferred_console("xenboot", 0, NULL); 1355 if (pci_xen) 1356 x86_init.pci.arch_init = pci_xen_init; 1357 } else { 1358 const struct dom0_vga_console_info *info = 1359 (void *)((char *)xen_start_info + 1360 xen_start_info->console.dom0.info_off); 1361 struct xen_platform_op op = { 1362 .cmd = XENPF_firmware_info, 1363 .interface_version = XENPF_INTERFACE_VERSION, 1364 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS, 1365 }; 1366 1367 x86_platform.set_legacy_features = 1368 xen_dom0_set_legacy_features; 1369 xen_init_vga(info, xen_start_info->console.dom0.info_size); 1370 xen_start_info->console.domU.mfn = 0; 1371 xen_start_info->console.domU.evtchn = 0; 1372 1373 if (HYPERVISOR_platform_op(&op) == 0) 1374 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags; 1375 1376 /* Make sure ACS will be enabled */ 1377 pci_request_acs(); 1378 1379 xen_acpi_sleep_register(); 1380 1381 /* Avoid searching for BIOS MP tables */ 1382 x86_init.mpparse.find_smp_config = x86_init_noop; 1383 x86_init.mpparse.get_smp_config = x86_init_uint_noop; 1384 1385 xen_boot_params_init_edd(); 1386 1387 #ifdef CONFIG_ACPI 1388 /* 1389 * Disable selecting "Firmware First mode" for correctable 1390 * memory errors, as this is the duty of the hypervisor to 1391 * decide. 1392 */ 1393 acpi_disable_cmcff = 1; 1394 #endif 1395 } 1396 1397 if (!boot_params.screen_info.orig_video_isVGA) 1398 add_preferred_console("tty", 0, NULL); 1399 add_preferred_console("hvc", 0, NULL); 1400 if (boot_params.screen_info.orig_video_isVGA) 1401 add_preferred_console("tty", 0, NULL); 1402 1403 #ifdef CONFIG_PCI 1404 /* PCI BIOS service won't work from a PV guest. */ 1405 pci_probe &= ~PCI_PROBE_BIOS; 1406 #endif 1407 xen_raw_console_write("about to get started...\n"); 1408 1409 /* We need this for printk timestamps */ 1410 xen_setup_runstate_info(0); 1411 1412 xen_efi_init(&boot_params); 1413 1414 /* Start the world */ 1415 cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */ 1416 x86_64_start_reservations((char *)__pa_symbol(&boot_params)); 1417 } 1418 1419 static int xen_cpu_up_prepare_pv(unsigned int cpu) 1420 { 1421 int rc; 1422 1423 if (per_cpu(xen_vcpu, cpu) == NULL) 1424 return -ENODEV; 1425 1426 xen_setup_timer(cpu); 1427 1428 rc = xen_smp_intr_init(cpu); 1429 if (rc) { 1430 WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n", 1431 cpu, rc); 1432 return rc; 1433 } 1434 1435 rc = xen_smp_intr_init_pv(cpu); 1436 if (rc) { 1437 WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n", 1438 cpu, rc); 1439 return rc; 1440 } 1441 1442 return 0; 1443 } 1444 1445 static int xen_cpu_dead_pv(unsigned int cpu) 1446 { 1447 xen_smp_intr_free(cpu); 1448 xen_smp_intr_free_pv(cpu); 1449 1450 xen_teardown_timer(cpu); 1451 1452 return 0; 1453 } 1454 1455 static uint32_t __init xen_platform_pv(void) 1456 { 1457 if (xen_pv_domain()) 1458 return xen_cpuid_base(); 1459 1460 return 0; 1461 } 1462 1463 const __initconst struct hypervisor_x86 x86_hyper_xen_pv = { 1464 .name = "Xen PV", 1465 .detect = xen_platform_pv, 1466 .type = X86_HYPER_XEN_PV, 1467 .runtime.pin_vcpu = xen_pin_vcpu, 1468 .ignore_nopv = true, 1469 }; 1470