xref: /openbmc/linux/arch/x86/xen/enlighten_pv.c (revision 4da722ca)
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13 
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/export.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 #include <linux/edd.h>
35 #include <linux/frame.h>
36 
37 #include <xen/xen.h>
38 #include <xen/events.h>
39 #include <xen/interface/xen.h>
40 #include <xen/interface/version.h>
41 #include <xen/interface/physdev.h>
42 #include <xen/interface/vcpu.h>
43 #include <xen/interface/memory.h>
44 #include <xen/interface/nmi.h>
45 #include <xen/interface/xen-mca.h>
46 #include <xen/features.h>
47 #include <xen/page.h>
48 #include <xen/hvc-console.h>
49 #include <xen/acpi.h>
50 
51 #include <asm/paravirt.h>
52 #include <asm/apic.h>
53 #include <asm/page.h>
54 #include <asm/xen/pci.h>
55 #include <asm/xen/hypercall.h>
56 #include <asm/xen/hypervisor.h>
57 #include <asm/xen/cpuid.h>
58 #include <asm/fixmap.h>
59 #include <asm/processor.h>
60 #include <asm/proto.h>
61 #include <asm/msr-index.h>
62 #include <asm/traps.h>
63 #include <asm/setup.h>
64 #include <asm/desc.h>
65 #include <asm/pgalloc.h>
66 #include <asm/pgtable.h>
67 #include <asm/tlbflush.h>
68 #include <asm/reboot.h>
69 #include <asm/stackprotector.h>
70 #include <asm/hypervisor.h>
71 #include <asm/mach_traps.h>
72 #include <asm/mwait.h>
73 #include <asm/pci_x86.h>
74 #include <asm/cpu.h>
75 
76 #ifdef CONFIG_ACPI
77 #include <linux/acpi.h>
78 #include <asm/acpi.h>
79 #include <acpi/pdc_intel.h>
80 #include <acpi/processor.h>
81 #include <xen/interface/platform.h>
82 #endif
83 
84 #include "xen-ops.h"
85 #include "mmu.h"
86 #include "smp.h"
87 #include "multicalls.h"
88 #include "pmu.h"
89 
90 void *xen_initial_gdt;
91 
92 static int xen_cpu_up_prepare_pv(unsigned int cpu);
93 static int xen_cpu_dead_pv(unsigned int cpu);
94 
95 struct tls_descs {
96 	struct desc_struct desc[3];
97 };
98 
99 /*
100  * Updating the 3 TLS descriptors in the GDT on every task switch is
101  * surprisingly expensive so we avoid updating them if they haven't
102  * changed.  Since Xen writes different descriptors than the one
103  * passed in the update_descriptor hypercall we keep shadow copies to
104  * compare against.
105  */
106 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
107 
108 static void __init xen_banner(void)
109 {
110 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
111 	struct xen_extraversion extra;
112 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
113 
114 	pr_info("Booting paravirtualized kernel on %s\n", pv_info.name);
115 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
116 	       version >> 16, version & 0xffff, extra.extraversion,
117 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
118 }
119 /* Check if running on Xen version (major, minor) or later */
120 bool
121 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
122 {
123 	unsigned int version;
124 
125 	if (!xen_domain())
126 		return false;
127 
128 	version = HYPERVISOR_xen_version(XENVER_version, NULL);
129 	if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
130 		((version >> 16) > major))
131 		return true;
132 	return false;
133 }
134 
135 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
136 static __read_mostly unsigned int cpuid_leaf5_edx_val;
137 
138 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
139 		      unsigned int *cx, unsigned int *dx)
140 {
141 	unsigned maskebx = ~0;
142 
143 	/*
144 	 * Mask out inconvenient features, to try and disable as many
145 	 * unsupported kernel subsystems as possible.
146 	 */
147 	switch (*ax) {
148 	case CPUID_MWAIT_LEAF:
149 		/* Synthesize the values.. */
150 		*ax = 0;
151 		*bx = 0;
152 		*cx = cpuid_leaf5_ecx_val;
153 		*dx = cpuid_leaf5_edx_val;
154 		return;
155 
156 	case 0xb:
157 		/* Suppress extended topology stuff */
158 		maskebx = 0;
159 		break;
160 	}
161 
162 	asm(XEN_EMULATE_PREFIX "cpuid"
163 		: "=a" (*ax),
164 		  "=b" (*bx),
165 		  "=c" (*cx),
166 		  "=d" (*dx)
167 		: "0" (*ax), "2" (*cx));
168 
169 	*bx &= maskebx;
170 }
171 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
172 
173 static bool __init xen_check_mwait(void)
174 {
175 #ifdef CONFIG_ACPI
176 	struct xen_platform_op op = {
177 		.cmd			= XENPF_set_processor_pminfo,
178 		.u.set_pminfo.id	= -1,
179 		.u.set_pminfo.type	= XEN_PM_PDC,
180 	};
181 	uint32_t buf[3];
182 	unsigned int ax, bx, cx, dx;
183 	unsigned int mwait_mask;
184 
185 	/* We need to determine whether it is OK to expose the MWAIT
186 	 * capability to the kernel to harvest deeper than C3 states from ACPI
187 	 * _CST using the processor_harvest_xen.c module. For this to work, we
188 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
189 	 * checks against). The hypervisor won't expose the MWAIT flag because
190 	 * it would break backwards compatibility; so we will find out directly
191 	 * from the hardware and hypercall.
192 	 */
193 	if (!xen_initial_domain())
194 		return false;
195 
196 	/*
197 	 * When running under platform earlier than Xen4.2, do not expose
198 	 * mwait, to avoid the risk of loading native acpi pad driver
199 	 */
200 	if (!xen_running_on_version_or_later(4, 2))
201 		return false;
202 
203 	ax = 1;
204 	cx = 0;
205 
206 	native_cpuid(&ax, &bx, &cx, &dx);
207 
208 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
209 		     (1 << (X86_FEATURE_MWAIT % 32));
210 
211 	if ((cx & mwait_mask) != mwait_mask)
212 		return false;
213 
214 	/* We need to emulate the MWAIT_LEAF and for that we need both
215 	 * ecx and edx. The hypercall provides only partial information.
216 	 */
217 
218 	ax = CPUID_MWAIT_LEAF;
219 	bx = 0;
220 	cx = 0;
221 	dx = 0;
222 
223 	native_cpuid(&ax, &bx, &cx, &dx);
224 
225 	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
226 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
227 	 */
228 	buf[0] = ACPI_PDC_REVISION_ID;
229 	buf[1] = 1;
230 	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
231 
232 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
233 
234 	if ((HYPERVISOR_platform_op(&op) == 0) &&
235 	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
236 		cpuid_leaf5_ecx_val = cx;
237 		cpuid_leaf5_edx_val = dx;
238 	}
239 	return true;
240 #else
241 	return false;
242 #endif
243 }
244 
245 static bool __init xen_check_xsave(void)
246 {
247 	unsigned int cx, xsave_mask;
248 
249 	cx = cpuid_ecx(1);
250 
251 	xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
252 		     (1 << (X86_FEATURE_OSXSAVE % 32));
253 
254 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
255 	return (cx & xsave_mask) == xsave_mask;
256 }
257 
258 static void __init xen_init_capabilities(void)
259 {
260 	setup_force_cpu_cap(X86_FEATURE_XENPV);
261 	setup_clear_cpu_cap(X86_FEATURE_DCA);
262 	setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
263 	setup_clear_cpu_cap(X86_FEATURE_MTRR);
264 	setup_clear_cpu_cap(X86_FEATURE_ACC);
265 	setup_clear_cpu_cap(X86_FEATURE_X2APIC);
266 
267 	if (!xen_initial_domain())
268 		setup_clear_cpu_cap(X86_FEATURE_ACPI);
269 
270 	if (xen_check_mwait())
271 		setup_force_cpu_cap(X86_FEATURE_MWAIT);
272 	else
273 		setup_clear_cpu_cap(X86_FEATURE_MWAIT);
274 
275 	if (!xen_check_xsave()) {
276 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
277 		setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
278 	}
279 }
280 
281 static void xen_set_debugreg(int reg, unsigned long val)
282 {
283 	HYPERVISOR_set_debugreg(reg, val);
284 }
285 
286 static unsigned long xen_get_debugreg(int reg)
287 {
288 	return HYPERVISOR_get_debugreg(reg);
289 }
290 
291 static void xen_end_context_switch(struct task_struct *next)
292 {
293 	xen_mc_flush();
294 	paravirt_end_context_switch(next);
295 }
296 
297 static unsigned long xen_store_tr(void)
298 {
299 	return 0;
300 }
301 
302 /*
303  * Set the page permissions for a particular virtual address.  If the
304  * address is a vmalloc mapping (or other non-linear mapping), then
305  * find the linear mapping of the page and also set its protections to
306  * match.
307  */
308 static void set_aliased_prot(void *v, pgprot_t prot)
309 {
310 	int level;
311 	pte_t *ptep;
312 	pte_t pte;
313 	unsigned long pfn;
314 	struct page *page;
315 	unsigned char dummy;
316 
317 	ptep = lookup_address((unsigned long)v, &level);
318 	BUG_ON(ptep == NULL);
319 
320 	pfn = pte_pfn(*ptep);
321 	page = pfn_to_page(pfn);
322 
323 	pte = pfn_pte(pfn, prot);
324 
325 	/*
326 	 * Careful: update_va_mapping() will fail if the virtual address
327 	 * we're poking isn't populated in the page tables.  We don't
328 	 * need to worry about the direct map (that's always in the page
329 	 * tables), but we need to be careful about vmap space.  In
330 	 * particular, the top level page table can lazily propagate
331 	 * entries between processes, so if we've switched mms since we
332 	 * vmapped the target in the first place, we might not have the
333 	 * top-level page table entry populated.
334 	 *
335 	 * We disable preemption because we want the same mm active when
336 	 * we probe the target and when we issue the hypercall.  We'll
337 	 * have the same nominal mm, but if we're a kernel thread, lazy
338 	 * mm dropping could change our pgd.
339 	 *
340 	 * Out of an abundance of caution, this uses __get_user() to fault
341 	 * in the target address just in case there's some obscure case
342 	 * in which the target address isn't readable.
343 	 */
344 
345 	preempt_disable();
346 
347 	probe_kernel_read(&dummy, v, 1);
348 
349 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
350 		BUG();
351 
352 	if (!PageHighMem(page)) {
353 		void *av = __va(PFN_PHYS(pfn));
354 
355 		if (av != v)
356 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
357 				BUG();
358 	} else
359 		kmap_flush_unused();
360 
361 	preempt_enable();
362 }
363 
364 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
365 {
366 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
367 	int i;
368 
369 	/*
370 	 * We need to mark the all aliases of the LDT pages RO.  We
371 	 * don't need to call vm_flush_aliases(), though, since that's
372 	 * only responsible for flushing aliases out the TLBs, not the
373 	 * page tables, and Xen will flush the TLB for us if needed.
374 	 *
375 	 * To avoid confusing future readers: none of this is necessary
376 	 * to load the LDT.  The hypervisor only checks this when the
377 	 * LDT is faulted in due to subsequent descriptor access.
378 	 */
379 
380 	for (i = 0; i < entries; i += entries_per_page)
381 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
382 }
383 
384 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
385 {
386 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
387 	int i;
388 
389 	for (i = 0; i < entries; i += entries_per_page)
390 		set_aliased_prot(ldt + i, PAGE_KERNEL);
391 }
392 
393 static void xen_set_ldt(const void *addr, unsigned entries)
394 {
395 	struct mmuext_op *op;
396 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
397 
398 	trace_xen_cpu_set_ldt(addr, entries);
399 
400 	op = mcs.args;
401 	op->cmd = MMUEXT_SET_LDT;
402 	op->arg1.linear_addr = (unsigned long)addr;
403 	op->arg2.nr_ents = entries;
404 
405 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
406 
407 	xen_mc_issue(PARAVIRT_LAZY_CPU);
408 }
409 
410 static void xen_load_gdt(const struct desc_ptr *dtr)
411 {
412 	unsigned long va = dtr->address;
413 	unsigned int size = dtr->size + 1;
414 	unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
415 	unsigned long frames[pages];
416 	int f;
417 
418 	/*
419 	 * A GDT can be up to 64k in size, which corresponds to 8192
420 	 * 8-byte entries, or 16 4k pages..
421 	 */
422 
423 	BUG_ON(size > 65536);
424 	BUG_ON(va & ~PAGE_MASK);
425 
426 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
427 		int level;
428 		pte_t *ptep;
429 		unsigned long pfn, mfn;
430 		void *virt;
431 
432 		/*
433 		 * The GDT is per-cpu and is in the percpu data area.
434 		 * That can be virtually mapped, so we need to do a
435 		 * page-walk to get the underlying MFN for the
436 		 * hypercall.  The page can also be in the kernel's
437 		 * linear range, so we need to RO that mapping too.
438 		 */
439 		ptep = lookup_address(va, &level);
440 		BUG_ON(ptep == NULL);
441 
442 		pfn = pte_pfn(*ptep);
443 		mfn = pfn_to_mfn(pfn);
444 		virt = __va(PFN_PHYS(pfn));
445 
446 		frames[f] = mfn;
447 
448 		make_lowmem_page_readonly((void *)va);
449 		make_lowmem_page_readonly(virt);
450 	}
451 
452 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
453 		BUG();
454 }
455 
456 /*
457  * load_gdt for early boot, when the gdt is only mapped once
458  */
459 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
460 {
461 	unsigned long va = dtr->address;
462 	unsigned int size = dtr->size + 1;
463 	unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
464 	unsigned long frames[pages];
465 	int f;
466 
467 	/*
468 	 * A GDT can be up to 64k in size, which corresponds to 8192
469 	 * 8-byte entries, or 16 4k pages..
470 	 */
471 
472 	BUG_ON(size > 65536);
473 	BUG_ON(va & ~PAGE_MASK);
474 
475 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
476 		pte_t pte;
477 		unsigned long pfn, mfn;
478 
479 		pfn = virt_to_pfn(va);
480 		mfn = pfn_to_mfn(pfn);
481 
482 		pte = pfn_pte(pfn, PAGE_KERNEL_RO);
483 
484 		if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
485 			BUG();
486 
487 		frames[f] = mfn;
488 	}
489 
490 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
491 		BUG();
492 }
493 
494 static inline bool desc_equal(const struct desc_struct *d1,
495 			      const struct desc_struct *d2)
496 {
497 	return d1->a == d2->a && d1->b == d2->b;
498 }
499 
500 static void load_TLS_descriptor(struct thread_struct *t,
501 				unsigned int cpu, unsigned int i)
502 {
503 	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
504 	struct desc_struct *gdt;
505 	xmaddr_t maddr;
506 	struct multicall_space mc;
507 
508 	if (desc_equal(shadow, &t->tls_array[i]))
509 		return;
510 
511 	*shadow = t->tls_array[i];
512 
513 	gdt = get_cpu_gdt_rw(cpu);
514 	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
515 	mc = __xen_mc_entry(0);
516 
517 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
518 }
519 
520 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
521 {
522 	/*
523 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
524 	 * and lazy gs handling is enabled, it means we're in a
525 	 * context switch, and %gs has just been saved.  This means we
526 	 * can zero it out to prevent faults on exit from the
527 	 * hypervisor if the next process has no %gs.  Either way, it
528 	 * has been saved, and the new value will get loaded properly.
529 	 * This will go away as soon as Xen has been modified to not
530 	 * save/restore %gs for normal hypercalls.
531 	 *
532 	 * On x86_64, this hack is not used for %gs, because gs points
533 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
534 	 * must not zero %gs on x86_64
535 	 *
536 	 * For x86_64, we need to zero %fs, otherwise we may get an
537 	 * exception between the new %fs descriptor being loaded and
538 	 * %fs being effectively cleared at __switch_to().
539 	 */
540 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
541 #ifdef CONFIG_X86_32
542 		lazy_load_gs(0);
543 #else
544 		loadsegment(fs, 0);
545 #endif
546 	}
547 
548 	xen_mc_batch();
549 
550 	load_TLS_descriptor(t, cpu, 0);
551 	load_TLS_descriptor(t, cpu, 1);
552 	load_TLS_descriptor(t, cpu, 2);
553 
554 	xen_mc_issue(PARAVIRT_LAZY_CPU);
555 }
556 
557 #ifdef CONFIG_X86_64
558 static void xen_load_gs_index(unsigned int idx)
559 {
560 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
561 		BUG();
562 }
563 #endif
564 
565 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
566 				const void *ptr)
567 {
568 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
569 	u64 entry = *(u64 *)ptr;
570 
571 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
572 
573 	preempt_disable();
574 
575 	xen_mc_flush();
576 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
577 		BUG();
578 
579 	preempt_enable();
580 }
581 
582 static int cvt_gate_to_trap(int vector, const gate_desc *val,
583 			    struct trap_info *info)
584 {
585 	unsigned long addr;
586 
587 	if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
588 		return 0;
589 
590 	info->vector = vector;
591 
592 	addr = gate_offset(*val);
593 #ifdef CONFIG_X86_64
594 	/*
595 	 * Look for known traps using IST, and substitute them
596 	 * appropriately.  The debugger ones are the only ones we care
597 	 * about.  Xen will handle faults like double_fault,
598 	 * so we should never see them.  Warn if
599 	 * there's an unexpected IST-using fault handler.
600 	 */
601 	if (addr == (unsigned long)debug)
602 		addr = (unsigned long)xen_debug;
603 	else if (addr == (unsigned long)int3)
604 		addr = (unsigned long)xen_int3;
605 	else if (addr == (unsigned long)stack_segment)
606 		addr = (unsigned long)xen_stack_segment;
607 	else if (addr == (unsigned long)double_fault) {
608 		/* Don't need to handle these */
609 		return 0;
610 #ifdef CONFIG_X86_MCE
611 	} else if (addr == (unsigned long)machine_check) {
612 		/*
613 		 * when xen hypervisor inject vMCE to guest,
614 		 * use native mce handler to handle it
615 		 */
616 		;
617 #endif
618 	} else if (addr == (unsigned long)nmi)
619 		/*
620 		 * Use the native version as well.
621 		 */
622 		;
623 	else {
624 		/* Some other trap using IST? */
625 		if (WARN_ON(val->ist != 0))
626 			return 0;
627 	}
628 #endif	/* CONFIG_X86_64 */
629 	info->address = addr;
630 
631 	info->cs = gate_segment(*val);
632 	info->flags = val->dpl;
633 	/* interrupt gates clear IF */
634 	if (val->type == GATE_INTERRUPT)
635 		info->flags |= 1 << 2;
636 
637 	return 1;
638 }
639 
640 /* Locations of each CPU's IDT */
641 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
642 
643 /* Set an IDT entry.  If the entry is part of the current IDT, then
644    also update Xen. */
645 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
646 {
647 	unsigned long p = (unsigned long)&dt[entrynum];
648 	unsigned long start, end;
649 
650 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
651 
652 	preempt_disable();
653 
654 	start = __this_cpu_read(idt_desc.address);
655 	end = start + __this_cpu_read(idt_desc.size) + 1;
656 
657 	xen_mc_flush();
658 
659 	native_write_idt_entry(dt, entrynum, g);
660 
661 	if (p >= start && (p + 8) <= end) {
662 		struct trap_info info[2];
663 
664 		info[1].address = 0;
665 
666 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
667 			if (HYPERVISOR_set_trap_table(info))
668 				BUG();
669 	}
670 
671 	preempt_enable();
672 }
673 
674 static void xen_convert_trap_info(const struct desc_ptr *desc,
675 				  struct trap_info *traps)
676 {
677 	unsigned in, out, count;
678 
679 	count = (desc->size+1) / sizeof(gate_desc);
680 	BUG_ON(count > 256);
681 
682 	for (in = out = 0; in < count; in++) {
683 		gate_desc *entry = (gate_desc *)(desc->address) + in;
684 
685 		if (cvt_gate_to_trap(in, entry, &traps[out]))
686 			out++;
687 	}
688 	traps[out].address = 0;
689 }
690 
691 void xen_copy_trap_info(struct trap_info *traps)
692 {
693 	const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
694 
695 	xen_convert_trap_info(desc, traps);
696 }
697 
698 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
699    hold a spinlock to protect the static traps[] array (static because
700    it avoids allocation, and saves stack space). */
701 static void xen_load_idt(const struct desc_ptr *desc)
702 {
703 	static DEFINE_SPINLOCK(lock);
704 	static struct trap_info traps[257];
705 
706 	trace_xen_cpu_load_idt(desc);
707 
708 	spin_lock(&lock);
709 
710 	memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
711 
712 	xen_convert_trap_info(desc, traps);
713 
714 	xen_mc_flush();
715 	if (HYPERVISOR_set_trap_table(traps))
716 		BUG();
717 
718 	spin_unlock(&lock);
719 }
720 
721 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
722    they're handled differently. */
723 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
724 				const void *desc, int type)
725 {
726 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
727 
728 	preempt_disable();
729 
730 	switch (type) {
731 	case DESC_LDT:
732 	case DESC_TSS:
733 		/* ignore */
734 		break;
735 
736 	default: {
737 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
738 
739 		xen_mc_flush();
740 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
741 			BUG();
742 	}
743 
744 	}
745 
746 	preempt_enable();
747 }
748 
749 /*
750  * Version of write_gdt_entry for use at early boot-time needed to
751  * update an entry as simply as possible.
752  */
753 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
754 					    const void *desc, int type)
755 {
756 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
757 
758 	switch (type) {
759 	case DESC_LDT:
760 	case DESC_TSS:
761 		/* ignore */
762 		break;
763 
764 	default: {
765 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
766 
767 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
768 			dt[entry] = *(struct desc_struct *)desc;
769 	}
770 
771 	}
772 }
773 
774 static void xen_load_sp0(struct tss_struct *tss,
775 			 struct thread_struct *thread)
776 {
777 	struct multicall_space mcs;
778 
779 	mcs = xen_mc_entry(0);
780 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
781 	xen_mc_issue(PARAVIRT_LAZY_CPU);
782 	tss->x86_tss.sp0 = thread->sp0;
783 }
784 
785 void xen_set_iopl_mask(unsigned mask)
786 {
787 	struct physdev_set_iopl set_iopl;
788 
789 	/* Force the change at ring 0. */
790 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
791 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
792 }
793 
794 static void xen_io_delay(void)
795 {
796 }
797 
798 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
799 
800 static unsigned long xen_read_cr0(void)
801 {
802 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
803 
804 	if (unlikely(cr0 == 0)) {
805 		cr0 = native_read_cr0();
806 		this_cpu_write(xen_cr0_value, cr0);
807 	}
808 
809 	return cr0;
810 }
811 
812 static void xen_write_cr0(unsigned long cr0)
813 {
814 	struct multicall_space mcs;
815 
816 	this_cpu_write(xen_cr0_value, cr0);
817 
818 	/* Only pay attention to cr0.TS; everything else is
819 	   ignored. */
820 	mcs = xen_mc_entry(0);
821 
822 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
823 
824 	xen_mc_issue(PARAVIRT_LAZY_CPU);
825 }
826 
827 static void xen_write_cr4(unsigned long cr4)
828 {
829 	cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
830 
831 	native_write_cr4(cr4);
832 }
833 #ifdef CONFIG_X86_64
834 static inline unsigned long xen_read_cr8(void)
835 {
836 	return 0;
837 }
838 static inline void xen_write_cr8(unsigned long val)
839 {
840 	BUG_ON(val);
841 }
842 #endif
843 
844 static u64 xen_read_msr_safe(unsigned int msr, int *err)
845 {
846 	u64 val;
847 
848 	if (pmu_msr_read(msr, &val, err))
849 		return val;
850 
851 	val = native_read_msr_safe(msr, err);
852 	switch (msr) {
853 	case MSR_IA32_APICBASE:
854 #ifdef CONFIG_X86_X2APIC
855 		if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
856 #endif
857 			val &= ~X2APIC_ENABLE;
858 		break;
859 	}
860 	return val;
861 }
862 
863 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
864 {
865 	int ret;
866 
867 	ret = 0;
868 
869 	switch (msr) {
870 #ifdef CONFIG_X86_64
871 		unsigned which;
872 		u64 base;
873 
874 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
875 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
876 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
877 
878 	set:
879 		base = ((u64)high << 32) | low;
880 		if (HYPERVISOR_set_segment_base(which, base) != 0)
881 			ret = -EIO;
882 		break;
883 #endif
884 
885 	case MSR_STAR:
886 	case MSR_CSTAR:
887 	case MSR_LSTAR:
888 	case MSR_SYSCALL_MASK:
889 	case MSR_IA32_SYSENTER_CS:
890 	case MSR_IA32_SYSENTER_ESP:
891 	case MSR_IA32_SYSENTER_EIP:
892 		/* Fast syscall setup is all done in hypercalls, so
893 		   these are all ignored.  Stub them out here to stop
894 		   Xen console noise. */
895 		break;
896 
897 	default:
898 		if (!pmu_msr_write(msr, low, high, &ret))
899 			ret = native_write_msr_safe(msr, low, high);
900 	}
901 
902 	return ret;
903 }
904 
905 static u64 xen_read_msr(unsigned int msr)
906 {
907 	/*
908 	 * This will silently swallow a #GP from RDMSR.  It may be worth
909 	 * changing that.
910 	 */
911 	int err;
912 
913 	return xen_read_msr_safe(msr, &err);
914 }
915 
916 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
917 {
918 	/*
919 	 * This will silently swallow a #GP from WRMSR.  It may be worth
920 	 * changing that.
921 	 */
922 	xen_write_msr_safe(msr, low, high);
923 }
924 
925 void xen_setup_shared_info(void)
926 {
927 	set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
928 
929 	HYPERVISOR_shared_info =
930 		(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
931 
932 	xen_setup_mfn_list_list();
933 
934 	if (system_state == SYSTEM_BOOTING) {
935 #ifndef CONFIG_SMP
936 		/*
937 		 * In UP this is as good a place as any to set up shared info.
938 		 * Limit this to boot only, at restore vcpu setup is done via
939 		 * xen_vcpu_restore().
940 		 */
941 		xen_setup_vcpu_info_placement();
942 #endif
943 		/*
944 		 * Now that shared info is set up we can start using routines
945 		 * that point to pvclock area.
946 		 */
947 		xen_init_time_ops();
948 	}
949 }
950 
951 /* This is called once we have the cpu_possible_mask */
952 void __ref xen_setup_vcpu_info_placement(void)
953 {
954 	int cpu;
955 
956 	for_each_possible_cpu(cpu) {
957 		/* Set up direct vCPU id mapping for PV guests. */
958 		per_cpu(xen_vcpu_id, cpu) = cpu;
959 
960 		/*
961 		 * xen_vcpu_setup(cpu) can fail  -- in which case it
962 		 * falls back to the shared_info version for cpus
963 		 * where xen_vcpu_nr(cpu) < MAX_VIRT_CPUS.
964 		 *
965 		 * xen_cpu_up_prepare_pv() handles the rest by failing
966 		 * them in hotplug.
967 		 */
968 		(void) xen_vcpu_setup(cpu);
969 	}
970 
971 	/*
972 	 * xen_vcpu_setup managed to place the vcpu_info within the
973 	 * percpu area for all cpus, so make use of it.
974 	 */
975 	if (xen_have_vcpu_info_placement) {
976 		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
977 		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
978 		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
979 		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
980 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
981 	}
982 }
983 
984 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
985 			  unsigned long addr, unsigned len)
986 {
987 	char *start, *end, *reloc;
988 	unsigned ret;
989 
990 	start = end = reloc = NULL;
991 
992 #define SITE(op, x)							\
993 	case PARAVIRT_PATCH(op.x):					\
994 	if (xen_have_vcpu_info_placement) {				\
995 		start = (char *)xen_##x##_direct;			\
996 		end = xen_##x##_direct_end;				\
997 		reloc = xen_##x##_direct_reloc;				\
998 	}								\
999 	goto patch_site
1000 
1001 	switch (type) {
1002 		SITE(pv_irq_ops, irq_enable);
1003 		SITE(pv_irq_ops, irq_disable);
1004 		SITE(pv_irq_ops, save_fl);
1005 		SITE(pv_irq_ops, restore_fl);
1006 #undef SITE
1007 
1008 	patch_site:
1009 		if (start == NULL || (end-start) > len)
1010 			goto default_patch;
1011 
1012 		ret = paravirt_patch_insns(insnbuf, len, start, end);
1013 
1014 		/* Note: because reloc is assigned from something that
1015 		   appears to be an array, gcc assumes it's non-null,
1016 		   but doesn't know its relationship with start and
1017 		   end. */
1018 		if (reloc > start && reloc < end) {
1019 			int reloc_off = reloc - start;
1020 			long *relocp = (long *)(insnbuf + reloc_off);
1021 			long delta = start - (char *)addr;
1022 
1023 			*relocp += delta;
1024 		}
1025 		break;
1026 
1027 	default_patch:
1028 	default:
1029 		ret = paravirt_patch_default(type, clobbers, insnbuf,
1030 					     addr, len);
1031 		break;
1032 	}
1033 
1034 	return ret;
1035 }
1036 
1037 static const struct pv_info xen_info __initconst = {
1038 	.shared_kernel_pmd = 0,
1039 
1040 #ifdef CONFIG_X86_64
1041 	.extra_user_64bit_cs = FLAT_USER_CS64,
1042 #endif
1043 	.name = "Xen",
1044 };
1045 
1046 static const struct pv_init_ops xen_init_ops __initconst = {
1047 	.patch = xen_patch,
1048 };
1049 
1050 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1051 	.cpuid = xen_cpuid,
1052 
1053 	.set_debugreg = xen_set_debugreg,
1054 	.get_debugreg = xen_get_debugreg,
1055 
1056 	.read_cr0 = xen_read_cr0,
1057 	.write_cr0 = xen_write_cr0,
1058 
1059 	.read_cr4 = native_read_cr4,
1060 	.write_cr4 = xen_write_cr4,
1061 
1062 #ifdef CONFIG_X86_64
1063 	.read_cr8 = xen_read_cr8,
1064 	.write_cr8 = xen_write_cr8,
1065 #endif
1066 
1067 	.wbinvd = native_wbinvd,
1068 
1069 	.read_msr = xen_read_msr,
1070 	.write_msr = xen_write_msr,
1071 
1072 	.read_msr_safe = xen_read_msr_safe,
1073 	.write_msr_safe = xen_write_msr_safe,
1074 
1075 	.read_pmc = xen_read_pmc,
1076 
1077 	.iret = xen_iret,
1078 #ifdef CONFIG_X86_64
1079 	.usergs_sysret64 = xen_sysret64,
1080 #endif
1081 
1082 	.load_tr_desc = paravirt_nop,
1083 	.set_ldt = xen_set_ldt,
1084 	.load_gdt = xen_load_gdt,
1085 	.load_idt = xen_load_idt,
1086 	.load_tls = xen_load_tls,
1087 #ifdef CONFIG_X86_64
1088 	.load_gs_index = xen_load_gs_index,
1089 #endif
1090 
1091 	.alloc_ldt = xen_alloc_ldt,
1092 	.free_ldt = xen_free_ldt,
1093 
1094 	.store_idt = native_store_idt,
1095 	.store_tr = xen_store_tr,
1096 
1097 	.write_ldt_entry = xen_write_ldt_entry,
1098 	.write_gdt_entry = xen_write_gdt_entry,
1099 	.write_idt_entry = xen_write_idt_entry,
1100 	.load_sp0 = xen_load_sp0,
1101 
1102 	.set_iopl_mask = xen_set_iopl_mask,
1103 	.io_delay = xen_io_delay,
1104 
1105 	/* Xen takes care of %gs when switching to usermode for us */
1106 	.swapgs = paravirt_nop,
1107 
1108 	.start_context_switch = paravirt_start_context_switch,
1109 	.end_context_switch = xen_end_context_switch,
1110 };
1111 
1112 static void xen_restart(char *msg)
1113 {
1114 	xen_reboot(SHUTDOWN_reboot);
1115 }
1116 
1117 static void xen_machine_halt(void)
1118 {
1119 	xen_reboot(SHUTDOWN_poweroff);
1120 }
1121 
1122 static void xen_machine_power_off(void)
1123 {
1124 	if (pm_power_off)
1125 		pm_power_off();
1126 	xen_reboot(SHUTDOWN_poweroff);
1127 }
1128 
1129 static void xen_crash_shutdown(struct pt_regs *regs)
1130 {
1131 	xen_reboot(SHUTDOWN_crash);
1132 }
1133 
1134 static const struct machine_ops xen_machine_ops __initconst = {
1135 	.restart = xen_restart,
1136 	.halt = xen_machine_halt,
1137 	.power_off = xen_machine_power_off,
1138 	.shutdown = xen_machine_halt,
1139 	.crash_shutdown = xen_crash_shutdown,
1140 	.emergency_restart = xen_emergency_restart,
1141 };
1142 
1143 static unsigned char xen_get_nmi_reason(void)
1144 {
1145 	unsigned char reason = 0;
1146 
1147 	/* Construct a value which looks like it came from port 0x61. */
1148 	if (test_bit(_XEN_NMIREASON_io_error,
1149 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1150 		reason |= NMI_REASON_IOCHK;
1151 	if (test_bit(_XEN_NMIREASON_pci_serr,
1152 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1153 		reason |= NMI_REASON_SERR;
1154 
1155 	return reason;
1156 }
1157 
1158 static void __init xen_boot_params_init_edd(void)
1159 {
1160 #if IS_ENABLED(CONFIG_EDD)
1161 	struct xen_platform_op op;
1162 	struct edd_info *edd_info;
1163 	u32 *mbr_signature;
1164 	unsigned nr;
1165 	int ret;
1166 
1167 	edd_info = boot_params.eddbuf;
1168 	mbr_signature = boot_params.edd_mbr_sig_buffer;
1169 
1170 	op.cmd = XENPF_firmware_info;
1171 
1172 	op.u.firmware_info.type = XEN_FW_DISK_INFO;
1173 	for (nr = 0; nr < EDDMAXNR; nr++) {
1174 		struct edd_info *info = edd_info + nr;
1175 
1176 		op.u.firmware_info.index = nr;
1177 		info->params.length = sizeof(info->params);
1178 		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1179 				     &info->params);
1180 		ret = HYPERVISOR_platform_op(&op);
1181 		if (ret)
1182 			break;
1183 
1184 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1185 		C(device);
1186 		C(version);
1187 		C(interface_support);
1188 		C(legacy_max_cylinder);
1189 		C(legacy_max_head);
1190 		C(legacy_sectors_per_track);
1191 #undef C
1192 	}
1193 	boot_params.eddbuf_entries = nr;
1194 
1195 	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1196 	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1197 		op.u.firmware_info.index = nr;
1198 		ret = HYPERVISOR_platform_op(&op);
1199 		if (ret)
1200 			break;
1201 		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1202 	}
1203 	boot_params.edd_mbr_sig_buf_entries = nr;
1204 #endif
1205 }
1206 
1207 /*
1208  * Set up the GDT and segment registers for -fstack-protector.  Until
1209  * we do this, we have to be careful not to call any stack-protected
1210  * function, which is most of the kernel.
1211  */
1212 static void xen_setup_gdt(int cpu)
1213 {
1214 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1215 	pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1216 
1217 	setup_stack_canary_segment(0);
1218 	switch_to_new_gdt(0);
1219 
1220 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1221 	pv_cpu_ops.load_gdt = xen_load_gdt;
1222 }
1223 
1224 static void __init xen_dom0_set_legacy_features(void)
1225 {
1226 	x86_platform.legacy.rtc = 1;
1227 }
1228 
1229 /* First C function to be called on Xen boot */
1230 asmlinkage __visible void __init xen_start_kernel(void)
1231 {
1232 	struct physdev_set_iopl set_iopl;
1233 	unsigned long initrd_start = 0;
1234 	int rc;
1235 
1236 	if (!xen_start_info)
1237 		return;
1238 
1239 	xen_domain_type = XEN_PV_DOMAIN;
1240 
1241 	xen_setup_features();
1242 
1243 	xen_setup_machphys_mapping();
1244 
1245 	/* Install Xen paravirt ops */
1246 	pv_info = xen_info;
1247 	pv_init_ops = xen_init_ops;
1248 	pv_cpu_ops = xen_cpu_ops;
1249 
1250 	x86_platform.get_nmi_reason = xen_get_nmi_reason;
1251 
1252 	x86_init.resources.memory_setup = xen_memory_setup;
1253 	x86_init.oem.arch_setup = xen_arch_setup;
1254 	x86_init.oem.banner = xen_banner;
1255 
1256 	/*
1257 	 * Set up some pagetable state before starting to set any ptes.
1258 	 */
1259 
1260 	xen_init_mmu_ops();
1261 
1262 	/* Prevent unwanted bits from being set in PTEs. */
1263 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1264 
1265 	/*
1266 	 * Prevent page tables from being allocated in highmem, even
1267 	 * if CONFIG_HIGHPTE is enabled.
1268 	 */
1269 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1270 
1271 	/* Work out if we support NX */
1272 	x86_configure_nx();
1273 
1274 	/* Get mfn list */
1275 	xen_build_dynamic_phys_to_machine();
1276 
1277 	/*
1278 	 * Set up kernel GDT and segment registers, mainly so that
1279 	 * -fstack-protector code can be executed.
1280 	 */
1281 	xen_setup_gdt(0);
1282 
1283 	xen_init_irq_ops();
1284 	xen_init_capabilities();
1285 
1286 #ifdef CONFIG_X86_LOCAL_APIC
1287 	/*
1288 	 * set up the basic apic ops.
1289 	 */
1290 	xen_init_apic();
1291 #endif
1292 
1293 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1294 		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1295 		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1296 	}
1297 
1298 	machine_ops = xen_machine_ops;
1299 
1300 	/*
1301 	 * The only reliable way to retain the initial address of the
1302 	 * percpu gdt_page is to remember it here, so we can go and
1303 	 * mark it RW later, when the initial percpu area is freed.
1304 	 */
1305 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1306 
1307 	xen_smp_init();
1308 
1309 #ifdef CONFIG_ACPI_NUMA
1310 	/*
1311 	 * The pages we from Xen are not related to machine pages, so
1312 	 * any NUMA information the kernel tries to get from ACPI will
1313 	 * be meaningless.  Prevent it from trying.
1314 	 */
1315 	acpi_numa = -1;
1316 #endif
1317 	/* Let's presume PV guests always boot on vCPU with id 0. */
1318 	per_cpu(xen_vcpu_id, 0) = 0;
1319 
1320 	/*
1321 	 * Setup xen_vcpu early because start_kernel needs it for
1322 	 * local_irq_disable(), irqs_disabled().
1323 	 *
1324 	 * Don't do the full vcpu_info placement stuff until we have
1325 	 * the cpu_possible_mask and a non-dummy shared_info.
1326 	 */
1327 	xen_vcpu_info_reset(0);
1328 
1329 	WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1330 
1331 	local_irq_disable();
1332 	early_boot_irqs_disabled = true;
1333 
1334 	xen_raw_console_write("mapping kernel into physical memory\n");
1335 	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1336 				   xen_start_info->nr_pages);
1337 	xen_reserve_special_pages();
1338 
1339 	/* keep using Xen gdt for now; no urgent need to change it */
1340 
1341 #ifdef CONFIG_X86_32
1342 	pv_info.kernel_rpl = 1;
1343 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1344 		pv_info.kernel_rpl = 0;
1345 #else
1346 	pv_info.kernel_rpl = 0;
1347 #endif
1348 	/* set the limit of our address space */
1349 	xen_reserve_top();
1350 
1351 	/*
1352 	 * We used to do this in xen_arch_setup, but that is too late
1353 	 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1354 	 * early_amd_init which pokes 0xcf8 port.
1355 	 */
1356 	set_iopl.iopl = 1;
1357 	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1358 	if (rc != 0)
1359 		xen_raw_printk("physdev_op failed %d\n", rc);
1360 
1361 #ifdef CONFIG_X86_32
1362 	/* set up basic CPUID stuff */
1363 	cpu_detect(&new_cpu_data);
1364 	set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1365 	new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1366 #endif
1367 
1368 	if (xen_start_info->mod_start) {
1369 	    if (xen_start_info->flags & SIF_MOD_START_PFN)
1370 		initrd_start = PFN_PHYS(xen_start_info->mod_start);
1371 	    else
1372 		initrd_start = __pa(xen_start_info->mod_start);
1373 	}
1374 
1375 	/* Poke various useful things into boot_params */
1376 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1377 	boot_params.hdr.ramdisk_image = initrd_start;
1378 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1379 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1380 	boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1381 
1382 	if (!xen_initial_domain()) {
1383 		add_preferred_console("xenboot", 0, NULL);
1384 		add_preferred_console("tty", 0, NULL);
1385 		add_preferred_console("hvc", 0, NULL);
1386 		if (pci_xen)
1387 			x86_init.pci.arch_init = pci_xen_init;
1388 	} else {
1389 		const struct dom0_vga_console_info *info =
1390 			(void *)((char *)xen_start_info +
1391 				 xen_start_info->console.dom0.info_off);
1392 		struct xen_platform_op op = {
1393 			.cmd = XENPF_firmware_info,
1394 			.interface_version = XENPF_INTERFACE_VERSION,
1395 			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1396 		};
1397 
1398 		x86_platform.set_legacy_features =
1399 				xen_dom0_set_legacy_features;
1400 		xen_init_vga(info, xen_start_info->console.dom0.info_size);
1401 		xen_start_info->console.domU.mfn = 0;
1402 		xen_start_info->console.domU.evtchn = 0;
1403 
1404 		if (HYPERVISOR_platform_op(&op) == 0)
1405 			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1406 
1407 		/* Make sure ACS will be enabled */
1408 		pci_request_acs();
1409 
1410 		xen_acpi_sleep_register();
1411 
1412 		/* Avoid searching for BIOS MP tables */
1413 		x86_init.mpparse.find_smp_config = x86_init_noop;
1414 		x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1415 
1416 		xen_boot_params_init_edd();
1417 	}
1418 #ifdef CONFIG_PCI
1419 	/* PCI BIOS service won't work from a PV guest. */
1420 	pci_probe &= ~PCI_PROBE_BIOS;
1421 #endif
1422 	xen_raw_console_write("about to get started...\n");
1423 
1424 	/* We need this for printk timestamps */
1425 	xen_setup_runstate_info(0);
1426 
1427 	xen_efi_init();
1428 
1429 	/* Start the world */
1430 #ifdef CONFIG_X86_32
1431 	i386_start_kernel();
1432 #else
1433 	cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1434 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1435 #endif
1436 }
1437 
1438 static int xen_cpu_up_prepare_pv(unsigned int cpu)
1439 {
1440 	int rc;
1441 
1442 	if (per_cpu(xen_vcpu, cpu) == NULL)
1443 		return -ENODEV;
1444 
1445 	xen_setup_timer(cpu);
1446 
1447 	rc = xen_smp_intr_init(cpu);
1448 	if (rc) {
1449 		WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1450 		     cpu, rc);
1451 		return rc;
1452 	}
1453 
1454 	rc = xen_smp_intr_init_pv(cpu);
1455 	if (rc) {
1456 		WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1457 		     cpu, rc);
1458 		return rc;
1459 	}
1460 
1461 	return 0;
1462 }
1463 
1464 static int xen_cpu_dead_pv(unsigned int cpu)
1465 {
1466 	xen_smp_intr_free(cpu);
1467 	xen_smp_intr_free_pv(cpu);
1468 
1469 	xen_teardown_timer(cpu);
1470 
1471 	return 0;
1472 }
1473 
1474 static uint32_t __init xen_platform_pv(void)
1475 {
1476 	if (xen_pv_domain())
1477 		return xen_cpuid_base();
1478 
1479 	return 0;
1480 }
1481 
1482 const struct hypervisor_x86 x86_hyper_xen_pv = {
1483 	.name                   = "Xen PV",
1484 	.detect                 = xen_platform_pv,
1485 	.pin_vcpu               = xen_pin_vcpu,
1486 };
1487 EXPORT_SYMBOL(x86_hyper_xen_pv);
1488