xref: /openbmc/linux/arch/x86/xen/enlighten_pv.c (revision 76426e23)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Core of Xen paravirt_ops implementation.
4  *
5  * This file contains the xen_paravirt_ops structure itself, and the
6  * implementations for:
7  * - privileged instructions
8  * - interrupt flags
9  * - segment operations
10  * - booting and setup
11  *
12  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
13  */
14 
15 #include <linux/cpu.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/smp.h>
19 #include <linux/preempt.h>
20 #include <linux/hardirq.h>
21 #include <linux/percpu.h>
22 #include <linux/delay.h>
23 #include <linux/start_kernel.h>
24 #include <linux/sched.h>
25 #include <linux/kprobes.h>
26 #include <linux/memblock.h>
27 #include <linux/export.h>
28 #include <linux/mm.h>
29 #include <linux/page-flags.h>
30 #include <linux/highmem.h>
31 #include <linux/console.h>
32 #include <linux/pci.h>
33 #include <linux/gfp.h>
34 #include <linux/edd.h>
35 #include <linux/frame.h>
36 
37 #include <xen/xen.h>
38 #include <xen/events.h>
39 #include <xen/interface/xen.h>
40 #include <xen/interface/version.h>
41 #include <xen/interface/physdev.h>
42 #include <xen/interface/vcpu.h>
43 #include <xen/interface/memory.h>
44 #include <xen/interface/nmi.h>
45 #include <xen/interface/xen-mca.h>
46 #include <xen/features.h>
47 #include <xen/page.h>
48 #include <xen/hvc-console.h>
49 #include <xen/acpi.h>
50 
51 #include <asm/paravirt.h>
52 #include <asm/apic.h>
53 #include <asm/page.h>
54 #include <asm/xen/pci.h>
55 #include <asm/xen/hypercall.h>
56 #include <asm/xen/hypervisor.h>
57 #include <asm/xen/cpuid.h>
58 #include <asm/fixmap.h>
59 #include <asm/processor.h>
60 #include <asm/proto.h>
61 #include <asm/msr-index.h>
62 #include <asm/traps.h>
63 #include <asm/setup.h>
64 #include <asm/desc.h>
65 #include <asm/pgalloc.h>
66 #include <asm/pgtable.h>
67 #include <asm/tlbflush.h>
68 #include <asm/reboot.h>
69 #include <asm/stackprotector.h>
70 #include <asm/hypervisor.h>
71 #include <asm/mach_traps.h>
72 #include <asm/mwait.h>
73 #include <asm/pci_x86.h>
74 #include <asm/cpu.h>
75 #ifdef CONFIG_X86_IOPL_IOPERM
76 #include <asm/io_bitmap.h>
77 #endif
78 
79 #ifdef CONFIG_ACPI
80 #include <linux/acpi.h>
81 #include <asm/acpi.h>
82 #include <acpi/pdc_intel.h>
83 #include <acpi/processor.h>
84 #include <xen/interface/platform.h>
85 #endif
86 
87 #include "xen-ops.h"
88 #include "mmu.h"
89 #include "smp.h"
90 #include "multicalls.h"
91 #include "pmu.h"
92 
93 #include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
94 
95 void *xen_initial_gdt;
96 
97 static int xen_cpu_up_prepare_pv(unsigned int cpu);
98 static int xen_cpu_dead_pv(unsigned int cpu);
99 
100 struct tls_descs {
101 	struct desc_struct desc[3];
102 };
103 
104 /*
105  * Updating the 3 TLS descriptors in the GDT on every task switch is
106  * surprisingly expensive so we avoid updating them if they haven't
107  * changed.  Since Xen writes different descriptors than the one
108  * passed in the update_descriptor hypercall we keep shadow copies to
109  * compare against.
110  */
111 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
112 
113 static void __init xen_banner(void)
114 {
115 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
116 	struct xen_extraversion extra;
117 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
118 
119 	pr_info("Booting paravirtualized kernel on %s\n", pv_info.name);
120 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
121 	       version >> 16, version & 0xffff, extra.extraversion,
122 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
123 
124 #ifdef CONFIG_X86_32
125 	pr_warn("WARNING! WARNING! WARNING! WARNING! WARNING! WARNING! WARNING!\n"
126 		"Support for running as 32-bit PV-guest under Xen will soon be removed\n"
127 		"from the Linux kernel!\n"
128 		"Please use either a 64-bit kernel or switch to HVM or PVH mode!\n"
129 		"WARNING! WARNING! WARNING! WARNING! WARNING! WARNING! WARNING!\n");
130 #endif
131 }
132 
133 static void __init xen_pv_init_platform(void)
134 {
135 	populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP));
136 
137 	set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
138 	HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
139 
140 	/* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */
141 	xen_vcpu_info_reset(0);
142 
143 	/* pvclock is in shared info area */
144 	xen_init_time_ops();
145 }
146 
147 static void __init xen_pv_guest_late_init(void)
148 {
149 #ifndef CONFIG_SMP
150 	/* Setup shared vcpu info for non-smp configurations */
151 	xen_setup_vcpu_info_placement();
152 #endif
153 }
154 
155 /* Check if running on Xen version (major, minor) or later */
156 bool
157 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
158 {
159 	unsigned int version;
160 
161 	if (!xen_domain())
162 		return false;
163 
164 	version = HYPERVISOR_xen_version(XENVER_version, NULL);
165 	if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
166 		((version >> 16) > major))
167 		return true;
168 	return false;
169 }
170 
171 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
172 static __read_mostly unsigned int cpuid_leaf5_edx_val;
173 
174 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
175 		      unsigned int *cx, unsigned int *dx)
176 {
177 	unsigned maskebx = ~0;
178 
179 	/*
180 	 * Mask out inconvenient features, to try and disable as many
181 	 * unsupported kernel subsystems as possible.
182 	 */
183 	switch (*ax) {
184 	case CPUID_MWAIT_LEAF:
185 		/* Synthesize the values.. */
186 		*ax = 0;
187 		*bx = 0;
188 		*cx = cpuid_leaf5_ecx_val;
189 		*dx = cpuid_leaf5_edx_val;
190 		return;
191 
192 	case 0xb:
193 		/* Suppress extended topology stuff */
194 		maskebx = 0;
195 		break;
196 	}
197 
198 	asm(XEN_EMULATE_PREFIX "cpuid"
199 		: "=a" (*ax),
200 		  "=b" (*bx),
201 		  "=c" (*cx),
202 		  "=d" (*dx)
203 		: "0" (*ax), "2" (*cx));
204 
205 	*bx &= maskebx;
206 }
207 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
208 
209 static bool __init xen_check_mwait(void)
210 {
211 #ifdef CONFIG_ACPI
212 	struct xen_platform_op op = {
213 		.cmd			= XENPF_set_processor_pminfo,
214 		.u.set_pminfo.id	= -1,
215 		.u.set_pminfo.type	= XEN_PM_PDC,
216 	};
217 	uint32_t buf[3];
218 	unsigned int ax, bx, cx, dx;
219 	unsigned int mwait_mask;
220 
221 	/* We need to determine whether it is OK to expose the MWAIT
222 	 * capability to the kernel to harvest deeper than C3 states from ACPI
223 	 * _CST using the processor_harvest_xen.c module. For this to work, we
224 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
225 	 * checks against). The hypervisor won't expose the MWAIT flag because
226 	 * it would break backwards compatibility; so we will find out directly
227 	 * from the hardware and hypercall.
228 	 */
229 	if (!xen_initial_domain())
230 		return false;
231 
232 	/*
233 	 * When running under platform earlier than Xen4.2, do not expose
234 	 * mwait, to avoid the risk of loading native acpi pad driver
235 	 */
236 	if (!xen_running_on_version_or_later(4, 2))
237 		return false;
238 
239 	ax = 1;
240 	cx = 0;
241 
242 	native_cpuid(&ax, &bx, &cx, &dx);
243 
244 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
245 		     (1 << (X86_FEATURE_MWAIT % 32));
246 
247 	if ((cx & mwait_mask) != mwait_mask)
248 		return false;
249 
250 	/* We need to emulate the MWAIT_LEAF and for that we need both
251 	 * ecx and edx. The hypercall provides only partial information.
252 	 */
253 
254 	ax = CPUID_MWAIT_LEAF;
255 	bx = 0;
256 	cx = 0;
257 	dx = 0;
258 
259 	native_cpuid(&ax, &bx, &cx, &dx);
260 
261 	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
262 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
263 	 */
264 	buf[0] = ACPI_PDC_REVISION_ID;
265 	buf[1] = 1;
266 	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
267 
268 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
269 
270 	if ((HYPERVISOR_platform_op(&op) == 0) &&
271 	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
272 		cpuid_leaf5_ecx_val = cx;
273 		cpuid_leaf5_edx_val = dx;
274 	}
275 	return true;
276 #else
277 	return false;
278 #endif
279 }
280 
281 static bool __init xen_check_xsave(void)
282 {
283 	unsigned int cx, xsave_mask;
284 
285 	cx = cpuid_ecx(1);
286 
287 	xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
288 		     (1 << (X86_FEATURE_OSXSAVE % 32));
289 
290 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
291 	return (cx & xsave_mask) == xsave_mask;
292 }
293 
294 static void __init xen_init_capabilities(void)
295 {
296 	setup_force_cpu_cap(X86_FEATURE_XENPV);
297 	setup_clear_cpu_cap(X86_FEATURE_DCA);
298 	setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
299 	setup_clear_cpu_cap(X86_FEATURE_MTRR);
300 	setup_clear_cpu_cap(X86_FEATURE_ACC);
301 	setup_clear_cpu_cap(X86_FEATURE_X2APIC);
302 	setup_clear_cpu_cap(X86_FEATURE_SME);
303 
304 	/*
305 	 * Xen PV would need some work to support PCID: CR3 handling as well
306 	 * as xen_flush_tlb_others() would need updating.
307 	 */
308 	setup_clear_cpu_cap(X86_FEATURE_PCID);
309 
310 	if (!xen_initial_domain())
311 		setup_clear_cpu_cap(X86_FEATURE_ACPI);
312 
313 	if (xen_check_mwait())
314 		setup_force_cpu_cap(X86_FEATURE_MWAIT);
315 	else
316 		setup_clear_cpu_cap(X86_FEATURE_MWAIT);
317 
318 	if (!xen_check_xsave()) {
319 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
320 		setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
321 	}
322 }
323 
324 static void xen_set_debugreg(int reg, unsigned long val)
325 {
326 	HYPERVISOR_set_debugreg(reg, val);
327 }
328 
329 static unsigned long xen_get_debugreg(int reg)
330 {
331 	return HYPERVISOR_get_debugreg(reg);
332 }
333 
334 static void xen_end_context_switch(struct task_struct *next)
335 {
336 	xen_mc_flush();
337 	paravirt_end_context_switch(next);
338 }
339 
340 static unsigned long xen_store_tr(void)
341 {
342 	return 0;
343 }
344 
345 /*
346  * Set the page permissions for a particular virtual address.  If the
347  * address is a vmalloc mapping (or other non-linear mapping), then
348  * find the linear mapping of the page and also set its protections to
349  * match.
350  */
351 static void set_aliased_prot(void *v, pgprot_t prot)
352 {
353 	int level;
354 	pte_t *ptep;
355 	pte_t pte;
356 	unsigned long pfn;
357 	struct page *page;
358 	unsigned char dummy;
359 
360 	ptep = lookup_address((unsigned long)v, &level);
361 	BUG_ON(ptep == NULL);
362 
363 	pfn = pte_pfn(*ptep);
364 	page = pfn_to_page(pfn);
365 
366 	pte = pfn_pte(pfn, prot);
367 
368 	/*
369 	 * Careful: update_va_mapping() will fail if the virtual address
370 	 * we're poking isn't populated in the page tables.  We don't
371 	 * need to worry about the direct map (that's always in the page
372 	 * tables), but we need to be careful about vmap space.  In
373 	 * particular, the top level page table can lazily propagate
374 	 * entries between processes, so if we've switched mms since we
375 	 * vmapped the target in the first place, we might not have the
376 	 * top-level page table entry populated.
377 	 *
378 	 * We disable preemption because we want the same mm active when
379 	 * we probe the target and when we issue the hypercall.  We'll
380 	 * have the same nominal mm, but if we're a kernel thread, lazy
381 	 * mm dropping could change our pgd.
382 	 *
383 	 * Out of an abundance of caution, this uses __get_user() to fault
384 	 * in the target address just in case there's some obscure case
385 	 * in which the target address isn't readable.
386 	 */
387 
388 	preempt_disable();
389 
390 	probe_kernel_read(&dummy, v, 1);
391 
392 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
393 		BUG();
394 
395 	if (!PageHighMem(page)) {
396 		void *av = __va(PFN_PHYS(pfn));
397 
398 		if (av != v)
399 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
400 				BUG();
401 	} else
402 		kmap_flush_unused();
403 
404 	preempt_enable();
405 }
406 
407 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
408 {
409 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
410 	int i;
411 
412 	/*
413 	 * We need to mark the all aliases of the LDT pages RO.  We
414 	 * don't need to call vm_flush_aliases(), though, since that's
415 	 * only responsible for flushing aliases out the TLBs, not the
416 	 * page tables, and Xen will flush the TLB for us if needed.
417 	 *
418 	 * To avoid confusing future readers: none of this is necessary
419 	 * to load the LDT.  The hypervisor only checks this when the
420 	 * LDT is faulted in due to subsequent descriptor access.
421 	 */
422 
423 	for (i = 0; i < entries; i += entries_per_page)
424 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
425 }
426 
427 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
428 {
429 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
430 	int i;
431 
432 	for (i = 0; i < entries; i += entries_per_page)
433 		set_aliased_prot(ldt + i, PAGE_KERNEL);
434 }
435 
436 static void xen_set_ldt(const void *addr, unsigned entries)
437 {
438 	struct mmuext_op *op;
439 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
440 
441 	trace_xen_cpu_set_ldt(addr, entries);
442 
443 	op = mcs.args;
444 	op->cmd = MMUEXT_SET_LDT;
445 	op->arg1.linear_addr = (unsigned long)addr;
446 	op->arg2.nr_ents = entries;
447 
448 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
449 
450 	xen_mc_issue(PARAVIRT_LAZY_CPU);
451 }
452 
453 static void xen_load_gdt(const struct desc_ptr *dtr)
454 {
455 	unsigned long va = dtr->address;
456 	unsigned int size = dtr->size + 1;
457 	unsigned long pfn, mfn;
458 	int level;
459 	pte_t *ptep;
460 	void *virt;
461 
462 	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
463 	BUG_ON(size > PAGE_SIZE);
464 	BUG_ON(va & ~PAGE_MASK);
465 
466 	/*
467 	 * The GDT is per-cpu and is in the percpu data area.
468 	 * That can be virtually mapped, so we need to do a
469 	 * page-walk to get the underlying MFN for the
470 	 * hypercall.  The page can also be in the kernel's
471 	 * linear range, so we need to RO that mapping too.
472 	 */
473 	ptep = lookup_address(va, &level);
474 	BUG_ON(ptep == NULL);
475 
476 	pfn = pte_pfn(*ptep);
477 	mfn = pfn_to_mfn(pfn);
478 	virt = __va(PFN_PHYS(pfn));
479 
480 	make_lowmem_page_readonly((void *)va);
481 	make_lowmem_page_readonly(virt);
482 
483 	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
484 		BUG();
485 }
486 
487 /*
488  * load_gdt for early boot, when the gdt is only mapped once
489  */
490 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
491 {
492 	unsigned long va = dtr->address;
493 	unsigned int size = dtr->size + 1;
494 	unsigned long pfn, mfn;
495 	pte_t pte;
496 
497 	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
498 	BUG_ON(size > PAGE_SIZE);
499 	BUG_ON(va & ~PAGE_MASK);
500 
501 	pfn = virt_to_pfn(va);
502 	mfn = pfn_to_mfn(pfn);
503 
504 	pte = pfn_pte(pfn, PAGE_KERNEL_RO);
505 
506 	if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
507 		BUG();
508 
509 	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
510 		BUG();
511 }
512 
513 static inline bool desc_equal(const struct desc_struct *d1,
514 			      const struct desc_struct *d2)
515 {
516 	return !memcmp(d1, d2, sizeof(*d1));
517 }
518 
519 static void load_TLS_descriptor(struct thread_struct *t,
520 				unsigned int cpu, unsigned int i)
521 {
522 	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
523 	struct desc_struct *gdt;
524 	xmaddr_t maddr;
525 	struct multicall_space mc;
526 
527 	if (desc_equal(shadow, &t->tls_array[i]))
528 		return;
529 
530 	*shadow = t->tls_array[i];
531 
532 	gdt = get_cpu_gdt_rw(cpu);
533 	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
534 	mc = __xen_mc_entry(0);
535 
536 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
537 }
538 
539 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
540 {
541 	/*
542 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
543 	 * and lazy gs handling is enabled, it means we're in a
544 	 * context switch, and %gs has just been saved.  This means we
545 	 * can zero it out to prevent faults on exit from the
546 	 * hypervisor if the next process has no %gs.  Either way, it
547 	 * has been saved, and the new value will get loaded properly.
548 	 * This will go away as soon as Xen has been modified to not
549 	 * save/restore %gs for normal hypercalls.
550 	 *
551 	 * On x86_64, this hack is not used for %gs, because gs points
552 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
553 	 * must not zero %gs on x86_64
554 	 *
555 	 * For x86_64, we need to zero %fs, otherwise we may get an
556 	 * exception between the new %fs descriptor being loaded and
557 	 * %fs being effectively cleared at __switch_to().
558 	 */
559 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
560 #ifdef CONFIG_X86_32
561 		lazy_load_gs(0);
562 #else
563 		loadsegment(fs, 0);
564 #endif
565 	}
566 
567 	xen_mc_batch();
568 
569 	load_TLS_descriptor(t, cpu, 0);
570 	load_TLS_descriptor(t, cpu, 1);
571 	load_TLS_descriptor(t, cpu, 2);
572 
573 	xen_mc_issue(PARAVIRT_LAZY_CPU);
574 }
575 
576 #ifdef CONFIG_X86_64
577 static void xen_load_gs_index(unsigned int idx)
578 {
579 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
580 		BUG();
581 }
582 #endif
583 
584 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
585 				const void *ptr)
586 {
587 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
588 	u64 entry = *(u64 *)ptr;
589 
590 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
591 
592 	preempt_disable();
593 
594 	xen_mc_flush();
595 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
596 		BUG();
597 
598 	preempt_enable();
599 }
600 
601 #ifdef CONFIG_X86_64
602 struct trap_array_entry {
603 	void (*orig)(void);
604 	void (*xen)(void);
605 	bool ist_okay;
606 };
607 
608 static struct trap_array_entry trap_array[] = {
609 	{ debug,                       xen_xendebug,                    true },
610 	{ double_fault,                xen_double_fault,                true },
611 #ifdef CONFIG_X86_MCE
612 	{ machine_check,               xen_machine_check,               true },
613 #endif
614 	{ nmi,                         xen_xennmi,                      true },
615 	{ int3,                        xen_int3,                        false },
616 	{ overflow,                    xen_overflow,                    false },
617 #ifdef CONFIG_IA32_EMULATION
618 	{ entry_INT80_compat,          xen_entry_INT80_compat,          false },
619 #endif
620 	{ page_fault,                  xen_page_fault,                  false },
621 	{ divide_error,                xen_divide_error,                false },
622 	{ bounds,                      xen_bounds,                      false },
623 	{ invalid_op,                  xen_invalid_op,                  false },
624 	{ device_not_available,        xen_device_not_available,        false },
625 	{ coprocessor_segment_overrun, xen_coprocessor_segment_overrun, false },
626 	{ invalid_TSS,                 xen_invalid_TSS,                 false },
627 	{ segment_not_present,         xen_segment_not_present,         false },
628 	{ stack_segment,               xen_stack_segment,               false },
629 	{ general_protection,          xen_general_protection,          false },
630 	{ spurious_interrupt_bug,      xen_spurious_interrupt_bug,      false },
631 	{ coprocessor_error,           xen_coprocessor_error,           false },
632 	{ alignment_check,             xen_alignment_check,             false },
633 	{ simd_coprocessor_error,      xen_simd_coprocessor_error,      false },
634 };
635 
636 static bool __ref get_trap_addr(void **addr, unsigned int ist)
637 {
638 	unsigned int nr;
639 	bool ist_okay = false;
640 
641 	/*
642 	 * Replace trap handler addresses by Xen specific ones.
643 	 * Check for known traps using IST and whitelist them.
644 	 * The debugger ones are the only ones we care about.
645 	 * Xen will handle faults like double_fault, * so we should never see
646 	 * them.  Warn if there's an unexpected IST-using fault handler.
647 	 */
648 	for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
649 		struct trap_array_entry *entry = trap_array + nr;
650 
651 		if (*addr == entry->orig) {
652 			*addr = entry->xen;
653 			ist_okay = entry->ist_okay;
654 			break;
655 		}
656 	}
657 
658 	if (nr == ARRAY_SIZE(trap_array) &&
659 	    *addr >= (void *)early_idt_handler_array[0] &&
660 	    *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
661 		nr = (*addr - (void *)early_idt_handler_array[0]) /
662 		     EARLY_IDT_HANDLER_SIZE;
663 		*addr = (void *)xen_early_idt_handler_array[nr];
664 	}
665 
666 	if (WARN_ON(ist != 0 && !ist_okay))
667 		return false;
668 
669 	return true;
670 }
671 #endif
672 
673 static int cvt_gate_to_trap(int vector, const gate_desc *val,
674 			    struct trap_info *info)
675 {
676 	unsigned long addr;
677 
678 	if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
679 		return 0;
680 
681 	info->vector = vector;
682 
683 	addr = gate_offset(val);
684 #ifdef CONFIG_X86_64
685 	if (!get_trap_addr((void **)&addr, val->bits.ist))
686 		return 0;
687 #endif	/* CONFIG_X86_64 */
688 	info->address = addr;
689 
690 	info->cs = gate_segment(val);
691 	info->flags = val->bits.dpl;
692 	/* interrupt gates clear IF */
693 	if (val->bits.type == GATE_INTERRUPT)
694 		info->flags |= 1 << 2;
695 
696 	return 1;
697 }
698 
699 /* Locations of each CPU's IDT */
700 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
701 
702 /* Set an IDT entry.  If the entry is part of the current IDT, then
703    also update Xen. */
704 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
705 {
706 	unsigned long p = (unsigned long)&dt[entrynum];
707 	unsigned long start, end;
708 
709 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
710 
711 	preempt_disable();
712 
713 	start = __this_cpu_read(idt_desc.address);
714 	end = start + __this_cpu_read(idt_desc.size) + 1;
715 
716 	xen_mc_flush();
717 
718 	native_write_idt_entry(dt, entrynum, g);
719 
720 	if (p >= start && (p + 8) <= end) {
721 		struct trap_info info[2];
722 
723 		info[1].address = 0;
724 
725 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
726 			if (HYPERVISOR_set_trap_table(info))
727 				BUG();
728 	}
729 
730 	preempt_enable();
731 }
732 
733 static void xen_convert_trap_info(const struct desc_ptr *desc,
734 				  struct trap_info *traps)
735 {
736 	unsigned in, out, count;
737 
738 	count = (desc->size+1) / sizeof(gate_desc);
739 	BUG_ON(count > 256);
740 
741 	for (in = out = 0; in < count; in++) {
742 		gate_desc *entry = (gate_desc *)(desc->address) + in;
743 
744 		if (cvt_gate_to_trap(in, entry, &traps[out]))
745 			out++;
746 	}
747 	traps[out].address = 0;
748 }
749 
750 void xen_copy_trap_info(struct trap_info *traps)
751 {
752 	const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
753 
754 	xen_convert_trap_info(desc, traps);
755 }
756 
757 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
758    hold a spinlock to protect the static traps[] array (static because
759    it avoids allocation, and saves stack space). */
760 static void xen_load_idt(const struct desc_ptr *desc)
761 {
762 	static DEFINE_SPINLOCK(lock);
763 	static struct trap_info traps[257];
764 
765 	trace_xen_cpu_load_idt(desc);
766 
767 	spin_lock(&lock);
768 
769 	memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
770 
771 	xen_convert_trap_info(desc, traps);
772 
773 	xen_mc_flush();
774 	if (HYPERVISOR_set_trap_table(traps))
775 		BUG();
776 
777 	spin_unlock(&lock);
778 }
779 
780 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
781    they're handled differently. */
782 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
783 				const void *desc, int type)
784 {
785 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
786 
787 	preempt_disable();
788 
789 	switch (type) {
790 	case DESC_LDT:
791 	case DESC_TSS:
792 		/* ignore */
793 		break;
794 
795 	default: {
796 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
797 
798 		xen_mc_flush();
799 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
800 			BUG();
801 	}
802 
803 	}
804 
805 	preempt_enable();
806 }
807 
808 /*
809  * Version of write_gdt_entry for use at early boot-time needed to
810  * update an entry as simply as possible.
811  */
812 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
813 					    const void *desc, int type)
814 {
815 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
816 
817 	switch (type) {
818 	case DESC_LDT:
819 	case DESC_TSS:
820 		/* ignore */
821 		break;
822 
823 	default: {
824 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
825 
826 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
827 			dt[entry] = *(struct desc_struct *)desc;
828 	}
829 
830 	}
831 }
832 
833 static void xen_load_sp0(unsigned long sp0)
834 {
835 	struct multicall_space mcs;
836 
837 	mcs = xen_mc_entry(0);
838 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
839 	xen_mc_issue(PARAVIRT_LAZY_CPU);
840 	this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
841 }
842 
843 #ifdef CONFIG_X86_IOPL_IOPERM
844 static void xen_update_io_bitmap(void)
845 {
846 	struct physdev_set_iobitmap iobitmap;
847 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
848 
849 	native_tss_update_io_bitmap();
850 
851 	iobitmap.bitmap = (uint8_t *)(&tss->x86_tss) +
852 			  tss->x86_tss.io_bitmap_base;
853 	if (tss->x86_tss.io_bitmap_base == IO_BITMAP_OFFSET_INVALID)
854 		iobitmap.nr_ports = 0;
855 	else
856 		iobitmap.nr_ports = IO_BITMAP_BITS;
857 
858 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
859 }
860 #endif
861 
862 static void xen_io_delay(void)
863 {
864 }
865 
866 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
867 
868 static unsigned long xen_read_cr0(void)
869 {
870 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
871 
872 	if (unlikely(cr0 == 0)) {
873 		cr0 = native_read_cr0();
874 		this_cpu_write(xen_cr0_value, cr0);
875 	}
876 
877 	return cr0;
878 }
879 
880 static void xen_write_cr0(unsigned long cr0)
881 {
882 	struct multicall_space mcs;
883 
884 	this_cpu_write(xen_cr0_value, cr0);
885 
886 	/* Only pay attention to cr0.TS; everything else is
887 	   ignored. */
888 	mcs = xen_mc_entry(0);
889 
890 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
891 
892 	xen_mc_issue(PARAVIRT_LAZY_CPU);
893 }
894 
895 static void xen_write_cr4(unsigned long cr4)
896 {
897 	cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
898 
899 	native_write_cr4(cr4);
900 }
901 
902 static u64 xen_read_msr_safe(unsigned int msr, int *err)
903 {
904 	u64 val;
905 
906 	if (pmu_msr_read(msr, &val, err))
907 		return val;
908 
909 	val = native_read_msr_safe(msr, err);
910 	switch (msr) {
911 	case MSR_IA32_APICBASE:
912 		val &= ~X2APIC_ENABLE;
913 		break;
914 	}
915 	return val;
916 }
917 
918 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
919 {
920 	int ret;
921 #ifdef CONFIG_X86_64
922 	unsigned int which;
923 	u64 base;
924 #endif
925 
926 	ret = 0;
927 
928 	switch (msr) {
929 #ifdef CONFIG_X86_64
930 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
931 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
932 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
933 
934 	set:
935 		base = ((u64)high << 32) | low;
936 		if (HYPERVISOR_set_segment_base(which, base) != 0)
937 			ret = -EIO;
938 		break;
939 #endif
940 
941 	case MSR_STAR:
942 	case MSR_CSTAR:
943 	case MSR_LSTAR:
944 	case MSR_SYSCALL_MASK:
945 	case MSR_IA32_SYSENTER_CS:
946 	case MSR_IA32_SYSENTER_ESP:
947 	case MSR_IA32_SYSENTER_EIP:
948 		/* Fast syscall setup is all done in hypercalls, so
949 		   these are all ignored.  Stub them out here to stop
950 		   Xen console noise. */
951 		break;
952 
953 	default:
954 		if (!pmu_msr_write(msr, low, high, &ret))
955 			ret = native_write_msr_safe(msr, low, high);
956 	}
957 
958 	return ret;
959 }
960 
961 static u64 xen_read_msr(unsigned int msr)
962 {
963 	/*
964 	 * This will silently swallow a #GP from RDMSR.  It may be worth
965 	 * changing that.
966 	 */
967 	int err;
968 
969 	return xen_read_msr_safe(msr, &err);
970 }
971 
972 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
973 {
974 	/*
975 	 * This will silently swallow a #GP from WRMSR.  It may be worth
976 	 * changing that.
977 	 */
978 	xen_write_msr_safe(msr, low, high);
979 }
980 
981 /* This is called once we have the cpu_possible_mask */
982 void __init xen_setup_vcpu_info_placement(void)
983 {
984 	int cpu;
985 
986 	for_each_possible_cpu(cpu) {
987 		/* Set up direct vCPU id mapping for PV guests. */
988 		per_cpu(xen_vcpu_id, cpu) = cpu;
989 
990 		/*
991 		 * xen_vcpu_setup(cpu) can fail  -- in which case it
992 		 * falls back to the shared_info version for cpus
993 		 * where xen_vcpu_nr(cpu) < MAX_VIRT_CPUS.
994 		 *
995 		 * xen_cpu_up_prepare_pv() handles the rest by failing
996 		 * them in hotplug.
997 		 */
998 		(void) xen_vcpu_setup(cpu);
999 	}
1000 
1001 	/*
1002 	 * xen_vcpu_setup managed to place the vcpu_info within the
1003 	 * percpu area for all cpus, so make use of it.
1004 	 */
1005 	if (xen_have_vcpu_info_placement) {
1006 		pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1007 		pv_ops.irq.restore_fl =
1008 			__PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1009 		pv_ops.irq.irq_disable =
1010 			__PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1011 		pv_ops.irq.irq_enable =
1012 			__PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1013 		pv_ops.mmu.read_cr2 =
1014 			__PV_IS_CALLEE_SAVE(xen_read_cr2_direct);
1015 	}
1016 }
1017 
1018 static const struct pv_info xen_info __initconst = {
1019 	.shared_kernel_pmd = 0,
1020 
1021 #ifdef CONFIG_X86_64
1022 	.extra_user_64bit_cs = FLAT_USER_CS64,
1023 #endif
1024 	.name = "Xen",
1025 };
1026 
1027 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1028 	.cpuid = xen_cpuid,
1029 
1030 	.set_debugreg = xen_set_debugreg,
1031 	.get_debugreg = xen_get_debugreg,
1032 
1033 	.read_cr0 = xen_read_cr0,
1034 	.write_cr0 = xen_write_cr0,
1035 
1036 	.write_cr4 = xen_write_cr4,
1037 
1038 	.wbinvd = native_wbinvd,
1039 
1040 	.read_msr = xen_read_msr,
1041 	.write_msr = xen_write_msr,
1042 
1043 	.read_msr_safe = xen_read_msr_safe,
1044 	.write_msr_safe = xen_write_msr_safe,
1045 
1046 	.read_pmc = xen_read_pmc,
1047 
1048 	.iret = xen_iret,
1049 #ifdef CONFIG_X86_64
1050 	.usergs_sysret64 = xen_sysret64,
1051 #endif
1052 
1053 	.load_tr_desc = paravirt_nop,
1054 	.set_ldt = xen_set_ldt,
1055 	.load_gdt = xen_load_gdt,
1056 	.load_idt = xen_load_idt,
1057 	.load_tls = xen_load_tls,
1058 #ifdef CONFIG_X86_64
1059 	.load_gs_index = xen_load_gs_index,
1060 #endif
1061 
1062 	.alloc_ldt = xen_alloc_ldt,
1063 	.free_ldt = xen_free_ldt,
1064 
1065 	.store_tr = xen_store_tr,
1066 
1067 	.write_ldt_entry = xen_write_ldt_entry,
1068 	.write_gdt_entry = xen_write_gdt_entry,
1069 	.write_idt_entry = xen_write_idt_entry,
1070 	.load_sp0 = xen_load_sp0,
1071 
1072 #ifdef CONFIG_X86_IOPL_IOPERM
1073 	.update_io_bitmap = xen_update_io_bitmap,
1074 #endif
1075 	.io_delay = xen_io_delay,
1076 
1077 	/* Xen takes care of %gs when switching to usermode for us */
1078 	.swapgs = paravirt_nop,
1079 
1080 	.start_context_switch = paravirt_start_context_switch,
1081 	.end_context_switch = xen_end_context_switch,
1082 };
1083 
1084 static void xen_restart(char *msg)
1085 {
1086 	xen_reboot(SHUTDOWN_reboot);
1087 }
1088 
1089 static void xen_machine_halt(void)
1090 {
1091 	xen_reboot(SHUTDOWN_poweroff);
1092 }
1093 
1094 static void xen_machine_power_off(void)
1095 {
1096 	if (pm_power_off)
1097 		pm_power_off();
1098 	xen_reboot(SHUTDOWN_poweroff);
1099 }
1100 
1101 static void xen_crash_shutdown(struct pt_regs *regs)
1102 {
1103 	xen_reboot(SHUTDOWN_crash);
1104 }
1105 
1106 static const struct machine_ops xen_machine_ops __initconst = {
1107 	.restart = xen_restart,
1108 	.halt = xen_machine_halt,
1109 	.power_off = xen_machine_power_off,
1110 	.shutdown = xen_machine_halt,
1111 	.crash_shutdown = xen_crash_shutdown,
1112 	.emergency_restart = xen_emergency_restart,
1113 };
1114 
1115 static unsigned char xen_get_nmi_reason(void)
1116 {
1117 	unsigned char reason = 0;
1118 
1119 	/* Construct a value which looks like it came from port 0x61. */
1120 	if (test_bit(_XEN_NMIREASON_io_error,
1121 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1122 		reason |= NMI_REASON_IOCHK;
1123 	if (test_bit(_XEN_NMIREASON_pci_serr,
1124 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1125 		reason |= NMI_REASON_SERR;
1126 
1127 	return reason;
1128 }
1129 
1130 static void __init xen_boot_params_init_edd(void)
1131 {
1132 #if IS_ENABLED(CONFIG_EDD)
1133 	struct xen_platform_op op;
1134 	struct edd_info *edd_info;
1135 	u32 *mbr_signature;
1136 	unsigned nr;
1137 	int ret;
1138 
1139 	edd_info = boot_params.eddbuf;
1140 	mbr_signature = boot_params.edd_mbr_sig_buffer;
1141 
1142 	op.cmd = XENPF_firmware_info;
1143 
1144 	op.u.firmware_info.type = XEN_FW_DISK_INFO;
1145 	for (nr = 0; nr < EDDMAXNR; nr++) {
1146 		struct edd_info *info = edd_info + nr;
1147 
1148 		op.u.firmware_info.index = nr;
1149 		info->params.length = sizeof(info->params);
1150 		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1151 				     &info->params);
1152 		ret = HYPERVISOR_platform_op(&op);
1153 		if (ret)
1154 			break;
1155 
1156 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1157 		C(device);
1158 		C(version);
1159 		C(interface_support);
1160 		C(legacy_max_cylinder);
1161 		C(legacy_max_head);
1162 		C(legacy_sectors_per_track);
1163 #undef C
1164 	}
1165 	boot_params.eddbuf_entries = nr;
1166 
1167 	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1168 	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1169 		op.u.firmware_info.index = nr;
1170 		ret = HYPERVISOR_platform_op(&op);
1171 		if (ret)
1172 			break;
1173 		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1174 	}
1175 	boot_params.edd_mbr_sig_buf_entries = nr;
1176 #endif
1177 }
1178 
1179 /*
1180  * Set up the GDT and segment registers for -fstack-protector.  Until
1181  * we do this, we have to be careful not to call any stack-protected
1182  * function, which is most of the kernel.
1183  */
1184 static void __init xen_setup_gdt(int cpu)
1185 {
1186 	pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot;
1187 	pv_ops.cpu.load_gdt = xen_load_gdt_boot;
1188 
1189 	setup_stack_canary_segment(cpu);
1190 	switch_to_new_gdt(cpu);
1191 
1192 	pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry;
1193 	pv_ops.cpu.load_gdt = xen_load_gdt;
1194 }
1195 
1196 static void __init xen_dom0_set_legacy_features(void)
1197 {
1198 	x86_platform.legacy.rtc = 1;
1199 }
1200 
1201 /* First C function to be called on Xen boot */
1202 asmlinkage __visible void __init xen_start_kernel(void)
1203 {
1204 	struct physdev_set_iopl set_iopl;
1205 	unsigned long initrd_start = 0;
1206 	int rc;
1207 
1208 	if (!xen_start_info)
1209 		return;
1210 
1211 	xen_domain_type = XEN_PV_DOMAIN;
1212 	xen_start_flags = xen_start_info->flags;
1213 
1214 	xen_setup_features();
1215 
1216 	/* Install Xen paravirt ops */
1217 	pv_info = xen_info;
1218 	pv_ops.init.patch = paravirt_patch_default;
1219 	pv_ops.cpu = xen_cpu_ops;
1220 	xen_init_irq_ops();
1221 
1222 	/*
1223 	 * Setup xen_vcpu early because it is needed for
1224 	 * local_irq_disable(), irqs_disabled(), e.g. in printk().
1225 	 *
1226 	 * Don't do the full vcpu_info placement stuff until we have
1227 	 * the cpu_possible_mask and a non-dummy shared_info.
1228 	 */
1229 	xen_vcpu_info_reset(0);
1230 
1231 	x86_platform.get_nmi_reason = xen_get_nmi_reason;
1232 
1233 	x86_init.resources.memory_setup = xen_memory_setup;
1234 	x86_init.irqs.intr_mode_select	= x86_init_noop;
1235 	x86_init.irqs.intr_mode_init	= x86_init_noop;
1236 	x86_init.oem.arch_setup = xen_arch_setup;
1237 	x86_init.oem.banner = xen_banner;
1238 	x86_init.hyper.init_platform = xen_pv_init_platform;
1239 	x86_init.hyper.guest_late_init = xen_pv_guest_late_init;
1240 
1241 	/*
1242 	 * Set up some pagetable state before starting to set any ptes.
1243 	 */
1244 
1245 	xen_setup_machphys_mapping();
1246 	xen_init_mmu_ops();
1247 
1248 	/* Prevent unwanted bits from being set in PTEs. */
1249 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1250 	__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
1251 
1252 	/*
1253 	 * Prevent page tables from being allocated in highmem, even
1254 	 * if CONFIG_HIGHPTE is enabled.
1255 	 */
1256 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1257 
1258 	/* Get mfn list */
1259 	xen_build_dynamic_phys_to_machine();
1260 
1261 	/*
1262 	 * Set up kernel GDT and segment registers, mainly so that
1263 	 * -fstack-protector code can be executed.
1264 	 */
1265 	xen_setup_gdt(0);
1266 
1267 	/* Work out if we support NX */
1268 	get_cpu_cap(&boot_cpu_data);
1269 	x86_configure_nx();
1270 
1271 	/* Determine virtual and physical address sizes */
1272 	get_cpu_address_sizes(&boot_cpu_data);
1273 
1274 	/* Let's presume PV guests always boot on vCPU with id 0. */
1275 	per_cpu(xen_vcpu_id, 0) = 0;
1276 
1277 	idt_setup_early_handler();
1278 
1279 	xen_init_capabilities();
1280 
1281 #ifdef CONFIG_X86_LOCAL_APIC
1282 	/*
1283 	 * set up the basic apic ops.
1284 	 */
1285 	xen_init_apic();
1286 #endif
1287 
1288 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1289 		pv_ops.mmu.ptep_modify_prot_start =
1290 			xen_ptep_modify_prot_start;
1291 		pv_ops.mmu.ptep_modify_prot_commit =
1292 			xen_ptep_modify_prot_commit;
1293 	}
1294 
1295 	machine_ops = xen_machine_ops;
1296 
1297 	/*
1298 	 * The only reliable way to retain the initial address of the
1299 	 * percpu gdt_page is to remember it here, so we can go and
1300 	 * mark it RW later, when the initial percpu area is freed.
1301 	 */
1302 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1303 
1304 	xen_smp_init();
1305 
1306 #ifdef CONFIG_ACPI_NUMA
1307 	/*
1308 	 * The pages we from Xen are not related to machine pages, so
1309 	 * any NUMA information the kernel tries to get from ACPI will
1310 	 * be meaningless.  Prevent it from trying.
1311 	 */
1312 	acpi_numa = -1;
1313 #endif
1314 	WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1315 
1316 	local_irq_disable();
1317 	early_boot_irqs_disabled = true;
1318 
1319 	xen_raw_console_write("mapping kernel into physical memory\n");
1320 	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1321 				   xen_start_info->nr_pages);
1322 	xen_reserve_special_pages();
1323 
1324 	/* keep using Xen gdt for now; no urgent need to change it */
1325 
1326 #ifdef CONFIG_X86_32
1327 	pv_info.kernel_rpl = 1;
1328 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1329 		pv_info.kernel_rpl = 0;
1330 #else
1331 	pv_info.kernel_rpl = 0;
1332 #endif
1333 	/* set the limit of our address space */
1334 	xen_reserve_top();
1335 
1336 	/*
1337 	 * We used to do this in xen_arch_setup, but that is too late
1338 	 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1339 	 * early_amd_init which pokes 0xcf8 port.
1340 	 */
1341 	set_iopl.iopl = 1;
1342 	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1343 	if (rc != 0)
1344 		xen_raw_printk("physdev_op failed %d\n", rc);
1345 
1346 #ifdef CONFIG_X86_32
1347 	/* set up basic CPUID stuff */
1348 	cpu_detect(&new_cpu_data);
1349 	set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1350 	new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1351 #endif
1352 
1353 	if (xen_start_info->mod_start) {
1354 	    if (xen_start_info->flags & SIF_MOD_START_PFN)
1355 		initrd_start = PFN_PHYS(xen_start_info->mod_start);
1356 	    else
1357 		initrd_start = __pa(xen_start_info->mod_start);
1358 	}
1359 
1360 	/* Poke various useful things into boot_params */
1361 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1362 	boot_params.hdr.ramdisk_image = initrd_start;
1363 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1364 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1365 	boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1366 
1367 	if (!xen_initial_domain()) {
1368 		add_preferred_console("xenboot", 0, NULL);
1369 		if (pci_xen)
1370 			x86_init.pci.arch_init = pci_xen_init;
1371 	} else {
1372 		const struct dom0_vga_console_info *info =
1373 			(void *)((char *)xen_start_info +
1374 				 xen_start_info->console.dom0.info_off);
1375 		struct xen_platform_op op = {
1376 			.cmd = XENPF_firmware_info,
1377 			.interface_version = XENPF_INTERFACE_VERSION,
1378 			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1379 		};
1380 
1381 		x86_platform.set_legacy_features =
1382 				xen_dom0_set_legacy_features;
1383 		xen_init_vga(info, xen_start_info->console.dom0.info_size);
1384 		xen_start_info->console.domU.mfn = 0;
1385 		xen_start_info->console.domU.evtchn = 0;
1386 
1387 		if (HYPERVISOR_platform_op(&op) == 0)
1388 			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1389 
1390 		/* Make sure ACS will be enabled */
1391 		pci_request_acs();
1392 
1393 		xen_acpi_sleep_register();
1394 
1395 		/* Avoid searching for BIOS MP tables */
1396 		x86_init.mpparse.find_smp_config = x86_init_noop;
1397 		x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1398 
1399 		xen_boot_params_init_edd();
1400 	}
1401 
1402 	if (!boot_params.screen_info.orig_video_isVGA)
1403 		add_preferred_console("tty", 0, NULL);
1404 	add_preferred_console("hvc", 0, NULL);
1405 	if (boot_params.screen_info.orig_video_isVGA)
1406 		add_preferred_console("tty", 0, NULL);
1407 
1408 #ifdef CONFIG_PCI
1409 	/* PCI BIOS service won't work from a PV guest. */
1410 	pci_probe &= ~PCI_PROBE_BIOS;
1411 #endif
1412 	xen_raw_console_write("about to get started...\n");
1413 
1414 	/* We need this for printk timestamps */
1415 	xen_setup_runstate_info(0);
1416 
1417 	xen_efi_init(&boot_params);
1418 
1419 	/* Start the world */
1420 #ifdef CONFIG_X86_32
1421 	i386_start_kernel();
1422 #else
1423 	cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1424 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1425 #endif
1426 }
1427 
1428 static int xen_cpu_up_prepare_pv(unsigned int cpu)
1429 {
1430 	int rc;
1431 
1432 	if (per_cpu(xen_vcpu, cpu) == NULL)
1433 		return -ENODEV;
1434 
1435 	xen_setup_timer(cpu);
1436 
1437 	rc = xen_smp_intr_init(cpu);
1438 	if (rc) {
1439 		WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1440 		     cpu, rc);
1441 		return rc;
1442 	}
1443 
1444 	rc = xen_smp_intr_init_pv(cpu);
1445 	if (rc) {
1446 		WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1447 		     cpu, rc);
1448 		return rc;
1449 	}
1450 
1451 	return 0;
1452 }
1453 
1454 static int xen_cpu_dead_pv(unsigned int cpu)
1455 {
1456 	xen_smp_intr_free(cpu);
1457 	xen_smp_intr_free_pv(cpu);
1458 
1459 	xen_teardown_timer(cpu);
1460 
1461 	return 0;
1462 }
1463 
1464 static uint32_t __init xen_platform_pv(void)
1465 {
1466 	if (xen_pv_domain())
1467 		return xen_cpuid_base();
1468 
1469 	return 0;
1470 }
1471 
1472 const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1473 	.name                   = "Xen PV",
1474 	.detect                 = xen_platform_pv,
1475 	.type			= X86_HYPER_XEN_PV,
1476 	.runtime.pin_vcpu       = xen_pin_vcpu,
1477 	.ignore_nopv		= true,
1478 };
1479