xref: /openbmc/linux/arch/x86/xen/enlighten_pv.c (revision 5b394b2d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Core of Xen paravirt_ops implementation.
4  *
5  * This file contains the xen_paravirt_ops structure itself, and the
6  * implementations for:
7  * - privileged instructions
8  * - interrupt flags
9  * - segment operations
10  * - booting and setup
11  *
12  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
13  */
14 
15 #include <linux/cpu.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/smp.h>
19 #include <linux/preempt.h>
20 #include <linux/hardirq.h>
21 #include <linux/percpu.h>
22 #include <linux/delay.h>
23 #include <linux/start_kernel.h>
24 #include <linux/sched.h>
25 #include <linux/kprobes.h>
26 #include <linux/bootmem.h>
27 #include <linux/export.h>
28 #include <linux/mm.h>
29 #include <linux/page-flags.h>
30 #include <linux/highmem.h>
31 #include <linux/console.h>
32 #include <linux/pci.h>
33 #include <linux/gfp.h>
34 #include <linux/memblock.h>
35 #include <linux/edd.h>
36 #include <linux/frame.h>
37 
38 #include <xen/xen.h>
39 #include <xen/events.h>
40 #include <xen/interface/xen.h>
41 #include <xen/interface/version.h>
42 #include <xen/interface/physdev.h>
43 #include <xen/interface/vcpu.h>
44 #include <xen/interface/memory.h>
45 #include <xen/interface/nmi.h>
46 #include <xen/interface/xen-mca.h>
47 #include <xen/features.h>
48 #include <xen/page.h>
49 #include <xen/hvc-console.h>
50 #include <xen/acpi.h>
51 
52 #include <asm/paravirt.h>
53 #include <asm/apic.h>
54 #include <asm/page.h>
55 #include <asm/xen/pci.h>
56 #include <asm/xen/hypercall.h>
57 #include <asm/xen/hypervisor.h>
58 #include <asm/xen/cpuid.h>
59 #include <asm/fixmap.h>
60 #include <asm/processor.h>
61 #include <asm/proto.h>
62 #include <asm/msr-index.h>
63 #include <asm/traps.h>
64 #include <asm/setup.h>
65 #include <asm/desc.h>
66 #include <asm/pgalloc.h>
67 #include <asm/pgtable.h>
68 #include <asm/tlbflush.h>
69 #include <asm/reboot.h>
70 #include <asm/stackprotector.h>
71 #include <asm/hypervisor.h>
72 #include <asm/mach_traps.h>
73 #include <asm/mwait.h>
74 #include <asm/pci_x86.h>
75 #include <asm/cpu.h>
76 
77 #ifdef CONFIG_ACPI
78 #include <linux/acpi.h>
79 #include <asm/acpi.h>
80 #include <acpi/pdc_intel.h>
81 #include <acpi/processor.h>
82 #include <xen/interface/platform.h>
83 #endif
84 
85 #include "xen-ops.h"
86 #include "mmu.h"
87 #include "smp.h"
88 #include "multicalls.h"
89 #include "pmu.h"
90 
91 #include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
92 
93 void *xen_initial_gdt;
94 
95 static int xen_cpu_up_prepare_pv(unsigned int cpu);
96 static int xen_cpu_dead_pv(unsigned int cpu);
97 
98 struct tls_descs {
99 	struct desc_struct desc[3];
100 };
101 
102 /*
103  * Updating the 3 TLS descriptors in the GDT on every task switch is
104  * surprisingly expensive so we avoid updating them if they haven't
105  * changed.  Since Xen writes different descriptors than the one
106  * passed in the update_descriptor hypercall we keep shadow copies to
107  * compare against.
108  */
109 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
110 
111 static void __init xen_banner(void)
112 {
113 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
114 	struct xen_extraversion extra;
115 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
116 
117 	pr_info("Booting paravirtualized kernel on %s\n", pv_info.name);
118 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
119 	       version >> 16, version & 0xffff, extra.extraversion,
120 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
121 }
122 
123 static void __init xen_pv_init_platform(void)
124 {
125 	populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP));
126 
127 	set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
128 	HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
129 
130 	/* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */
131 	xen_vcpu_info_reset(0);
132 
133 	/* pvclock is in shared info area */
134 	xen_init_time_ops();
135 }
136 
137 static void __init xen_pv_guest_late_init(void)
138 {
139 #ifndef CONFIG_SMP
140 	/* Setup shared vcpu info for non-smp configurations */
141 	xen_setup_vcpu_info_placement();
142 #endif
143 }
144 
145 /* Check if running on Xen version (major, minor) or later */
146 bool
147 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
148 {
149 	unsigned int version;
150 
151 	if (!xen_domain())
152 		return false;
153 
154 	version = HYPERVISOR_xen_version(XENVER_version, NULL);
155 	if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
156 		((version >> 16) > major))
157 		return true;
158 	return false;
159 }
160 
161 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
162 static __read_mostly unsigned int cpuid_leaf5_edx_val;
163 
164 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
165 		      unsigned int *cx, unsigned int *dx)
166 {
167 	unsigned maskebx = ~0;
168 
169 	/*
170 	 * Mask out inconvenient features, to try and disable as many
171 	 * unsupported kernel subsystems as possible.
172 	 */
173 	switch (*ax) {
174 	case CPUID_MWAIT_LEAF:
175 		/* Synthesize the values.. */
176 		*ax = 0;
177 		*bx = 0;
178 		*cx = cpuid_leaf5_ecx_val;
179 		*dx = cpuid_leaf5_edx_val;
180 		return;
181 
182 	case 0xb:
183 		/* Suppress extended topology stuff */
184 		maskebx = 0;
185 		break;
186 	}
187 
188 	asm(XEN_EMULATE_PREFIX "cpuid"
189 		: "=a" (*ax),
190 		  "=b" (*bx),
191 		  "=c" (*cx),
192 		  "=d" (*dx)
193 		: "0" (*ax), "2" (*cx));
194 
195 	*bx &= maskebx;
196 }
197 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
198 
199 static bool __init xen_check_mwait(void)
200 {
201 #ifdef CONFIG_ACPI
202 	struct xen_platform_op op = {
203 		.cmd			= XENPF_set_processor_pminfo,
204 		.u.set_pminfo.id	= -1,
205 		.u.set_pminfo.type	= XEN_PM_PDC,
206 	};
207 	uint32_t buf[3];
208 	unsigned int ax, bx, cx, dx;
209 	unsigned int mwait_mask;
210 
211 	/* We need to determine whether it is OK to expose the MWAIT
212 	 * capability to the kernel to harvest deeper than C3 states from ACPI
213 	 * _CST using the processor_harvest_xen.c module. For this to work, we
214 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
215 	 * checks against). The hypervisor won't expose the MWAIT flag because
216 	 * it would break backwards compatibility; so we will find out directly
217 	 * from the hardware and hypercall.
218 	 */
219 	if (!xen_initial_domain())
220 		return false;
221 
222 	/*
223 	 * When running under platform earlier than Xen4.2, do not expose
224 	 * mwait, to avoid the risk of loading native acpi pad driver
225 	 */
226 	if (!xen_running_on_version_or_later(4, 2))
227 		return false;
228 
229 	ax = 1;
230 	cx = 0;
231 
232 	native_cpuid(&ax, &bx, &cx, &dx);
233 
234 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
235 		     (1 << (X86_FEATURE_MWAIT % 32));
236 
237 	if ((cx & mwait_mask) != mwait_mask)
238 		return false;
239 
240 	/* We need to emulate the MWAIT_LEAF and for that we need both
241 	 * ecx and edx. The hypercall provides only partial information.
242 	 */
243 
244 	ax = CPUID_MWAIT_LEAF;
245 	bx = 0;
246 	cx = 0;
247 	dx = 0;
248 
249 	native_cpuid(&ax, &bx, &cx, &dx);
250 
251 	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
252 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
253 	 */
254 	buf[0] = ACPI_PDC_REVISION_ID;
255 	buf[1] = 1;
256 	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
257 
258 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
259 
260 	if ((HYPERVISOR_platform_op(&op) == 0) &&
261 	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
262 		cpuid_leaf5_ecx_val = cx;
263 		cpuid_leaf5_edx_val = dx;
264 	}
265 	return true;
266 #else
267 	return false;
268 #endif
269 }
270 
271 static bool __init xen_check_xsave(void)
272 {
273 	unsigned int cx, xsave_mask;
274 
275 	cx = cpuid_ecx(1);
276 
277 	xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
278 		     (1 << (X86_FEATURE_OSXSAVE % 32));
279 
280 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
281 	return (cx & xsave_mask) == xsave_mask;
282 }
283 
284 static void __init xen_init_capabilities(void)
285 {
286 	setup_force_cpu_cap(X86_FEATURE_XENPV);
287 	setup_clear_cpu_cap(X86_FEATURE_DCA);
288 	setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
289 	setup_clear_cpu_cap(X86_FEATURE_MTRR);
290 	setup_clear_cpu_cap(X86_FEATURE_ACC);
291 	setup_clear_cpu_cap(X86_FEATURE_X2APIC);
292 	setup_clear_cpu_cap(X86_FEATURE_SME);
293 
294 	/*
295 	 * Xen PV would need some work to support PCID: CR3 handling as well
296 	 * as xen_flush_tlb_others() would need updating.
297 	 */
298 	setup_clear_cpu_cap(X86_FEATURE_PCID);
299 
300 	if (!xen_initial_domain())
301 		setup_clear_cpu_cap(X86_FEATURE_ACPI);
302 
303 	if (xen_check_mwait())
304 		setup_force_cpu_cap(X86_FEATURE_MWAIT);
305 	else
306 		setup_clear_cpu_cap(X86_FEATURE_MWAIT);
307 
308 	if (!xen_check_xsave()) {
309 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
310 		setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
311 	}
312 }
313 
314 static void xen_set_debugreg(int reg, unsigned long val)
315 {
316 	HYPERVISOR_set_debugreg(reg, val);
317 }
318 
319 static unsigned long xen_get_debugreg(int reg)
320 {
321 	return HYPERVISOR_get_debugreg(reg);
322 }
323 
324 static void xen_end_context_switch(struct task_struct *next)
325 {
326 	xen_mc_flush();
327 	paravirt_end_context_switch(next);
328 }
329 
330 static unsigned long xen_store_tr(void)
331 {
332 	return 0;
333 }
334 
335 /*
336  * Set the page permissions for a particular virtual address.  If the
337  * address is a vmalloc mapping (or other non-linear mapping), then
338  * find the linear mapping of the page and also set its protections to
339  * match.
340  */
341 static void set_aliased_prot(void *v, pgprot_t prot)
342 {
343 	int level;
344 	pte_t *ptep;
345 	pte_t pte;
346 	unsigned long pfn;
347 	struct page *page;
348 	unsigned char dummy;
349 
350 	ptep = lookup_address((unsigned long)v, &level);
351 	BUG_ON(ptep == NULL);
352 
353 	pfn = pte_pfn(*ptep);
354 	page = pfn_to_page(pfn);
355 
356 	pte = pfn_pte(pfn, prot);
357 
358 	/*
359 	 * Careful: update_va_mapping() will fail if the virtual address
360 	 * we're poking isn't populated in the page tables.  We don't
361 	 * need to worry about the direct map (that's always in the page
362 	 * tables), but we need to be careful about vmap space.  In
363 	 * particular, the top level page table can lazily propagate
364 	 * entries between processes, so if we've switched mms since we
365 	 * vmapped the target in the first place, we might not have the
366 	 * top-level page table entry populated.
367 	 *
368 	 * We disable preemption because we want the same mm active when
369 	 * we probe the target and when we issue the hypercall.  We'll
370 	 * have the same nominal mm, but if we're a kernel thread, lazy
371 	 * mm dropping could change our pgd.
372 	 *
373 	 * Out of an abundance of caution, this uses __get_user() to fault
374 	 * in the target address just in case there's some obscure case
375 	 * in which the target address isn't readable.
376 	 */
377 
378 	preempt_disable();
379 
380 	probe_kernel_read(&dummy, v, 1);
381 
382 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
383 		BUG();
384 
385 	if (!PageHighMem(page)) {
386 		void *av = __va(PFN_PHYS(pfn));
387 
388 		if (av != v)
389 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
390 				BUG();
391 	} else
392 		kmap_flush_unused();
393 
394 	preempt_enable();
395 }
396 
397 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
398 {
399 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
400 	int i;
401 
402 	/*
403 	 * We need to mark the all aliases of the LDT pages RO.  We
404 	 * don't need to call vm_flush_aliases(), though, since that's
405 	 * only responsible for flushing aliases out the TLBs, not the
406 	 * page tables, and Xen will flush the TLB for us if needed.
407 	 *
408 	 * To avoid confusing future readers: none of this is necessary
409 	 * to load the LDT.  The hypervisor only checks this when the
410 	 * LDT is faulted in due to subsequent descriptor access.
411 	 */
412 
413 	for (i = 0; i < entries; i += entries_per_page)
414 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
415 }
416 
417 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
418 {
419 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
420 	int i;
421 
422 	for (i = 0; i < entries; i += entries_per_page)
423 		set_aliased_prot(ldt + i, PAGE_KERNEL);
424 }
425 
426 static void xen_set_ldt(const void *addr, unsigned entries)
427 {
428 	struct mmuext_op *op;
429 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
430 
431 	trace_xen_cpu_set_ldt(addr, entries);
432 
433 	op = mcs.args;
434 	op->cmd = MMUEXT_SET_LDT;
435 	op->arg1.linear_addr = (unsigned long)addr;
436 	op->arg2.nr_ents = entries;
437 
438 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
439 
440 	xen_mc_issue(PARAVIRT_LAZY_CPU);
441 }
442 
443 static void xen_load_gdt(const struct desc_ptr *dtr)
444 {
445 	unsigned long va = dtr->address;
446 	unsigned int size = dtr->size + 1;
447 	unsigned long pfn, mfn;
448 	int level;
449 	pte_t *ptep;
450 	void *virt;
451 
452 	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
453 	BUG_ON(size > PAGE_SIZE);
454 	BUG_ON(va & ~PAGE_MASK);
455 
456 	/*
457 	 * The GDT is per-cpu and is in the percpu data area.
458 	 * That can be virtually mapped, so we need to do a
459 	 * page-walk to get the underlying MFN for the
460 	 * hypercall.  The page can also be in the kernel's
461 	 * linear range, so we need to RO that mapping too.
462 	 */
463 	ptep = lookup_address(va, &level);
464 	BUG_ON(ptep == NULL);
465 
466 	pfn = pte_pfn(*ptep);
467 	mfn = pfn_to_mfn(pfn);
468 	virt = __va(PFN_PHYS(pfn));
469 
470 	make_lowmem_page_readonly((void *)va);
471 	make_lowmem_page_readonly(virt);
472 
473 	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
474 		BUG();
475 }
476 
477 /*
478  * load_gdt for early boot, when the gdt is only mapped once
479  */
480 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
481 {
482 	unsigned long va = dtr->address;
483 	unsigned int size = dtr->size + 1;
484 	unsigned long pfn, mfn;
485 	pte_t pte;
486 
487 	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
488 	BUG_ON(size > PAGE_SIZE);
489 	BUG_ON(va & ~PAGE_MASK);
490 
491 	pfn = virt_to_pfn(va);
492 	mfn = pfn_to_mfn(pfn);
493 
494 	pte = pfn_pte(pfn, PAGE_KERNEL_RO);
495 
496 	if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
497 		BUG();
498 
499 	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
500 		BUG();
501 }
502 
503 static inline bool desc_equal(const struct desc_struct *d1,
504 			      const struct desc_struct *d2)
505 {
506 	return !memcmp(d1, d2, sizeof(*d1));
507 }
508 
509 static void load_TLS_descriptor(struct thread_struct *t,
510 				unsigned int cpu, unsigned int i)
511 {
512 	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
513 	struct desc_struct *gdt;
514 	xmaddr_t maddr;
515 	struct multicall_space mc;
516 
517 	if (desc_equal(shadow, &t->tls_array[i]))
518 		return;
519 
520 	*shadow = t->tls_array[i];
521 
522 	gdt = get_cpu_gdt_rw(cpu);
523 	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
524 	mc = __xen_mc_entry(0);
525 
526 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
527 }
528 
529 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
530 {
531 	/*
532 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
533 	 * and lazy gs handling is enabled, it means we're in a
534 	 * context switch, and %gs has just been saved.  This means we
535 	 * can zero it out to prevent faults on exit from the
536 	 * hypervisor if the next process has no %gs.  Either way, it
537 	 * has been saved, and the new value will get loaded properly.
538 	 * This will go away as soon as Xen has been modified to not
539 	 * save/restore %gs for normal hypercalls.
540 	 *
541 	 * On x86_64, this hack is not used for %gs, because gs points
542 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
543 	 * must not zero %gs on x86_64
544 	 *
545 	 * For x86_64, we need to zero %fs, otherwise we may get an
546 	 * exception between the new %fs descriptor being loaded and
547 	 * %fs being effectively cleared at __switch_to().
548 	 */
549 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
550 #ifdef CONFIG_X86_32
551 		lazy_load_gs(0);
552 #else
553 		loadsegment(fs, 0);
554 #endif
555 	}
556 
557 	xen_mc_batch();
558 
559 	load_TLS_descriptor(t, cpu, 0);
560 	load_TLS_descriptor(t, cpu, 1);
561 	load_TLS_descriptor(t, cpu, 2);
562 
563 	xen_mc_issue(PARAVIRT_LAZY_CPU);
564 }
565 
566 #ifdef CONFIG_X86_64
567 static void xen_load_gs_index(unsigned int idx)
568 {
569 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
570 		BUG();
571 }
572 #endif
573 
574 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
575 				const void *ptr)
576 {
577 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
578 	u64 entry = *(u64 *)ptr;
579 
580 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
581 
582 	preempt_disable();
583 
584 	xen_mc_flush();
585 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
586 		BUG();
587 
588 	preempt_enable();
589 }
590 
591 #ifdef CONFIG_X86_64
592 struct trap_array_entry {
593 	void (*orig)(void);
594 	void (*xen)(void);
595 	bool ist_okay;
596 };
597 
598 static struct trap_array_entry trap_array[] = {
599 	{ debug,                       xen_xendebug,                    true },
600 	{ int3,                        xen_xenint3,                     true },
601 	{ double_fault,                xen_double_fault,                true },
602 #ifdef CONFIG_X86_MCE
603 	{ machine_check,               xen_machine_check,               true },
604 #endif
605 	{ nmi,                         xen_xennmi,                      true },
606 	{ overflow,                    xen_overflow,                    false },
607 #ifdef CONFIG_IA32_EMULATION
608 	{ entry_INT80_compat,          xen_entry_INT80_compat,          false },
609 #endif
610 	{ page_fault,                  xen_page_fault,                  false },
611 	{ divide_error,                xen_divide_error,                false },
612 	{ bounds,                      xen_bounds,                      false },
613 	{ invalid_op,                  xen_invalid_op,                  false },
614 	{ device_not_available,        xen_device_not_available,        false },
615 	{ coprocessor_segment_overrun, xen_coprocessor_segment_overrun, false },
616 	{ invalid_TSS,                 xen_invalid_TSS,                 false },
617 	{ segment_not_present,         xen_segment_not_present,         false },
618 	{ stack_segment,               xen_stack_segment,               false },
619 	{ general_protection,          xen_general_protection,          false },
620 	{ spurious_interrupt_bug,      xen_spurious_interrupt_bug,      false },
621 	{ coprocessor_error,           xen_coprocessor_error,           false },
622 	{ alignment_check,             xen_alignment_check,             false },
623 	{ simd_coprocessor_error,      xen_simd_coprocessor_error,      false },
624 };
625 
626 static bool __ref get_trap_addr(void **addr, unsigned int ist)
627 {
628 	unsigned int nr;
629 	bool ist_okay = false;
630 
631 	/*
632 	 * Replace trap handler addresses by Xen specific ones.
633 	 * Check for known traps using IST and whitelist them.
634 	 * The debugger ones are the only ones we care about.
635 	 * Xen will handle faults like double_fault, * so we should never see
636 	 * them.  Warn if there's an unexpected IST-using fault handler.
637 	 */
638 	for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
639 		struct trap_array_entry *entry = trap_array + nr;
640 
641 		if (*addr == entry->orig) {
642 			*addr = entry->xen;
643 			ist_okay = entry->ist_okay;
644 			break;
645 		}
646 	}
647 
648 	if (nr == ARRAY_SIZE(trap_array) &&
649 	    *addr >= (void *)early_idt_handler_array[0] &&
650 	    *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
651 		nr = (*addr - (void *)early_idt_handler_array[0]) /
652 		     EARLY_IDT_HANDLER_SIZE;
653 		*addr = (void *)xen_early_idt_handler_array[nr];
654 	}
655 
656 	if (WARN_ON(ist != 0 && !ist_okay))
657 		return false;
658 
659 	return true;
660 }
661 #endif
662 
663 static int cvt_gate_to_trap(int vector, const gate_desc *val,
664 			    struct trap_info *info)
665 {
666 	unsigned long addr;
667 
668 	if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
669 		return 0;
670 
671 	info->vector = vector;
672 
673 	addr = gate_offset(val);
674 #ifdef CONFIG_X86_64
675 	if (!get_trap_addr((void **)&addr, val->bits.ist))
676 		return 0;
677 #endif	/* CONFIG_X86_64 */
678 	info->address = addr;
679 
680 	info->cs = gate_segment(val);
681 	info->flags = val->bits.dpl;
682 	/* interrupt gates clear IF */
683 	if (val->bits.type == GATE_INTERRUPT)
684 		info->flags |= 1 << 2;
685 
686 	return 1;
687 }
688 
689 /* Locations of each CPU's IDT */
690 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
691 
692 /* Set an IDT entry.  If the entry is part of the current IDT, then
693    also update Xen. */
694 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
695 {
696 	unsigned long p = (unsigned long)&dt[entrynum];
697 	unsigned long start, end;
698 
699 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
700 
701 	preempt_disable();
702 
703 	start = __this_cpu_read(idt_desc.address);
704 	end = start + __this_cpu_read(idt_desc.size) + 1;
705 
706 	xen_mc_flush();
707 
708 	native_write_idt_entry(dt, entrynum, g);
709 
710 	if (p >= start && (p + 8) <= end) {
711 		struct trap_info info[2];
712 
713 		info[1].address = 0;
714 
715 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
716 			if (HYPERVISOR_set_trap_table(info))
717 				BUG();
718 	}
719 
720 	preempt_enable();
721 }
722 
723 static void xen_convert_trap_info(const struct desc_ptr *desc,
724 				  struct trap_info *traps)
725 {
726 	unsigned in, out, count;
727 
728 	count = (desc->size+1) / sizeof(gate_desc);
729 	BUG_ON(count > 256);
730 
731 	for (in = out = 0; in < count; in++) {
732 		gate_desc *entry = (gate_desc *)(desc->address) + in;
733 
734 		if (cvt_gate_to_trap(in, entry, &traps[out]))
735 			out++;
736 	}
737 	traps[out].address = 0;
738 }
739 
740 void xen_copy_trap_info(struct trap_info *traps)
741 {
742 	const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
743 
744 	xen_convert_trap_info(desc, traps);
745 }
746 
747 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
748    hold a spinlock to protect the static traps[] array (static because
749    it avoids allocation, and saves stack space). */
750 static void xen_load_idt(const struct desc_ptr *desc)
751 {
752 	static DEFINE_SPINLOCK(lock);
753 	static struct trap_info traps[257];
754 
755 	trace_xen_cpu_load_idt(desc);
756 
757 	spin_lock(&lock);
758 
759 	memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
760 
761 	xen_convert_trap_info(desc, traps);
762 
763 	xen_mc_flush();
764 	if (HYPERVISOR_set_trap_table(traps))
765 		BUG();
766 
767 	spin_unlock(&lock);
768 }
769 
770 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
771    they're handled differently. */
772 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
773 				const void *desc, int type)
774 {
775 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
776 
777 	preempt_disable();
778 
779 	switch (type) {
780 	case DESC_LDT:
781 	case DESC_TSS:
782 		/* ignore */
783 		break;
784 
785 	default: {
786 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
787 
788 		xen_mc_flush();
789 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
790 			BUG();
791 	}
792 
793 	}
794 
795 	preempt_enable();
796 }
797 
798 /*
799  * Version of write_gdt_entry for use at early boot-time needed to
800  * update an entry as simply as possible.
801  */
802 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
803 					    const void *desc, int type)
804 {
805 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
806 
807 	switch (type) {
808 	case DESC_LDT:
809 	case DESC_TSS:
810 		/* ignore */
811 		break;
812 
813 	default: {
814 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
815 
816 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
817 			dt[entry] = *(struct desc_struct *)desc;
818 	}
819 
820 	}
821 }
822 
823 static void xen_load_sp0(unsigned long sp0)
824 {
825 	struct multicall_space mcs;
826 
827 	mcs = xen_mc_entry(0);
828 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
829 	xen_mc_issue(PARAVIRT_LAZY_CPU);
830 	this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
831 }
832 
833 void xen_set_iopl_mask(unsigned mask)
834 {
835 	struct physdev_set_iopl set_iopl;
836 
837 	/* Force the change at ring 0. */
838 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
839 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
840 }
841 
842 static void xen_io_delay(void)
843 {
844 }
845 
846 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
847 
848 static unsigned long xen_read_cr0(void)
849 {
850 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
851 
852 	if (unlikely(cr0 == 0)) {
853 		cr0 = native_read_cr0();
854 		this_cpu_write(xen_cr0_value, cr0);
855 	}
856 
857 	return cr0;
858 }
859 
860 static void xen_write_cr0(unsigned long cr0)
861 {
862 	struct multicall_space mcs;
863 
864 	this_cpu_write(xen_cr0_value, cr0);
865 
866 	/* Only pay attention to cr0.TS; everything else is
867 	   ignored. */
868 	mcs = xen_mc_entry(0);
869 
870 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
871 
872 	xen_mc_issue(PARAVIRT_LAZY_CPU);
873 }
874 
875 static void xen_write_cr4(unsigned long cr4)
876 {
877 	cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
878 
879 	native_write_cr4(cr4);
880 }
881 #ifdef CONFIG_X86_64
882 static inline unsigned long xen_read_cr8(void)
883 {
884 	return 0;
885 }
886 static inline void xen_write_cr8(unsigned long val)
887 {
888 	BUG_ON(val);
889 }
890 #endif
891 
892 static u64 xen_read_msr_safe(unsigned int msr, int *err)
893 {
894 	u64 val;
895 
896 	if (pmu_msr_read(msr, &val, err))
897 		return val;
898 
899 	val = native_read_msr_safe(msr, err);
900 	switch (msr) {
901 	case MSR_IA32_APICBASE:
902 #ifdef CONFIG_X86_X2APIC
903 		if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
904 #endif
905 			val &= ~X2APIC_ENABLE;
906 		break;
907 	}
908 	return val;
909 }
910 
911 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
912 {
913 	int ret;
914 
915 	ret = 0;
916 
917 	switch (msr) {
918 #ifdef CONFIG_X86_64
919 		unsigned which;
920 		u64 base;
921 
922 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
923 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
924 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
925 
926 	set:
927 		base = ((u64)high << 32) | low;
928 		if (HYPERVISOR_set_segment_base(which, base) != 0)
929 			ret = -EIO;
930 		break;
931 #endif
932 
933 	case MSR_STAR:
934 	case MSR_CSTAR:
935 	case MSR_LSTAR:
936 	case MSR_SYSCALL_MASK:
937 	case MSR_IA32_SYSENTER_CS:
938 	case MSR_IA32_SYSENTER_ESP:
939 	case MSR_IA32_SYSENTER_EIP:
940 		/* Fast syscall setup is all done in hypercalls, so
941 		   these are all ignored.  Stub them out here to stop
942 		   Xen console noise. */
943 		break;
944 
945 	default:
946 		if (!pmu_msr_write(msr, low, high, &ret))
947 			ret = native_write_msr_safe(msr, low, high);
948 	}
949 
950 	return ret;
951 }
952 
953 static u64 xen_read_msr(unsigned int msr)
954 {
955 	/*
956 	 * This will silently swallow a #GP from RDMSR.  It may be worth
957 	 * changing that.
958 	 */
959 	int err;
960 
961 	return xen_read_msr_safe(msr, &err);
962 }
963 
964 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
965 {
966 	/*
967 	 * This will silently swallow a #GP from WRMSR.  It may be worth
968 	 * changing that.
969 	 */
970 	xen_write_msr_safe(msr, low, high);
971 }
972 
973 /* This is called once we have the cpu_possible_mask */
974 void __init xen_setup_vcpu_info_placement(void)
975 {
976 	int cpu;
977 
978 	for_each_possible_cpu(cpu) {
979 		/* Set up direct vCPU id mapping for PV guests. */
980 		per_cpu(xen_vcpu_id, cpu) = cpu;
981 
982 		/*
983 		 * xen_vcpu_setup(cpu) can fail  -- in which case it
984 		 * falls back to the shared_info version for cpus
985 		 * where xen_vcpu_nr(cpu) < MAX_VIRT_CPUS.
986 		 *
987 		 * xen_cpu_up_prepare_pv() handles the rest by failing
988 		 * them in hotplug.
989 		 */
990 		(void) xen_vcpu_setup(cpu);
991 	}
992 
993 	/*
994 	 * xen_vcpu_setup managed to place the vcpu_info within the
995 	 * percpu area for all cpus, so make use of it.
996 	 */
997 	if (xen_have_vcpu_info_placement) {
998 		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
999 		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1000 		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1001 		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1002 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1003 	}
1004 }
1005 
1006 static const struct pv_info xen_info __initconst = {
1007 	.shared_kernel_pmd = 0,
1008 
1009 #ifdef CONFIG_X86_64
1010 	.extra_user_64bit_cs = FLAT_USER_CS64,
1011 #endif
1012 	.name = "Xen",
1013 };
1014 
1015 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1016 	.cpuid = xen_cpuid,
1017 
1018 	.set_debugreg = xen_set_debugreg,
1019 	.get_debugreg = xen_get_debugreg,
1020 
1021 	.read_cr0 = xen_read_cr0,
1022 	.write_cr0 = xen_write_cr0,
1023 
1024 	.write_cr4 = xen_write_cr4,
1025 
1026 #ifdef CONFIG_X86_64
1027 	.read_cr8 = xen_read_cr8,
1028 	.write_cr8 = xen_write_cr8,
1029 #endif
1030 
1031 	.wbinvd = native_wbinvd,
1032 
1033 	.read_msr = xen_read_msr,
1034 	.write_msr = xen_write_msr,
1035 
1036 	.read_msr_safe = xen_read_msr_safe,
1037 	.write_msr_safe = xen_write_msr_safe,
1038 
1039 	.read_pmc = xen_read_pmc,
1040 
1041 	.iret = xen_iret,
1042 #ifdef CONFIG_X86_64
1043 	.usergs_sysret64 = xen_sysret64,
1044 #endif
1045 
1046 	.load_tr_desc = paravirt_nop,
1047 	.set_ldt = xen_set_ldt,
1048 	.load_gdt = xen_load_gdt,
1049 	.load_idt = xen_load_idt,
1050 	.load_tls = xen_load_tls,
1051 #ifdef CONFIG_X86_64
1052 	.load_gs_index = xen_load_gs_index,
1053 #endif
1054 
1055 	.alloc_ldt = xen_alloc_ldt,
1056 	.free_ldt = xen_free_ldt,
1057 
1058 	.store_tr = xen_store_tr,
1059 
1060 	.write_ldt_entry = xen_write_ldt_entry,
1061 	.write_gdt_entry = xen_write_gdt_entry,
1062 	.write_idt_entry = xen_write_idt_entry,
1063 	.load_sp0 = xen_load_sp0,
1064 
1065 	.set_iopl_mask = xen_set_iopl_mask,
1066 	.io_delay = xen_io_delay,
1067 
1068 	/* Xen takes care of %gs when switching to usermode for us */
1069 	.swapgs = paravirt_nop,
1070 
1071 	.start_context_switch = paravirt_start_context_switch,
1072 	.end_context_switch = xen_end_context_switch,
1073 };
1074 
1075 static void xen_restart(char *msg)
1076 {
1077 	xen_reboot(SHUTDOWN_reboot);
1078 }
1079 
1080 static void xen_machine_halt(void)
1081 {
1082 	xen_reboot(SHUTDOWN_poweroff);
1083 }
1084 
1085 static void xen_machine_power_off(void)
1086 {
1087 	if (pm_power_off)
1088 		pm_power_off();
1089 	xen_reboot(SHUTDOWN_poweroff);
1090 }
1091 
1092 static void xen_crash_shutdown(struct pt_regs *regs)
1093 {
1094 	xen_reboot(SHUTDOWN_crash);
1095 }
1096 
1097 static const struct machine_ops xen_machine_ops __initconst = {
1098 	.restart = xen_restart,
1099 	.halt = xen_machine_halt,
1100 	.power_off = xen_machine_power_off,
1101 	.shutdown = xen_machine_halt,
1102 	.crash_shutdown = xen_crash_shutdown,
1103 	.emergency_restart = xen_emergency_restart,
1104 };
1105 
1106 static unsigned char xen_get_nmi_reason(void)
1107 {
1108 	unsigned char reason = 0;
1109 
1110 	/* Construct a value which looks like it came from port 0x61. */
1111 	if (test_bit(_XEN_NMIREASON_io_error,
1112 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1113 		reason |= NMI_REASON_IOCHK;
1114 	if (test_bit(_XEN_NMIREASON_pci_serr,
1115 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1116 		reason |= NMI_REASON_SERR;
1117 
1118 	return reason;
1119 }
1120 
1121 static void __init xen_boot_params_init_edd(void)
1122 {
1123 #if IS_ENABLED(CONFIG_EDD)
1124 	struct xen_platform_op op;
1125 	struct edd_info *edd_info;
1126 	u32 *mbr_signature;
1127 	unsigned nr;
1128 	int ret;
1129 
1130 	edd_info = boot_params.eddbuf;
1131 	mbr_signature = boot_params.edd_mbr_sig_buffer;
1132 
1133 	op.cmd = XENPF_firmware_info;
1134 
1135 	op.u.firmware_info.type = XEN_FW_DISK_INFO;
1136 	for (nr = 0; nr < EDDMAXNR; nr++) {
1137 		struct edd_info *info = edd_info + nr;
1138 
1139 		op.u.firmware_info.index = nr;
1140 		info->params.length = sizeof(info->params);
1141 		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1142 				     &info->params);
1143 		ret = HYPERVISOR_platform_op(&op);
1144 		if (ret)
1145 			break;
1146 
1147 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1148 		C(device);
1149 		C(version);
1150 		C(interface_support);
1151 		C(legacy_max_cylinder);
1152 		C(legacy_max_head);
1153 		C(legacy_sectors_per_track);
1154 #undef C
1155 	}
1156 	boot_params.eddbuf_entries = nr;
1157 
1158 	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1159 	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1160 		op.u.firmware_info.index = nr;
1161 		ret = HYPERVISOR_platform_op(&op);
1162 		if (ret)
1163 			break;
1164 		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1165 	}
1166 	boot_params.edd_mbr_sig_buf_entries = nr;
1167 #endif
1168 }
1169 
1170 /*
1171  * Set up the GDT and segment registers for -fstack-protector.  Until
1172  * we do this, we have to be careful not to call any stack-protected
1173  * function, which is most of the kernel.
1174  */
1175 static void __init xen_setup_gdt(int cpu)
1176 {
1177 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1178 	pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1179 
1180 	setup_stack_canary_segment(cpu);
1181 	switch_to_new_gdt(cpu);
1182 
1183 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1184 	pv_cpu_ops.load_gdt = xen_load_gdt;
1185 }
1186 
1187 static void __init xen_dom0_set_legacy_features(void)
1188 {
1189 	x86_platform.legacy.rtc = 1;
1190 }
1191 
1192 /* First C function to be called on Xen boot */
1193 asmlinkage __visible void __init xen_start_kernel(void)
1194 {
1195 	struct physdev_set_iopl set_iopl;
1196 	unsigned long initrd_start = 0;
1197 	int rc;
1198 
1199 	if (!xen_start_info)
1200 		return;
1201 
1202 	xen_domain_type = XEN_PV_DOMAIN;
1203 	xen_start_flags = xen_start_info->flags;
1204 
1205 	xen_setup_features();
1206 
1207 	/* Install Xen paravirt ops */
1208 	pv_info = xen_info;
1209 	pv_init_ops.patch = paravirt_patch_default;
1210 	pv_cpu_ops = xen_cpu_ops;
1211 	xen_init_irq_ops();
1212 
1213 	/*
1214 	 * Setup xen_vcpu early because it is needed for
1215 	 * local_irq_disable(), irqs_disabled(), e.g. in printk().
1216 	 *
1217 	 * Don't do the full vcpu_info placement stuff until we have
1218 	 * the cpu_possible_mask and a non-dummy shared_info.
1219 	 */
1220 	xen_vcpu_info_reset(0);
1221 
1222 	x86_platform.get_nmi_reason = xen_get_nmi_reason;
1223 
1224 	x86_init.resources.memory_setup = xen_memory_setup;
1225 	x86_init.irqs.intr_mode_init	= x86_init_noop;
1226 	x86_init.oem.arch_setup = xen_arch_setup;
1227 	x86_init.oem.banner = xen_banner;
1228 	x86_init.hyper.init_platform = xen_pv_init_platform;
1229 	x86_init.hyper.guest_late_init = xen_pv_guest_late_init;
1230 
1231 	/*
1232 	 * Set up some pagetable state before starting to set any ptes.
1233 	 */
1234 
1235 	xen_setup_machphys_mapping();
1236 	xen_init_mmu_ops();
1237 
1238 	/* Prevent unwanted bits from being set in PTEs. */
1239 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1240 	__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
1241 
1242 	/*
1243 	 * Prevent page tables from being allocated in highmem, even
1244 	 * if CONFIG_HIGHPTE is enabled.
1245 	 */
1246 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1247 
1248 	/* Get mfn list */
1249 	xen_build_dynamic_phys_to_machine();
1250 
1251 	/*
1252 	 * Set up kernel GDT and segment registers, mainly so that
1253 	 * -fstack-protector code can be executed.
1254 	 */
1255 	xen_setup_gdt(0);
1256 
1257 	/* Work out if we support NX */
1258 	get_cpu_cap(&boot_cpu_data);
1259 	x86_configure_nx();
1260 
1261 	/* Determine virtual and physical address sizes */
1262 	get_cpu_address_sizes(&boot_cpu_data);
1263 
1264 	/* Let's presume PV guests always boot on vCPU with id 0. */
1265 	per_cpu(xen_vcpu_id, 0) = 0;
1266 
1267 	idt_setup_early_handler();
1268 
1269 	xen_init_capabilities();
1270 
1271 #ifdef CONFIG_X86_LOCAL_APIC
1272 	/*
1273 	 * set up the basic apic ops.
1274 	 */
1275 	xen_init_apic();
1276 #endif
1277 
1278 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1279 		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1280 		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1281 	}
1282 
1283 	machine_ops = xen_machine_ops;
1284 
1285 	/*
1286 	 * The only reliable way to retain the initial address of the
1287 	 * percpu gdt_page is to remember it here, so we can go and
1288 	 * mark it RW later, when the initial percpu area is freed.
1289 	 */
1290 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1291 
1292 	xen_smp_init();
1293 
1294 #ifdef CONFIG_ACPI_NUMA
1295 	/*
1296 	 * The pages we from Xen are not related to machine pages, so
1297 	 * any NUMA information the kernel tries to get from ACPI will
1298 	 * be meaningless.  Prevent it from trying.
1299 	 */
1300 	acpi_numa = -1;
1301 #endif
1302 	WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1303 
1304 	local_irq_disable();
1305 	early_boot_irqs_disabled = true;
1306 
1307 	xen_raw_console_write("mapping kernel into physical memory\n");
1308 	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1309 				   xen_start_info->nr_pages);
1310 	xen_reserve_special_pages();
1311 
1312 	/* keep using Xen gdt for now; no urgent need to change it */
1313 
1314 #ifdef CONFIG_X86_32
1315 	pv_info.kernel_rpl = 1;
1316 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1317 		pv_info.kernel_rpl = 0;
1318 #else
1319 	pv_info.kernel_rpl = 0;
1320 #endif
1321 	/* set the limit of our address space */
1322 	xen_reserve_top();
1323 
1324 	/*
1325 	 * We used to do this in xen_arch_setup, but that is too late
1326 	 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1327 	 * early_amd_init which pokes 0xcf8 port.
1328 	 */
1329 	set_iopl.iopl = 1;
1330 	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1331 	if (rc != 0)
1332 		xen_raw_printk("physdev_op failed %d\n", rc);
1333 
1334 #ifdef CONFIG_X86_32
1335 	/* set up basic CPUID stuff */
1336 	cpu_detect(&new_cpu_data);
1337 	set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1338 	new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1339 #endif
1340 
1341 	if (xen_start_info->mod_start) {
1342 	    if (xen_start_info->flags & SIF_MOD_START_PFN)
1343 		initrd_start = PFN_PHYS(xen_start_info->mod_start);
1344 	    else
1345 		initrd_start = __pa(xen_start_info->mod_start);
1346 	}
1347 
1348 	/* Poke various useful things into boot_params */
1349 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1350 	boot_params.hdr.ramdisk_image = initrd_start;
1351 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1352 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1353 	boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1354 
1355 	if (!xen_initial_domain()) {
1356 		add_preferred_console("xenboot", 0, NULL);
1357 		if (pci_xen)
1358 			x86_init.pci.arch_init = pci_xen_init;
1359 	} else {
1360 		const struct dom0_vga_console_info *info =
1361 			(void *)((char *)xen_start_info +
1362 				 xen_start_info->console.dom0.info_off);
1363 		struct xen_platform_op op = {
1364 			.cmd = XENPF_firmware_info,
1365 			.interface_version = XENPF_INTERFACE_VERSION,
1366 			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1367 		};
1368 
1369 		x86_platform.set_legacy_features =
1370 				xen_dom0_set_legacy_features;
1371 		xen_init_vga(info, xen_start_info->console.dom0.info_size);
1372 		xen_start_info->console.domU.mfn = 0;
1373 		xen_start_info->console.domU.evtchn = 0;
1374 
1375 		if (HYPERVISOR_platform_op(&op) == 0)
1376 			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1377 
1378 		/* Make sure ACS will be enabled */
1379 		pci_request_acs();
1380 
1381 		xen_acpi_sleep_register();
1382 
1383 		/* Avoid searching for BIOS MP tables */
1384 		x86_init.mpparse.find_smp_config = x86_init_noop;
1385 		x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1386 
1387 		xen_boot_params_init_edd();
1388 	}
1389 
1390 	if (!boot_params.screen_info.orig_video_isVGA)
1391 		add_preferred_console("tty", 0, NULL);
1392 	add_preferred_console("hvc", 0, NULL);
1393 	if (boot_params.screen_info.orig_video_isVGA)
1394 		add_preferred_console("tty", 0, NULL);
1395 
1396 #ifdef CONFIG_PCI
1397 	/* PCI BIOS service won't work from a PV guest. */
1398 	pci_probe &= ~PCI_PROBE_BIOS;
1399 #endif
1400 	xen_raw_console_write("about to get started...\n");
1401 
1402 	/* We need this for printk timestamps */
1403 	xen_setup_runstate_info(0);
1404 
1405 	xen_efi_init();
1406 
1407 	/* Start the world */
1408 #ifdef CONFIG_X86_32
1409 	i386_start_kernel();
1410 #else
1411 	cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1412 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1413 #endif
1414 }
1415 
1416 static int xen_cpu_up_prepare_pv(unsigned int cpu)
1417 {
1418 	int rc;
1419 
1420 	if (per_cpu(xen_vcpu, cpu) == NULL)
1421 		return -ENODEV;
1422 
1423 	xen_setup_timer(cpu);
1424 
1425 	rc = xen_smp_intr_init(cpu);
1426 	if (rc) {
1427 		WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1428 		     cpu, rc);
1429 		return rc;
1430 	}
1431 
1432 	rc = xen_smp_intr_init_pv(cpu);
1433 	if (rc) {
1434 		WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1435 		     cpu, rc);
1436 		return rc;
1437 	}
1438 
1439 	return 0;
1440 }
1441 
1442 static int xen_cpu_dead_pv(unsigned int cpu)
1443 {
1444 	xen_smp_intr_free(cpu);
1445 	xen_smp_intr_free_pv(cpu);
1446 
1447 	xen_teardown_timer(cpu);
1448 
1449 	return 0;
1450 }
1451 
1452 static uint32_t __init xen_platform_pv(void)
1453 {
1454 	if (xen_pv_domain())
1455 		return xen_cpuid_base();
1456 
1457 	return 0;
1458 }
1459 
1460 const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1461 	.name                   = "Xen PV",
1462 	.detect                 = xen_platform_pv,
1463 	.type			= X86_HYPER_XEN_PV,
1464 	.runtime.pin_vcpu       = xen_pin_vcpu,
1465 };
1466