xref: /openbmc/linux/arch/x86/xen/enlighten_pv.c (revision 6aeadf78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Core of Xen paravirt_ops implementation.
4  *
5  * This file contains the xen_paravirt_ops structure itself, and the
6  * implementations for:
7  * - privileged instructions
8  * - interrupt flags
9  * - segment operations
10  * - booting and setup
11  *
12  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
13  */
14 
15 #include <linux/cpu.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/smp.h>
19 #include <linux/preempt.h>
20 #include <linux/hardirq.h>
21 #include <linux/percpu.h>
22 #include <linux/delay.h>
23 #include <linux/start_kernel.h>
24 #include <linux/sched.h>
25 #include <linux/kprobes.h>
26 #include <linux/kstrtox.h>
27 #include <linux/memblock.h>
28 #include <linux/export.h>
29 #include <linux/mm.h>
30 #include <linux/page-flags.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/edd.h>
34 #include <linux/reboot.h>
35 #include <linux/virtio_anchor.h>
36 #include <linux/stackprotector.h>
37 
38 #include <xen/xen.h>
39 #include <xen/events.h>
40 #include <xen/interface/xen.h>
41 #include <xen/interface/version.h>
42 #include <xen/interface/physdev.h>
43 #include <xen/interface/vcpu.h>
44 #include <xen/interface/memory.h>
45 #include <xen/interface/nmi.h>
46 #include <xen/interface/xen-mca.h>
47 #include <xen/features.h>
48 #include <xen/page.h>
49 #include <xen/hvc-console.h>
50 #include <xen/acpi.h>
51 
52 #include <asm/paravirt.h>
53 #include <asm/apic.h>
54 #include <asm/page.h>
55 #include <asm/xen/pci.h>
56 #include <asm/xen/hypercall.h>
57 #include <asm/xen/hypervisor.h>
58 #include <asm/xen/cpuid.h>
59 #include <asm/fixmap.h>
60 #include <asm/processor.h>
61 #include <asm/proto.h>
62 #include <asm/msr-index.h>
63 #include <asm/traps.h>
64 #include <asm/setup.h>
65 #include <asm/desc.h>
66 #include <asm/pgalloc.h>
67 #include <asm/tlbflush.h>
68 #include <asm/reboot.h>
69 #include <asm/hypervisor.h>
70 #include <asm/mach_traps.h>
71 #include <asm/mtrr.h>
72 #include <asm/mwait.h>
73 #include <asm/pci_x86.h>
74 #include <asm/cpu.h>
75 #ifdef CONFIG_X86_IOPL_IOPERM
76 #include <asm/io_bitmap.h>
77 #endif
78 
79 #ifdef CONFIG_ACPI
80 #include <linux/acpi.h>
81 #include <asm/acpi.h>
82 #include <acpi/pdc_intel.h>
83 #include <acpi/processor.h>
84 #include <xen/interface/platform.h>
85 #endif
86 
87 #include "xen-ops.h"
88 #include "mmu.h"
89 #include "smp.h"
90 #include "multicalls.h"
91 #include "pmu.h"
92 
93 #include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
94 
95 void *xen_initial_gdt;
96 
97 static int xen_cpu_up_prepare_pv(unsigned int cpu);
98 static int xen_cpu_dead_pv(unsigned int cpu);
99 
100 struct tls_descs {
101 	struct desc_struct desc[3];
102 };
103 
104 /*
105  * Updating the 3 TLS descriptors in the GDT on every task switch is
106  * surprisingly expensive so we avoid updating them if they haven't
107  * changed.  Since Xen writes different descriptors than the one
108  * passed in the update_descriptor hypercall we keep shadow copies to
109  * compare against.
110  */
111 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
112 
113 static __read_mostly bool xen_msr_safe = IS_ENABLED(CONFIG_XEN_PV_MSR_SAFE);
114 
115 static int __init parse_xen_msr_safe(char *str)
116 {
117 	if (str)
118 		return kstrtobool(str, &xen_msr_safe);
119 	return -EINVAL;
120 }
121 early_param("xen_msr_safe", parse_xen_msr_safe);
122 
123 /* Get MTRR settings from Xen and put them into mtrr_state. */
124 static void __init xen_set_mtrr_data(void)
125 {
126 #ifdef CONFIG_MTRR
127 	struct xen_platform_op op = {
128 		.cmd = XENPF_read_memtype,
129 		.interface_version = XENPF_INTERFACE_VERSION,
130 	};
131 	unsigned int reg;
132 	unsigned long mask;
133 	uint32_t eax, width;
134 	static struct mtrr_var_range var[MTRR_MAX_VAR_RANGES] __initdata;
135 
136 	/* Get physical address width (only 64-bit cpus supported). */
137 	width = 36;
138 	eax = cpuid_eax(0x80000000);
139 	if ((eax >> 16) == 0x8000 && eax >= 0x80000008) {
140 		eax = cpuid_eax(0x80000008);
141 		width = eax & 0xff;
142 	}
143 
144 	for (reg = 0; reg < MTRR_MAX_VAR_RANGES; reg++) {
145 		op.u.read_memtype.reg = reg;
146 		if (HYPERVISOR_platform_op(&op))
147 			break;
148 
149 		/*
150 		 * Only called in dom0, which has all RAM PFNs mapped at
151 		 * RAM MFNs, and all PCI space etc. is identity mapped.
152 		 * This means we can treat MFN == PFN regarding MTRR settings.
153 		 */
154 		var[reg].base_lo = op.u.read_memtype.type;
155 		var[reg].base_lo |= op.u.read_memtype.mfn << PAGE_SHIFT;
156 		var[reg].base_hi = op.u.read_memtype.mfn >> (32 - PAGE_SHIFT);
157 		mask = ~((op.u.read_memtype.nr_mfns << PAGE_SHIFT) - 1);
158 		mask &= (1UL << width) - 1;
159 		if (mask)
160 			mask |= MTRR_PHYSMASK_V;
161 		var[reg].mask_lo = mask;
162 		var[reg].mask_hi = mask >> 32;
163 	}
164 
165 	/* Only overwrite MTRR state if any MTRR could be got from Xen. */
166 	if (reg)
167 		mtrr_overwrite_state(var, reg, MTRR_TYPE_UNCACHABLE);
168 #endif
169 }
170 
171 static void __init xen_pv_init_platform(void)
172 {
173 	/* PV guests can't operate virtio devices without grants. */
174 	if (IS_ENABLED(CONFIG_XEN_VIRTIO))
175 		virtio_set_mem_acc_cb(xen_virtio_restricted_mem_acc);
176 
177 	populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP));
178 
179 	set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
180 	HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
181 
182 	/* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */
183 	xen_vcpu_info_reset(0);
184 
185 	/* pvclock is in shared info area */
186 	xen_init_time_ops();
187 
188 	if (xen_initial_domain())
189 		xen_set_mtrr_data();
190 	else
191 		mtrr_overwrite_state(NULL, 0, MTRR_TYPE_WRBACK);
192 }
193 
194 static void __init xen_pv_guest_late_init(void)
195 {
196 #ifndef CONFIG_SMP
197 	/* Setup shared vcpu info for non-smp configurations */
198 	xen_setup_vcpu_info_placement();
199 #endif
200 }
201 
202 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
203 static __read_mostly unsigned int cpuid_leaf5_edx_val;
204 
205 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
206 		      unsigned int *cx, unsigned int *dx)
207 {
208 	unsigned maskebx = ~0;
209 
210 	/*
211 	 * Mask out inconvenient features, to try and disable as many
212 	 * unsupported kernel subsystems as possible.
213 	 */
214 	switch (*ax) {
215 	case CPUID_MWAIT_LEAF:
216 		/* Synthesize the values.. */
217 		*ax = 0;
218 		*bx = 0;
219 		*cx = cpuid_leaf5_ecx_val;
220 		*dx = cpuid_leaf5_edx_val;
221 		return;
222 
223 	case 0xb:
224 		/* Suppress extended topology stuff */
225 		maskebx = 0;
226 		break;
227 	}
228 
229 	asm(XEN_EMULATE_PREFIX "cpuid"
230 		: "=a" (*ax),
231 		  "=b" (*bx),
232 		  "=c" (*cx),
233 		  "=d" (*dx)
234 		: "0" (*ax), "2" (*cx));
235 
236 	*bx &= maskebx;
237 }
238 
239 static bool __init xen_check_mwait(void)
240 {
241 #ifdef CONFIG_ACPI
242 	struct xen_platform_op op = {
243 		.cmd			= XENPF_set_processor_pminfo,
244 		.u.set_pminfo.id	= -1,
245 		.u.set_pminfo.type	= XEN_PM_PDC,
246 	};
247 	uint32_t buf[3];
248 	unsigned int ax, bx, cx, dx;
249 	unsigned int mwait_mask;
250 
251 	/* We need to determine whether it is OK to expose the MWAIT
252 	 * capability to the kernel to harvest deeper than C3 states from ACPI
253 	 * _CST using the processor_harvest_xen.c module. For this to work, we
254 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
255 	 * checks against). The hypervisor won't expose the MWAIT flag because
256 	 * it would break backwards compatibility; so we will find out directly
257 	 * from the hardware and hypercall.
258 	 */
259 	if (!xen_initial_domain())
260 		return false;
261 
262 	/*
263 	 * When running under platform earlier than Xen4.2, do not expose
264 	 * mwait, to avoid the risk of loading native acpi pad driver
265 	 */
266 	if (!xen_running_on_version_or_later(4, 2))
267 		return false;
268 
269 	ax = 1;
270 	cx = 0;
271 
272 	native_cpuid(&ax, &bx, &cx, &dx);
273 
274 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
275 		     (1 << (X86_FEATURE_MWAIT % 32));
276 
277 	if ((cx & mwait_mask) != mwait_mask)
278 		return false;
279 
280 	/* We need to emulate the MWAIT_LEAF and for that we need both
281 	 * ecx and edx. The hypercall provides only partial information.
282 	 */
283 
284 	ax = CPUID_MWAIT_LEAF;
285 	bx = 0;
286 	cx = 0;
287 	dx = 0;
288 
289 	native_cpuid(&ax, &bx, &cx, &dx);
290 
291 	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
292 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
293 	 */
294 	buf[0] = ACPI_PDC_REVISION_ID;
295 	buf[1] = 1;
296 	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
297 
298 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
299 
300 	if ((HYPERVISOR_platform_op(&op) == 0) &&
301 	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
302 		cpuid_leaf5_ecx_val = cx;
303 		cpuid_leaf5_edx_val = dx;
304 	}
305 	return true;
306 #else
307 	return false;
308 #endif
309 }
310 
311 static bool __init xen_check_xsave(void)
312 {
313 	unsigned int cx, xsave_mask;
314 
315 	cx = cpuid_ecx(1);
316 
317 	xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
318 		     (1 << (X86_FEATURE_OSXSAVE % 32));
319 
320 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
321 	return (cx & xsave_mask) == xsave_mask;
322 }
323 
324 static void __init xen_init_capabilities(void)
325 {
326 	setup_force_cpu_cap(X86_FEATURE_XENPV);
327 	setup_clear_cpu_cap(X86_FEATURE_DCA);
328 	setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
329 	setup_clear_cpu_cap(X86_FEATURE_MTRR);
330 	setup_clear_cpu_cap(X86_FEATURE_ACC);
331 	setup_clear_cpu_cap(X86_FEATURE_X2APIC);
332 	setup_clear_cpu_cap(X86_FEATURE_SME);
333 	setup_clear_cpu_cap(X86_FEATURE_LKGS);
334 
335 	/*
336 	 * Xen PV would need some work to support PCID: CR3 handling as well
337 	 * as xen_flush_tlb_others() would need updating.
338 	 */
339 	setup_clear_cpu_cap(X86_FEATURE_PCID);
340 
341 	if (!xen_initial_domain())
342 		setup_clear_cpu_cap(X86_FEATURE_ACPI);
343 
344 	if (xen_check_mwait())
345 		setup_force_cpu_cap(X86_FEATURE_MWAIT);
346 	else
347 		setup_clear_cpu_cap(X86_FEATURE_MWAIT);
348 
349 	if (!xen_check_xsave()) {
350 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
351 		setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
352 	}
353 }
354 
355 static noinstr void xen_set_debugreg(int reg, unsigned long val)
356 {
357 	HYPERVISOR_set_debugreg(reg, val);
358 }
359 
360 static noinstr unsigned long xen_get_debugreg(int reg)
361 {
362 	return HYPERVISOR_get_debugreg(reg);
363 }
364 
365 static void xen_end_context_switch(struct task_struct *next)
366 {
367 	xen_mc_flush();
368 	paravirt_end_context_switch(next);
369 }
370 
371 static unsigned long xen_store_tr(void)
372 {
373 	return 0;
374 }
375 
376 /*
377  * Set the page permissions for a particular virtual address.  If the
378  * address is a vmalloc mapping (or other non-linear mapping), then
379  * find the linear mapping of the page and also set its protections to
380  * match.
381  */
382 static void set_aliased_prot(void *v, pgprot_t prot)
383 {
384 	int level;
385 	pte_t *ptep;
386 	pte_t pte;
387 	unsigned long pfn;
388 	unsigned char dummy;
389 	void *va;
390 
391 	ptep = lookup_address((unsigned long)v, &level);
392 	BUG_ON(ptep == NULL);
393 
394 	pfn = pte_pfn(*ptep);
395 	pte = pfn_pte(pfn, prot);
396 
397 	/*
398 	 * Careful: update_va_mapping() will fail if the virtual address
399 	 * we're poking isn't populated in the page tables.  We don't
400 	 * need to worry about the direct map (that's always in the page
401 	 * tables), but we need to be careful about vmap space.  In
402 	 * particular, the top level page table can lazily propagate
403 	 * entries between processes, so if we've switched mms since we
404 	 * vmapped the target in the first place, we might not have the
405 	 * top-level page table entry populated.
406 	 *
407 	 * We disable preemption because we want the same mm active when
408 	 * we probe the target and when we issue the hypercall.  We'll
409 	 * have the same nominal mm, but if we're a kernel thread, lazy
410 	 * mm dropping could change our pgd.
411 	 *
412 	 * Out of an abundance of caution, this uses __get_user() to fault
413 	 * in the target address just in case there's some obscure case
414 	 * in which the target address isn't readable.
415 	 */
416 
417 	preempt_disable();
418 
419 	copy_from_kernel_nofault(&dummy, v, 1);
420 
421 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
422 		BUG();
423 
424 	va = __va(PFN_PHYS(pfn));
425 
426 	if (va != v && HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
427 		BUG();
428 
429 	preempt_enable();
430 }
431 
432 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
433 {
434 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
435 	int i;
436 
437 	/*
438 	 * We need to mark the all aliases of the LDT pages RO.  We
439 	 * don't need to call vm_flush_aliases(), though, since that's
440 	 * only responsible for flushing aliases out the TLBs, not the
441 	 * page tables, and Xen will flush the TLB for us if needed.
442 	 *
443 	 * To avoid confusing future readers: none of this is necessary
444 	 * to load the LDT.  The hypervisor only checks this when the
445 	 * LDT is faulted in due to subsequent descriptor access.
446 	 */
447 
448 	for (i = 0; i < entries; i += entries_per_page)
449 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
450 }
451 
452 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
453 {
454 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
455 	int i;
456 
457 	for (i = 0; i < entries; i += entries_per_page)
458 		set_aliased_prot(ldt + i, PAGE_KERNEL);
459 }
460 
461 static void xen_set_ldt(const void *addr, unsigned entries)
462 {
463 	struct mmuext_op *op;
464 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
465 
466 	trace_xen_cpu_set_ldt(addr, entries);
467 
468 	op = mcs.args;
469 	op->cmd = MMUEXT_SET_LDT;
470 	op->arg1.linear_addr = (unsigned long)addr;
471 	op->arg2.nr_ents = entries;
472 
473 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
474 
475 	xen_mc_issue(PARAVIRT_LAZY_CPU);
476 }
477 
478 static void xen_load_gdt(const struct desc_ptr *dtr)
479 {
480 	unsigned long va = dtr->address;
481 	unsigned int size = dtr->size + 1;
482 	unsigned long pfn, mfn;
483 	int level;
484 	pte_t *ptep;
485 	void *virt;
486 
487 	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
488 	BUG_ON(size > PAGE_SIZE);
489 	BUG_ON(va & ~PAGE_MASK);
490 
491 	/*
492 	 * The GDT is per-cpu and is in the percpu data area.
493 	 * That can be virtually mapped, so we need to do a
494 	 * page-walk to get the underlying MFN for the
495 	 * hypercall.  The page can also be in the kernel's
496 	 * linear range, so we need to RO that mapping too.
497 	 */
498 	ptep = lookup_address(va, &level);
499 	BUG_ON(ptep == NULL);
500 
501 	pfn = pte_pfn(*ptep);
502 	mfn = pfn_to_mfn(pfn);
503 	virt = __va(PFN_PHYS(pfn));
504 
505 	make_lowmem_page_readonly((void *)va);
506 	make_lowmem_page_readonly(virt);
507 
508 	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
509 		BUG();
510 }
511 
512 /*
513  * load_gdt for early boot, when the gdt is only mapped once
514  */
515 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
516 {
517 	unsigned long va = dtr->address;
518 	unsigned int size = dtr->size + 1;
519 	unsigned long pfn, mfn;
520 	pte_t pte;
521 
522 	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
523 	BUG_ON(size > PAGE_SIZE);
524 	BUG_ON(va & ~PAGE_MASK);
525 
526 	pfn = virt_to_pfn(va);
527 	mfn = pfn_to_mfn(pfn);
528 
529 	pte = pfn_pte(pfn, PAGE_KERNEL_RO);
530 
531 	if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
532 		BUG();
533 
534 	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
535 		BUG();
536 }
537 
538 static inline bool desc_equal(const struct desc_struct *d1,
539 			      const struct desc_struct *d2)
540 {
541 	return !memcmp(d1, d2, sizeof(*d1));
542 }
543 
544 static void load_TLS_descriptor(struct thread_struct *t,
545 				unsigned int cpu, unsigned int i)
546 {
547 	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
548 	struct desc_struct *gdt;
549 	xmaddr_t maddr;
550 	struct multicall_space mc;
551 
552 	if (desc_equal(shadow, &t->tls_array[i]))
553 		return;
554 
555 	*shadow = t->tls_array[i];
556 
557 	gdt = get_cpu_gdt_rw(cpu);
558 	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
559 	mc = __xen_mc_entry(0);
560 
561 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
562 }
563 
564 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
565 {
566 	/*
567 	 * In lazy mode we need to zero %fs, otherwise we may get an
568 	 * exception between the new %fs descriptor being loaded and
569 	 * %fs being effectively cleared at __switch_to().
570 	 */
571 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
572 		loadsegment(fs, 0);
573 
574 	xen_mc_batch();
575 
576 	load_TLS_descriptor(t, cpu, 0);
577 	load_TLS_descriptor(t, cpu, 1);
578 	load_TLS_descriptor(t, cpu, 2);
579 
580 	xen_mc_issue(PARAVIRT_LAZY_CPU);
581 }
582 
583 static void xen_load_gs_index(unsigned int idx)
584 {
585 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
586 		BUG();
587 }
588 
589 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
590 				const void *ptr)
591 {
592 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
593 	u64 entry = *(u64 *)ptr;
594 
595 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
596 
597 	preempt_disable();
598 
599 	xen_mc_flush();
600 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
601 		BUG();
602 
603 	preempt_enable();
604 }
605 
606 void noist_exc_debug(struct pt_regs *regs);
607 
608 DEFINE_IDTENTRY_RAW(xenpv_exc_nmi)
609 {
610 	/* On Xen PV, NMI doesn't use IST.  The C part is the same as native. */
611 	exc_nmi(regs);
612 }
613 
614 DEFINE_IDTENTRY_RAW_ERRORCODE(xenpv_exc_double_fault)
615 {
616 	/* On Xen PV, DF doesn't use IST.  The C part is the same as native. */
617 	exc_double_fault(regs, error_code);
618 }
619 
620 DEFINE_IDTENTRY_RAW(xenpv_exc_debug)
621 {
622 	/*
623 	 * There's no IST on Xen PV, but we still need to dispatch
624 	 * to the correct handler.
625 	 */
626 	if (user_mode(regs))
627 		noist_exc_debug(regs);
628 	else
629 		exc_debug(regs);
630 }
631 
632 DEFINE_IDTENTRY_RAW(exc_xen_unknown_trap)
633 {
634 	/* This should never happen and there is no way to handle it. */
635 	instrumentation_begin();
636 	pr_err("Unknown trap in Xen PV mode.");
637 	BUG();
638 	instrumentation_end();
639 }
640 
641 #ifdef CONFIG_X86_MCE
642 DEFINE_IDTENTRY_RAW(xenpv_exc_machine_check)
643 {
644 	/*
645 	 * There's no IST on Xen PV, but we still need to dispatch
646 	 * to the correct handler.
647 	 */
648 	if (user_mode(regs))
649 		noist_exc_machine_check(regs);
650 	else
651 		exc_machine_check(regs);
652 }
653 #endif
654 
655 struct trap_array_entry {
656 	void (*orig)(void);
657 	void (*xen)(void);
658 	bool ist_okay;
659 };
660 
661 #define TRAP_ENTRY(func, ist_ok) {			\
662 	.orig		= asm_##func,			\
663 	.xen		= xen_asm_##func,		\
664 	.ist_okay	= ist_ok }
665 
666 #define TRAP_ENTRY_REDIR(func, ist_ok) {		\
667 	.orig		= asm_##func,			\
668 	.xen		= xen_asm_xenpv_##func,		\
669 	.ist_okay	= ist_ok }
670 
671 static struct trap_array_entry trap_array[] = {
672 	TRAP_ENTRY_REDIR(exc_debug,			true  ),
673 	TRAP_ENTRY_REDIR(exc_double_fault,		true  ),
674 #ifdef CONFIG_X86_MCE
675 	TRAP_ENTRY_REDIR(exc_machine_check,		true  ),
676 #endif
677 	TRAP_ENTRY_REDIR(exc_nmi,			true  ),
678 	TRAP_ENTRY(exc_int3,				false ),
679 	TRAP_ENTRY(exc_overflow,			false ),
680 #ifdef CONFIG_IA32_EMULATION
681 	{ entry_INT80_compat,          xen_entry_INT80_compat,          false },
682 #endif
683 	TRAP_ENTRY(exc_page_fault,			false ),
684 	TRAP_ENTRY(exc_divide_error,			false ),
685 	TRAP_ENTRY(exc_bounds,				false ),
686 	TRAP_ENTRY(exc_invalid_op,			false ),
687 	TRAP_ENTRY(exc_device_not_available,		false ),
688 	TRAP_ENTRY(exc_coproc_segment_overrun,		false ),
689 	TRAP_ENTRY(exc_invalid_tss,			false ),
690 	TRAP_ENTRY(exc_segment_not_present,		false ),
691 	TRAP_ENTRY(exc_stack_segment,			false ),
692 	TRAP_ENTRY(exc_general_protection,		false ),
693 	TRAP_ENTRY(exc_spurious_interrupt_bug,		false ),
694 	TRAP_ENTRY(exc_coprocessor_error,		false ),
695 	TRAP_ENTRY(exc_alignment_check,			false ),
696 	TRAP_ENTRY(exc_simd_coprocessor_error,		false ),
697 #ifdef CONFIG_X86_KERNEL_IBT
698 	TRAP_ENTRY(exc_control_protection,		false ),
699 #endif
700 };
701 
702 static bool __ref get_trap_addr(void **addr, unsigned int ist)
703 {
704 	unsigned int nr;
705 	bool ist_okay = false;
706 	bool found = false;
707 
708 	/*
709 	 * Replace trap handler addresses by Xen specific ones.
710 	 * Check for known traps using IST and whitelist them.
711 	 * The debugger ones are the only ones we care about.
712 	 * Xen will handle faults like double_fault, so we should never see
713 	 * them.  Warn if there's an unexpected IST-using fault handler.
714 	 */
715 	for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
716 		struct trap_array_entry *entry = trap_array + nr;
717 
718 		if (*addr == entry->orig) {
719 			*addr = entry->xen;
720 			ist_okay = entry->ist_okay;
721 			found = true;
722 			break;
723 		}
724 	}
725 
726 	if (nr == ARRAY_SIZE(trap_array) &&
727 	    *addr >= (void *)early_idt_handler_array[0] &&
728 	    *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
729 		nr = (*addr - (void *)early_idt_handler_array[0]) /
730 		     EARLY_IDT_HANDLER_SIZE;
731 		*addr = (void *)xen_early_idt_handler_array[nr];
732 		found = true;
733 	}
734 
735 	if (!found)
736 		*addr = (void *)xen_asm_exc_xen_unknown_trap;
737 
738 	if (WARN_ON(found && ist != 0 && !ist_okay))
739 		return false;
740 
741 	return true;
742 }
743 
744 static int cvt_gate_to_trap(int vector, const gate_desc *val,
745 			    struct trap_info *info)
746 {
747 	unsigned long addr;
748 
749 	if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
750 		return 0;
751 
752 	info->vector = vector;
753 
754 	addr = gate_offset(val);
755 	if (!get_trap_addr((void **)&addr, val->bits.ist))
756 		return 0;
757 	info->address = addr;
758 
759 	info->cs = gate_segment(val);
760 	info->flags = val->bits.dpl;
761 	/* interrupt gates clear IF */
762 	if (val->bits.type == GATE_INTERRUPT)
763 		info->flags |= 1 << 2;
764 
765 	return 1;
766 }
767 
768 /* Locations of each CPU's IDT */
769 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
770 
771 /* Set an IDT entry.  If the entry is part of the current IDT, then
772    also update Xen. */
773 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
774 {
775 	unsigned long p = (unsigned long)&dt[entrynum];
776 	unsigned long start, end;
777 
778 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
779 
780 	preempt_disable();
781 
782 	start = __this_cpu_read(idt_desc.address);
783 	end = start + __this_cpu_read(idt_desc.size) + 1;
784 
785 	xen_mc_flush();
786 
787 	native_write_idt_entry(dt, entrynum, g);
788 
789 	if (p >= start && (p + 8) <= end) {
790 		struct trap_info info[2];
791 
792 		info[1].address = 0;
793 
794 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
795 			if (HYPERVISOR_set_trap_table(info))
796 				BUG();
797 	}
798 
799 	preempt_enable();
800 }
801 
802 static unsigned xen_convert_trap_info(const struct desc_ptr *desc,
803 				      struct trap_info *traps, bool full)
804 {
805 	unsigned in, out, count;
806 
807 	count = (desc->size+1) / sizeof(gate_desc);
808 	BUG_ON(count > 256);
809 
810 	for (in = out = 0; in < count; in++) {
811 		gate_desc *entry = (gate_desc *)(desc->address) + in;
812 
813 		if (cvt_gate_to_trap(in, entry, &traps[out]) || full)
814 			out++;
815 	}
816 
817 	return out;
818 }
819 
820 void xen_copy_trap_info(struct trap_info *traps)
821 {
822 	const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
823 
824 	xen_convert_trap_info(desc, traps, true);
825 }
826 
827 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
828    hold a spinlock to protect the static traps[] array (static because
829    it avoids allocation, and saves stack space). */
830 static void xen_load_idt(const struct desc_ptr *desc)
831 {
832 	static DEFINE_SPINLOCK(lock);
833 	static struct trap_info traps[257];
834 	static const struct trap_info zero = { };
835 	unsigned out;
836 
837 	trace_xen_cpu_load_idt(desc);
838 
839 	spin_lock(&lock);
840 
841 	memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
842 
843 	out = xen_convert_trap_info(desc, traps, false);
844 	traps[out] = zero;
845 
846 	xen_mc_flush();
847 	if (HYPERVISOR_set_trap_table(traps))
848 		BUG();
849 
850 	spin_unlock(&lock);
851 }
852 
853 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
854    they're handled differently. */
855 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
856 				const void *desc, int type)
857 {
858 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
859 
860 	preempt_disable();
861 
862 	switch (type) {
863 	case DESC_LDT:
864 	case DESC_TSS:
865 		/* ignore */
866 		break;
867 
868 	default: {
869 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
870 
871 		xen_mc_flush();
872 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
873 			BUG();
874 	}
875 
876 	}
877 
878 	preempt_enable();
879 }
880 
881 /*
882  * Version of write_gdt_entry for use at early boot-time needed to
883  * update an entry as simply as possible.
884  */
885 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
886 					    const void *desc, int type)
887 {
888 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
889 
890 	switch (type) {
891 	case DESC_LDT:
892 	case DESC_TSS:
893 		/* ignore */
894 		break;
895 
896 	default: {
897 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
898 
899 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
900 			dt[entry] = *(struct desc_struct *)desc;
901 	}
902 
903 	}
904 }
905 
906 static void xen_load_sp0(unsigned long sp0)
907 {
908 	struct multicall_space mcs;
909 
910 	mcs = xen_mc_entry(0);
911 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
912 	xen_mc_issue(PARAVIRT_LAZY_CPU);
913 	this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
914 }
915 
916 #ifdef CONFIG_X86_IOPL_IOPERM
917 static void xen_invalidate_io_bitmap(void)
918 {
919 	struct physdev_set_iobitmap iobitmap = {
920 		.bitmap = NULL,
921 		.nr_ports = 0,
922 	};
923 
924 	native_tss_invalidate_io_bitmap();
925 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
926 }
927 
928 static void xen_update_io_bitmap(void)
929 {
930 	struct physdev_set_iobitmap iobitmap;
931 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
932 
933 	native_tss_update_io_bitmap();
934 
935 	iobitmap.bitmap = (uint8_t *)(&tss->x86_tss) +
936 			  tss->x86_tss.io_bitmap_base;
937 	if (tss->x86_tss.io_bitmap_base == IO_BITMAP_OFFSET_INVALID)
938 		iobitmap.nr_ports = 0;
939 	else
940 		iobitmap.nr_ports = IO_BITMAP_BITS;
941 
942 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
943 }
944 #endif
945 
946 static void xen_io_delay(void)
947 {
948 }
949 
950 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
951 
952 static unsigned long xen_read_cr0(void)
953 {
954 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
955 
956 	if (unlikely(cr0 == 0)) {
957 		cr0 = native_read_cr0();
958 		this_cpu_write(xen_cr0_value, cr0);
959 	}
960 
961 	return cr0;
962 }
963 
964 static void xen_write_cr0(unsigned long cr0)
965 {
966 	struct multicall_space mcs;
967 
968 	this_cpu_write(xen_cr0_value, cr0);
969 
970 	/* Only pay attention to cr0.TS; everything else is
971 	   ignored. */
972 	mcs = xen_mc_entry(0);
973 
974 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
975 
976 	xen_mc_issue(PARAVIRT_LAZY_CPU);
977 }
978 
979 static void xen_write_cr4(unsigned long cr4)
980 {
981 	cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
982 
983 	native_write_cr4(cr4);
984 }
985 
986 static u64 xen_do_read_msr(unsigned int msr, int *err)
987 {
988 	u64 val = 0;	/* Avoid uninitialized value for safe variant. */
989 
990 	if (pmu_msr_read(msr, &val, err))
991 		return val;
992 
993 	if (err)
994 		val = native_read_msr_safe(msr, err);
995 	else
996 		val = native_read_msr(msr);
997 
998 	switch (msr) {
999 	case MSR_IA32_APICBASE:
1000 		val &= ~X2APIC_ENABLE;
1001 		break;
1002 	}
1003 	return val;
1004 }
1005 
1006 static void set_seg(unsigned int which, unsigned int low, unsigned int high,
1007 		    int *err)
1008 {
1009 	u64 base = ((u64)high << 32) | low;
1010 
1011 	if (HYPERVISOR_set_segment_base(which, base) == 0)
1012 		return;
1013 
1014 	if (err)
1015 		*err = -EIO;
1016 	else
1017 		WARN(1, "Xen set_segment_base(%u, %llx) failed\n", which, base);
1018 }
1019 
1020 /*
1021  * Support write_msr_safe() and write_msr() semantics.
1022  * With err == NULL write_msr() semantics are selected.
1023  * Supplying an err pointer requires err to be pre-initialized with 0.
1024  */
1025 static void xen_do_write_msr(unsigned int msr, unsigned int low,
1026 			     unsigned int high, int *err)
1027 {
1028 	switch (msr) {
1029 	case MSR_FS_BASE:
1030 		set_seg(SEGBASE_FS, low, high, err);
1031 		break;
1032 
1033 	case MSR_KERNEL_GS_BASE:
1034 		set_seg(SEGBASE_GS_USER, low, high, err);
1035 		break;
1036 
1037 	case MSR_GS_BASE:
1038 		set_seg(SEGBASE_GS_KERNEL, low, high, err);
1039 		break;
1040 
1041 	case MSR_STAR:
1042 	case MSR_CSTAR:
1043 	case MSR_LSTAR:
1044 	case MSR_SYSCALL_MASK:
1045 	case MSR_IA32_SYSENTER_CS:
1046 	case MSR_IA32_SYSENTER_ESP:
1047 	case MSR_IA32_SYSENTER_EIP:
1048 		/* Fast syscall setup is all done in hypercalls, so
1049 		   these are all ignored.  Stub them out here to stop
1050 		   Xen console noise. */
1051 		break;
1052 
1053 	default:
1054 		if (!pmu_msr_write(msr, low, high, err)) {
1055 			if (err)
1056 				*err = native_write_msr_safe(msr, low, high);
1057 			else
1058 				native_write_msr(msr, low, high);
1059 		}
1060 	}
1061 }
1062 
1063 static u64 xen_read_msr_safe(unsigned int msr, int *err)
1064 {
1065 	return xen_do_read_msr(msr, err);
1066 }
1067 
1068 static int xen_write_msr_safe(unsigned int msr, unsigned int low,
1069 			      unsigned int high)
1070 {
1071 	int err = 0;
1072 
1073 	xen_do_write_msr(msr, low, high, &err);
1074 
1075 	return err;
1076 }
1077 
1078 static u64 xen_read_msr(unsigned int msr)
1079 {
1080 	int err;
1081 
1082 	return xen_do_read_msr(msr, xen_msr_safe ? &err : NULL);
1083 }
1084 
1085 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
1086 {
1087 	int err;
1088 
1089 	xen_do_write_msr(msr, low, high, xen_msr_safe ? &err : NULL);
1090 }
1091 
1092 /* This is called once we have the cpu_possible_mask */
1093 void __init xen_setup_vcpu_info_placement(void)
1094 {
1095 	int cpu;
1096 
1097 	for_each_possible_cpu(cpu) {
1098 		/* Set up direct vCPU id mapping for PV guests. */
1099 		per_cpu(xen_vcpu_id, cpu) = cpu;
1100 		xen_vcpu_setup(cpu);
1101 	}
1102 
1103 	pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1104 	pv_ops.irq.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1105 	pv_ops.irq.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1106 	pv_ops.mmu.read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2_direct);
1107 }
1108 
1109 static const struct pv_info xen_info __initconst = {
1110 	.extra_user_64bit_cs = FLAT_USER_CS64,
1111 	.name = "Xen",
1112 };
1113 
1114 static const typeof(pv_ops) xen_cpu_ops __initconst = {
1115 	.cpu = {
1116 		.cpuid = xen_cpuid,
1117 
1118 		.set_debugreg = xen_set_debugreg,
1119 		.get_debugreg = xen_get_debugreg,
1120 
1121 		.read_cr0 = xen_read_cr0,
1122 		.write_cr0 = xen_write_cr0,
1123 
1124 		.write_cr4 = xen_write_cr4,
1125 
1126 		.wbinvd = pv_native_wbinvd,
1127 
1128 		.read_msr = xen_read_msr,
1129 		.write_msr = xen_write_msr,
1130 
1131 		.read_msr_safe = xen_read_msr_safe,
1132 		.write_msr_safe = xen_write_msr_safe,
1133 
1134 		.read_pmc = xen_read_pmc,
1135 
1136 		.load_tr_desc = paravirt_nop,
1137 		.set_ldt = xen_set_ldt,
1138 		.load_gdt = xen_load_gdt,
1139 		.load_idt = xen_load_idt,
1140 		.load_tls = xen_load_tls,
1141 		.load_gs_index = xen_load_gs_index,
1142 
1143 		.alloc_ldt = xen_alloc_ldt,
1144 		.free_ldt = xen_free_ldt,
1145 
1146 		.store_tr = xen_store_tr,
1147 
1148 		.write_ldt_entry = xen_write_ldt_entry,
1149 		.write_gdt_entry = xen_write_gdt_entry,
1150 		.write_idt_entry = xen_write_idt_entry,
1151 		.load_sp0 = xen_load_sp0,
1152 
1153 #ifdef CONFIG_X86_IOPL_IOPERM
1154 		.invalidate_io_bitmap = xen_invalidate_io_bitmap,
1155 		.update_io_bitmap = xen_update_io_bitmap,
1156 #endif
1157 		.io_delay = xen_io_delay,
1158 
1159 		.start_context_switch = paravirt_start_context_switch,
1160 		.end_context_switch = xen_end_context_switch,
1161 	},
1162 };
1163 
1164 static void xen_restart(char *msg)
1165 {
1166 	xen_reboot(SHUTDOWN_reboot);
1167 }
1168 
1169 static void xen_machine_halt(void)
1170 {
1171 	xen_reboot(SHUTDOWN_poweroff);
1172 }
1173 
1174 static void xen_machine_power_off(void)
1175 {
1176 	do_kernel_power_off();
1177 	xen_reboot(SHUTDOWN_poweroff);
1178 }
1179 
1180 static void xen_crash_shutdown(struct pt_regs *regs)
1181 {
1182 	xen_reboot(SHUTDOWN_crash);
1183 }
1184 
1185 static const struct machine_ops xen_machine_ops __initconst = {
1186 	.restart = xen_restart,
1187 	.halt = xen_machine_halt,
1188 	.power_off = xen_machine_power_off,
1189 	.shutdown = xen_machine_halt,
1190 	.crash_shutdown = xen_crash_shutdown,
1191 	.emergency_restart = xen_emergency_restart,
1192 };
1193 
1194 static unsigned char xen_get_nmi_reason(void)
1195 {
1196 	unsigned char reason = 0;
1197 
1198 	/* Construct a value which looks like it came from port 0x61. */
1199 	if (test_bit(_XEN_NMIREASON_io_error,
1200 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1201 		reason |= NMI_REASON_IOCHK;
1202 	if (test_bit(_XEN_NMIREASON_pci_serr,
1203 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1204 		reason |= NMI_REASON_SERR;
1205 
1206 	return reason;
1207 }
1208 
1209 static void __init xen_boot_params_init_edd(void)
1210 {
1211 #if IS_ENABLED(CONFIG_EDD)
1212 	struct xen_platform_op op;
1213 	struct edd_info *edd_info;
1214 	u32 *mbr_signature;
1215 	unsigned nr;
1216 	int ret;
1217 
1218 	edd_info = boot_params.eddbuf;
1219 	mbr_signature = boot_params.edd_mbr_sig_buffer;
1220 
1221 	op.cmd = XENPF_firmware_info;
1222 
1223 	op.u.firmware_info.type = XEN_FW_DISK_INFO;
1224 	for (nr = 0; nr < EDDMAXNR; nr++) {
1225 		struct edd_info *info = edd_info + nr;
1226 
1227 		op.u.firmware_info.index = nr;
1228 		info->params.length = sizeof(info->params);
1229 		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1230 				     &info->params);
1231 		ret = HYPERVISOR_platform_op(&op);
1232 		if (ret)
1233 			break;
1234 
1235 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1236 		C(device);
1237 		C(version);
1238 		C(interface_support);
1239 		C(legacy_max_cylinder);
1240 		C(legacy_max_head);
1241 		C(legacy_sectors_per_track);
1242 #undef C
1243 	}
1244 	boot_params.eddbuf_entries = nr;
1245 
1246 	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1247 	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1248 		op.u.firmware_info.index = nr;
1249 		ret = HYPERVISOR_platform_op(&op);
1250 		if (ret)
1251 			break;
1252 		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1253 	}
1254 	boot_params.edd_mbr_sig_buf_entries = nr;
1255 #endif
1256 }
1257 
1258 /*
1259  * Set up the GDT and segment registers for -fstack-protector.  Until
1260  * we do this, we have to be careful not to call any stack-protected
1261  * function, which is most of the kernel.
1262  */
1263 static void __init xen_setup_gdt(int cpu)
1264 {
1265 	pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot;
1266 	pv_ops.cpu.load_gdt = xen_load_gdt_boot;
1267 
1268 	switch_gdt_and_percpu_base(cpu);
1269 
1270 	pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry;
1271 	pv_ops.cpu.load_gdt = xen_load_gdt;
1272 }
1273 
1274 static void __init xen_dom0_set_legacy_features(void)
1275 {
1276 	x86_platform.legacy.rtc = 1;
1277 }
1278 
1279 static void __init xen_domu_set_legacy_features(void)
1280 {
1281 	x86_platform.legacy.rtc = 0;
1282 }
1283 
1284 extern void early_xen_iret_patch(void);
1285 
1286 /* First C function to be called on Xen boot */
1287 asmlinkage __visible void __init xen_start_kernel(struct start_info *si)
1288 {
1289 	struct physdev_set_iopl set_iopl;
1290 	unsigned long initrd_start = 0;
1291 	int rc;
1292 
1293 	if (!si)
1294 		return;
1295 
1296 	clear_bss();
1297 
1298 	xen_start_info = si;
1299 
1300 	__text_gen_insn(&early_xen_iret_patch,
1301 			JMP32_INSN_OPCODE, &early_xen_iret_patch, &xen_iret,
1302 			JMP32_INSN_SIZE);
1303 
1304 	xen_domain_type = XEN_PV_DOMAIN;
1305 	xen_start_flags = xen_start_info->flags;
1306 
1307 	xen_setup_features();
1308 
1309 	/* Install Xen paravirt ops */
1310 	pv_info = xen_info;
1311 	pv_ops.cpu = xen_cpu_ops.cpu;
1312 	xen_init_irq_ops();
1313 
1314 	/*
1315 	 * Setup xen_vcpu early because it is needed for
1316 	 * local_irq_disable(), irqs_disabled(), e.g. in printk().
1317 	 *
1318 	 * Don't do the full vcpu_info placement stuff until we have
1319 	 * the cpu_possible_mask and a non-dummy shared_info.
1320 	 */
1321 	xen_vcpu_info_reset(0);
1322 
1323 	x86_platform.get_nmi_reason = xen_get_nmi_reason;
1324 	x86_platform.realmode_reserve = x86_init_noop;
1325 	x86_platform.realmode_init = x86_init_noop;
1326 
1327 	x86_init.resources.memory_setup = xen_memory_setup;
1328 	x86_init.irqs.intr_mode_select	= x86_init_noop;
1329 	x86_init.irqs.intr_mode_init	= x86_init_noop;
1330 	x86_init.oem.arch_setup = xen_arch_setup;
1331 	x86_init.oem.banner = xen_banner;
1332 	x86_init.hyper.init_platform = xen_pv_init_platform;
1333 	x86_init.hyper.guest_late_init = xen_pv_guest_late_init;
1334 
1335 	/*
1336 	 * Set up some pagetable state before starting to set any ptes.
1337 	 */
1338 
1339 	xen_setup_machphys_mapping();
1340 	xen_init_mmu_ops();
1341 
1342 	/* Prevent unwanted bits from being set in PTEs. */
1343 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1344 	__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
1345 
1346 	/* Get mfn list */
1347 	xen_build_dynamic_phys_to_machine();
1348 
1349 	/* Work out if we support NX */
1350 	get_cpu_cap(&boot_cpu_data);
1351 	x86_configure_nx();
1352 
1353 	/*
1354 	 * Set up kernel GDT and segment registers, mainly so that
1355 	 * -fstack-protector code can be executed.
1356 	 */
1357 	xen_setup_gdt(0);
1358 
1359 	/* Determine virtual and physical address sizes */
1360 	get_cpu_address_sizes(&boot_cpu_data);
1361 
1362 	/* Let's presume PV guests always boot on vCPU with id 0. */
1363 	per_cpu(xen_vcpu_id, 0) = 0;
1364 
1365 	idt_setup_early_handler();
1366 
1367 	xen_init_capabilities();
1368 
1369 #ifdef CONFIG_X86_LOCAL_APIC
1370 	/*
1371 	 * set up the basic apic ops.
1372 	 */
1373 	xen_init_apic();
1374 #endif
1375 
1376 	machine_ops = xen_machine_ops;
1377 
1378 	/*
1379 	 * The only reliable way to retain the initial address of the
1380 	 * percpu gdt_page is to remember it here, so we can go and
1381 	 * mark it RW later, when the initial percpu area is freed.
1382 	 */
1383 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1384 
1385 	xen_smp_init();
1386 
1387 #ifdef CONFIG_ACPI_NUMA
1388 	/*
1389 	 * The pages we from Xen are not related to machine pages, so
1390 	 * any NUMA information the kernel tries to get from ACPI will
1391 	 * be meaningless.  Prevent it from trying.
1392 	 */
1393 	disable_srat();
1394 #endif
1395 	WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1396 
1397 	local_irq_disable();
1398 	early_boot_irqs_disabled = true;
1399 
1400 	xen_raw_console_write("mapping kernel into physical memory\n");
1401 	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1402 				   xen_start_info->nr_pages);
1403 	xen_reserve_special_pages();
1404 
1405 	/*
1406 	 * We used to do this in xen_arch_setup, but that is too late
1407 	 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1408 	 * early_amd_init which pokes 0xcf8 port.
1409 	 */
1410 	set_iopl.iopl = 1;
1411 	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1412 	if (rc != 0)
1413 		xen_raw_printk("physdev_op failed %d\n", rc);
1414 
1415 
1416 	if (xen_start_info->mod_start) {
1417 	    if (xen_start_info->flags & SIF_MOD_START_PFN)
1418 		initrd_start = PFN_PHYS(xen_start_info->mod_start);
1419 	    else
1420 		initrd_start = __pa(xen_start_info->mod_start);
1421 	}
1422 
1423 	/* Poke various useful things into boot_params */
1424 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1425 	boot_params.hdr.ramdisk_image = initrd_start;
1426 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1427 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1428 	boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1429 
1430 	if (!xen_initial_domain()) {
1431 		if (pci_xen)
1432 			x86_init.pci.arch_init = pci_xen_init;
1433 		x86_platform.set_legacy_features =
1434 				xen_domu_set_legacy_features;
1435 	} else {
1436 		const struct dom0_vga_console_info *info =
1437 			(void *)((char *)xen_start_info +
1438 				 xen_start_info->console.dom0.info_off);
1439 		struct xen_platform_op op = {
1440 			.cmd = XENPF_firmware_info,
1441 			.interface_version = XENPF_INTERFACE_VERSION,
1442 			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1443 		};
1444 
1445 		x86_platform.set_legacy_features =
1446 				xen_dom0_set_legacy_features;
1447 		xen_init_vga(info, xen_start_info->console.dom0.info_size,
1448 			     &boot_params.screen_info);
1449 		xen_start_info->console.domU.mfn = 0;
1450 		xen_start_info->console.domU.evtchn = 0;
1451 
1452 		if (HYPERVISOR_platform_op(&op) == 0)
1453 			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1454 
1455 		/* Make sure ACS will be enabled */
1456 		pci_request_acs();
1457 
1458 		xen_acpi_sleep_register();
1459 
1460 		xen_boot_params_init_edd();
1461 
1462 #ifdef CONFIG_ACPI
1463 		/*
1464 		 * Disable selecting "Firmware First mode" for correctable
1465 		 * memory errors, as this is the duty of the hypervisor to
1466 		 * decide.
1467 		 */
1468 		acpi_disable_cmcff = 1;
1469 #endif
1470 	}
1471 
1472 	xen_add_preferred_consoles();
1473 
1474 #ifdef CONFIG_PCI
1475 	/* PCI BIOS service won't work from a PV guest. */
1476 	pci_probe &= ~PCI_PROBE_BIOS;
1477 #endif
1478 	xen_raw_console_write("about to get started...\n");
1479 
1480 	/* We need this for printk timestamps */
1481 	xen_setup_runstate_info(0);
1482 
1483 	xen_efi_init(&boot_params);
1484 
1485 	/* Start the world */
1486 	cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1487 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1488 }
1489 
1490 static int xen_cpu_up_prepare_pv(unsigned int cpu)
1491 {
1492 	int rc;
1493 
1494 	if (per_cpu(xen_vcpu, cpu) == NULL)
1495 		return -ENODEV;
1496 
1497 	xen_setup_timer(cpu);
1498 
1499 	rc = xen_smp_intr_init(cpu);
1500 	if (rc) {
1501 		WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1502 		     cpu, rc);
1503 		return rc;
1504 	}
1505 
1506 	rc = xen_smp_intr_init_pv(cpu);
1507 	if (rc) {
1508 		WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1509 		     cpu, rc);
1510 		return rc;
1511 	}
1512 
1513 	return 0;
1514 }
1515 
1516 static int xen_cpu_dead_pv(unsigned int cpu)
1517 {
1518 	xen_smp_intr_free(cpu);
1519 	xen_smp_intr_free_pv(cpu);
1520 
1521 	xen_teardown_timer(cpu);
1522 
1523 	return 0;
1524 }
1525 
1526 static uint32_t __init xen_platform_pv(void)
1527 {
1528 	if (xen_pv_domain())
1529 		return xen_cpuid_base();
1530 
1531 	return 0;
1532 }
1533 
1534 const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1535 	.name                   = "Xen PV",
1536 	.detect                 = xen_platform_pv,
1537 	.type			= X86_HYPER_XEN_PV,
1538 	.runtime.pin_vcpu       = xen_pin_vcpu,
1539 	.ignore_nopv		= true,
1540 };
1541