1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Core of Xen paravirt_ops implementation. 4 * 5 * This file contains the xen_paravirt_ops structure itself, and the 6 * implementations for: 7 * - privileged instructions 8 * - interrupt flags 9 * - segment operations 10 * - booting and setup 11 * 12 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 13 */ 14 15 #include <linux/cpu.h> 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/smp.h> 19 #include <linux/preempt.h> 20 #include <linux/hardirq.h> 21 #include <linux/percpu.h> 22 #include <linux/delay.h> 23 #include <linux/start_kernel.h> 24 #include <linux/sched.h> 25 #include <linux/kprobes.h> 26 #include <linux/memblock.h> 27 #include <linux/export.h> 28 #include <linux/mm.h> 29 #include <linux/page-flags.h> 30 #include <linux/highmem.h> 31 #include <linux/console.h> 32 #include <linux/pci.h> 33 #include <linux/gfp.h> 34 #include <linux/edd.h> 35 #include <linux/frame.h> 36 37 #include <xen/xen.h> 38 #include <xen/events.h> 39 #include <xen/interface/xen.h> 40 #include <xen/interface/version.h> 41 #include <xen/interface/physdev.h> 42 #include <xen/interface/vcpu.h> 43 #include <xen/interface/memory.h> 44 #include <xen/interface/nmi.h> 45 #include <xen/interface/xen-mca.h> 46 #include <xen/features.h> 47 #include <xen/page.h> 48 #include <xen/hvc-console.h> 49 #include <xen/acpi.h> 50 51 #include <asm/paravirt.h> 52 #include <asm/apic.h> 53 #include <asm/page.h> 54 #include <asm/xen/pci.h> 55 #include <asm/xen/hypercall.h> 56 #include <asm/xen/hypervisor.h> 57 #include <asm/xen/cpuid.h> 58 #include <asm/fixmap.h> 59 #include <asm/processor.h> 60 #include <asm/proto.h> 61 #include <asm/msr-index.h> 62 #include <asm/traps.h> 63 #include <asm/setup.h> 64 #include <asm/desc.h> 65 #include <asm/pgalloc.h> 66 #include <asm/pgtable.h> 67 #include <asm/tlbflush.h> 68 #include <asm/reboot.h> 69 #include <asm/stackprotector.h> 70 #include <asm/hypervisor.h> 71 #include <asm/mach_traps.h> 72 #include <asm/mwait.h> 73 #include <asm/pci_x86.h> 74 #include <asm/cpu.h> 75 76 #ifdef CONFIG_ACPI 77 #include <linux/acpi.h> 78 #include <asm/acpi.h> 79 #include <acpi/pdc_intel.h> 80 #include <acpi/processor.h> 81 #include <xen/interface/platform.h> 82 #endif 83 84 #include "xen-ops.h" 85 #include "mmu.h" 86 #include "smp.h" 87 #include "multicalls.h" 88 #include "pmu.h" 89 90 #include "../kernel/cpu/cpu.h" /* get_cpu_cap() */ 91 92 void *xen_initial_gdt; 93 94 static int xen_cpu_up_prepare_pv(unsigned int cpu); 95 static int xen_cpu_dead_pv(unsigned int cpu); 96 97 struct tls_descs { 98 struct desc_struct desc[3]; 99 }; 100 101 /* 102 * Updating the 3 TLS descriptors in the GDT on every task switch is 103 * surprisingly expensive so we avoid updating them if they haven't 104 * changed. Since Xen writes different descriptors than the one 105 * passed in the update_descriptor hypercall we keep shadow copies to 106 * compare against. 107 */ 108 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc); 109 110 static void __init xen_banner(void) 111 { 112 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL); 113 struct xen_extraversion extra; 114 HYPERVISOR_xen_version(XENVER_extraversion, &extra); 115 116 pr_info("Booting paravirtualized kernel on %s\n", pv_info.name); 117 printk(KERN_INFO "Xen version: %d.%d%s%s\n", 118 version >> 16, version & 0xffff, extra.extraversion, 119 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : ""); 120 } 121 122 static void __init xen_pv_init_platform(void) 123 { 124 populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP)); 125 126 set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info); 127 HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP); 128 129 /* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */ 130 xen_vcpu_info_reset(0); 131 132 /* pvclock is in shared info area */ 133 xen_init_time_ops(); 134 } 135 136 static void __init xen_pv_guest_late_init(void) 137 { 138 #ifndef CONFIG_SMP 139 /* Setup shared vcpu info for non-smp configurations */ 140 xen_setup_vcpu_info_placement(); 141 #endif 142 } 143 144 /* Check if running on Xen version (major, minor) or later */ 145 bool 146 xen_running_on_version_or_later(unsigned int major, unsigned int minor) 147 { 148 unsigned int version; 149 150 if (!xen_domain()) 151 return false; 152 153 version = HYPERVISOR_xen_version(XENVER_version, NULL); 154 if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) || 155 ((version >> 16) > major)) 156 return true; 157 return false; 158 } 159 160 static __read_mostly unsigned int cpuid_leaf5_ecx_val; 161 static __read_mostly unsigned int cpuid_leaf5_edx_val; 162 163 static void xen_cpuid(unsigned int *ax, unsigned int *bx, 164 unsigned int *cx, unsigned int *dx) 165 { 166 unsigned maskebx = ~0; 167 168 /* 169 * Mask out inconvenient features, to try and disable as many 170 * unsupported kernel subsystems as possible. 171 */ 172 switch (*ax) { 173 case CPUID_MWAIT_LEAF: 174 /* Synthesize the values.. */ 175 *ax = 0; 176 *bx = 0; 177 *cx = cpuid_leaf5_ecx_val; 178 *dx = cpuid_leaf5_edx_val; 179 return; 180 181 case 0xb: 182 /* Suppress extended topology stuff */ 183 maskebx = 0; 184 break; 185 } 186 187 asm(XEN_EMULATE_PREFIX "cpuid" 188 : "=a" (*ax), 189 "=b" (*bx), 190 "=c" (*cx), 191 "=d" (*dx) 192 : "0" (*ax), "2" (*cx)); 193 194 *bx &= maskebx; 195 } 196 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */ 197 198 static bool __init xen_check_mwait(void) 199 { 200 #ifdef CONFIG_ACPI 201 struct xen_platform_op op = { 202 .cmd = XENPF_set_processor_pminfo, 203 .u.set_pminfo.id = -1, 204 .u.set_pminfo.type = XEN_PM_PDC, 205 }; 206 uint32_t buf[3]; 207 unsigned int ax, bx, cx, dx; 208 unsigned int mwait_mask; 209 210 /* We need to determine whether it is OK to expose the MWAIT 211 * capability to the kernel to harvest deeper than C3 states from ACPI 212 * _CST using the processor_harvest_xen.c module. For this to work, we 213 * need to gather the MWAIT_LEAF values (which the cstate.c code 214 * checks against). The hypervisor won't expose the MWAIT flag because 215 * it would break backwards compatibility; so we will find out directly 216 * from the hardware and hypercall. 217 */ 218 if (!xen_initial_domain()) 219 return false; 220 221 /* 222 * When running under platform earlier than Xen4.2, do not expose 223 * mwait, to avoid the risk of loading native acpi pad driver 224 */ 225 if (!xen_running_on_version_or_later(4, 2)) 226 return false; 227 228 ax = 1; 229 cx = 0; 230 231 native_cpuid(&ax, &bx, &cx, &dx); 232 233 mwait_mask = (1 << (X86_FEATURE_EST % 32)) | 234 (1 << (X86_FEATURE_MWAIT % 32)); 235 236 if ((cx & mwait_mask) != mwait_mask) 237 return false; 238 239 /* We need to emulate the MWAIT_LEAF and for that we need both 240 * ecx and edx. The hypercall provides only partial information. 241 */ 242 243 ax = CPUID_MWAIT_LEAF; 244 bx = 0; 245 cx = 0; 246 dx = 0; 247 248 native_cpuid(&ax, &bx, &cx, &dx); 249 250 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so, 251 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3. 252 */ 253 buf[0] = ACPI_PDC_REVISION_ID; 254 buf[1] = 1; 255 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP); 256 257 set_xen_guest_handle(op.u.set_pminfo.pdc, buf); 258 259 if ((HYPERVISOR_platform_op(&op) == 0) && 260 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) { 261 cpuid_leaf5_ecx_val = cx; 262 cpuid_leaf5_edx_val = dx; 263 } 264 return true; 265 #else 266 return false; 267 #endif 268 } 269 270 static bool __init xen_check_xsave(void) 271 { 272 unsigned int cx, xsave_mask; 273 274 cx = cpuid_ecx(1); 275 276 xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) | 277 (1 << (X86_FEATURE_OSXSAVE % 32)); 278 279 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */ 280 return (cx & xsave_mask) == xsave_mask; 281 } 282 283 static void __init xen_init_capabilities(void) 284 { 285 setup_force_cpu_cap(X86_FEATURE_XENPV); 286 setup_clear_cpu_cap(X86_FEATURE_DCA); 287 setup_clear_cpu_cap(X86_FEATURE_APERFMPERF); 288 setup_clear_cpu_cap(X86_FEATURE_MTRR); 289 setup_clear_cpu_cap(X86_FEATURE_ACC); 290 setup_clear_cpu_cap(X86_FEATURE_X2APIC); 291 setup_clear_cpu_cap(X86_FEATURE_SME); 292 293 /* 294 * Xen PV would need some work to support PCID: CR3 handling as well 295 * as xen_flush_tlb_others() would need updating. 296 */ 297 setup_clear_cpu_cap(X86_FEATURE_PCID); 298 299 if (!xen_initial_domain()) 300 setup_clear_cpu_cap(X86_FEATURE_ACPI); 301 302 if (xen_check_mwait()) 303 setup_force_cpu_cap(X86_FEATURE_MWAIT); 304 else 305 setup_clear_cpu_cap(X86_FEATURE_MWAIT); 306 307 if (!xen_check_xsave()) { 308 setup_clear_cpu_cap(X86_FEATURE_XSAVE); 309 setup_clear_cpu_cap(X86_FEATURE_OSXSAVE); 310 } 311 } 312 313 static void xen_set_debugreg(int reg, unsigned long val) 314 { 315 HYPERVISOR_set_debugreg(reg, val); 316 } 317 318 static unsigned long xen_get_debugreg(int reg) 319 { 320 return HYPERVISOR_get_debugreg(reg); 321 } 322 323 static void xen_end_context_switch(struct task_struct *next) 324 { 325 xen_mc_flush(); 326 paravirt_end_context_switch(next); 327 } 328 329 static unsigned long xen_store_tr(void) 330 { 331 return 0; 332 } 333 334 /* 335 * Set the page permissions for a particular virtual address. If the 336 * address is a vmalloc mapping (or other non-linear mapping), then 337 * find the linear mapping of the page and also set its protections to 338 * match. 339 */ 340 static void set_aliased_prot(void *v, pgprot_t prot) 341 { 342 int level; 343 pte_t *ptep; 344 pte_t pte; 345 unsigned long pfn; 346 struct page *page; 347 unsigned char dummy; 348 349 ptep = lookup_address((unsigned long)v, &level); 350 BUG_ON(ptep == NULL); 351 352 pfn = pte_pfn(*ptep); 353 page = pfn_to_page(pfn); 354 355 pte = pfn_pte(pfn, prot); 356 357 /* 358 * Careful: update_va_mapping() will fail if the virtual address 359 * we're poking isn't populated in the page tables. We don't 360 * need to worry about the direct map (that's always in the page 361 * tables), but we need to be careful about vmap space. In 362 * particular, the top level page table can lazily propagate 363 * entries between processes, so if we've switched mms since we 364 * vmapped the target in the first place, we might not have the 365 * top-level page table entry populated. 366 * 367 * We disable preemption because we want the same mm active when 368 * we probe the target and when we issue the hypercall. We'll 369 * have the same nominal mm, but if we're a kernel thread, lazy 370 * mm dropping could change our pgd. 371 * 372 * Out of an abundance of caution, this uses __get_user() to fault 373 * in the target address just in case there's some obscure case 374 * in which the target address isn't readable. 375 */ 376 377 preempt_disable(); 378 379 probe_kernel_read(&dummy, v, 1); 380 381 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0)) 382 BUG(); 383 384 if (!PageHighMem(page)) { 385 void *av = __va(PFN_PHYS(pfn)); 386 387 if (av != v) 388 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0)) 389 BUG(); 390 } else 391 kmap_flush_unused(); 392 393 preempt_enable(); 394 } 395 396 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries) 397 { 398 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; 399 int i; 400 401 /* 402 * We need to mark the all aliases of the LDT pages RO. We 403 * don't need to call vm_flush_aliases(), though, since that's 404 * only responsible for flushing aliases out the TLBs, not the 405 * page tables, and Xen will flush the TLB for us if needed. 406 * 407 * To avoid confusing future readers: none of this is necessary 408 * to load the LDT. The hypervisor only checks this when the 409 * LDT is faulted in due to subsequent descriptor access. 410 */ 411 412 for (i = 0; i < entries; i += entries_per_page) 413 set_aliased_prot(ldt + i, PAGE_KERNEL_RO); 414 } 415 416 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries) 417 { 418 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; 419 int i; 420 421 for (i = 0; i < entries; i += entries_per_page) 422 set_aliased_prot(ldt + i, PAGE_KERNEL); 423 } 424 425 static void xen_set_ldt(const void *addr, unsigned entries) 426 { 427 struct mmuext_op *op; 428 struct multicall_space mcs = xen_mc_entry(sizeof(*op)); 429 430 trace_xen_cpu_set_ldt(addr, entries); 431 432 op = mcs.args; 433 op->cmd = MMUEXT_SET_LDT; 434 op->arg1.linear_addr = (unsigned long)addr; 435 op->arg2.nr_ents = entries; 436 437 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 438 439 xen_mc_issue(PARAVIRT_LAZY_CPU); 440 } 441 442 static void xen_load_gdt(const struct desc_ptr *dtr) 443 { 444 unsigned long va = dtr->address; 445 unsigned int size = dtr->size + 1; 446 unsigned long pfn, mfn; 447 int level; 448 pte_t *ptep; 449 void *virt; 450 451 /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */ 452 BUG_ON(size > PAGE_SIZE); 453 BUG_ON(va & ~PAGE_MASK); 454 455 /* 456 * The GDT is per-cpu and is in the percpu data area. 457 * That can be virtually mapped, so we need to do a 458 * page-walk to get the underlying MFN for the 459 * hypercall. The page can also be in the kernel's 460 * linear range, so we need to RO that mapping too. 461 */ 462 ptep = lookup_address(va, &level); 463 BUG_ON(ptep == NULL); 464 465 pfn = pte_pfn(*ptep); 466 mfn = pfn_to_mfn(pfn); 467 virt = __va(PFN_PHYS(pfn)); 468 469 make_lowmem_page_readonly((void *)va); 470 make_lowmem_page_readonly(virt); 471 472 if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct))) 473 BUG(); 474 } 475 476 /* 477 * load_gdt for early boot, when the gdt is only mapped once 478 */ 479 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr) 480 { 481 unsigned long va = dtr->address; 482 unsigned int size = dtr->size + 1; 483 unsigned long pfn, mfn; 484 pte_t pte; 485 486 /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */ 487 BUG_ON(size > PAGE_SIZE); 488 BUG_ON(va & ~PAGE_MASK); 489 490 pfn = virt_to_pfn(va); 491 mfn = pfn_to_mfn(pfn); 492 493 pte = pfn_pte(pfn, PAGE_KERNEL_RO); 494 495 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0)) 496 BUG(); 497 498 if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct))) 499 BUG(); 500 } 501 502 static inline bool desc_equal(const struct desc_struct *d1, 503 const struct desc_struct *d2) 504 { 505 return !memcmp(d1, d2, sizeof(*d1)); 506 } 507 508 static void load_TLS_descriptor(struct thread_struct *t, 509 unsigned int cpu, unsigned int i) 510 { 511 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i]; 512 struct desc_struct *gdt; 513 xmaddr_t maddr; 514 struct multicall_space mc; 515 516 if (desc_equal(shadow, &t->tls_array[i])) 517 return; 518 519 *shadow = t->tls_array[i]; 520 521 gdt = get_cpu_gdt_rw(cpu); 522 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]); 523 mc = __xen_mc_entry(0); 524 525 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]); 526 } 527 528 static void xen_load_tls(struct thread_struct *t, unsigned int cpu) 529 { 530 /* 531 * XXX sleazy hack: If we're being called in a lazy-cpu zone 532 * and lazy gs handling is enabled, it means we're in a 533 * context switch, and %gs has just been saved. This means we 534 * can zero it out to prevent faults on exit from the 535 * hypervisor if the next process has no %gs. Either way, it 536 * has been saved, and the new value will get loaded properly. 537 * This will go away as soon as Xen has been modified to not 538 * save/restore %gs for normal hypercalls. 539 * 540 * On x86_64, this hack is not used for %gs, because gs points 541 * to KERNEL_GS_BASE (and uses it for PDA references), so we 542 * must not zero %gs on x86_64 543 * 544 * For x86_64, we need to zero %fs, otherwise we may get an 545 * exception between the new %fs descriptor being loaded and 546 * %fs being effectively cleared at __switch_to(). 547 */ 548 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) { 549 #ifdef CONFIG_X86_32 550 lazy_load_gs(0); 551 #else 552 loadsegment(fs, 0); 553 #endif 554 } 555 556 xen_mc_batch(); 557 558 load_TLS_descriptor(t, cpu, 0); 559 load_TLS_descriptor(t, cpu, 1); 560 load_TLS_descriptor(t, cpu, 2); 561 562 xen_mc_issue(PARAVIRT_LAZY_CPU); 563 } 564 565 #ifdef CONFIG_X86_64 566 static void xen_load_gs_index(unsigned int idx) 567 { 568 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx)) 569 BUG(); 570 } 571 #endif 572 573 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum, 574 const void *ptr) 575 { 576 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]); 577 u64 entry = *(u64 *)ptr; 578 579 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry); 580 581 preempt_disable(); 582 583 xen_mc_flush(); 584 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry)) 585 BUG(); 586 587 preempt_enable(); 588 } 589 590 #ifdef CONFIG_X86_64 591 struct trap_array_entry { 592 void (*orig)(void); 593 void (*xen)(void); 594 bool ist_okay; 595 }; 596 597 static struct trap_array_entry trap_array[] = { 598 { debug, xen_xendebug, true }, 599 { int3, xen_xenint3, true }, 600 { double_fault, xen_double_fault, true }, 601 #ifdef CONFIG_X86_MCE 602 { machine_check, xen_machine_check, true }, 603 #endif 604 { nmi, xen_xennmi, true }, 605 { overflow, xen_overflow, false }, 606 #ifdef CONFIG_IA32_EMULATION 607 { entry_INT80_compat, xen_entry_INT80_compat, false }, 608 #endif 609 { page_fault, xen_page_fault, false }, 610 { divide_error, xen_divide_error, false }, 611 { bounds, xen_bounds, false }, 612 { invalid_op, xen_invalid_op, false }, 613 { device_not_available, xen_device_not_available, false }, 614 { coprocessor_segment_overrun, xen_coprocessor_segment_overrun, false }, 615 { invalid_TSS, xen_invalid_TSS, false }, 616 { segment_not_present, xen_segment_not_present, false }, 617 { stack_segment, xen_stack_segment, false }, 618 { general_protection, xen_general_protection, false }, 619 { spurious_interrupt_bug, xen_spurious_interrupt_bug, false }, 620 { coprocessor_error, xen_coprocessor_error, false }, 621 { alignment_check, xen_alignment_check, false }, 622 { simd_coprocessor_error, xen_simd_coprocessor_error, false }, 623 }; 624 625 static bool __ref get_trap_addr(void **addr, unsigned int ist) 626 { 627 unsigned int nr; 628 bool ist_okay = false; 629 630 /* 631 * Replace trap handler addresses by Xen specific ones. 632 * Check for known traps using IST and whitelist them. 633 * The debugger ones are the only ones we care about. 634 * Xen will handle faults like double_fault, * so we should never see 635 * them. Warn if there's an unexpected IST-using fault handler. 636 */ 637 for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) { 638 struct trap_array_entry *entry = trap_array + nr; 639 640 if (*addr == entry->orig) { 641 *addr = entry->xen; 642 ist_okay = entry->ist_okay; 643 break; 644 } 645 } 646 647 if (nr == ARRAY_SIZE(trap_array) && 648 *addr >= (void *)early_idt_handler_array[0] && 649 *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) { 650 nr = (*addr - (void *)early_idt_handler_array[0]) / 651 EARLY_IDT_HANDLER_SIZE; 652 *addr = (void *)xen_early_idt_handler_array[nr]; 653 } 654 655 if (WARN_ON(ist != 0 && !ist_okay)) 656 return false; 657 658 return true; 659 } 660 #endif 661 662 static int cvt_gate_to_trap(int vector, const gate_desc *val, 663 struct trap_info *info) 664 { 665 unsigned long addr; 666 667 if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT) 668 return 0; 669 670 info->vector = vector; 671 672 addr = gate_offset(val); 673 #ifdef CONFIG_X86_64 674 if (!get_trap_addr((void **)&addr, val->bits.ist)) 675 return 0; 676 #endif /* CONFIG_X86_64 */ 677 info->address = addr; 678 679 info->cs = gate_segment(val); 680 info->flags = val->bits.dpl; 681 /* interrupt gates clear IF */ 682 if (val->bits.type == GATE_INTERRUPT) 683 info->flags |= 1 << 2; 684 685 return 1; 686 } 687 688 /* Locations of each CPU's IDT */ 689 static DEFINE_PER_CPU(struct desc_ptr, idt_desc); 690 691 /* Set an IDT entry. If the entry is part of the current IDT, then 692 also update Xen. */ 693 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g) 694 { 695 unsigned long p = (unsigned long)&dt[entrynum]; 696 unsigned long start, end; 697 698 trace_xen_cpu_write_idt_entry(dt, entrynum, g); 699 700 preempt_disable(); 701 702 start = __this_cpu_read(idt_desc.address); 703 end = start + __this_cpu_read(idt_desc.size) + 1; 704 705 xen_mc_flush(); 706 707 native_write_idt_entry(dt, entrynum, g); 708 709 if (p >= start && (p + 8) <= end) { 710 struct trap_info info[2]; 711 712 info[1].address = 0; 713 714 if (cvt_gate_to_trap(entrynum, g, &info[0])) 715 if (HYPERVISOR_set_trap_table(info)) 716 BUG(); 717 } 718 719 preempt_enable(); 720 } 721 722 static void xen_convert_trap_info(const struct desc_ptr *desc, 723 struct trap_info *traps) 724 { 725 unsigned in, out, count; 726 727 count = (desc->size+1) / sizeof(gate_desc); 728 BUG_ON(count > 256); 729 730 for (in = out = 0; in < count; in++) { 731 gate_desc *entry = (gate_desc *)(desc->address) + in; 732 733 if (cvt_gate_to_trap(in, entry, &traps[out])) 734 out++; 735 } 736 traps[out].address = 0; 737 } 738 739 void xen_copy_trap_info(struct trap_info *traps) 740 { 741 const struct desc_ptr *desc = this_cpu_ptr(&idt_desc); 742 743 xen_convert_trap_info(desc, traps); 744 } 745 746 /* Load a new IDT into Xen. In principle this can be per-CPU, so we 747 hold a spinlock to protect the static traps[] array (static because 748 it avoids allocation, and saves stack space). */ 749 static void xen_load_idt(const struct desc_ptr *desc) 750 { 751 static DEFINE_SPINLOCK(lock); 752 static struct trap_info traps[257]; 753 754 trace_xen_cpu_load_idt(desc); 755 756 spin_lock(&lock); 757 758 memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc)); 759 760 xen_convert_trap_info(desc, traps); 761 762 xen_mc_flush(); 763 if (HYPERVISOR_set_trap_table(traps)) 764 BUG(); 765 766 spin_unlock(&lock); 767 } 768 769 /* Write a GDT descriptor entry. Ignore LDT descriptors, since 770 they're handled differently. */ 771 static void xen_write_gdt_entry(struct desc_struct *dt, int entry, 772 const void *desc, int type) 773 { 774 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type); 775 776 preempt_disable(); 777 778 switch (type) { 779 case DESC_LDT: 780 case DESC_TSS: 781 /* ignore */ 782 break; 783 784 default: { 785 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]); 786 787 xen_mc_flush(); 788 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) 789 BUG(); 790 } 791 792 } 793 794 preempt_enable(); 795 } 796 797 /* 798 * Version of write_gdt_entry for use at early boot-time needed to 799 * update an entry as simply as possible. 800 */ 801 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry, 802 const void *desc, int type) 803 { 804 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type); 805 806 switch (type) { 807 case DESC_LDT: 808 case DESC_TSS: 809 /* ignore */ 810 break; 811 812 default: { 813 xmaddr_t maddr = virt_to_machine(&dt[entry]); 814 815 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) 816 dt[entry] = *(struct desc_struct *)desc; 817 } 818 819 } 820 } 821 822 static void xen_load_sp0(unsigned long sp0) 823 { 824 struct multicall_space mcs; 825 826 mcs = xen_mc_entry(0); 827 MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0); 828 xen_mc_issue(PARAVIRT_LAZY_CPU); 829 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0); 830 } 831 832 void xen_set_iopl_mask(unsigned mask) 833 { 834 struct physdev_set_iopl set_iopl; 835 836 /* Force the change at ring 0. */ 837 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3; 838 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); 839 } 840 841 static void xen_io_delay(void) 842 { 843 } 844 845 static DEFINE_PER_CPU(unsigned long, xen_cr0_value); 846 847 static unsigned long xen_read_cr0(void) 848 { 849 unsigned long cr0 = this_cpu_read(xen_cr0_value); 850 851 if (unlikely(cr0 == 0)) { 852 cr0 = native_read_cr0(); 853 this_cpu_write(xen_cr0_value, cr0); 854 } 855 856 return cr0; 857 } 858 859 static void xen_write_cr0(unsigned long cr0) 860 { 861 struct multicall_space mcs; 862 863 this_cpu_write(xen_cr0_value, cr0); 864 865 /* Only pay attention to cr0.TS; everything else is 866 ignored. */ 867 mcs = xen_mc_entry(0); 868 869 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0); 870 871 xen_mc_issue(PARAVIRT_LAZY_CPU); 872 } 873 874 static void xen_write_cr4(unsigned long cr4) 875 { 876 cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE); 877 878 native_write_cr4(cr4); 879 } 880 #ifdef CONFIG_X86_64 881 static inline unsigned long xen_read_cr8(void) 882 { 883 return 0; 884 } 885 static inline void xen_write_cr8(unsigned long val) 886 { 887 BUG_ON(val); 888 } 889 #endif 890 891 static u64 xen_read_msr_safe(unsigned int msr, int *err) 892 { 893 u64 val; 894 895 if (pmu_msr_read(msr, &val, err)) 896 return val; 897 898 val = native_read_msr_safe(msr, err); 899 switch (msr) { 900 case MSR_IA32_APICBASE: 901 val &= ~X2APIC_ENABLE; 902 break; 903 } 904 return val; 905 } 906 907 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high) 908 { 909 int ret; 910 911 ret = 0; 912 913 switch (msr) { 914 #ifdef CONFIG_X86_64 915 unsigned which; 916 u64 base; 917 918 case MSR_FS_BASE: which = SEGBASE_FS; goto set; 919 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set; 920 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set; 921 922 set: 923 base = ((u64)high << 32) | low; 924 if (HYPERVISOR_set_segment_base(which, base) != 0) 925 ret = -EIO; 926 break; 927 #endif 928 929 case MSR_STAR: 930 case MSR_CSTAR: 931 case MSR_LSTAR: 932 case MSR_SYSCALL_MASK: 933 case MSR_IA32_SYSENTER_CS: 934 case MSR_IA32_SYSENTER_ESP: 935 case MSR_IA32_SYSENTER_EIP: 936 /* Fast syscall setup is all done in hypercalls, so 937 these are all ignored. Stub them out here to stop 938 Xen console noise. */ 939 break; 940 941 default: 942 if (!pmu_msr_write(msr, low, high, &ret)) 943 ret = native_write_msr_safe(msr, low, high); 944 } 945 946 return ret; 947 } 948 949 static u64 xen_read_msr(unsigned int msr) 950 { 951 /* 952 * This will silently swallow a #GP from RDMSR. It may be worth 953 * changing that. 954 */ 955 int err; 956 957 return xen_read_msr_safe(msr, &err); 958 } 959 960 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high) 961 { 962 /* 963 * This will silently swallow a #GP from WRMSR. It may be worth 964 * changing that. 965 */ 966 xen_write_msr_safe(msr, low, high); 967 } 968 969 /* This is called once we have the cpu_possible_mask */ 970 void __init xen_setup_vcpu_info_placement(void) 971 { 972 int cpu; 973 974 for_each_possible_cpu(cpu) { 975 /* Set up direct vCPU id mapping for PV guests. */ 976 per_cpu(xen_vcpu_id, cpu) = cpu; 977 978 /* 979 * xen_vcpu_setup(cpu) can fail -- in which case it 980 * falls back to the shared_info version for cpus 981 * where xen_vcpu_nr(cpu) < MAX_VIRT_CPUS. 982 * 983 * xen_cpu_up_prepare_pv() handles the rest by failing 984 * them in hotplug. 985 */ 986 (void) xen_vcpu_setup(cpu); 987 } 988 989 /* 990 * xen_vcpu_setup managed to place the vcpu_info within the 991 * percpu area for all cpus, so make use of it. 992 */ 993 if (xen_have_vcpu_info_placement) { 994 pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct); 995 pv_ops.irq.restore_fl = 996 __PV_IS_CALLEE_SAVE(xen_restore_fl_direct); 997 pv_ops.irq.irq_disable = 998 __PV_IS_CALLEE_SAVE(xen_irq_disable_direct); 999 pv_ops.irq.irq_enable = 1000 __PV_IS_CALLEE_SAVE(xen_irq_enable_direct); 1001 pv_ops.mmu.read_cr2 = xen_read_cr2_direct; 1002 } 1003 } 1004 1005 static const struct pv_info xen_info __initconst = { 1006 .shared_kernel_pmd = 0, 1007 1008 #ifdef CONFIG_X86_64 1009 .extra_user_64bit_cs = FLAT_USER_CS64, 1010 #endif 1011 .name = "Xen", 1012 }; 1013 1014 static const struct pv_cpu_ops xen_cpu_ops __initconst = { 1015 .cpuid = xen_cpuid, 1016 1017 .set_debugreg = xen_set_debugreg, 1018 .get_debugreg = xen_get_debugreg, 1019 1020 .read_cr0 = xen_read_cr0, 1021 .write_cr0 = xen_write_cr0, 1022 1023 .write_cr4 = xen_write_cr4, 1024 1025 #ifdef CONFIG_X86_64 1026 .read_cr8 = xen_read_cr8, 1027 .write_cr8 = xen_write_cr8, 1028 #endif 1029 1030 .wbinvd = native_wbinvd, 1031 1032 .read_msr = xen_read_msr, 1033 .write_msr = xen_write_msr, 1034 1035 .read_msr_safe = xen_read_msr_safe, 1036 .write_msr_safe = xen_write_msr_safe, 1037 1038 .read_pmc = xen_read_pmc, 1039 1040 .iret = xen_iret, 1041 #ifdef CONFIG_X86_64 1042 .usergs_sysret64 = xen_sysret64, 1043 #endif 1044 1045 .load_tr_desc = paravirt_nop, 1046 .set_ldt = xen_set_ldt, 1047 .load_gdt = xen_load_gdt, 1048 .load_idt = xen_load_idt, 1049 .load_tls = xen_load_tls, 1050 #ifdef CONFIG_X86_64 1051 .load_gs_index = xen_load_gs_index, 1052 #endif 1053 1054 .alloc_ldt = xen_alloc_ldt, 1055 .free_ldt = xen_free_ldt, 1056 1057 .store_tr = xen_store_tr, 1058 1059 .write_ldt_entry = xen_write_ldt_entry, 1060 .write_gdt_entry = xen_write_gdt_entry, 1061 .write_idt_entry = xen_write_idt_entry, 1062 .load_sp0 = xen_load_sp0, 1063 1064 .set_iopl_mask = xen_set_iopl_mask, 1065 .io_delay = xen_io_delay, 1066 1067 /* Xen takes care of %gs when switching to usermode for us */ 1068 .swapgs = paravirt_nop, 1069 1070 .start_context_switch = paravirt_start_context_switch, 1071 .end_context_switch = xen_end_context_switch, 1072 }; 1073 1074 static void xen_restart(char *msg) 1075 { 1076 xen_reboot(SHUTDOWN_reboot); 1077 } 1078 1079 static void xen_machine_halt(void) 1080 { 1081 xen_reboot(SHUTDOWN_poweroff); 1082 } 1083 1084 static void xen_machine_power_off(void) 1085 { 1086 if (pm_power_off) 1087 pm_power_off(); 1088 xen_reboot(SHUTDOWN_poweroff); 1089 } 1090 1091 static void xen_crash_shutdown(struct pt_regs *regs) 1092 { 1093 xen_reboot(SHUTDOWN_crash); 1094 } 1095 1096 static const struct machine_ops xen_machine_ops __initconst = { 1097 .restart = xen_restart, 1098 .halt = xen_machine_halt, 1099 .power_off = xen_machine_power_off, 1100 .shutdown = xen_machine_halt, 1101 .crash_shutdown = xen_crash_shutdown, 1102 .emergency_restart = xen_emergency_restart, 1103 }; 1104 1105 static unsigned char xen_get_nmi_reason(void) 1106 { 1107 unsigned char reason = 0; 1108 1109 /* Construct a value which looks like it came from port 0x61. */ 1110 if (test_bit(_XEN_NMIREASON_io_error, 1111 &HYPERVISOR_shared_info->arch.nmi_reason)) 1112 reason |= NMI_REASON_IOCHK; 1113 if (test_bit(_XEN_NMIREASON_pci_serr, 1114 &HYPERVISOR_shared_info->arch.nmi_reason)) 1115 reason |= NMI_REASON_SERR; 1116 1117 return reason; 1118 } 1119 1120 static void __init xen_boot_params_init_edd(void) 1121 { 1122 #if IS_ENABLED(CONFIG_EDD) 1123 struct xen_platform_op op; 1124 struct edd_info *edd_info; 1125 u32 *mbr_signature; 1126 unsigned nr; 1127 int ret; 1128 1129 edd_info = boot_params.eddbuf; 1130 mbr_signature = boot_params.edd_mbr_sig_buffer; 1131 1132 op.cmd = XENPF_firmware_info; 1133 1134 op.u.firmware_info.type = XEN_FW_DISK_INFO; 1135 for (nr = 0; nr < EDDMAXNR; nr++) { 1136 struct edd_info *info = edd_info + nr; 1137 1138 op.u.firmware_info.index = nr; 1139 info->params.length = sizeof(info->params); 1140 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params, 1141 &info->params); 1142 ret = HYPERVISOR_platform_op(&op); 1143 if (ret) 1144 break; 1145 1146 #define C(x) info->x = op.u.firmware_info.u.disk_info.x 1147 C(device); 1148 C(version); 1149 C(interface_support); 1150 C(legacy_max_cylinder); 1151 C(legacy_max_head); 1152 C(legacy_sectors_per_track); 1153 #undef C 1154 } 1155 boot_params.eddbuf_entries = nr; 1156 1157 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE; 1158 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) { 1159 op.u.firmware_info.index = nr; 1160 ret = HYPERVISOR_platform_op(&op); 1161 if (ret) 1162 break; 1163 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature; 1164 } 1165 boot_params.edd_mbr_sig_buf_entries = nr; 1166 #endif 1167 } 1168 1169 /* 1170 * Set up the GDT and segment registers for -fstack-protector. Until 1171 * we do this, we have to be careful not to call any stack-protected 1172 * function, which is most of the kernel. 1173 */ 1174 static void __init xen_setup_gdt(int cpu) 1175 { 1176 pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot; 1177 pv_ops.cpu.load_gdt = xen_load_gdt_boot; 1178 1179 setup_stack_canary_segment(cpu); 1180 switch_to_new_gdt(cpu); 1181 1182 pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry; 1183 pv_ops.cpu.load_gdt = xen_load_gdt; 1184 } 1185 1186 static void __init xen_dom0_set_legacy_features(void) 1187 { 1188 x86_platform.legacy.rtc = 1; 1189 } 1190 1191 /* First C function to be called on Xen boot */ 1192 asmlinkage __visible void __init xen_start_kernel(void) 1193 { 1194 struct physdev_set_iopl set_iopl; 1195 unsigned long initrd_start = 0; 1196 int rc; 1197 1198 if (!xen_start_info) 1199 return; 1200 1201 xen_domain_type = XEN_PV_DOMAIN; 1202 xen_start_flags = xen_start_info->flags; 1203 1204 xen_setup_features(); 1205 1206 /* Install Xen paravirt ops */ 1207 pv_info = xen_info; 1208 pv_ops.init.patch = paravirt_patch_default; 1209 pv_ops.cpu = xen_cpu_ops; 1210 xen_init_irq_ops(); 1211 1212 /* 1213 * Setup xen_vcpu early because it is needed for 1214 * local_irq_disable(), irqs_disabled(), e.g. in printk(). 1215 * 1216 * Don't do the full vcpu_info placement stuff until we have 1217 * the cpu_possible_mask and a non-dummy shared_info. 1218 */ 1219 xen_vcpu_info_reset(0); 1220 1221 x86_platform.get_nmi_reason = xen_get_nmi_reason; 1222 1223 x86_init.resources.memory_setup = xen_memory_setup; 1224 x86_init.irqs.intr_mode_init = x86_init_noop; 1225 x86_init.oem.arch_setup = xen_arch_setup; 1226 x86_init.oem.banner = xen_banner; 1227 x86_init.hyper.init_platform = xen_pv_init_platform; 1228 x86_init.hyper.guest_late_init = xen_pv_guest_late_init; 1229 1230 /* 1231 * Set up some pagetable state before starting to set any ptes. 1232 */ 1233 1234 xen_setup_machphys_mapping(); 1235 xen_init_mmu_ops(); 1236 1237 /* Prevent unwanted bits from being set in PTEs. */ 1238 __supported_pte_mask &= ~_PAGE_GLOBAL; 1239 __default_kernel_pte_mask &= ~_PAGE_GLOBAL; 1240 1241 /* 1242 * Prevent page tables from being allocated in highmem, even 1243 * if CONFIG_HIGHPTE is enabled. 1244 */ 1245 __userpte_alloc_gfp &= ~__GFP_HIGHMEM; 1246 1247 /* Get mfn list */ 1248 xen_build_dynamic_phys_to_machine(); 1249 1250 /* 1251 * Set up kernel GDT and segment registers, mainly so that 1252 * -fstack-protector code can be executed. 1253 */ 1254 xen_setup_gdt(0); 1255 1256 /* Work out if we support NX */ 1257 get_cpu_cap(&boot_cpu_data); 1258 x86_configure_nx(); 1259 1260 /* Determine virtual and physical address sizes */ 1261 get_cpu_address_sizes(&boot_cpu_data); 1262 1263 /* Let's presume PV guests always boot on vCPU with id 0. */ 1264 per_cpu(xen_vcpu_id, 0) = 0; 1265 1266 idt_setup_early_handler(); 1267 1268 xen_init_capabilities(); 1269 1270 #ifdef CONFIG_X86_LOCAL_APIC 1271 /* 1272 * set up the basic apic ops. 1273 */ 1274 xen_init_apic(); 1275 #endif 1276 1277 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) { 1278 pv_ops.mmu.ptep_modify_prot_start = 1279 xen_ptep_modify_prot_start; 1280 pv_ops.mmu.ptep_modify_prot_commit = 1281 xen_ptep_modify_prot_commit; 1282 } 1283 1284 machine_ops = xen_machine_ops; 1285 1286 /* 1287 * The only reliable way to retain the initial address of the 1288 * percpu gdt_page is to remember it here, so we can go and 1289 * mark it RW later, when the initial percpu area is freed. 1290 */ 1291 xen_initial_gdt = &per_cpu(gdt_page, 0); 1292 1293 xen_smp_init(); 1294 1295 #ifdef CONFIG_ACPI_NUMA 1296 /* 1297 * The pages we from Xen are not related to machine pages, so 1298 * any NUMA information the kernel tries to get from ACPI will 1299 * be meaningless. Prevent it from trying. 1300 */ 1301 acpi_numa = -1; 1302 #endif 1303 WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv)); 1304 1305 local_irq_disable(); 1306 early_boot_irqs_disabled = true; 1307 1308 xen_raw_console_write("mapping kernel into physical memory\n"); 1309 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, 1310 xen_start_info->nr_pages); 1311 xen_reserve_special_pages(); 1312 1313 /* keep using Xen gdt for now; no urgent need to change it */ 1314 1315 #ifdef CONFIG_X86_32 1316 pv_info.kernel_rpl = 1; 1317 if (xen_feature(XENFEAT_supervisor_mode_kernel)) 1318 pv_info.kernel_rpl = 0; 1319 #else 1320 pv_info.kernel_rpl = 0; 1321 #endif 1322 /* set the limit of our address space */ 1323 xen_reserve_top(); 1324 1325 /* 1326 * We used to do this in xen_arch_setup, but that is too late 1327 * on AMD were early_cpu_init (run before ->arch_setup()) calls 1328 * early_amd_init which pokes 0xcf8 port. 1329 */ 1330 set_iopl.iopl = 1; 1331 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); 1332 if (rc != 0) 1333 xen_raw_printk("physdev_op failed %d\n", rc); 1334 1335 #ifdef CONFIG_X86_32 1336 /* set up basic CPUID stuff */ 1337 cpu_detect(&new_cpu_data); 1338 set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU); 1339 new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1); 1340 #endif 1341 1342 if (xen_start_info->mod_start) { 1343 if (xen_start_info->flags & SIF_MOD_START_PFN) 1344 initrd_start = PFN_PHYS(xen_start_info->mod_start); 1345 else 1346 initrd_start = __pa(xen_start_info->mod_start); 1347 } 1348 1349 /* Poke various useful things into boot_params */ 1350 boot_params.hdr.type_of_loader = (9 << 4) | 0; 1351 boot_params.hdr.ramdisk_image = initrd_start; 1352 boot_params.hdr.ramdisk_size = xen_start_info->mod_len; 1353 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line); 1354 boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN; 1355 1356 if (!xen_initial_domain()) { 1357 add_preferred_console("xenboot", 0, NULL); 1358 if (pci_xen) 1359 x86_init.pci.arch_init = pci_xen_init; 1360 } else { 1361 const struct dom0_vga_console_info *info = 1362 (void *)((char *)xen_start_info + 1363 xen_start_info->console.dom0.info_off); 1364 struct xen_platform_op op = { 1365 .cmd = XENPF_firmware_info, 1366 .interface_version = XENPF_INTERFACE_VERSION, 1367 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS, 1368 }; 1369 1370 x86_platform.set_legacy_features = 1371 xen_dom0_set_legacy_features; 1372 xen_init_vga(info, xen_start_info->console.dom0.info_size); 1373 xen_start_info->console.domU.mfn = 0; 1374 xen_start_info->console.domU.evtchn = 0; 1375 1376 if (HYPERVISOR_platform_op(&op) == 0) 1377 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags; 1378 1379 /* Make sure ACS will be enabled */ 1380 pci_request_acs(); 1381 1382 xen_acpi_sleep_register(); 1383 1384 /* Avoid searching for BIOS MP tables */ 1385 x86_init.mpparse.find_smp_config = x86_init_noop; 1386 x86_init.mpparse.get_smp_config = x86_init_uint_noop; 1387 1388 xen_boot_params_init_edd(); 1389 } 1390 1391 if (!boot_params.screen_info.orig_video_isVGA) 1392 add_preferred_console("tty", 0, NULL); 1393 add_preferred_console("hvc", 0, NULL); 1394 if (boot_params.screen_info.orig_video_isVGA) 1395 add_preferred_console("tty", 0, NULL); 1396 1397 #ifdef CONFIG_PCI 1398 /* PCI BIOS service won't work from a PV guest. */ 1399 pci_probe &= ~PCI_PROBE_BIOS; 1400 #endif 1401 xen_raw_console_write("about to get started...\n"); 1402 1403 /* We need this for printk timestamps */ 1404 xen_setup_runstate_info(0); 1405 1406 xen_efi_init(); 1407 1408 /* Start the world */ 1409 #ifdef CONFIG_X86_32 1410 i386_start_kernel(); 1411 #else 1412 cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */ 1413 x86_64_start_reservations((char *)__pa_symbol(&boot_params)); 1414 #endif 1415 } 1416 1417 static int xen_cpu_up_prepare_pv(unsigned int cpu) 1418 { 1419 int rc; 1420 1421 if (per_cpu(xen_vcpu, cpu) == NULL) 1422 return -ENODEV; 1423 1424 xen_setup_timer(cpu); 1425 1426 rc = xen_smp_intr_init(cpu); 1427 if (rc) { 1428 WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n", 1429 cpu, rc); 1430 return rc; 1431 } 1432 1433 rc = xen_smp_intr_init_pv(cpu); 1434 if (rc) { 1435 WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n", 1436 cpu, rc); 1437 return rc; 1438 } 1439 1440 return 0; 1441 } 1442 1443 static int xen_cpu_dead_pv(unsigned int cpu) 1444 { 1445 xen_smp_intr_free(cpu); 1446 xen_smp_intr_free_pv(cpu); 1447 1448 xen_teardown_timer(cpu); 1449 1450 return 0; 1451 } 1452 1453 static uint32_t __init xen_platform_pv(void) 1454 { 1455 if (xen_pv_domain()) 1456 return xen_cpuid_base(); 1457 1458 return 0; 1459 } 1460 1461 const __initconst struct hypervisor_x86 x86_hyper_xen_pv = { 1462 .name = "Xen PV", 1463 .detect = xen_platform_pv, 1464 .type = X86_HYPER_XEN_PV, 1465 .runtime.pin_vcpu = xen_pin_vcpu, 1466 }; 1467