xref: /openbmc/linux/arch/x86/xen/enlighten_pv.c (revision 1e1129b65ef3f72dbccf24de56b700a181b45227)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Core of Xen paravirt_ops implementation.
4  *
5  * This file contains the xen_paravirt_ops structure itself, and the
6  * implementations for:
7  * - privileged instructions
8  * - interrupt flags
9  * - segment operations
10  * - booting and setup
11  *
12  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
13  */
14 
15 #include <linux/cpu.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/smp.h>
19 #include <linux/preempt.h>
20 #include <linux/hardirq.h>
21 #include <linux/percpu.h>
22 #include <linux/delay.h>
23 #include <linux/start_kernel.h>
24 #include <linux/sched.h>
25 #include <linux/kprobes.h>
26 #include <linux/memblock.h>
27 #include <linux/export.h>
28 #include <linux/mm.h>
29 #include <linux/page-flags.h>
30 #include <linux/highmem.h>
31 #include <linux/console.h>
32 #include <linux/pci.h>
33 #include <linux/gfp.h>
34 #include <linux/edd.h>
35 #include <linux/frame.h>
36 
37 #include <xen/xen.h>
38 #include <xen/events.h>
39 #include <xen/interface/xen.h>
40 #include <xen/interface/version.h>
41 #include <xen/interface/physdev.h>
42 #include <xen/interface/vcpu.h>
43 #include <xen/interface/memory.h>
44 #include <xen/interface/nmi.h>
45 #include <xen/interface/xen-mca.h>
46 #include <xen/features.h>
47 #include <xen/page.h>
48 #include <xen/hvc-console.h>
49 #include <xen/acpi.h>
50 
51 #include <asm/paravirt.h>
52 #include <asm/apic.h>
53 #include <asm/page.h>
54 #include <asm/xen/pci.h>
55 #include <asm/xen/hypercall.h>
56 #include <asm/xen/hypervisor.h>
57 #include <asm/xen/cpuid.h>
58 #include <asm/fixmap.h>
59 #include <asm/processor.h>
60 #include <asm/proto.h>
61 #include <asm/msr-index.h>
62 #include <asm/traps.h>
63 #include <asm/setup.h>
64 #include <asm/desc.h>
65 #include <asm/pgalloc.h>
66 #include <asm/tlbflush.h>
67 #include <asm/reboot.h>
68 #include <asm/stackprotector.h>
69 #include <asm/hypervisor.h>
70 #include <asm/mach_traps.h>
71 #include <asm/mwait.h>
72 #include <asm/pci_x86.h>
73 #include <asm/cpu.h>
74 #ifdef CONFIG_X86_IOPL_IOPERM
75 #include <asm/io_bitmap.h>
76 #endif
77 
78 #ifdef CONFIG_ACPI
79 #include <linux/acpi.h>
80 #include <asm/acpi.h>
81 #include <acpi/pdc_intel.h>
82 #include <acpi/processor.h>
83 #include <xen/interface/platform.h>
84 #endif
85 
86 #include "xen-ops.h"
87 #include "mmu.h"
88 #include "smp.h"
89 #include "multicalls.h"
90 #include "pmu.h"
91 
92 #include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
93 
94 void *xen_initial_gdt;
95 
96 static int xen_cpu_up_prepare_pv(unsigned int cpu);
97 static int xen_cpu_dead_pv(unsigned int cpu);
98 
99 struct tls_descs {
100 	struct desc_struct desc[3];
101 };
102 
103 /*
104  * Updating the 3 TLS descriptors in the GDT on every task switch is
105  * surprisingly expensive so we avoid updating them if they haven't
106  * changed.  Since Xen writes different descriptors than the one
107  * passed in the update_descriptor hypercall we keep shadow copies to
108  * compare against.
109  */
110 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
111 
112 static void __init xen_banner(void)
113 {
114 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
115 	struct xen_extraversion extra;
116 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
117 
118 	pr_info("Booting paravirtualized kernel on %s\n", pv_info.name);
119 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
120 	       version >> 16, version & 0xffff, extra.extraversion,
121 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
122 }
123 
124 static void __init xen_pv_init_platform(void)
125 {
126 	populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP));
127 
128 	set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
129 	HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
130 
131 	/* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */
132 	xen_vcpu_info_reset(0);
133 
134 	/* pvclock is in shared info area */
135 	xen_init_time_ops();
136 }
137 
138 static void __init xen_pv_guest_late_init(void)
139 {
140 #ifndef CONFIG_SMP
141 	/* Setup shared vcpu info for non-smp configurations */
142 	xen_setup_vcpu_info_placement();
143 #endif
144 }
145 
146 /* Check if running on Xen version (major, minor) or later */
147 bool
148 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
149 {
150 	unsigned int version;
151 
152 	if (!xen_domain())
153 		return false;
154 
155 	version = HYPERVISOR_xen_version(XENVER_version, NULL);
156 	if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
157 		((version >> 16) > major))
158 		return true;
159 	return false;
160 }
161 
162 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
163 static __read_mostly unsigned int cpuid_leaf5_edx_val;
164 
165 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
166 		      unsigned int *cx, unsigned int *dx)
167 {
168 	unsigned maskebx = ~0;
169 
170 	/*
171 	 * Mask out inconvenient features, to try and disable as many
172 	 * unsupported kernel subsystems as possible.
173 	 */
174 	switch (*ax) {
175 	case CPUID_MWAIT_LEAF:
176 		/* Synthesize the values.. */
177 		*ax = 0;
178 		*bx = 0;
179 		*cx = cpuid_leaf5_ecx_val;
180 		*dx = cpuid_leaf5_edx_val;
181 		return;
182 
183 	case 0xb:
184 		/* Suppress extended topology stuff */
185 		maskebx = 0;
186 		break;
187 	}
188 
189 	asm(XEN_EMULATE_PREFIX "cpuid"
190 		: "=a" (*ax),
191 		  "=b" (*bx),
192 		  "=c" (*cx),
193 		  "=d" (*dx)
194 		: "0" (*ax), "2" (*cx));
195 
196 	*bx &= maskebx;
197 }
198 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
199 
200 static bool __init xen_check_mwait(void)
201 {
202 #ifdef CONFIG_ACPI
203 	struct xen_platform_op op = {
204 		.cmd			= XENPF_set_processor_pminfo,
205 		.u.set_pminfo.id	= -1,
206 		.u.set_pminfo.type	= XEN_PM_PDC,
207 	};
208 	uint32_t buf[3];
209 	unsigned int ax, bx, cx, dx;
210 	unsigned int mwait_mask;
211 
212 	/* We need to determine whether it is OK to expose the MWAIT
213 	 * capability to the kernel to harvest deeper than C3 states from ACPI
214 	 * _CST using the processor_harvest_xen.c module. For this to work, we
215 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
216 	 * checks against). The hypervisor won't expose the MWAIT flag because
217 	 * it would break backwards compatibility; so we will find out directly
218 	 * from the hardware and hypercall.
219 	 */
220 	if (!xen_initial_domain())
221 		return false;
222 
223 	/*
224 	 * When running under platform earlier than Xen4.2, do not expose
225 	 * mwait, to avoid the risk of loading native acpi pad driver
226 	 */
227 	if (!xen_running_on_version_or_later(4, 2))
228 		return false;
229 
230 	ax = 1;
231 	cx = 0;
232 
233 	native_cpuid(&ax, &bx, &cx, &dx);
234 
235 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
236 		     (1 << (X86_FEATURE_MWAIT % 32));
237 
238 	if ((cx & mwait_mask) != mwait_mask)
239 		return false;
240 
241 	/* We need to emulate the MWAIT_LEAF and for that we need both
242 	 * ecx and edx. The hypercall provides only partial information.
243 	 */
244 
245 	ax = CPUID_MWAIT_LEAF;
246 	bx = 0;
247 	cx = 0;
248 	dx = 0;
249 
250 	native_cpuid(&ax, &bx, &cx, &dx);
251 
252 	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
253 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
254 	 */
255 	buf[0] = ACPI_PDC_REVISION_ID;
256 	buf[1] = 1;
257 	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
258 
259 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
260 
261 	if ((HYPERVISOR_platform_op(&op) == 0) &&
262 	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
263 		cpuid_leaf5_ecx_val = cx;
264 		cpuid_leaf5_edx_val = dx;
265 	}
266 	return true;
267 #else
268 	return false;
269 #endif
270 }
271 
272 static bool __init xen_check_xsave(void)
273 {
274 	unsigned int cx, xsave_mask;
275 
276 	cx = cpuid_ecx(1);
277 
278 	xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
279 		     (1 << (X86_FEATURE_OSXSAVE % 32));
280 
281 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
282 	return (cx & xsave_mask) == xsave_mask;
283 }
284 
285 static void __init xen_init_capabilities(void)
286 {
287 	setup_force_cpu_cap(X86_FEATURE_XENPV);
288 	setup_clear_cpu_cap(X86_FEATURE_DCA);
289 	setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
290 	setup_clear_cpu_cap(X86_FEATURE_MTRR);
291 	setup_clear_cpu_cap(X86_FEATURE_ACC);
292 	setup_clear_cpu_cap(X86_FEATURE_X2APIC);
293 	setup_clear_cpu_cap(X86_FEATURE_SME);
294 
295 	/*
296 	 * Xen PV would need some work to support PCID: CR3 handling as well
297 	 * as xen_flush_tlb_others() would need updating.
298 	 */
299 	setup_clear_cpu_cap(X86_FEATURE_PCID);
300 
301 	if (!xen_initial_domain())
302 		setup_clear_cpu_cap(X86_FEATURE_ACPI);
303 
304 	if (xen_check_mwait())
305 		setup_force_cpu_cap(X86_FEATURE_MWAIT);
306 	else
307 		setup_clear_cpu_cap(X86_FEATURE_MWAIT);
308 
309 	if (!xen_check_xsave()) {
310 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
311 		setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
312 	}
313 }
314 
315 static void xen_set_debugreg(int reg, unsigned long val)
316 {
317 	HYPERVISOR_set_debugreg(reg, val);
318 }
319 
320 static unsigned long xen_get_debugreg(int reg)
321 {
322 	return HYPERVISOR_get_debugreg(reg);
323 }
324 
325 static void xen_end_context_switch(struct task_struct *next)
326 {
327 	xen_mc_flush();
328 	paravirt_end_context_switch(next);
329 }
330 
331 static unsigned long xen_store_tr(void)
332 {
333 	return 0;
334 }
335 
336 /*
337  * Set the page permissions for a particular virtual address.  If the
338  * address is a vmalloc mapping (or other non-linear mapping), then
339  * find the linear mapping of the page and also set its protections to
340  * match.
341  */
342 static void set_aliased_prot(void *v, pgprot_t prot)
343 {
344 	int level;
345 	pte_t *ptep;
346 	pte_t pte;
347 	unsigned long pfn;
348 	unsigned char dummy;
349 	void *va;
350 
351 	ptep = lookup_address((unsigned long)v, &level);
352 	BUG_ON(ptep == NULL);
353 
354 	pfn = pte_pfn(*ptep);
355 	pte = pfn_pte(pfn, prot);
356 
357 	/*
358 	 * Careful: update_va_mapping() will fail if the virtual address
359 	 * we're poking isn't populated in the page tables.  We don't
360 	 * need to worry about the direct map (that's always in the page
361 	 * tables), but we need to be careful about vmap space.  In
362 	 * particular, the top level page table can lazily propagate
363 	 * entries between processes, so if we've switched mms since we
364 	 * vmapped the target in the first place, we might not have the
365 	 * top-level page table entry populated.
366 	 *
367 	 * We disable preemption because we want the same mm active when
368 	 * we probe the target and when we issue the hypercall.  We'll
369 	 * have the same nominal mm, but if we're a kernel thread, lazy
370 	 * mm dropping could change our pgd.
371 	 *
372 	 * Out of an abundance of caution, this uses __get_user() to fault
373 	 * in the target address just in case there's some obscure case
374 	 * in which the target address isn't readable.
375 	 */
376 
377 	preempt_disable();
378 
379 	copy_from_kernel_nofault(&dummy, v, 1);
380 
381 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
382 		BUG();
383 
384 	va = __va(PFN_PHYS(pfn));
385 
386 	if (va != v && HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
387 		BUG();
388 
389 	preempt_enable();
390 }
391 
392 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
393 {
394 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
395 	int i;
396 
397 	/*
398 	 * We need to mark the all aliases of the LDT pages RO.  We
399 	 * don't need to call vm_flush_aliases(), though, since that's
400 	 * only responsible for flushing aliases out the TLBs, not the
401 	 * page tables, and Xen will flush the TLB for us if needed.
402 	 *
403 	 * To avoid confusing future readers: none of this is necessary
404 	 * to load the LDT.  The hypervisor only checks this when the
405 	 * LDT is faulted in due to subsequent descriptor access.
406 	 */
407 
408 	for (i = 0; i < entries; i += entries_per_page)
409 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
410 }
411 
412 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
413 {
414 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
415 	int i;
416 
417 	for (i = 0; i < entries; i += entries_per_page)
418 		set_aliased_prot(ldt + i, PAGE_KERNEL);
419 }
420 
421 static void xen_set_ldt(const void *addr, unsigned entries)
422 {
423 	struct mmuext_op *op;
424 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
425 
426 	trace_xen_cpu_set_ldt(addr, entries);
427 
428 	op = mcs.args;
429 	op->cmd = MMUEXT_SET_LDT;
430 	op->arg1.linear_addr = (unsigned long)addr;
431 	op->arg2.nr_ents = entries;
432 
433 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
434 
435 	xen_mc_issue(PARAVIRT_LAZY_CPU);
436 }
437 
438 static void xen_load_gdt(const struct desc_ptr *dtr)
439 {
440 	unsigned long va = dtr->address;
441 	unsigned int size = dtr->size + 1;
442 	unsigned long pfn, mfn;
443 	int level;
444 	pte_t *ptep;
445 	void *virt;
446 
447 	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
448 	BUG_ON(size > PAGE_SIZE);
449 	BUG_ON(va & ~PAGE_MASK);
450 
451 	/*
452 	 * The GDT is per-cpu and is in the percpu data area.
453 	 * That can be virtually mapped, so we need to do a
454 	 * page-walk to get the underlying MFN for the
455 	 * hypercall.  The page can also be in the kernel's
456 	 * linear range, so we need to RO that mapping too.
457 	 */
458 	ptep = lookup_address(va, &level);
459 	BUG_ON(ptep == NULL);
460 
461 	pfn = pte_pfn(*ptep);
462 	mfn = pfn_to_mfn(pfn);
463 	virt = __va(PFN_PHYS(pfn));
464 
465 	make_lowmem_page_readonly((void *)va);
466 	make_lowmem_page_readonly(virt);
467 
468 	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
469 		BUG();
470 }
471 
472 /*
473  * load_gdt for early boot, when the gdt is only mapped once
474  */
475 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
476 {
477 	unsigned long va = dtr->address;
478 	unsigned int size = dtr->size + 1;
479 	unsigned long pfn, mfn;
480 	pte_t pte;
481 
482 	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
483 	BUG_ON(size > PAGE_SIZE);
484 	BUG_ON(va & ~PAGE_MASK);
485 
486 	pfn = virt_to_pfn(va);
487 	mfn = pfn_to_mfn(pfn);
488 
489 	pte = pfn_pte(pfn, PAGE_KERNEL_RO);
490 
491 	if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
492 		BUG();
493 
494 	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
495 		BUG();
496 }
497 
498 static inline bool desc_equal(const struct desc_struct *d1,
499 			      const struct desc_struct *d2)
500 {
501 	return !memcmp(d1, d2, sizeof(*d1));
502 }
503 
504 static void load_TLS_descriptor(struct thread_struct *t,
505 				unsigned int cpu, unsigned int i)
506 {
507 	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
508 	struct desc_struct *gdt;
509 	xmaddr_t maddr;
510 	struct multicall_space mc;
511 
512 	if (desc_equal(shadow, &t->tls_array[i]))
513 		return;
514 
515 	*shadow = t->tls_array[i];
516 
517 	gdt = get_cpu_gdt_rw(cpu);
518 	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
519 	mc = __xen_mc_entry(0);
520 
521 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
522 }
523 
524 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
525 {
526 	/*
527 	 * In lazy mode we need to zero %fs, otherwise we may get an
528 	 * exception between the new %fs descriptor being loaded and
529 	 * %fs being effectively cleared at __switch_to().
530 	 */
531 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
532 		loadsegment(fs, 0);
533 
534 	xen_mc_batch();
535 
536 	load_TLS_descriptor(t, cpu, 0);
537 	load_TLS_descriptor(t, cpu, 1);
538 	load_TLS_descriptor(t, cpu, 2);
539 
540 	xen_mc_issue(PARAVIRT_LAZY_CPU);
541 }
542 
543 static void xen_load_gs_index(unsigned int idx)
544 {
545 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
546 		BUG();
547 }
548 
549 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
550 				const void *ptr)
551 {
552 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
553 	u64 entry = *(u64 *)ptr;
554 
555 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
556 
557 	preempt_disable();
558 
559 	xen_mc_flush();
560 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
561 		BUG();
562 
563 	preempt_enable();
564 }
565 
566 void noist_exc_debug(struct pt_regs *regs);
567 
568 DEFINE_IDTENTRY_RAW(xenpv_exc_nmi)
569 {
570 	/* On Xen PV, NMI doesn't use IST.  The C part is the sane as native. */
571 	exc_nmi(regs);
572 }
573 
574 DEFINE_IDTENTRY_RAW(xenpv_exc_debug)
575 {
576 	/*
577 	 * There's no IST on Xen PV, but we still need to dispatch
578 	 * to the correct handler.
579 	 */
580 	if (user_mode(regs))
581 		noist_exc_debug(regs);
582 	else
583 		exc_debug(regs);
584 }
585 
586 struct trap_array_entry {
587 	void (*orig)(void);
588 	void (*xen)(void);
589 	bool ist_okay;
590 };
591 
592 #define TRAP_ENTRY(func, ist_ok) {			\
593 	.orig		= asm_##func,			\
594 	.xen		= xen_asm_##func,		\
595 	.ist_okay	= ist_ok }
596 
597 #define TRAP_ENTRY_REDIR(func, ist_ok) {		\
598 	.orig		= asm_##func,			\
599 	.xen		= xen_asm_xenpv_##func,		\
600 	.ist_okay	= ist_ok }
601 
602 static struct trap_array_entry trap_array[] = {
603 	TRAP_ENTRY_REDIR(exc_debug,			true  ),
604 	TRAP_ENTRY(exc_double_fault,			true  ),
605 #ifdef CONFIG_X86_MCE
606 	TRAP_ENTRY(exc_machine_check,			true  ),
607 #endif
608 	TRAP_ENTRY_REDIR(exc_nmi,			true  ),
609 	TRAP_ENTRY(exc_int3,				false ),
610 	TRAP_ENTRY(exc_overflow,			false ),
611 #ifdef CONFIG_IA32_EMULATION
612 	{ entry_INT80_compat,          xen_entry_INT80_compat,          false },
613 #endif
614 	TRAP_ENTRY(exc_page_fault,			false ),
615 	TRAP_ENTRY(exc_divide_error,			false ),
616 	TRAP_ENTRY(exc_bounds,				false ),
617 	TRAP_ENTRY(exc_invalid_op,			false ),
618 	TRAP_ENTRY(exc_device_not_available,		false ),
619 	TRAP_ENTRY(exc_coproc_segment_overrun,		false ),
620 	TRAP_ENTRY(exc_invalid_tss,			false ),
621 	TRAP_ENTRY(exc_segment_not_present,		false ),
622 	TRAP_ENTRY(exc_stack_segment,			false ),
623 	TRAP_ENTRY(exc_general_protection,		false ),
624 	TRAP_ENTRY(exc_spurious_interrupt_bug,		false ),
625 	TRAP_ENTRY(exc_coprocessor_error,		false ),
626 	TRAP_ENTRY(exc_alignment_check,			false ),
627 	TRAP_ENTRY(exc_simd_coprocessor_error,		false ),
628 };
629 
630 static bool __ref get_trap_addr(void **addr, unsigned int ist)
631 {
632 	unsigned int nr;
633 	bool ist_okay = false;
634 
635 	/*
636 	 * Replace trap handler addresses by Xen specific ones.
637 	 * Check for known traps using IST and whitelist them.
638 	 * The debugger ones are the only ones we care about.
639 	 * Xen will handle faults like double_fault, so we should never see
640 	 * them.  Warn if there's an unexpected IST-using fault handler.
641 	 */
642 	for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
643 		struct trap_array_entry *entry = trap_array + nr;
644 
645 		if (*addr == entry->orig) {
646 			*addr = entry->xen;
647 			ist_okay = entry->ist_okay;
648 			break;
649 		}
650 	}
651 
652 	if (nr == ARRAY_SIZE(trap_array) &&
653 	    *addr >= (void *)early_idt_handler_array[0] &&
654 	    *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
655 		nr = (*addr - (void *)early_idt_handler_array[0]) /
656 		     EARLY_IDT_HANDLER_SIZE;
657 		*addr = (void *)xen_early_idt_handler_array[nr];
658 	}
659 
660 	if (WARN_ON(ist != 0 && !ist_okay))
661 		return false;
662 
663 	return true;
664 }
665 
666 static int cvt_gate_to_trap(int vector, const gate_desc *val,
667 			    struct trap_info *info)
668 {
669 	unsigned long addr;
670 
671 	if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
672 		return 0;
673 
674 	info->vector = vector;
675 
676 	addr = gate_offset(val);
677 	if (!get_trap_addr((void **)&addr, val->bits.ist))
678 		return 0;
679 	info->address = addr;
680 
681 	info->cs = gate_segment(val);
682 	info->flags = val->bits.dpl;
683 	/* interrupt gates clear IF */
684 	if (val->bits.type == GATE_INTERRUPT)
685 		info->flags |= 1 << 2;
686 
687 	return 1;
688 }
689 
690 /* Locations of each CPU's IDT */
691 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
692 
693 /* Set an IDT entry.  If the entry is part of the current IDT, then
694    also update Xen. */
695 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
696 {
697 	unsigned long p = (unsigned long)&dt[entrynum];
698 	unsigned long start, end;
699 
700 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
701 
702 	preempt_disable();
703 
704 	start = __this_cpu_read(idt_desc.address);
705 	end = start + __this_cpu_read(idt_desc.size) + 1;
706 
707 	xen_mc_flush();
708 
709 	native_write_idt_entry(dt, entrynum, g);
710 
711 	if (p >= start && (p + 8) <= end) {
712 		struct trap_info info[2];
713 
714 		info[1].address = 0;
715 
716 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
717 			if (HYPERVISOR_set_trap_table(info))
718 				BUG();
719 	}
720 
721 	preempt_enable();
722 }
723 
724 static void xen_convert_trap_info(const struct desc_ptr *desc,
725 				  struct trap_info *traps)
726 {
727 	unsigned in, out, count;
728 
729 	count = (desc->size+1) / sizeof(gate_desc);
730 	BUG_ON(count > 256);
731 
732 	for (in = out = 0; in < count; in++) {
733 		gate_desc *entry = (gate_desc *)(desc->address) + in;
734 
735 		if (cvt_gate_to_trap(in, entry, &traps[out]))
736 			out++;
737 	}
738 	traps[out].address = 0;
739 }
740 
741 void xen_copy_trap_info(struct trap_info *traps)
742 {
743 	const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
744 
745 	xen_convert_trap_info(desc, traps);
746 }
747 
748 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
749    hold a spinlock to protect the static traps[] array (static because
750    it avoids allocation, and saves stack space). */
751 static void xen_load_idt(const struct desc_ptr *desc)
752 {
753 	static DEFINE_SPINLOCK(lock);
754 	static struct trap_info traps[257];
755 
756 	trace_xen_cpu_load_idt(desc);
757 
758 	spin_lock(&lock);
759 
760 	memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
761 
762 	xen_convert_trap_info(desc, traps);
763 
764 	xen_mc_flush();
765 	if (HYPERVISOR_set_trap_table(traps))
766 		BUG();
767 
768 	spin_unlock(&lock);
769 }
770 
771 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
772    they're handled differently. */
773 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
774 				const void *desc, int type)
775 {
776 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
777 
778 	preempt_disable();
779 
780 	switch (type) {
781 	case DESC_LDT:
782 	case DESC_TSS:
783 		/* ignore */
784 		break;
785 
786 	default: {
787 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
788 
789 		xen_mc_flush();
790 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
791 			BUG();
792 	}
793 
794 	}
795 
796 	preempt_enable();
797 }
798 
799 /*
800  * Version of write_gdt_entry for use at early boot-time needed to
801  * update an entry as simply as possible.
802  */
803 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
804 					    const void *desc, int type)
805 {
806 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
807 
808 	switch (type) {
809 	case DESC_LDT:
810 	case DESC_TSS:
811 		/* ignore */
812 		break;
813 
814 	default: {
815 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
816 
817 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
818 			dt[entry] = *(struct desc_struct *)desc;
819 	}
820 
821 	}
822 }
823 
824 static void xen_load_sp0(unsigned long sp0)
825 {
826 	struct multicall_space mcs;
827 
828 	mcs = xen_mc_entry(0);
829 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
830 	xen_mc_issue(PARAVIRT_LAZY_CPU);
831 	this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
832 }
833 
834 #ifdef CONFIG_X86_IOPL_IOPERM
835 static void xen_invalidate_io_bitmap(void)
836 {
837 	struct physdev_set_iobitmap iobitmap = {
838 		.bitmap = NULL,
839 		.nr_ports = 0,
840 	};
841 
842 	native_tss_invalidate_io_bitmap();
843 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
844 }
845 
846 static void xen_update_io_bitmap(void)
847 {
848 	struct physdev_set_iobitmap iobitmap;
849 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
850 
851 	native_tss_update_io_bitmap();
852 
853 	iobitmap.bitmap = (uint8_t *)(&tss->x86_tss) +
854 			  tss->x86_tss.io_bitmap_base;
855 	if (tss->x86_tss.io_bitmap_base == IO_BITMAP_OFFSET_INVALID)
856 		iobitmap.nr_ports = 0;
857 	else
858 		iobitmap.nr_ports = IO_BITMAP_BITS;
859 
860 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
861 }
862 #endif
863 
864 static void xen_io_delay(void)
865 {
866 }
867 
868 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
869 
870 static unsigned long xen_read_cr0(void)
871 {
872 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
873 
874 	if (unlikely(cr0 == 0)) {
875 		cr0 = native_read_cr0();
876 		this_cpu_write(xen_cr0_value, cr0);
877 	}
878 
879 	return cr0;
880 }
881 
882 static void xen_write_cr0(unsigned long cr0)
883 {
884 	struct multicall_space mcs;
885 
886 	this_cpu_write(xen_cr0_value, cr0);
887 
888 	/* Only pay attention to cr0.TS; everything else is
889 	   ignored. */
890 	mcs = xen_mc_entry(0);
891 
892 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
893 
894 	xen_mc_issue(PARAVIRT_LAZY_CPU);
895 }
896 
897 static void xen_write_cr4(unsigned long cr4)
898 {
899 	cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
900 
901 	native_write_cr4(cr4);
902 }
903 
904 static u64 xen_read_msr_safe(unsigned int msr, int *err)
905 {
906 	u64 val;
907 
908 	if (pmu_msr_read(msr, &val, err))
909 		return val;
910 
911 	val = native_read_msr_safe(msr, err);
912 	switch (msr) {
913 	case MSR_IA32_APICBASE:
914 		val &= ~X2APIC_ENABLE;
915 		break;
916 	}
917 	return val;
918 }
919 
920 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
921 {
922 	int ret;
923 	unsigned int which;
924 	u64 base;
925 
926 	ret = 0;
927 
928 	switch (msr) {
929 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
930 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
931 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
932 
933 	set:
934 		base = ((u64)high << 32) | low;
935 		if (HYPERVISOR_set_segment_base(which, base) != 0)
936 			ret = -EIO;
937 		break;
938 
939 	case MSR_STAR:
940 	case MSR_CSTAR:
941 	case MSR_LSTAR:
942 	case MSR_SYSCALL_MASK:
943 	case MSR_IA32_SYSENTER_CS:
944 	case MSR_IA32_SYSENTER_ESP:
945 	case MSR_IA32_SYSENTER_EIP:
946 		/* Fast syscall setup is all done in hypercalls, so
947 		   these are all ignored.  Stub them out here to stop
948 		   Xen console noise. */
949 		break;
950 
951 	default:
952 		if (!pmu_msr_write(msr, low, high, &ret))
953 			ret = native_write_msr_safe(msr, low, high);
954 	}
955 
956 	return ret;
957 }
958 
959 static u64 xen_read_msr(unsigned int msr)
960 {
961 	/*
962 	 * This will silently swallow a #GP from RDMSR.  It may be worth
963 	 * changing that.
964 	 */
965 	int err;
966 
967 	return xen_read_msr_safe(msr, &err);
968 }
969 
970 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
971 {
972 	/*
973 	 * This will silently swallow a #GP from WRMSR.  It may be worth
974 	 * changing that.
975 	 */
976 	xen_write_msr_safe(msr, low, high);
977 }
978 
979 /* This is called once we have the cpu_possible_mask */
980 void __init xen_setup_vcpu_info_placement(void)
981 {
982 	int cpu;
983 
984 	for_each_possible_cpu(cpu) {
985 		/* Set up direct vCPU id mapping for PV guests. */
986 		per_cpu(xen_vcpu_id, cpu) = cpu;
987 
988 		/*
989 		 * xen_vcpu_setup(cpu) can fail  -- in which case it
990 		 * falls back to the shared_info version for cpus
991 		 * where xen_vcpu_nr(cpu) < MAX_VIRT_CPUS.
992 		 *
993 		 * xen_cpu_up_prepare_pv() handles the rest by failing
994 		 * them in hotplug.
995 		 */
996 		(void) xen_vcpu_setup(cpu);
997 	}
998 
999 	/*
1000 	 * xen_vcpu_setup managed to place the vcpu_info within the
1001 	 * percpu area for all cpus, so make use of it.
1002 	 */
1003 	if (xen_have_vcpu_info_placement) {
1004 		pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1005 		pv_ops.irq.restore_fl =
1006 			__PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1007 		pv_ops.irq.irq_disable =
1008 			__PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1009 		pv_ops.irq.irq_enable =
1010 			__PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1011 		pv_ops.mmu.read_cr2 =
1012 			__PV_IS_CALLEE_SAVE(xen_read_cr2_direct);
1013 	}
1014 }
1015 
1016 static const struct pv_info xen_info __initconst = {
1017 	.shared_kernel_pmd = 0,
1018 
1019 	.extra_user_64bit_cs = FLAT_USER_CS64,
1020 	.name = "Xen",
1021 };
1022 
1023 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1024 	.cpuid = xen_cpuid,
1025 
1026 	.set_debugreg = xen_set_debugreg,
1027 	.get_debugreg = xen_get_debugreg,
1028 
1029 	.read_cr0 = xen_read_cr0,
1030 	.write_cr0 = xen_write_cr0,
1031 
1032 	.write_cr4 = xen_write_cr4,
1033 
1034 	.wbinvd = native_wbinvd,
1035 
1036 	.read_msr = xen_read_msr,
1037 	.write_msr = xen_write_msr,
1038 
1039 	.read_msr_safe = xen_read_msr_safe,
1040 	.write_msr_safe = xen_write_msr_safe,
1041 
1042 	.read_pmc = xen_read_pmc,
1043 
1044 	.iret = xen_iret,
1045 	.usergs_sysret64 = xen_sysret64,
1046 
1047 	.load_tr_desc = paravirt_nop,
1048 	.set_ldt = xen_set_ldt,
1049 	.load_gdt = xen_load_gdt,
1050 	.load_idt = xen_load_idt,
1051 	.load_tls = xen_load_tls,
1052 	.load_gs_index = xen_load_gs_index,
1053 
1054 	.alloc_ldt = xen_alloc_ldt,
1055 	.free_ldt = xen_free_ldt,
1056 
1057 	.store_tr = xen_store_tr,
1058 
1059 	.write_ldt_entry = xen_write_ldt_entry,
1060 	.write_gdt_entry = xen_write_gdt_entry,
1061 	.write_idt_entry = xen_write_idt_entry,
1062 	.load_sp0 = xen_load_sp0,
1063 
1064 #ifdef CONFIG_X86_IOPL_IOPERM
1065 	.invalidate_io_bitmap = xen_invalidate_io_bitmap,
1066 	.update_io_bitmap = xen_update_io_bitmap,
1067 #endif
1068 	.io_delay = xen_io_delay,
1069 
1070 	/* Xen takes care of %gs when switching to usermode for us */
1071 	.swapgs = paravirt_nop,
1072 
1073 	.start_context_switch = paravirt_start_context_switch,
1074 	.end_context_switch = xen_end_context_switch,
1075 };
1076 
1077 static void xen_restart(char *msg)
1078 {
1079 	xen_reboot(SHUTDOWN_reboot);
1080 }
1081 
1082 static void xen_machine_halt(void)
1083 {
1084 	xen_reboot(SHUTDOWN_poweroff);
1085 }
1086 
1087 static void xen_machine_power_off(void)
1088 {
1089 	if (pm_power_off)
1090 		pm_power_off();
1091 	xen_reboot(SHUTDOWN_poweroff);
1092 }
1093 
1094 static void xen_crash_shutdown(struct pt_regs *regs)
1095 {
1096 	xen_reboot(SHUTDOWN_crash);
1097 }
1098 
1099 static const struct machine_ops xen_machine_ops __initconst = {
1100 	.restart = xen_restart,
1101 	.halt = xen_machine_halt,
1102 	.power_off = xen_machine_power_off,
1103 	.shutdown = xen_machine_halt,
1104 	.crash_shutdown = xen_crash_shutdown,
1105 	.emergency_restart = xen_emergency_restart,
1106 };
1107 
1108 static unsigned char xen_get_nmi_reason(void)
1109 {
1110 	unsigned char reason = 0;
1111 
1112 	/* Construct a value which looks like it came from port 0x61. */
1113 	if (test_bit(_XEN_NMIREASON_io_error,
1114 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1115 		reason |= NMI_REASON_IOCHK;
1116 	if (test_bit(_XEN_NMIREASON_pci_serr,
1117 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1118 		reason |= NMI_REASON_SERR;
1119 
1120 	return reason;
1121 }
1122 
1123 static void __init xen_boot_params_init_edd(void)
1124 {
1125 #if IS_ENABLED(CONFIG_EDD)
1126 	struct xen_platform_op op;
1127 	struct edd_info *edd_info;
1128 	u32 *mbr_signature;
1129 	unsigned nr;
1130 	int ret;
1131 
1132 	edd_info = boot_params.eddbuf;
1133 	mbr_signature = boot_params.edd_mbr_sig_buffer;
1134 
1135 	op.cmd = XENPF_firmware_info;
1136 
1137 	op.u.firmware_info.type = XEN_FW_DISK_INFO;
1138 	for (nr = 0; nr < EDDMAXNR; nr++) {
1139 		struct edd_info *info = edd_info + nr;
1140 
1141 		op.u.firmware_info.index = nr;
1142 		info->params.length = sizeof(info->params);
1143 		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1144 				     &info->params);
1145 		ret = HYPERVISOR_platform_op(&op);
1146 		if (ret)
1147 			break;
1148 
1149 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1150 		C(device);
1151 		C(version);
1152 		C(interface_support);
1153 		C(legacy_max_cylinder);
1154 		C(legacy_max_head);
1155 		C(legacy_sectors_per_track);
1156 #undef C
1157 	}
1158 	boot_params.eddbuf_entries = nr;
1159 
1160 	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1161 	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1162 		op.u.firmware_info.index = nr;
1163 		ret = HYPERVISOR_platform_op(&op);
1164 		if (ret)
1165 			break;
1166 		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1167 	}
1168 	boot_params.edd_mbr_sig_buf_entries = nr;
1169 #endif
1170 }
1171 
1172 /*
1173  * Set up the GDT and segment registers for -fstack-protector.  Until
1174  * we do this, we have to be careful not to call any stack-protected
1175  * function, which is most of the kernel.
1176  */
1177 static void __init xen_setup_gdt(int cpu)
1178 {
1179 	pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot;
1180 	pv_ops.cpu.load_gdt = xen_load_gdt_boot;
1181 
1182 	setup_stack_canary_segment(cpu);
1183 	switch_to_new_gdt(cpu);
1184 
1185 	pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry;
1186 	pv_ops.cpu.load_gdt = xen_load_gdt;
1187 }
1188 
1189 static void __init xen_dom0_set_legacy_features(void)
1190 {
1191 	x86_platform.legacy.rtc = 1;
1192 }
1193 
1194 /* First C function to be called on Xen boot */
1195 asmlinkage __visible void __init xen_start_kernel(void)
1196 {
1197 	struct physdev_set_iopl set_iopl;
1198 	unsigned long initrd_start = 0;
1199 	int rc;
1200 
1201 	if (!xen_start_info)
1202 		return;
1203 
1204 	xen_domain_type = XEN_PV_DOMAIN;
1205 	xen_start_flags = xen_start_info->flags;
1206 
1207 	xen_setup_features();
1208 
1209 	/* Install Xen paravirt ops */
1210 	pv_info = xen_info;
1211 	pv_ops.init.patch = paravirt_patch_default;
1212 	pv_ops.cpu = xen_cpu_ops;
1213 	xen_init_irq_ops();
1214 
1215 	/*
1216 	 * Setup xen_vcpu early because it is needed for
1217 	 * local_irq_disable(), irqs_disabled(), e.g. in printk().
1218 	 *
1219 	 * Don't do the full vcpu_info placement stuff until we have
1220 	 * the cpu_possible_mask and a non-dummy shared_info.
1221 	 */
1222 	xen_vcpu_info_reset(0);
1223 
1224 	x86_platform.get_nmi_reason = xen_get_nmi_reason;
1225 
1226 	x86_init.resources.memory_setup = xen_memory_setup;
1227 	x86_init.irqs.intr_mode_select	= x86_init_noop;
1228 	x86_init.irqs.intr_mode_init	= x86_init_noop;
1229 	x86_init.oem.arch_setup = xen_arch_setup;
1230 	x86_init.oem.banner = xen_banner;
1231 	x86_init.hyper.init_platform = xen_pv_init_platform;
1232 	x86_init.hyper.guest_late_init = xen_pv_guest_late_init;
1233 
1234 	/*
1235 	 * Set up some pagetable state before starting to set any ptes.
1236 	 */
1237 
1238 	xen_setup_machphys_mapping();
1239 	xen_init_mmu_ops();
1240 
1241 	/* Prevent unwanted bits from being set in PTEs. */
1242 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1243 	__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
1244 
1245 	/*
1246 	 * Prevent page tables from being allocated in highmem, even
1247 	 * if CONFIG_HIGHPTE is enabled.
1248 	 */
1249 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1250 
1251 	/* Get mfn list */
1252 	xen_build_dynamic_phys_to_machine();
1253 
1254 	/*
1255 	 * Set up kernel GDT and segment registers, mainly so that
1256 	 * -fstack-protector code can be executed.
1257 	 */
1258 	xen_setup_gdt(0);
1259 
1260 	/* Work out if we support NX */
1261 	get_cpu_cap(&boot_cpu_data);
1262 	x86_configure_nx();
1263 
1264 	/* Determine virtual and physical address sizes */
1265 	get_cpu_address_sizes(&boot_cpu_data);
1266 
1267 	/* Let's presume PV guests always boot on vCPU with id 0. */
1268 	per_cpu(xen_vcpu_id, 0) = 0;
1269 
1270 	idt_setup_early_handler();
1271 
1272 	xen_init_capabilities();
1273 
1274 #ifdef CONFIG_X86_LOCAL_APIC
1275 	/*
1276 	 * set up the basic apic ops.
1277 	 */
1278 	xen_init_apic();
1279 #endif
1280 
1281 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1282 		pv_ops.mmu.ptep_modify_prot_start =
1283 			xen_ptep_modify_prot_start;
1284 		pv_ops.mmu.ptep_modify_prot_commit =
1285 			xen_ptep_modify_prot_commit;
1286 	}
1287 
1288 	machine_ops = xen_machine_ops;
1289 
1290 	/*
1291 	 * The only reliable way to retain the initial address of the
1292 	 * percpu gdt_page is to remember it here, so we can go and
1293 	 * mark it RW later, when the initial percpu area is freed.
1294 	 */
1295 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1296 
1297 	xen_smp_init();
1298 
1299 #ifdef CONFIG_ACPI_NUMA
1300 	/*
1301 	 * The pages we from Xen are not related to machine pages, so
1302 	 * any NUMA information the kernel tries to get from ACPI will
1303 	 * be meaningless.  Prevent it from trying.
1304 	 */
1305 	acpi_numa = -1;
1306 #endif
1307 	WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1308 
1309 	local_irq_disable();
1310 	early_boot_irqs_disabled = true;
1311 
1312 	xen_raw_console_write("mapping kernel into physical memory\n");
1313 	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1314 				   xen_start_info->nr_pages);
1315 	xen_reserve_special_pages();
1316 
1317 	/* keep using Xen gdt for now; no urgent need to change it */
1318 
1319 	pv_info.kernel_rpl = 0;
1320 
1321 	/*
1322 	 * We used to do this in xen_arch_setup, but that is too late
1323 	 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1324 	 * early_amd_init which pokes 0xcf8 port.
1325 	 */
1326 	set_iopl.iopl = 1;
1327 	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1328 	if (rc != 0)
1329 		xen_raw_printk("physdev_op failed %d\n", rc);
1330 
1331 
1332 	if (xen_start_info->mod_start) {
1333 	    if (xen_start_info->flags & SIF_MOD_START_PFN)
1334 		initrd_start = PFN_PHYS(xen_start_info->mod_start);
1335 	    else
1336 		initrd_start = __pa(xen_start_info->mod_start);
1337 	}
1338 
1339 	/* Poke various useful things into boot_params */
1340 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1341 	boot_params.hdr.ramdisk_image = initrd_start;
1342 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1343 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1344 	boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1345 
1346 	if (!xen_initial_domain()) {
1347 		add_preferred_console("xenboot", 0, NULL);
1348 		if (pci_xen)
1349 			x86_init.pci.arch_init = pci_xen_init;
1350 	} else {
1351 		const struct dom0_vga_console_info *info =
1352 			(void *)((char *)xen_start_info +
1353 				 xen_start_info->console.dom0.info_off);
1354 		struct xen_platform_op op = {
1355 			.cmd = XENPF_firmware_info,
1356 			.interface_version = XENPF_INTERFACE_VERSION,
1357 			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1358 		};
1359 
1360 		x86_platform.set_legacy_features =
1361 				xen_dom0_set_legacy_features;
1362 		xen_init_vga(info, xen_start_info->console.dom0.info_size);
1363 		xen_start_info->console.domU.mfn = 0;
1364 		xen_start_info->console.domU.evtchn = 0;
1365 
1366 		if (HYPERVISOR_platform_op(&op) == 0)
1367 			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1368 
1369 		/* Make sure ACS will be enabled */
1370 		pci_request_acs();
1371 
1372 		xen_acpi_sleep_register();
1373 
1374 		/* Avoid searching for BIOS MP tables */
1375 		x86_init.mpparse.find_smp_config = x86_init_noop;
1376 		x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1377 
1378 		xen_boot_params_init_edd();
1379 	}
1380 
1381 	if (!boot_params.screen_info.orig_video_isVGA)
1382 		add_preferred_console("tty", 0, NULL);
1383 	add_preferred_console("hvc", 0, NULL);
1384 	if (boot_params.screen_info.orig_video_isVGA)
1385 		add_preferred_console("tty", 0, NULL);
1386 
1387 #ifdef CONFIG_PCI
1388 	/* PCI BIOS service won't work from a PV guest. */
1389 	pci_probe &= ~PCI_PROBE_BIOS;
1390 #endif
1391 	xen_raw_console_write("about to get started...\n");
1392 
1393 	/* We need this for printk timestamps */
1394 	xen_setup_runstate_info(0);
1395 
1396 	xen_efi_init(&boot_params);
1397 
1398 	/* Start the world */
1399 	cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1400 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1401 }
1402 
1403 static int xen_cpu_up_prepare_pv(unsigned int cpu)
1404 {
1405 	int rc;
1406 
1407 	if (per_cpu(xen_vcpu, cpu) == NULL)
1408 		return -ENODEV;
1409 
1410 	xen_setup_timer(cpu);
1411 
1412 	rc = xen_smp_intr_init(cpu);
1413 	if (rc) {
1414 		WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1415 		     cpu, rc);
1416 		return rc;
1417 	}
1418 
1419 	rc = xen_smp_intr_init_pv(cpu);
1420 	if (rc) {
1421 		WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1422 		     cpu, rc);
1423 		return rc;
1424 	}
1425 
1426 	return 0;
1427 }
1428 
1429 static int xen_cpu_dead_pv(unsigned int cpu)
1430 {
1431 	xen_smp_intr_free(cpu);
1432 	xen_smp_intr_free_pv(cpu);
1433 
1434 	xen_teardown_timer(cpu);
1435 
1436 	return 0;
1437 }
1438 
1439 static uint32_t __init xen_platform_pv(void)
1440 {
1441 	if (xen_pv_domain())
1442 		return xen_cpuid_base();
1443 
1444 	return 0;
1445 }
1446 
1447 const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1448 	.name                   = "Xen PV",
1449 	.detect                 = xen_platform_pv,
1450 	.type			= X86_HYPER_XEN_PV,
1451 	.runtime.pin_vcpu       = xen_pin_vcpu,
1452 	.ignore_nopv		= true,
1453 };
1454