1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Core of Xen paravirt_ops implementation. 4 * 5 * This file contains the xen_paravirt_ops structure itself, and the 6 * implementations for: 7 * - privileged instructions 8 * - interrupt flags 9 * - segment operations 10 * - booting and setup 11 * 12 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 13 */ 14 15 #include <linux/cpu.h> 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/smp.h> 19 #include <linux/preempt.h> 20 #include <linux/hardirq.h> 21 #include <linux/percpu.h> 22 #include <linux/delay.h> 23 #include <linux/start_kernel.h> 24 #include <linux/sched.h> 25 #include <linux/kprobes.h> 26 #include <linux/memblock.h> 27 #include <linux/export.h> 28 #include <linux/mm.h> 29 #include <linux/page-flags.h> 30 #include <linux/highmem.h> 31 #include <linux/console.h> 32 #include <linux/pci.h> 33 #include <linux/gfp.h> 34 #include <linux/edd.h> 35 #include <linux/frame.h> 36 37 #include <xen/xen.h> 38 #include <xen/events.h> 39 #include <xen/interface/xen.h> 40 #include <xen/interface/version.h> 41 #include <xen/interface/physdev.h> 42 #include <xen/interface/vcpu.h> 43 #include <xen/interface/memory.h> 44 #include <xen/interface/nmi.h> 45 #include <xen/interface/xen-mca.h> 46 #include <xen/features.h> 47 #include <xen/page.h> 48 #include <xen/hvc-console.h> 49 #include <xen/acpi.h> 50 51 #include <asm/paravirt.h> 52 #include <asm/apic.h> 53 #include <asm/page.h> 54 #include <asm/xen/pci.h> 55 #include <asm/xen/hypercall.h> 56 #include <asm/xen/hypervisor.h> 57 #include <asm/xen/cpuid.h> 58 #include <asm/fixmap.h> 59 #include <asm/processor.h> 60 #include <asm/proto.h> 61 #include <asm/msr-index.h> 62 #include <asm/traps.h> 63 #include <asm/setup.h> 64 #include <asm/desc.h> 65 #include <asm/pgalloc.h> 66 #include <asm/pgtable.h> 67 #include <asm/tlbflush.h> 68 #include <asm/reboot.h> 69 #include <asm/stackprotector.h> 70 #include <asm/hypervisor.h> 71 #include <asm/mach_traps.h> 72 #include <asm/mwait.h> 73 #include <asm/pci_x86.h> 74 #include <asm/cpu.h> 75 #ifdef CONFIG_X86_IOPL_IOPERM 76 #include <asm/io_bitmap.h> 77 #endif 78 79 #ifdef CONFIG_ACPI 80 #include <linux/acpi.h> 81 #include <asm/acpi.h> 82 #include <acpi/pdc_intel.h> 83 #include <acpi/processor.h> 84 #include <xen/interface/platform.h> 85 #endif 86 87 #include "xen-ops.h" 88 #include "mmu.h" 89 #include "smp.h" 90 #include "multicalls.h" 91 #include "pmu.h" 92 93 #include "../kernel/cpu/cpu.h" /* get_cpu_cap() */ 94 95 void *xen_initial_gdt; 96 97 static int xen_cpu_up_prepare_pv(unsigned int cpu); 98 static int xen_cpu_dead_pv(unsigned int cpu); 99 100 struct tls_descs { 101 struct desc_struct desc[3]; 102 }; 103 104 /* 105 * Updating the 3 TLS descriptors in the GDT on every task switch is 106 * surprisingly expensive so we avoid updating them if they haven't 107 * changed. Since Xen writes different descriptors than the one 108 * passed in the update_descriptor hypercall we keep shadow copies to 109 * compare against. 110 */ 111 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc); 112 113 static void __init xen_banner(void) 114 { 115 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL); 116 struct xen_extraversion extra; 117 HYPERVISOR_xen_version(XENVER_extraversion, &extra); 118 119 pr_info("Booting paravirtualized kernel on %s\n", pv_info.name); 120 printk(KERN_INFO "Xen version: %d.%d%s%s\n", 121 version >> 16, version & 0xffff, extra.extraversion, 122 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : ""); 123 124 #ifdef CONFIG_X86_32 125 pr_warn("WARNING! WARNING! WARNING! WARNING! WARNING! WARNING! WARNING!\n" 126 "Support for running as 32-bit PV-guest under Xen will soon be removed\n" 127 "from the Linux kernel!\n" 128 "Please use either a 64-bit kernel or switch to HVM or PVH mode!\n" 129 "WARNING! WARNING! WARNING! WARNING! WARNING! WARNING! WARNING!\n"); 130 #endif 131 } 132 133 static void __init xen_pv_init_platform(void) 134 { 135 populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP)); 136 137 set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info); 138 HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP); 139 140 /* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */ 141 xen_vcpu_info_reset(0); 142 143 /* pvclock is in shared info area */ 144 xen_init_time_ops(); 145 } 146 147 static void __init xen_pv_guest_late_init(void) 148 { 149 #ifndef CONFIG_SMP 150 /* Setup shared vcpu info for non-smp configurations */ 151 xen_setup_vcpu_info_placement(); 152 #endif 153 } 154 155 /* Check if running on Xen version (major, minor) or later */ 156 bool 157 xen_running_on_version_or_later(unsigned int major, unsigned int minor) 158 { 159 unsigned int version; 160 161 if (!xen_domain()) 162 return false; 163 164 version = HYPERVISOR_xen_version(XENVER_version, NULL); 165 if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) || 166 ((version >> 16) > major)) 167 return true; 168 return false; 169 } 170 171 static __read_mostly unsigned int cpuid_leaf5_ecx_val; 172 static __read_mostly unsigned int cpuid_leaf5_edx_val; 173 174 static void xen_cpuid(unsigned int *ax, unsigned int *bx, 175 unsigned int *cx, unsigned int *dx) 176 { 177 unsigned maskebx = ~0; 178 179 /* 180 * Mask out inconvenient features, to try and disable as many 181 * unsupported kernel subsystems as possible. 182 */ 183 switch (*ax) { 184 case CPUID_MWAIT_LEAF: 185 /* Synthesize the values.. */ 186 *ax = 0; 187 *bx = 0; 188 *cx = cpuid_leaf5_ecx_val; 189 *dx = cpuid_leaf5_edx_val; 190 return; 191 192 case 0xb: 193 /* Suppress extended topology stuff */ 194 maskebx = 0; 195 break; 196 } 197 198 asm(XEN_EMULATE_PREFIX "cpuid" 199 : "=a" (*ax), 200 "=b" (*bx), 201 "=c" (*cx), 202 "=d" (*dx) 203 : "0" (*ax), "2" (*cx)); 204 205 *bx &= maskebx; 206 } 207 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */ 208 209 static bool __init xen_check_mwait(void) 210 { 211 #ifdef CONFIG_ACPI 212 struct xen_platform_op op = { 213 .cmd = XENPF_set_processor_pminfo, 214 .u.set_pminfo.id = -1, 215 .u.set_pminfo.type = XEN_PM_PDC, 216 }; 217 uint32_t buf[3]; 218 unsigned int ax, bx, cx, dx; 219 unsigned int mwait_mask; 220 221 /* We need to determine whether it is OK to expose the MWAIT 222 * capability to the kernel to harvest deeper than C3 states from ACPI 223 * _CST using the processor_harvest_xen.c module. For this to work, we 224 * need to gather the MWAIT_LEAF values (which the cstate.c code 225 * checks against). The hypervisor won't expose the MWAIT flag because 226 * it would break backwards compatibility; so we will find out directly 227 * from the hardware and hypercall. 228 */ 229 if (!xen_initial_domain()) 230 return false; 231 232 /* 233 * When running under platform earlier than Xen4.2, do not expose 234 * mwait, to avoid the risk of loading native acpi pad driver 235 */ 236 if (!xen_running_on_version_or_later(4, 2)) 237 return false; 238 239 ax = 1; 240 cx = 0; 241 242 native_cpuid(&ax, &bx, &cx, &dx); 243 244 mwait_mask = (1 << (X86_FEATURE_EST % 32)) | 245 (1 << (X86_FEATURE_MWAIT % 32)); 246 247 if ((cx & mwait_mask) != mwait_mask) 248 return false; 249 250 /* We need to emulate the MWAIT_LEAF and for that we need both 251 * ecx and edx. The hypercall provides only partial information. 252 */ 253 254 ax = CPUID_MWAIT_LEAF; 255 bx = 0; 256 cx = 0; 257 dx = 0; 258 259 native_cpuid(&ax, &bx, &cx, &dx); 260 261 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so, 262 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3. 263 */ 264 buf[0] = ACPI_PDC_REVISION_ID; 265 buf[1] = 1; 266 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP); 267 268 set_xen_guest_handle(op.u.set_pminfo.pdc, buf); 269 270 if ((HYPERVISOR_platform_op(&op) == 0) && 271 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) { 272 cpuid_leaf5_ecx_val = cx; 273 cpuid_leaf5_edx_val = dx; 274 } 275 return true; 276 #else 277 return false; 278 #endif 279 } 280 281 static bool __init xen_check_xsave(void) 282 { 283 unsigned int cx, xsave_mask; 284 285 cx = cpuid_ecx(1); 286 287 xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) | 288 (1 << (X86_FEATURE_OSXSAVE % 32)); 289 290 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */ 291 return (cx & xsave_mask) == xsave_mask; 292 } 293 294 static void __init xen_init_capabilities(void) 295 { 296 setup_force_cpu_cap(X86_FEATURE_XENPV); 297 setup_clear_cpu_cap(X86_FEATURE_DCA); 298 setup_clear_cpu_cap(X86_FEATURE_APERFMPERF); 299 setup_clear_cpu_cap(X86_FEATURE_MTRR); 300 setup_clear_cpu_cap(X86_FEATURE_ACC); 301 setup_clear_cpu_cap(X86_FEATURE_X2APIC); 302 setup_clear_cpu_cap(X86_FEATURE_SME); 303 304 /* 305 * Xen PV would need some work to support PCID: CR3 handling as well 306 * as xen_flush_tlb_others() would need updating. 307 */ 308 setup_clear_cpu_cap(X86_FEATURE_PCID); 309 310 if (!xen_initial_domain()) 311 setup_clear_cpu_cap(X86_FEATURE_ACPI); 312 313 if (xen_check_mwait()) 314 setup_force_cpu_cap(X86_FEATURE_MWAIT); 315 else 316 setup_clear_cpu_cap(X86_FEATURE_MWAIT); 317 318 if (!xen_check_xsave()) { 319 setup_clear_cpu_cap(X86_FEATURE_XSAVE); 320 setup_clear_cpu_cap(X86_FEATURE_OSXSAVE); 321 } 322 } 323 324 static void xen_set_debugreg(int reg, unsigned long val) 325 { 326 HYPERVISOR_set_debugreg(reg, val); 327 } 328 329 static unsigned long xen_get_debugreg(int reg) 330 { 331 return HYPERVISOR_get_debugreg(reg); 332 } 333 334 static void xen_end_context_switch(struct task_struct *next) 335 { 336 xen_mc_flush(); 337 paravirt_end_context_switch(next); 338 } 339 340 static unsigned long xen_store_tr(void) 341 { 342 return 0; 343 } 344 345 /* 346 * Set the page permissions for a particular virtual address. If the 347 * address is a vmalloc mapping (or other non-linear mapping), then 348 * find the linear mapping of the page and also set its protections to 349 * match. 350 */ 351 static void set_aliased_prot(void *v, pgprot_t prot) 352 { 353 int level; 354 pte_t *ptep; 355 pte_t pte; 356 unsigned long pfn; 357 struct page *page; 358 unsigned char dummy; 359 360 ptep = lookup_address((unsigned long)v, &level); 361 BUG_ON(ptep == NULL); 362 363 pfn = pte_pfn(*ptep); 364 page = pfn_to_page(pfn); 365 366 pte = pfn_pte(pfn, prot); 367 368 /* 369 * Careful: update_va_mapping() will fail if the virtual address 370 * we're poking isn't populated in the page tables. We don't 371 * need to worry about the direct map (that's always in the page 372 * tables), but we need to be careful about vmap space. In 373 * particular, the top level page table can lazily propagate 374 * entries between processes, so if we've switched mms since we 375 * vmapped the target in the first place, we might not have the 376 * top-level page table entry populated. 377 * 378 * We disable preemption because we want the same mm active when 379 * we probe the target and when we issue the hypercall. We'll 380 * have the same nominal mm, but if we're a kernel thread, lazy 381 * mm dropping could change our pgd. 382 * 383 * Out of an abundance of caution, this uses __get_user() to fault 384 * in the target address just in case there's some obscure case 385 * in which the target address isn't readable. 386 */ 387 388 preempt_disable(); 389 390 probe_kernel_read(&dummy, v, 1); 391 392 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0)) 393 BUG(); 394 395 if (!PageHighMem(page)) { 396 void *av = __va(PFN_PHYS(pfn)); 397 398 if (av != v) 399 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0)) 400 BUG(); 401 } else 402 kmap_flush_unused(); 403 404 preempt_enable(); 405 } 406 407 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries) 408 { 409 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; 410 int i; 411 412 /* 413 * We need to mark the all aliases of the LDT pages RO. We 414 * don't need to call vm_flush_aliases(), though, since that's 415 * only responsible for flushing aliases out the TLBs, not the 416 * page tables, and Xen will flush the TLB for us if needed. 417 * 418 * To avoid confusing future readers: none of this is necessary 419 * to load the LDT. The hypervisor only checks this when the 420 * LDT is faulted in due to subsequent descriptor access. 421 */ 422 423 for (i = 0; i < entries; i += entries_per_page) 424 set_aliased_prot(ldt + i, PAGE_KERNEL_RO); 425 } 426 427 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries) 428 { 429 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; 430 int i; 431 432 for (i = 0; i < entries; i += entries_per_page) 433 set_aliased_prot(ldt + i, PAGE_KERNEL); 434 } 435 436 static void xen_set_ldt(const void *addr, unsigned entries) 437 { 438 struct mmuext_op *op; 439 struct multicall_space mcs = xen_mc_entry(sizeof(*op)); 440 441 trace_xen_cpu_set_ldt(addr, entries); 442 443 op = mcs.args; 444 op->cmd = MMUEXT_SET_LDT; 445 op->arg1.linear_addr = (unsigned long)addr; 446 op->arg2.nr_ents = entries; 447 448 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 449 450 xen_mc_issue(PARAVIRT_LAZY_CPU); 451 } 452 453 static void xen_load_gdt(const struct desc_ptr *dtr) 454 { 455 unsigned long va = dtr->address; 456 unsigned int size = dtr->size + 1; 457 unsigned long pfn, mfn; 458 int level; 459 pte_t *ptep; 460 void *virt; 461 462 /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */ 463 BUG_ON(size > PAGE_SIZE); 464 BUG_ON(va & ~PAGE_MASK); 465 466 /* 467 * The GDT is per-cpu and is in the percpu data area. 468 * That can be virtually mapped, so we need to do a 469 * page-walk to get the underlying MFN for the 470 * hypercall. The page can also be in the kernel's 471 * linear range, so we need to RO that mapping too. 472 */ 473 ptep = lookup_address(va, &level); 474 BUG_ON(ptep == NULL); 475 476 pfn = pte_pfn(*ptep); 477 mfn = pfn_to_mfn(pfn); 478 virt = __va(PFN_PHYS(pfn)); 479 480 make_lowmem_page_readonly((void *)va); 481 make_lowmem_page_readonly(virt); 482 483 if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct))) 484 BUG(); 485 } 486 487 /* 488 * load_gdt for early boot, when the gdt is only mapped once 489 */ 490 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr) 491 { 492 unsigned long va = dtr->address; 493 unsigned int size = dtr->size + 1; 494 unsigned long pfn, mfn; 495 pte_t pte; 496 497 /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */ 498 BUG_ON(size > PAGE_SIZE); 499 BUG_ON(va & ~PAGE_MASK); 500 501 pfn = virt_to_pfn(va); 502 mfn = pfn_to_mfn(pfn); 503 504 pte = pfn_pte(pfn, PAGE_KERNEL_RO); 505 506 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0)) 507 BUG(); 508 509 if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct))) 510 BUG(); 511 } 512 513 static inline bool desc_equal(const struct desc_struct *d1, 514 const struct desc_struct *d2) 515 { 516 return !memcmp(d1, d2, sizeof(*d1)); 517 } 518 519 static void load_TLS_descriptor(struct thread_struct *t, 520 unsigned int cpu, unsigned int i) 521 { 522 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i]; 523 struct desc_struct *gdt; 524 xmaddr_t maddr; 525 struct multicall_space mc; 526 527 if (desc_equal(shadow, &t->tls_array[i])) 528 return; 529 530 *shadow = t->tls_array[i]; 531 532 gdt = get_cpu_gdt_rw(cpu); 533 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]); 534 mc = __xen_mc_entry(0); 535 536 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]); 537 } 538 539 static void xen_load_tls(struct thread_struct *t, unsigned int cpu) 540 { 541 /* 542 * XXX sleazy hack: If we're being called in a lazy-cpu zone 543 * and lazy gs handling is enabled, it means we're in a 544 * context switch, and %gs has just been saved. This means we 545 * can zero it out to prevent faults on exit from the 546 * hypervisor if the next process has no %gs. Either way, it 547 * has been saved, and the new value will get loaded properly. 548 * This will go away as soon as Xen has been modified to not 549 * save/restore %gs for normal hypercalls. 550 * 551 * On x86_64, this hack is not used for %gs, because gs points 552 * to KERNEL_GS_BASE (and uses it for PDA references), so we 553 * must not zero %gs on x86_64 554 * 555 * For x86_64, we need to zero %fs, otherwise we may get an 556 * exception between the new %fs descriptor being loaded and 557 * %fs being effectively cleared at __switch_to(). 558 */ 559 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) { 560 #ifdef CONFIG_X86_32 561 lazy_load_gs(0); 562 #else 563 loadsegment(fs, 0); 564 #endif 565 } 566 567 xen_mc_batch(); 568 569 load_TLS_descriptor(t, cpu, 0); 570 load_TLS_descriptor(t, cpu, 1); 571 load_TLS_descriptor(t, cpu, 2); 572 573 xen_mc_issue(PARAVIRT_LAZY_CPU); 574 } 575 576 #ifdef CONFIG_X86_64 577 static void xen_load_gs_index(unsigned int idx) 578 { 579 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx)) 580 BUG(); 581 } 582 #endif 583 584 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum, 585 const void *ptr) 586 { 587 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]); 588 u64 entry = *(u64 *)ptr; 589 590 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry); 591 592 preempt_disable(); 593 594 xen_mc_flush(); 595 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry)) 596 BUG(); 597 598 preempt_enable(); 599 } 600 601 #ifdef CONFIG_X86_64 602 struct trap_array_entry { 603 void (*orig)(void); 604 void (*xen)(void); 605 bool ist_okay; 606 }; 607 608 static struct trap_array_entry trap_array[] = { 609 { debug, xen_xendebug, true }, 610 { double_fault, xen_double_fault, true }, 611 #ifdef CONFIG_X86_MCE 612 { machine_check, xen_machine_check, true }, 613 #endif 614 { nmi, xen_xennmi, true }, 615 { int3, xen_int3, false }, 616 { overflow, xen_overflow, false }, 617 #ifdef CONFIG_IA32_EMULATION 618 { entry_INT80_compat, xen_entry_INT80_compat, false }, 619 #endif 620 { page_fault, xen_page_fault, false }, 621 { divide_error, xen_divide_error, false }, 622 { bounds, xen_bounds, false }, 623 { invalid_op, xen_invalid_op, false }, 624 { device_not_available, xen_device_not_available, false }, 625 { coprocessor_segment_overrun, xen_coprocessor_segment_overrun, false }, 626 { invalid_TSS, xen_invalid_TSS, false }, 627 { segment_not_present, xen_segment_not_present, false }, 628 { stack_segment, xen_stack_segment, false }, 629 { general_protection, xen_general_protection, false }, 630 { spurious_interrupt_bug, xen_spurious_interrupt_bug, false }, 631 { coprocessor_error, xen_coprocessor_error, false }, 632 { alignment_check, xen_alignment_check, false }, 633 { simd_coprocessor_error, xen_simd_coprocessor_error, false }, 634 }; 635 636 static bool __ref get_trap_addr(void **addr, unsigned int ist) 637 { 638 unsigned int nr; 639 bool ist_okay = false; 640 641 /* 642 * Replace trap handler addresses by Xen specific ones. 643 * Check for known traps using IST and whitelist them. 644 * The debugger ones are the only ones we care about. 645 * Xen will handle faults like double_fault, * so we should never see 646 * them. Warn if there's an unexpected IST-using fault handler. 647 */ 648 for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) { 649 struct trap_array_entry *entry = trap_array + nr; 650 651 if (*addr == entry->orig) { 652 *addr = entry->xen; 653 ist_okay = entry->ist_okay; 654 break; 655 } 656 } 657 658 if (nr == ARRAY_SIZE(trap_array) && 659 *addr >= (void *)early_idt_handler_array[0] && 660 *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) { 661 nr = (*addr - (void *)early_idt_handler_array[0]) / 662 EARLY_IDT_HANDLER_SIZE; 663 *addr = (void *)xen_early_idt_handler_array[nr]; 664 } 665 666 if (WARN_ON(ist != 0 && !ist_okay)) 667 return false; 668 669 return true; 670 } 671 #endif 672 673 static int cvt_gate_to_trap(int vector, const gate_desc *val, 674 struct trap_info *info) 675 { 676 unsigned long addr; 677 678 if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT) 679 return 0; 680 681 info->vector = vector; 682 683 addr = gate_offset(val); 684 #ifdef CONFIG_X86_64 685 if (!get_trap_addr((void **)&addr, val->bits.ist)) 686 return 0; 687 #endif /* CONFIG_X86_64 */ 688 info->address = addr; 689 690 info->cs = gate_segment(val); 691 info->flags = val->bits.dpl; 692 /* interrupt gates clear IF */ 693 if (val->bits.type == GATE_INTERRUPT) 694 info->flags |= 1 << 2; 695 696 return 1; 697 } 698 699 /* Locations of each CPU's IDT */ 700 static DEFINE_PER_CPU(struct desc_ptr, idt_desc); 701 702 /* Set an IDT entry. If the entry is part of the current IDT, then 703 also update Xen. */ 704 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g) 705 { 706 unsigned long p = (unsigned long)&dt[entrynum]; 707 unsigned long start, end; 708 709 trace_xen_cpu_write_idt_entry(dt, entrynum, g); 710 711 preempt_disable(); 712 713 start = __this_cpu_read(idt_desc.address); 714 end = start + __this_cpu_read(idt_desc.size) + 1; 715 716 xen_mc_flush(); 717 718 native_write_idt_entry(dt, entrynum, g); 719 720 if (p >= start && (p + 8) <= end) { 721 struct trap_info info[2]; 722 723 info[1].address = 0; 724 725 if (cvt_gate_to_trap(entrynum, g, &info[0])) 726 if (HYPERVISOR_set_trap_table(info)) 727 BUG(); 728 } 729 730 preempt_enable(); 731 } 732 733 static void xen_convert_trap_info(const struct desc_ptr *desc, 734 struct trap_info *traps) 735 { 736 unsigned in, out, count; 737 738 count = (desc->size+1) / sizeof(gate_desc); 739 BUG_ON(count > 256); 740 741 for (in = out = 0; in < count; in++) { 742 gate_desc *entry = (gate_desc *)(desc->address) + in; 743 744 if (cvt_gate_to_trap(in, entry, &traps[out])) 745 out++; 746 } 747 traps[out].address = 0; 748 } 749 750 void xen_copy_trap_info(struct trap_info *traps) 751 { 752 const struct desc_ptr *desc = this_cpu_ptr(&idt_desc); 753 754 xen_convert_trap_info(desc, traps); 755 } 756 757 /* Load a new IDT into Xen. In principle this can be per-CPU, so we 758 hold a spinlock to protect the static traps[] array (static because 759 it avoids allocation, and saves stack space). */ 760 static void xen_load_idt(const struct desc_ptr *desc) 761 { 762 static DEFINE_SPINLOCK(lock); 763 static struct trap_info traps[257]; 764 765 trace_xen_cpu_load_idt(desc); 766 767 spin_lock(&lock); 768 769 memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc)); 770 771 xen_convert_trap_info(desc, traps); 772 773 xen_mc_flush(); 774 if (HYPERVISOR_set_trap_table(traps)) 775 BUG(); 776 777 spin_unlock(&lock); 778 } 779 780 /* Write a GDT descriptor entry. Ignore LDT descriptors, since 781 they're handled differently. */ 782 static void xen_write_gdt_entry(struct desc_struct *dt, int entry, 783 const void *desc, int type) 784 { 785 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type); 786 787 preempt_disable(); 788 789 switch (type) { 790 case DESC_LDT: 791 case DESC_TSS: 792 /* ignore */ 793 break; 794 795 default: { 796 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]); 797 798 xen_mc_flush(); 799 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) 800 BUG(); 801 } 802 803 } 804 805 preempt_enable(); 806 } 807 808 /* 809 * Version of write_gdt_entry for use at early boot-time needed to 810 * update an entry as simply as possible. 811 */ 812 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry, 813 const void *desc, int type) 814 { 815 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type); 816 817 switch (type) { 818 case DESC_LDT: 819 case DESC_TSS: 820 /* ignore */ 821 break; 822 823 default: { 824 xmaddr_t maddr = virt_to_machine(&dt[entry]); 825 826 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) 827 dt[entry] = *(struct desc_struct *)desc; 828 } 829 830 } 831 } 832 833 static void xen_load_sp0(unsigned long sp0) 834 { 835 struct multicall_space mcs; 836 837 mcs = xen_mc_entry(0); 838 MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0); 839 xen_mc_issue(PARAVIRT_LAZY_CPU); 840 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0); 841 } 842 843 #ifdef CONFIG_X86_IOPL_IOPERM 844 static void xen_update_io_bitmap(void) 845 { 846 struct physdev_set_iobitmap iobitmap; 847 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw); 848 849 native_tss_update_io_bitmap(); 850 851 iobitmap.bitmap = (uint8_t *)(&tss->x86_tss) + 852 tss->x86_tss.io_bitmap_base; 853 if (tss->x86_tss.io_bitmap_base == IO_BITMAP_OFFSET_INVALID) 854 iobitmap.nr_ports = 0; 855 else 856 iobitmap.nr_ports = IO_BITMAP_BITS; 857 858 HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap); 859 } 860 #endif 861 862 static void xen_io_delay(void) 863 { 864 } 865 866 static DEFINE_PER_CPU(unsigned long, xen_cr0_value); 867 868 static unsigned long xen_read_cr0(void) 869 { 870 unsigned long cr0 = this_cpu_read(xen_cr0_value); 871 872 if (unlikely(cr0 == 0)) { 873 cr0 = native_read_cr0(); 874 this_cpu_write(xen_cr0_value, cr0); 875 } 876 877 return cr0; 878 } 879 880 static void xen_write_cr0(unsigned long cr0) 881 { 882 struct multicall_space mcs; 883 884 this_cpu_write(xen_cr0_value, cr0); 885 886 /* Only pay attention to cr0.TS; everything else is 887 ignored. */ 888 mcs = xen_mc_entry(0); 889 890 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0); 891 892 xen_mc_issue(PARAVIRT_LAZY_CPU); 893 } 894 895 static void xen_write_cr4(unsigned long cr4) 896 { 897 cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE); 898 899 native_write_cr4(cr4); 900 } 901 902 static u64 xen_read_msr_safe(unsigned int msr, int *err) 903 { 904 u64 val; 905 906 if (pmu_msr_read(msr, &val, err)) 907 return val; 908 909 val = native_read_msr_safe(msr, err); 910 switch (msr) { 911 case MSR_IA32_APICBASE: 912 val &= ~X2APIC_ENABLE; 913 break; 914 } 915 return val; 916 } 917 918 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high) 919 { 920 int ret; 921 #ifdef CONFIG_X86_64 922 unsigned int which; 923 u64 base; 924 #endif 925 926 ret = 0; 927 928 switch (msr) { 929 #ifdef CONFIG_X86_64 930 case MSR_FS_BASE: which = SEGBASE_FS; goto set; 931 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set; 932 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set; 933 934 set: 935 base = ((u64)high << 32) | low; 936 if (HYPERVISOR_set_segment_base(which, base) != 0) 937 ret = -EIO; 938 break; 939 #endif 940 941 case MSR_STAR: 942 case MSR_CSTAR: 943 case MSR_LSTAR: 944 case MSR_SYSCALL_MASK: 945 case MSR_IA32_SYSENTER_CS: 946 case MSR_IA32_SYSENTER_ESP: 947 case MSR_IA32_SYSENTER_EIP: 948 /* Fast syscall setup is all done in hypercalls, so 949 these are all ignored. Stub them out here to stop 950 Xen console noise. */ 951 break; 952 953 default: 954 if (!pmu_msr_write(msr, low, high, &ret)) 955 ret = native_write_msr_safe(msr, low, high); 956 } 957 958 return ret; 959 } 960 961 static u64 xen_read_msr(unsigned int msr) 962 { 963 /* 964 * This will silently swallow a #GP from RDMSR. It may be worth 965 * changing that. 966 */ 967 int err; 968 969 return xen_read_msr_safe(msr, &err); 970 } 971 972 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high) 973 { 974 /* 975 * This will silently swallow a #GP from WRMSR. It may be worth 976 * changing that. 977 */ 978 xen_write_msr_safe(msr, low, high); 979 } 980 981 /* This is called once we have the cpu_possible_mask */ 982 void __init xen_setup_vcpu_info_placement(void) 983 { 984 int cpu; 985 986 for_each_possible_cpu(cpu) { 987 /* Set up direct vCPU id mapping for PV guests. */ 988 per_cpu(xen_vcpu_id, cpu) = cpu; 989 990 /* 991 * xen_vcpu_setup(cpu) can fail -- in which case it 992 * falls back to the shared_info version for cpus 993 * where xen_vcpu_nr(cpu) < MAX_VIRT_CPUS. 994 * 995 * xen_cpu_up_prepare_pv() handles the rest by failing 996 * them in hotplug. 997 */ 998 (void) xen_vcpu_setup(cpu); 999 } 1000 1001 /* 1002 * xen_vcpu_setup managed to place the vcpu_info within the 1003 * percpu area for all cpus, so make use of it. 1004 */ 1005 if (xen_have_vcpu_info_placement) { 1006 pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct); 1007 pv_ops.irq.restore_fl = 1008 __PV_IS_CALLEE_SAVE(xen_restore_fl_direct); 1009 pv_ops.irq.irq_disable = 1010 __PV_IS_CALLEE_SAVE(xen_irq_disable_direct); 1011 pv_ops.irq.irq_enable = 1012 __PV_IS_CALLEE_SAVE(xen_irq_enable_direct); 1013 pv_ops.mmu.read_cr2 = 1014 __PV_IS_CALLEE_SAVE(xen_read_cr2_direct); 1015 } 1016 } 1017 1018 static const struct pv_info xen_info __initconst = { 1019 .shared_kernel_pmd = 0, 1020 1021 #ifdef CONFIG_X86_64 1022 .extra_user_64bit_cs = FLAT_USER_CS64, 1023 #endif 1024 .name = "Xen", 1025 }; 1026 1027 static const struct pv_cpu_ops xen_cpu_ops __initconst = { 1028 .cpuid = xen_cpuid, 1029 1030 .set_debugreg = xen_set_debugreg, 1031 .get_debugreg = xen_get_debugreg, 1032 1033 .read_cr0 = xen_read_cr0, 1034 .write_cr0 = xen_write_cr0, 1035 1036 .write_cr4 = xen_write_cr4, 1037 1038 .wbinvd = native_wbinvd, 1039 1040 .read_msr = xen_read_msr, 1041 .write_msr = xen_write_msr, 1042 1043 .read_msr_safe = xen_read_msr_safe, 1044 .write_msr_safe = xen_write_msr_safe, 1045 1046 .read_pmc = xen_read_pmc, 1047 1048 .iret = xen_iret, 1049 #ifdef CONFIG_X86_64 1050 .usergs_sysret64 = xen_sysret64, 1051 #endif 1052 1053 .load_tr_desc = paravirt_nop, 1054 .set_ldt = xen_set_ldt, 1055 .load_gdt = xen_load_gdt, 1056 .load_idt = xen_load_idt, 1057 .load_tls = xen_load_tls, 1058 #ifdef CONFIG_X86_64 1059 .load_gs_index = xen_load_gs_index, 1060 #endif 1061 1062 .alloc_ldt = xen_alloc_ldt, 1063 .free_ldt = xen_free_ldt, 1064 1065 .store_tr = xen_store_tr, 1066 1067 .write_ldt_entry = xen_write_ldt_entry, 1068 .write_gdt_entry = xen_write_gdt_entry, 1069 .write_idt_entry = xen_write_idt_entry, 1070 .load_sp0 = xen_load_sp0, 1071 1072 #ifdef CONFIG_X86_IOPL_IOPERM 1073 .update_io_bitmap = xen_update_io_bitmap, 1074 #endif 1075 .io_delay = xen_io_delay, 1076 1077 /* Xen takes care of %gs when switching to usermode for us */ 1078 .swapgs = paravirt_nop, 1079 1080 .start_context_switch = paravirt_start_context_switch, 1081 .end_context_switch = xen_end_context_switch, 1082 }; 1083 1084 static void xen_restart(char *msg) 1085 { 1086 xen_reboot(SHUTDOWN_reboot); 1087 } 1088 1089 static void xen_machine_halt(void) 1090 { 1091 xen_reboot(SHUTDOWN_poweroff); 1092 } 1093 1094 static void xen_machine_power_off(void) 1095 { 1096 if (pm_power_off) 1097 pm_power_off(); 1098 xen_reboot(SHUTDOWN_poweroff); 1099 } 1100 1101 static void xen_crash_shutdown(struct pt_regs *regs) 1102 { 1103 xen_reboot(SHUTDOWN_crash); 1104 } 1105 1106 static const struct machine_ops xen_machine_ops __initconst = { 1107 .restart = xen_restart, 1108 .halt = xen_machine_halt, 1109 .power_off = xen_machine_power_off, 1110 .shutdown = xen_machine_halt, 1111 .crash_shutdown = xen_crash_shutdown, 1112 .emergency_restart = xen_emergency_restart, 1113 }; 1114 1115 static unsigned char xen_get_nmi_reason(void) 1116 { 1117 unsigned char reason = 0; 1118 1119 /* Construct a value which looks like it came from port 0x61. */ 1120 if (test_bit(_XEN_NMIREASON_io_error, 1121 &HYPERVISOR_shared_info->arch.nmi_reason)) 1122 reason |= NMI_REASON_IOCHK; 1123 if (test_bit(_XEN_NMIREASON_pci_serr, 1124 &HYPERVISOR_shared_info->arch.nmi_reason)) 1125 reason |= NMI_REASON_SERR; 1126 1127 return reason; 1128 } 1129 1130 static void __init xen_boot_params_init_edd(void) 1131 { 1132 #if IS_ENABLED(CONFIG_EDD) 1133 struct xen_platform_op op; 1134 struct edd_info *edd_info; 1135 u32 *mbr_signature; 1136 unsigned nr; 1137 int ret; 1138 1139 edd_info = boot_params.eddbuf; 1140 mbr_signature = boot_params.edd_mbr_sig_buffer; 1141 1142 op.cmd = XENPF_firmware_info; 1143 1144 op.u.firmware_info.type = XEN_FW_DISK_INFO; 1145 for (nr = 0; nr < EDDMAXNR; nr++) { 1146 struct edd_info *info = edd_info + nr; 1147 1148 op.u.firmware_info.index = nr; 1149 info->params.length = sizeof(info->params); 1150 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params, 1151 &info->params); 1152 ret = HYPERVISOR_platform_op(&op); 1153 if (ret) 1154 break; 1155 1156 #define C(x) info->x = op.u.firmware_info.u.disk_info.x 1157 C(device); 1158 C(version); 1159 C(interface_support); 1160 C(legacy_max_cylinder); 1161 C(legacy_max_head); 1162 C(legacy_sectors_per_track); 1163 #undef C 1164 } 1165 boot_params.eddbuf_entries = nr; 1166 1167 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE; 1168 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) { 1169 op.u.firmware_info.index = nr; 1170 ret = HYPERVISOR_platform_op(&op); 1171 if (ret) 1172 break; 1173 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature; 1174 } 1175 boot_params.edd_mbr_sig_buf_entries = nr; 1176 #endif 1177 } 1178 1179 /* 1180 * Set up the GDT and segment registers for -fstack-protector. Until 1181 * we do this, we have to be careful not to call any stack-protected 1182 * function, which is most of the kernel. 1183 */ 1184 static void __init xen_setup_gdt(int cpu) 1185 { 1186 pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot; 1187 pv_ops.cpu.load_gdt = xen_load_gdt_boot; 1188 1189 setup_stack_canary_segment(cpu); 1190 switch_to_new_gdt(cpu); 1191 1192 pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry; 1193 pv_ops.cpu.load_gdt = xen_load_gdt; 1194 } 1195 1196 static void __init xen_dom0_set_legacy_features(void) 1197 { 1198 x86_platform.legacy.rtc = 1; 1199 } 1200 1201 /* First C function to be called on Xen boot */ 1202 asmlinkage __visible void __init xen_start_kernel(void) 1203 { 1204 struct physdev_set_iopl set_iopl; 1205 unsigned long initrd_start = 0; 1206 int rc; 1207 1208 if (!xen_start_info) 1209 return; 1210 1211 xen_domain_type = XEN_PV_DOMAIN; 1212 xen_start_flags = xen_start_info->flags; 1213 1214 xen_setup_features(); 1215 1216 /* Install Xen paravirt ops */ 1217 pv_info = xen_info; 1218 pv_ops.init.patch = paravirt_patch_default; 1219 pv_ops.cpu = xen_cpu_ops; 1220 xen_init_irq_ops(); 1221 1222 /* 1223 * Setup xen_vcpu early because it is needed for 1224 * local_irq_disable(), irqs_disabled(), e.g. in printk(). 1225 * 1226 * Don't do the full vcpu_info placement stuff until we have 1227 * the cpu_possible_mask and a non-dummy shared_info. 1228 */ 1229 xen_vcpu_info_reset(0); 1230 1231 x86_platform.get_nmi_reason = xen_get_nmi_reason; 1232 1233 x86_init.resources.memory_setup = xen_memory_setup; 1234 x86_init.irqs.intr_mode_select = x86_init_noop; 1235 x86_init.irqs.intr_mode_init = x86_init_noop; 1236 x86_init.oem.arch_setup = xen_arch_setup; 1237 x86_init.oem.banner = xen_banner; 1238 x86_init.hyper.init_platform = xen_pv_init_platform; 1239 x86_init.hyper.guest_late_init = xen_pv_guest_late_init; 1240 1241 /* 1242 * Set up some pagetable state before starting to set any ptes. 1243 */ 1244 1245 xen_setup_machphys_mapping(); 1246 xen_init_mmu_ops(); 1247 1248 /* Prevent unwanted bits from being set in PTEs. */ 1249 __supported_pte_mask &= ~_PAGE_GLOBAL; 1250 __default_kernel_pte_mask &= ~_PAGE_GLOBAL; 1251 1252 /* 1253 * Prevent page tables from being allocated in highmem, even 1254 * if CONFIG_HIGHPTE is enabled. 1255 */ 1256 __userpte_alloc_gfp &= ~__GFP_HIGHMEM; 1257 1258 /* Get mfn list */ 1259 xen_build_dynamic_phys_to_machine(); 1260 1261 /* 1262 * Set up kernel GDT and segment registers, mainly so that 1263 * -fstack-protector code can be executed. 1264 */ 1265 xen_setup_gdt(0); 1266 1267 /* Work out if we support NX */ 1268 get_cpu_cap(&boot_cpu_data); 1269 x86_configure_nx(); 1270 1271 /* Determine virtual and physical address sizes */ 1272 get_cpu_address_sizes(&boot_cpu_data); 1273 1274 /* Let's presume PV guests always boot on vCPU with id 0. */ 1275 per_cpu(xen_vcpu_id, 0) = 0; 1276 1277 idt_setup_early_handler(); 1278 1279 xen_init_capabilities(); 1280 1281 #ifdef CONFIG_X86_LOCAL_APIC 1282 /* 1283 * set up the basic apic ops. 1284 */ 1285 xen_init_apic(); 1286 #endif 1287 1288 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) { 1289 pv_ops.mmu.ptep_modify_prot_start = 1290 xen_ptep_modify_prot_start; 1291 pv_ops.mmu.ptep_modify_prot_commit = 1292 xen_ptep_modify_prot_commit; 1293 } 1294 1295 machine_ops = xen_machine_ops; 1296 1297 /* 1298 * The only reliable way to retain the initial address of the 1299 * percpu gdt_page is to remember it here, so we can go and 1300 * mark it RW later, when the initial percpu area is freed. 1301 */ 1302 xen_initial_gdt = &per_cpu(gdt_page, 0); 1303 1304 xen_smp_init(); 1305 1306 #ifdef CONFIG_ACPI_NUMA 1307 /* 1308 * The pages we from Xen are not related to machine pages, so 1309 * any NUMA information the kernel tries to get from ACPI will 1310 * be meaningless. Prevent it from trying. 1311 */ 1312 acpi_numa = -1; 1313 #endif 1314 WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv)); 1315 1316 local_irq_disable(); 1317 early_boot_irqs_disabled = true; 1318 1319 xen_raw_console_write("mapping kernel into physical memory\n"); 1320 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, 1321 xen_start_info->nr_pages); 1322 xen_reserve_special_pages(); 1323 1324 /* keep using Xen gdt for now; no urgent need to change it */ 1325 1326 #ifdef CONFIG_X86_32 1327 pv_info.kernel_rpl = 1; 1328 if (xen_feature(XENFEAT_supervisor_mode_kernel)) 1329 pv_info.kernel_rpl = 0; 1330 #else 1331 pv_info.kernel_rpl = 0; 1332 #endif 1333 /* set the limit of our address space */ 1334 xen_reserve_top(); 1335 1336 /* 1337 * We used to do this in xen_arch_setup, but that is too late 1338 * on AMD were early_cpu_init (run before ->arch_setup()) calls 1339 * early_amd_init which pokes 0xcf8 port. 1340 */ 1341 set_iopl.iopl = 1; 1342 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); 1343 if (rc != 0) 1344 xen_raw_printk("physdev_op failed %d\n", rc); 1345 1346 #ifdef CONFIG_X86_32 1347 /* set up basic CPUID stuff */ 1348 cpu_detect(&new_cpu_data); 1349 set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU); 1350 new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1); 1351 #endif 1352 1353 if (xen_start_info->mod_start) { 1354 if (xen_start_info->flags & SIF_MOD_START_PFN) 1355 initrd_start = PFN_PHYS(xen_start_info->mod_start); 1356 else 1357 initrd_start = __pa(xen_start_info->mod_start); 1358 } 1359 1360 /* Poke various useful things into boot_params */ 1361 boot_params.hdr.type_of_loader = (9 << 4) | 0; 1362 boot_params.hdr.ramdisk_image = initrd_start; 1363 boot_params.hdr.ramdisk_size = xen_start_info->mod_len; 1364 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line); 1365 boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN; 1366 1367 if (!xen_initial_domain()) { 1368 add_preferred_console("xenboot", 0, NULL); 1369 if (pci_xen) 1370 x86_init.pci.arch_init = pci_xen_init; 1371 } else { 1372 const struct dom0_vga_console_info *info = 1373 (void *)((char *)xen_start_info + 1374 xen_start_info->console.dom0.info_off); 1375 struct xen_platform_op op = { 1376 .cmd = XENPF_firmware_info, 1377 .interface_version = XENPF_INTERFACE_VERSION, 1378 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS, 1379 }; 1380 1381 x86_platform.set_legacy_features = 1382 xen_dom0_set_legacy_features; 1383 xen_init_vga(info, xen_start_info->console.dom0.info_size); 1384 xen_start_info->console.domU.mfn = 0; 1385 xen_start_info->console.domU.evtchn = 0; 1386 1387 if (HYPERVISOR_platform_op(&op) == 0) 1388 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags; 1389 1390 /* Make sure ACS will be enabled */ 1391 pci_request_acs(); 1392 1393 xen_acpi_sleep_register(); 1394 1395 /* Avoid searching for BIOS MP tables */ 1396 x86_init.mpparse.find_smp_config = x86_init_noop; 1397 x86_init.mpparse.get_smp_config = x86_init_uint_noop; 1398 1399 xen_boot_params_init_edd(); 1400 } 1401 1402 if (!boot_params.screen_info.orig_video_isVGA) 1403 add_preferred_console("tty", 0, NULL); 1404 add_preferred_console("hvc", 0, NULL); 1405 if (boot_params.screen_info.orig_video_isVGA) 1406 add_preferred_console("tty", 0, NULL); 1407 1408 #ifdef CONFIG_PCI 1409 /* PCI BIOS service won't work from a PV guest. */ 1410 pci_probe &= ~PCI_PROBE_BIOS; 1411 #endif 1412 xen_raw_console_write("about to get started...\n"); 1413 1414 /* We need this for printk timestamps */ 1415 xen_setup_runstate_info(0); 1416 1417 xen_efi_init(&boot_params); 1418 1419 /* Start the world */ 1420 #ifdef CONFIG_X86_32 1421 i386_start_kernel(); 1422 #else 1423 cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */ 1424 x86_64_start_reservations((char *)__pa_symbol(&boot_params)); 1425 #endif 1426 } 1427 1428 static int xen_cpu_up_prepare_pv(unsigned int cpu) 1429 { 1430 int rc; 1431 1432 if (per_cpu(xen_vcpu, cpu) == NULL) 1433 return -ENODEV; 1434 1435 xen_setup_timer(cpu); 1436 1437 rc = xen_smp_intr_init(cpu); 1438 if (rc) { 1439 WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n", 1440 cpu, rc); 1441 return rc; 1442 } 1443 1444 rc = xen_smp_intr_init_pv(cpu); 1445 if (rc) { 1446 WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n", 1447 cpu, rc); 1448 return rc; 1449 } 1450 1451 return 0; 1452 } 1453 1454 static int xen_cpu_dead_pv(unsigned int cpu) 1455 { 1456 xen_smp_intr_free(cpu); 1457 xen_smp_intr_free_pv(cpu); 1458 1459 xen_teardown_timer(cpu); 1460 1461 return 0; 1462 } 1463 1464 static uint32_t __init xen_platform_pv(void) 1465 { 1466 if (xen_pv_domain()) 1467 return xen_cpuid_base(); 1468 1469 return 0; 1470 } 1471 1472 const __initconst struct hypervisor_x86 x86_hyper_xen_pv = { 1473 .name = "Xen PV", 1474 .detect = xen_platform_pv, 1475 .type = X86_HYPER_XEN_PV, 1476 .runtime.pin_vcpu = xen_pin_vcpu, 1477 .ignore_nopv = true, 1478 }; 1479