xref: /openbmc/linux/arch/x86/xen/enlighten.c (revision fea88a0c)
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13 
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 
35 #include <xen/xen.h>
36 #include <xen/interface/xen.h>
37 #include <xen/interface/version.h>
38 #include <xen/interface/physdev.h>
39 #include <xen/interface/vcpu.h>
40 #include <xen/interface/memory.h>
41 #include <xen/features.h>
42 #include <xen/page.h>
43 #include <xen/hvm.h>
44 #include <xen/hvc-console.h>
45 
46 #include <asm/paravirt.h>
47 #include <asm/apic.h>
48 #include <asm/page.h>
49 #include <asm/xen/pci.h>
50 #include <asm/xen/hypercall.h>
51 #include <asm/xen/hypervisor.h>
52 #include <asm/fixmap.h>
53 #include <asm/processor.h>
54 #include <asm/proto.h>
55 #include <asm/msr-index.h>
56 #include <asm/traps.h>
57 #include <asm/setup.h>
58 #include <asm/desc.h>
59 #include <asm/pgalloc.h>
60 #include <asm/pgtable.h>
61 #include <asm/tlbflush.h>
62 #include <asm/reboot.h>
63 #include <asm/stackprotector.h>
64 #include <asm/hypervisor.h>
65 #include <asm/mwait.h>
66 
67 #ifdef CONFIG_ACPI
68 #include <linux/acpi.h>
69 #include <asm/acpi.h>
70 #include <acpi/pdc_intel.h>
71 #include <acpi/processor.h>
72 #include <xen/interface/platform.h>
73 #endif
74 
75 #include "xen-ops.h"
76 #include "mmu.h"
77 #include "multicalls.h"
78 
79 EXPORT_SYMBOL_GPL(hypercall_page);
80 
81 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
82 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
83 
84 enum xen_domain_type xen_domain_type = XEN_NATIVE;
85 EXPORT_SYMBOL_GPL(xen_domain_type);
86 
87 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
88 EXPORT_SYMBOL(machine_to_phys_mapping);
89 unsigned long  machine_to_phys_nr;
90 EXPORT_SYMBOL(machine_to_phys_nr);
91 
92 struct start_info *xen_start_info;
93 EXPORT_SYMBOL_GPL(xen_start_info);
94 
95 struct shared_info xen_dummy_shared_info;
96 
97 void *xen_initial_gdt;
98 
99 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
100 __read_mostly int xen_have_vector_callback;
101 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
102 
103 /*
104  * Point at some empty memory to start with. We map the real shared_info
105  * page as soon as fixmap is up and running.
106  */
107 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
108 
109 /*
110  * Flag to determine whether vcpu info placement is available on all
111  * VCPUs.  We assume it is to start with, and then set it to zero on
112  * the first failure.  This is because it can succeed on some VCPUs
113  * and not others, since it can involve hypervisor memory allocation,
114  * or because the guest failed to guarantee all the appropriate
115  * constraints on all VCPUs (ie buffer can't cross a page boundary).
116  *
117  * Note that any particular CPU may be using a placed vcpu structure,
118  * but we can only optimise if the all are.
119  *
120  * 0: not available, 1: available
121  */
122 static int have_vcpu_info_placement = 1;
123 
124 static void clamp_max_cpus(void)
125 {
126 #ifdef CONFIG_SMP
127 	if (setup_max_cpus > MAX_VIRT_CPUS)
128 		setup_max_cpus = MAX_VIRT_CPUS;
129 #endif
130 }
131 
132 static void xen_vcpu_setup(int cpu)
133 {
134 	struct vcpu_register_vcpu_info info;
135 	int err;
136 	struct vcpu_info *vcpup;
137 
138 	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
139 
140 	if (cpu < MAX_VIRT_CPUS)
141 		per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
142 
143 	if (!have_vcpu_info_placement) {
144 		if (cpu >= MAX_VIRT_CPUS)
145 			clamp_max_cpus();
146 		return;
147 	}
148 
149 	vcpup = &per_cpu(xen_vcpu_info, cpu);
150 	info.mfn = arbitrary_virt_to_mfn(vcpup);
151 	info.offset = offset_in_page(vcpup);
152 
153 	/* Check to see if the hypervisor will put the vcpu_info
154 	   structure where we want it, which allows direct access via
155 	   a percpu-variable. */
156 	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
157 
158 	if (err) {
159 		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
160 		have_vcpu_info_placement = 0;
161 		clamp_max_cpus();
162 	} else {
163 		/* This cpu is using the registered vcpu info, even if
164 		   later ones fail to. */
165 		per_cpu(xen_vcpu, cpu) = vcpup;
166 	}
167 }
168 
169 /*
170  * On restore, set the vcpu placement up again.
171  * If it fails, then we're in a bad state, since
172  * we can't back out from using it...
173  */
174 void xen_vcpu_restore(void)
175 {
176 	int cpu;
177 
178 	for_each_online_cpu(cpu) {
179 		bool other_cpu = (cpu != smp_processor_id());
180 
181 		if (other_cpu &&
182 		    HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
183 			BUG();
184 
185 		xen_setup_runstate_info(cpu);
186 
187 		if (have_vcpu_info_placement)
188 			xen_vcpu_setup(cpu);
189 
190 		if (other_cpu &&
191 		    HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
192 			BUG();
193 	}
194 }
195 
196 static void __init xen_banner(void)
197 {
198 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
199 	struct xen_extraversion extra;
200 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
201 
202 	printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
203 	       pv_info.name);
204 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
205 	       version >> 16, version & 0xffff, extra.extraversion,
206 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
207 }
208 
209 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
210 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
211 
212 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
213 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
214 static __read_mostly unsigned int cpuid_leaf5_edx_val;
215 
216 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
217 		      unsigned int *cx, unsigned int *dx)
218 {
219 	unsigned maskebx = ~0;
220 	unsigned maskecx = ~0;
221 	unsigned maskedx = ~0;
222 	unsigned setecx = 0;
223 	/*
224 	 * Mask out inconvenient features, to try and disable as many
225 	 * unsupported kernel subsystems as possible.
226 	 */
227 	switch (*ax) {
228 	case 1:
229 		maskecx = cpuid_leaf1_ecx_mask;
230 		setecx = cpuid_leaf1_ecx_set_mask;
231 		maskedx = cpuid_leaf1_edx_mask;
232 		break;
233 
234 	case CPUID_MWAIT_LEAF:
235 		/* Synthesize the values.. */
236 		*ax = 0;
237 		*bx = 0;
238 		*cx = cpuid_leaf5_ecx_val;
239 		*dx = cpuid_leaf5_edx_val;
240 		return;
241 
242 	case 0xb:
243 		/* Suppress extended topology stuff */
244 		maskebx = 0;
245 		break;
246 	}
247 
248 	asm(XEN_EMULATE_PREFIX "cpuid"
249 		: "=a" (*ax),
250 		  "=b" (*bx),
251 		  "=c" (*cx),
252 		  "=d" (*dx)
253 		: "0" (*ax), "2" (*cx));
254 
255 	*bx &= maskebx;
256 	*cx &= maskecx;
257 	*cx |= setecx;
258 	*dx &= maskedx;
259 
260 }
261 
262 static bool __init xen_check_mwait(void)
263 {
264 #ifdef CONFIG_ACPI
265 	struct xen_platform_op op = {
266 		.cmd			= XENPF_set_processor_pminfo,
267 		.u.set_pminfo.id	= -1,
268 		.u.set_pminfo.type	= XEN_PM_PDC,
269 	};
270 	uint32_t buf[3];
271 	unsigned int ax, bx, cx, dx;
272 	unsigned int mwait_mask;
273 
274 	/* We need to determine whether it is OK to expose the MWAIT
275 	 * capability to the kernel to harvest deeper than C3 states from ACPI
276 	 * _CST using the processor_harvest_xen.c module. For this to work, we
277 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
278 	 * checks against). The hypervisor won't expose the MWAIT flag because
279 	 * it would break backwards compatibility; so we will find out directly
280 	 * from the hardware and hypercall.
281 	 */
282 	if (!xen_initial_domain())
283 		return false;
284 
285 	ax = 1;
286 	cx = 0;
287 
288 	native_cpuid(&ax, &bx, &cx, &dx);
289 
290 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
291 		     (1 << (X86_FEATURE_MWAIT % 32));
292 
293 	if ((cx & mwait_mask) != mwait_mask)
294 		return false;
295 
296 	/* We need to emulate the MWAIT_LEAF and for that we need both
297 	 * ecx and edx. The hypercall provides only partial information.
298 	 */
299 
300 	ax = CPUID_MWAIT_LEAF;
301 	bx = 0;
302 	cx = 0;
303 	dx = 0;
304 
305 	native_cpuid(&ax, &bx, &cx, &dx);
306 
307 	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
308 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
309 	 */
310 	buf[0] = ACPI_PDC_REVISION_ID;
311 	buf[1] = 1;
312 	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
313 
314 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
315 
316 	if ((HYPERVISOR_dom0_op(&op) == 0) &&
317 	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
318 		cpuid_leaf5_ecx_val = cx;
319 		cpuid_leaf5_edx_val = dx;
320 	}
321 	return true;
322 #else
323 	return false;
324 #endif
325 }
326 static void __init xen_init_cpuid_mask(void)
327 {
328 	unsigned int ax, bx, cx, dx;
329 	unsigned int xsave_mask;
330 
331 	cpuid_leaf1_edx_mask =
332 		~((1 << X86_FEATURE_MCE)  |  /* disable MCE */
333 		  (1 << X86_FEATURE_MCA)  |  /* disable MCA */
334 		  (1 << X86_FEATURE_MTRR) |  /* disable MTRR */
335 		  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
336 
337 	if (!xen_initial_domain())
338 		cpuid_leaf1_edx_mask &=
339 			~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
340 			  (1 << X86_FEATURE_ACPI));  /* disable ACPI */
341 	ax = 1;
342 	cx = 0;
343 	xen_cpuid(&ax, &bx, &cx, &dx);
344 
345 	xsave_mask =
346 		(1 << (X86_FEATURE_XSAVE % 32)) |
347 		(1 << (X86_FEATURE_OSXSAVE % 32));
348 
349 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
350 	if ((cx & xsave_mask) != xsave_mask)
351 		cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
352 
353 	if (xen_check_mwait())
354 		cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
355 }
356 
357 static void xen_set_debugreg(int reg, unsigned long val)
358 {
359 	HYPERVISOR_set_debugreg(reg, val);
360 }
361 
362 static unsigned long xen_get_debugreg(int reg)
363 {
364 	return HYPERVISOR_get_debugreg(reg);
365 }
366 
367 static void xen_end_context_switch(struct task_struct *next)
368 {
369 	xen_mc_flush();
370 	paravirt_end_context_switch(next);
371 }
372 
373 static unsigned long xen_store_tr(void)
374 {
375 	return 0;
376 }
377 
378 /*
379  * Set the page permissions for a particular virtual address.  If the
380  * address is a vmalloc mapping (or other non-linear mapping), then
381  * find the linear mapping of the page and also set its protections to
382  * match.
383  */
384 static void set_aliased_prot(void *v, pgprot_t prot)
385 {
386 	int level;
387 	pte_t *ptep;
388 	pte_t pte;
389 	unsigned long pfn;
390 	struct page *page;
391 
392 	ptep = lookup_address((unsigned long)v, &level);
393 	BUG_ON(ptep == NULL);
394 
395 	pfn = pte_pfn(*ptep);
396 	page = pfn_to_page(pfn);
397 
398 	pte = pfn_pte(pfn, prot);
399 
400 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
401 		BUG();
402 
403 	if (!PageHighMem(page)) {
404 		void *av = __va(PFN_PHYS(pfn));
405 
406 		if (av != v)
407 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
408 				BUG();
409 	} else
410 		kmap_flush_unused();
411 }
412 
413 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
414 {
415 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
416 	int i;
417 
418 	for(i = 0; i < entries; i += entries_per_page)
419 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
420 }
421 
422 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
423 {
424 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
425 	int i;
426 
427 	for(i = 0; i < entries; i += entries_per_page)
428 		set_aliased_prot(ldt + i, PAGE_KERNEL);
429 }
430 
431 static void xen_set_ldt(const void *addr, unsigned entries)
432 {
433 	struct mmuext_op *op;
434 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
435 
436 	trace_xen_cpu_set_ldt(addr, entries);
437 
438 	op = mcs.args;
439 	op->cmd = MMUEXT_SET_LDT;
440 	op->arg1.linear_addr = (unsigned long)addr;
441 	op->arg2.nr_ents = entries;
442 
443 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
444 
445 	xen_mc_issue(PARAVIRT_LAZY_CPU);
446 }
447 
448 static void xen_load_gdt(const struct desc_ptr *dtr)
449 {
450 	unsigned long va = dtr->address;
451 	unsigned int size = dtr->size + 1;
452 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
453 	unsigned long frames[pages];
454 	int f;
455 
456 	/*
457 	 * A GDT can be up to 64k in size, which corresponds to 8192
458 	 * 8-byte entries, or 16 4k pages..
459 	 */
460 
461 	BUG_ON(size > 65536);
462 	BUG_ON(va & ~PAGE_MASK);
463 
464 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
465 		int level;
466 		pte_t *ptep;
467 		unsigned long pfn, mfn;
468 		void *virt;
469 
470 		/*
471 		 * The GDT is per-cpu and is in the percpu data area.
472 		 * That can be virtually mapped, so we need to do a
473 		 * page-walk to get the underlying MFN for the
474 		 * hypercall.  The page can also be in the kernel's
475 		 * linear range, so we need to RO that mapping too.
476 		 */
477 		ptep = lookup_address(va, &level);
478 		BUG_ON(ptep == NULL);
479 
480 		pfn = pte_pfn(*ptep);
481 		mfn = pfn_to_mfn(pfn);
482 		virt = __va(PFN_PHYS(pfn));
483 
484 		frames[f] = mfn;
485 
486 		make_lowmem_page_readonly((void *)va);
487 		make_lowmem_page_readonly(virt);
488 	}
489 
490 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
491 		BUG();
492 }
493 
494 /*
495  * load_gdt for early boot, when the gdt is only mapped once
496  */
497 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
498 {
499 	unsigned long va = dtr->address;
500 	unsigned int size = dtr->size + 1;
501 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
502 	unsigned long frames[pages];
503 	int f;
504 
505 	/*
506 	 * A GDT can be up to 64k in size, which corresponds to 8192
507 	 * 8-byte entries, or 16 4k pages..
508 	 */
509 
510 	BUG_ON(size > 65536);
511 	BUG_ON(va & ~PAGE_MASK);
512 
513 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
514 		pte_t pte;
515 		unsigned long pfn, mfn;
516 
517 		pfn = virt_to_pfn(va);
518 		mfn = pfn_to_mfn(pfn);
519 
520 		pte = pfn_pte(pfn, PAGE_KERNEL_RO);
521 
522 		if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
523 			BUG();
524 
525 		frames[f] = mfn;
526 	}
527 
528 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
529 		BUG();
530 }
531 
532 static void load_TLS_descriptor(struct thread_struct *t,
533 				unsigned int cpu, unsigned int i)
534 {
535 	struct desc_struct *gdt = get_cpu_gdt_table(cpu);
536 	xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
537 	struct multicall_space mc = __xen_mc_entry(0);
538 
539 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
540 }
541 
542 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
543 {
544 	/*
545 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
546 	 * and lazy gs handling is enabled, it means we're in a
547 	 * context switch, and %gs has just been saved.  This means we
548 	 * can zero it out to prevent faults on exit from the
549 	 * hypervisor if the next process has no %gs.  Either way, it
550 	 * has been saved, and the new value will get loaded properly.
551 	 * This will go away as soon as Xen has been modified to not
552 	 * save/restore %gs for normal hypercalls.
553 	 *
554 	 * On x86_64, this hack is not used for %gs, because gs points
555 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
556 	 * must not zero %gs on x86_64
557 	 *
558 	 * For x86_64, we need to zero %fs, otherwise we may get an
559 	 * exception between the new %fs descriptor being loaded and
560 	 * %fs being effectively cleared at __switch_to().
561 	 */
562 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
563 #ifdef CONFIG_X86_32
564 		lazy_load_gs(0);
565 #else
566 		loadsegment(fs, 0);
567 #endif
568 	}
569 
570 	xen_mc_batch();
571 
572 	load_TLS_descriptor(t, cpu, 0);
573 	load_TLS_descriptor(t, cpu, 1);
574 	load_TLS_descriptor(t, cpu, 2);
575 
576 	xen_mc_issue(PARAVIRT_LAZY_CPU);
577 }
578 
579 #ifdef CONFIG_X86_64
580 static void xen_load_gs_index(unsigned int idx)
581 {
582 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
583 		BUG();
584 }
585 #endif
586 
587 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
588 				const void *ptr)
589 {
590 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
591 	u64 entry = *(u64 *)ptr;
592 
593 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
594 
595 	preempt_disable();
596 
597 	xen_mc_flush();
598 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
599 		BUG();
600 
601 	preempt_enable();
602 }
603 
604 static int cvt_gate_to_trap(int vector, const gate_desc *val,
605 			    struct trap_info *info)
606 {
607 	unsigned long addr;
608 
609 	if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
610 		return 0;
611 
612 	info->vector = vector;
613 
614 	addr = gate_offset(*val);
615 #ifdef CONFIG_X86_64
616 	/*
617 	 * Look for known traps using IST, and substitute them
618 	 * appropriately.  The debugger ones are the only ones we care
619 	 * about.  Xen will handle faults like double_fault and
620 	 * machine_check, so we should never see them.  Warn if
621 	 * there's an unexpected IST-using fault handler.
622 	 */
623 	if (addr == (unsigned long)debug)
624 		addr = (unsigned long)xen_debug;
625 	else if (addr == (unsigned long)int3)
626 		addr = (unsigned long)xen_int3;
627 	else if (addr == (unsigned long)stack_segment)
628 		addr = (unsigned long)xen_stack_segment;
629 	else if (addr == (unsigned long)double_fault ||
630 		 addr == (unsigned long)nmi) {
631 		/* Don't need to handle these */
632 		return 0;
633 #ifdef CONFIG_X86_MCE
634 	} else if (addr == (unsigned long)machine_check) {
635 		return 0;
636 #endif
637 	} else {
638 		/* Some other trap using IST? */
639 		if (WARN_ON(val->ist != 0))
640 			return 0;
641 	}
642 #endif	/* CONFIG_X86_64 */
643 	info->address = addr;
644 
645 	info->cs = gate_segment(*val);
646 	info->flags = val->dpl;
647 	/* interrupt gates clear IF */
648 	if (val->type == GATE_INTERRUPT)
649 		info->flags |= 1 << 2;
650 
651 	return 1;
652 }
653 
654 /* Locations of each CPU's IDT */
655 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
656 
657 /* Set an IDT entry.  If the entry is part of the current IDT, then
658    also update Xen. */
659 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
660 {
661 	unsigned long p = (unsigned long)&dt[entrynum];
662 	unsigned long start, end;
663 
664 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
665 
666 	preempt_disable();
667 
668 	start = __this_cpu_read(idt_desc.address);
669 	end = start + __this_cpu_read(idt_desc.size) + 1;
670 
671 	xen_mc_flush();
672 
673 	native_write_idt_entry(dt, entrynum, g);
674 
675 	if (p >= start && (p + 8) <= end) {
676 		struct trap_info info[2];
677 
678 		info[1].address = 0;
679 
680 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
681 			if (HYPERVISOR_set_trap_table(info))
682 				BUG();
683 	}
684 
685 	preempt_enable();
686 }
687 
688 static void xen_convert_trap_info(const struct desc_ptr *desc,
689 				  struct trap_info *traps)
690 {
691 	unsigned in, out, count;
692 
693 	count = (desc->size+1) / sizeof(gate_desc);
694 	BUG_ON(count > 256);
695 
696 	for (in = out = 0; in < count; in++) {
697 		gate_desc *entry = (gate_desc*)(desc->address) + in;
698 
699 		if (cvt_gate_to_trap(in, entry, &traps[out]))
700 			out++;
701 	}
702 	traps[out].address = 0;
703 }
704 
705 void xen_copy_trap_info(struct trap_info *traps)
706 {
707 	const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
708 
709 	xen_convert_trap_info(desc, traps);
710 }
711 
712 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
713    hold a spinlock to protect the static traps[] array (static because
714    it avoids allocation, and saves stack space). */
715 static void xen_load_idt(const struct desc_ptr *desc)
716 {
717 	static DEFINE_SPINLOCK(lock);
718 	static struct trap_info traps[257];
719 
720 	trace_xen_cpu_load_idt(desc);
721 
722 	spin_lock(&lock);
723 
724 	__get_cpu_var(idt_desc) = *desc;
725 
726 	xen_convert_trap_info(desc, traps);
727 
728 	xen_mc_flush();
729 	if (HYPERVISOR_set_trap_table(traps))
730 		BUG();
731 
732 	spin_unlock(&lock);
733 }
734 
735 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
736    they're handled differently. */
737 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
738 				const void *desc, int type)
739 {
740 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
741 
742 	preempt_disable();
743 
744 	switch (type) {
745 	case DESC_LDT:
746 	case DESC_TSS:
747 		/* ignore */
748 		break;
749 
750 	default: {
751 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
752 
753 		xen_mc_flush();
754 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
755 			BUG();
756 	}
757 
758 	}
759 
760 	preempt_enable();
761 }
762 
763 /*
764  * Version of write_gdt_entry for use at early boot-time needed to
765  * update an entry as simply as possible.
766  */
767 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
768 					    const void *desc, int type)
769 {
770 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
771 
772 	switch (type) {
773 	case DESC_LDT:
774 	case DESC_TSS:
775 		/* ignore */
776 		break;
777 
778 	default: {
779 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
780 
781 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
782 			dt[entry] = *(struct desc_struct *)desc;
783 	}
784 
785 	}
786 }
787 
788 static void xen_load_sp0(struct tss_struct *tss,
789 			 struct thread_struct *thread)
790 {
791 	struct multicall_space mcs;
792 
793 	mcs = xen_mc_entry(0);
794 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
795 	xen_mc_issue(PARAVIRT_LAZY_CPU);
796 }
797 
798 static void xen_set_iopl_mask(unsigned mask)
799 {
800 	struct physdev_set_iopl set_iopl;
801 
802 	/* Force the change at ring 0. */
803 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
804 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
805 }
806 
807 static void xen_io_delay(void)
808 {
809 }
810 
811 #ifdef CONFIG_X86_LOCAL_APIC
812 static u32 xen_apic_read(u32 reg)
813 {
814 	return 0;
815 }
816 
817 static void xen_apic_write(u32 reg, u32 val)
818 {
819 	/* Warn to see if there's any stray references */
820 	WARN_ON(1);
821 }
822 
823 static u64 xen_apic_icr_read(void)
824 {
825 	return 0;
826 }
827 
828 static void xen_apic_icr_write(u32 low, u32 id)
829 {
830 	/* Warn to see if there's any stray references */
831 	WARN_ON(1);
832 }
833 
834 static void xen_apic_wait_icr_idle(void)
835 {
836         return;
837 }
838 
839 static u32 xen_safe_apic_wait_icr_idle(void)
840 {
841         return 0;
842 }
843 
844 static void set_xen_basic_apic_ops(void)
845 {
846 	apic->read = xen_apic_read;
847 	apic->write = xen_apic_write;
848 	apic->icr_read = xen_apic_icr_read;
849 	apic->icr_write = xen_apic_icr_write;
850 	apic->wait_icr_idle = xen_apic_wait_icr_idle;
851 	apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
852 }
853 
854 #endif
855 
856 static void xen_clts(void)
857 {
858 	struct multicall_space mcs;
859 
860 	mcs = xen_mc_entry(0);
861 
862 	MULTI_fpu_taskswitch(mcs.mc, 0);
863 
864 	xen_mc_issue(PARAVIRT_LAZY_CPU);
865 }
866 
867 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
868 
869 static unsigned long xen_read_cr0(void)
870 {
871 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
872 
873 	if (unlikely(cr0 == 0)) {
874 		cr0 = native_read_cr0();
875 		this_cpu_write(xen_cr0_value, cr0);
876 	}
877 
878 	return cr0;
879 }
880 
881 static void xen_write_cr0(unsigned long cr0)
882 {
883 	struct multicall_space mcs;
884 
885 	this_cpu_write(xen_cr0_value, cr0);
886 
887 	/* Only pay attention to cr0.TS; everything else is
888 	   ignored. */
889 	mcs = xen_mc_entry(0);
890 
891 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
892 
893 	xen_mc_issue(PARAVIRT_LAZY_CPU);
894 }
895 
896 static void xen_write_cr4(unsigned long cr4)
897 {
898 	cr4 &= ~X86_CR4_PGE;
899 	cr4 &= ~X86_CR4_PSE;
900 
901 	native_write_cr4(cr4);
902 }
903 
904 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
905 {
906 	int ret;
907 
908 	ret = 0;
909 
910 	switch (msr) {
911 #ifdef CONFIG_X86_64
912 		unsigned which;
913 		u64 base;
914 
915 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
916 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
917 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
918 
919 	set:
920 		base = ((u64)high << 32) | low;
921 		if (HYPERVISOR_set_segment_base(which, base) != 0)
922 			ret = -EIO;
923 		break;
924 #endif
925 
926 	case MSR_STAR:
927 	case MSR_CSTAR:
928 	case MSR_LSTAR:
929 	case MSR_SYSCALL_MASK:
930 	case MSR_IA32_SYSENTER_CS:
931 	case MSR_IA32_SYSENTER_ESP:
932 	case MSR_IA32_SYSENTER_EIP:
933 		/* Fast syscall setup is all done in hypercalls, so
934 		   these are all ignored.  Stub them out here to stop
935 		   Xen console noise. */
936 		break;
937 
938 	case MSR_IA32_CR_PAT:
939 		if (smp_processor_id() == 0)
940 			xen_set_pat(((u64)high << 32) | low);
941 		break;
942 
943 	default:
944 		ret = native_write_msr_safe(msr, low, high);
945 	}
946 
947 	return ret;
948 }
949 
950 void xen_setup_shared_info(void)
951 {
952 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
953 		set_fixmap(FIX_PARAVIRT_BOOTMAP,
954 			   xen_start_info->shared_info);
955 
956 		HYPERVISOR_shared_info =
957 			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
958 	} else
959 		HYPERVISOR_shared_info =
960 			(struct shared_info *)__va(xen_start_info->shared_info);
961 
962 #ifndef CONFIG_SMP
963 	/* In UP this is as good a place as any to set up shared info */
964 	xen_setup_vcpu_info_placement();
965 #endif
966 
967 	xen_setup_mfn_list_list();
968 }
969 
970 /* This is called once we have the cpu_possible_mask */
971 void xen_setup_vcpu_info_placement(void)
972 {
973 	int cpu;
974 
975 	for_each_possible_cpu(cpu)
976 		xen_vcpu_setup(cpu);
977 
978 	/* xen_vcpu_setup managed to place the vcpu_info within the
979 	   percpu area for all cpus, so make use of it */
980 	if (have_vcpu_info_placement) {
981 		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
982 		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
983 		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
984 		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
985 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
986 	}
987 }
988 
989 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
990 			  unsigned long addr, unsigned len)
991 {
992 	char *start, *end, *reloc;
993 	unsigned ret;
994 
995 	start = end = reloc = NULL;
996 
997 #define SITE(op, x)							\
998 	case PARAVIRT_PATCH(op.x):					\
999 	if (have_vcpu_info_placement) {					\
1000 		start = (char *)xen_##x##_direct;			\
1001 		end = xen_##x##_direct_end;				\
1002 		reloc = xen_##x##_direct_reloc;				\
1003 	}								\
1004 	goto patch_site
1005 
1006 	switch (type) {
1007 		SITE(pv_irq_ops, irq_enable);
1008 		SITE(pv_irq_ops, irq_disable);
1009 		SITE(pv_irq_ops, save_fl);
1010 		SITE(pv_irq_ops, restore_fl);
1011 #undef SITE
1012 
1013 	patch_site:
1014 		if (start == NULL || (end-start) > len)
1015 			goto default_patch;
1016 
1017 		ret = paravirt_patch_insns(insnbuf, len, start, end);
1018 
1019 		/* Note: because reloc is assigned from something that
1020 		   appears to be an array, gcc assumes it's non-null,
1021 		   but doesn't know its relationship with start and
1022 		   end. */
1023 		if (reloc > start && reloc < end) {
1024 			int reloc_off = reloc - start;
1025 			long *relocp = (long *)(insnbuf + reloc_off);
1026 			long delta = start - (char *)addr;
1027 
1028 			*relocp += delta;
1029 		}
1030 		break;
1031 
1032 	default_patch:
1033 	default:
1034 		ret = paravirt_patch_default(type, clobbers, insnbuf,
1035 					     addr, len);
1036 		break;
1037 	}
1038 
1039 	return ret;
1040 }
1041 
1042 static const struct pv_info xen_info __initconst = {
1043 	.paravirt_enabled = 1,
1044 	.shared_kernel_pmd = 0,
1045 
1046 #ifdef CONFIG_X86_64
1047 	.extra_user_64bit_cs = FLAT_USER_CS64,
1048 #endif
1049 
1050 	.name = "Xen",
1051 };
1052 
1053 static const struct pv_init_ops xen_init_ops __initconst = {
1054 	.patch = xen_patch,
1055 };
1056 
1057 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1058 	.cpuid = xen_cpuid,
1059 
1060 	.set_debugreg = xen_set_debugreg,
1061 	.get_debugreg = xen_get_debugreg,
1062 
1063 	.clts = xen_clts,
1064 
1065 	.read_cr0 = xen_read_cr0,
1066 	.write_cr0 = xen_write_cr0,
1067 
1068 	.read_cr4 = native_read_cr4,
1069 	.read_cr4_safe = native_read_cr4_safe,
1070 	.write_cr4 = xen_write_cr4,
1071 
1072 	.wbinvd = native_wbinvd,
1073 
1074 	.read_msr = native_read_msr_safe,
1075 	.write_msr = xen_write_msr_safe,
1076 	.read_tsc = native_read_tsc,
1077 	.read_pmc = native_read_pmc,
1078 
1079 	.iret = xen_iret,
1080 	.irq_enable_sysexit = xen_sysexit,
1081 #ifdef CONFIG_X86_64
1082 	.usergs_sysret32 = xen_sysret32,
1083 	.usergs_sysret64 = xen_sysret64,
1084 #endif
1085 
1086 	.load_tr_desc = paravirt_nop,
1087 	.set_ldt = xen_set_ldt,
1088 	.load_gdt = xen_load_gdt,
1089 	.load_idt = xen_load_idt,
1090 	.load_tls = xen_load_tls,
1091 #ifdef CONFIG_X86_64
1092 	.load_gs_index = xen_load_gs_index,
1093 #endif
1094 
1095 	.alloc_ldt = xen_alloc_ldt,
1096 	.free_ldt = xen_free_ldt,
1097 
1098 	.store_gdt = native_store_gdt,
1099 	.store_idt = native_store_idt,
1100 	.store_tr = xen_store_tr,
1101 
1102 	.write_ldt_entry = xen_write_ldt_entry,
1103 	.write_gdt_entry = xen_write_gdt_entry,
1104 	.write_idt_entry = xen_write_idt_entry,
1105 	.load_sp0 = xen_load_sp0,
1106 
1107 	.set_iopl_mask = xen_set_iopl_mask,
1108 	.io_delay = xen_io_delay,
1109 
1110 	/* Xen takes care of %gs when switching to usermode for us */
1111 	.swapgs = paravirt_nop,
1112 
1113 	.start_context_switch = paravirt_start_context_switch,
1114 	.end_context_switch = xen_end_context_switch,
1115 };
1116 
1117 static const struct pv_apic_ops xen_apic_ops __initconst = {
1118 #ifdef CONFIG_X86_LOCAL_APIC
1119 	.startup_ipi_hook = paravirt_nop,
1120 #endif
1121 };
1122 
1123 static void xen_reboot(int reason)
1124 {
1125 	struct sched_shutdown r = { .reason = reason };
1126 
1127 	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1128 		BUG();
1129 }
1130 
1131 static void xen_restart(char *msg)
1132 {
1133 	xen_reboot(SHUTDOWN_reboot);
1134 }
1135 
1136 static void xen_emergency_restart(void)
1137 {
1138 	xen_reboot(SHUTDOWN_reboot);
1139 }
1140 
1141 static void xen_machine_halt(void)
1142 {
1143 	xen_reboot(SHUTDOWN_poweroff);
1144 }
1145 
1146 static void xen_machine_power_off(void)
1147 {
1148 	if (pm_power_off)
1149 		pm_power_off();
1150 	xen_reboot(SHUTDOWN_poweroff);
1151 }
1152 
1153 static void xen_crash_shutdown(struct pt_regs *regs)
1154 {
1155 	xen_reboot(SHUTDOWN_crash);
1156 }
1157 
1158 static int
1159 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1160 {
1161 	xen_reboot(SHUTDOWN_crash);
1162 	return NOTIFY_DONE;
1163 }
1164 
1165 static struct notifier_block xen_panic_block = {
1166 	.notifier_call= xen_panic_event,
1167 };
1168 
1169 int xen_panic_handler_init(void)
1170 {
1171 	atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1172 	return 0;
1173 }
1174 
1175 static const struct machine_ops xen_machine_ops __initconst = {
1176 	.restart = xen_restart,
1177 	.halt = xen_machine_halt,
1178 	.power_off = xen_machine_power_off,
1179 	.shutdown = xen_machine_halt,
1180 	.crash_shutdown = xen_crash_shutdown,
1181 	.emergency_restart = xen_emergency_restart,
1182 };
1183 
1184 /*
1185  * Set up the GDT and segment registers for -fstack-protector.  Until
1186  * we do this, we have to be careful not to call any stack-protected
1187  * function, which is most of the kernel.
1188  */
1189 static void __init xen_setup_stackprotector(void)
1190 {
1191 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1192 	pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1193 
1194 	setup_stack_canary_segment(0);
1195 	switch_to_new_gdt(0);
1196 
1197 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1198 	pv_cpu_ops.load_gdt = xen_load_gdt;
1199 }
1200 
1201 /* First C function to be called on Xen boot */
1202 asmlinkage void __init xen_start_kernel(void)
1203 {
1204 	struct physdev_set_iopl set_iopl;
1205 	int rc;
1206 	pgd_t *pgd;
1207 
1208 	if (!xen_start_info)
1209 		return;
1210 
1211 	xen_domain_type = XEN_PV_DOMAIN;
1212 
1213 	xen_setup_machphys_mapping();
1214 
1215 	/* Install Xen paravirt ops */
1216 	pv_info = xen_info;
1217 	pv_init_ops = xen_init_ops;
1218 	pv_cpu_ops = xen_cpu_ops;
1219 	pv_apic_ops = xen_apic_ops;
1220 
1221 	x86_init.resources.memory_setup = xen_memory_setup;
1222 	x86_init.oem.arch_setup = xen_arch_setup;
1223 	x86_init.oem.banner = xen_banner;
1224 
1225 	xen_init_time_ops();
1226 
1227 	/*
1228 	 * Set up some pagetable state before starting to set any ptes.
1229 	 */
1230 
1231 	xen_init_mmu_ops();
1232 
1233 	/* Prevent unwanted bits from being set in PTEs. */
1234 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1235 #if 0
1236 	if (!xen_initial_domain())
1237 #endif
1238 		__supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1239 
1240 	__supported_pte_mask |= _PAGE_IOMAP;
1241 
1242 	/*
1243 	 * Prevent page tables from being allocated in highmem, even
1244 	 * if CONFIG_HIGHPTE is enabled.
1245 	 */
1246 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1247 
1248 	/* Work out if we support NX */
1249 	x86_configure_nx();
1250 
1251 	xen_setup_features();
1252 
1253 	/* Get mfn list */
1254 	if (!xen_feature(XENFEAT_auto_translated_physmap))
1255 		xen_build_dynamic_phys_to_machine();
1256 
1257 	/*
1258 	 * Set up kernel GDT and segment registers, mainly so that
1259 	 * -fstack-protector code can be executed.
1260 	 */
1261 	xen_setup_stackprotector();
1262 
1263 	xen_init_irq_ops();
1264 	xen_init_cpuid_mask();
1265 
1266 #ifdef CONFIG_X86_LOCAL_APIC
1267 	/*
1268 	 * set up the basic apic ops.
1269 	 */
1270 	set_xen_basic_apic_ops();
1271 #endif
1272 
1273 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1274 		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1275 		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1276 	}
1277 
1278 	machine_ops = xen_machine_ops;
1279 
1280 	/*
1281 	 * The only reliable way to retain the initial address of the
1282 	 * percpu gdt_page is to remember it here, so we can go and
1283 	 * mark it RW later, when the initial percpu area is freed.
1284 	 */
1285 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1286 
1287 	xen_smp_init();
1288 
1289 #ifdef CONFIG_ACPI_NUMA
1290 	/*
1291 	 * The pages we from Xen are not related to machine pages, so
1292 	 * any NUMA information the kernel tries to get from ACPI will
1293 	 * be meaningless.  Prevent it from trying.
1294 	 */
1295 	acpi_numa = -1;
1296 #endif
1297 
1298 	pgd = (pgd_t *)xen_start_info->pt_base;
1299 
1300 	/* Don't do the full vcpu_info placement stuff until we have a
1301 	   possible map and a non-dummy shared_info. */
1302 	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1303 
1304 	local_irq_disable();
1305 	early_boot_irqs_disabled = true;
1306 
1307 	xen_raw_console_write("mapping kernel into physical memory\n");
1308 	pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1309 	xen_ident_map_ISA();
1310 
1311 	/* Allocate and initialize top and mid mfn levels for p2m structure */
1312 	xen_build_mfn_list_list();
1313 
1314 	/* keep using Xen gdt for now; no urgent need to change it */
1315 
1316 #ifdef CONFIG_X86_32
1317 	pv_info.kernel_rpl = 1;
1318 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1319 		pv_info.kernel_rpl = 0;
1320 #else
1321 	pv_info.kernel_rpl = 0;
1322 #endif
1323 	/* set the limit of our address space */
1324 	xen_reserve_top();
1325 
1326 	/* We used to do this in xen_arch_setup, but that is too late on AMD
1327 	 * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1328 	 * which pokes 0xcf8 port.
1329 	 */
1330 	set_iopl.iopl = 1;
1331 	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1332 	if (rc != 0)
1333 		xen_raw_printk("physdev_op failed %d\n", rc);
1334 
1335 #ifdef CONFIG_X86_32
1336 	/* set up basic CPUID stuff */
1337 	cpu_detect(&new_cpu_data);
1338 	new_cpu_data.hard_math = 1;
1339 	new_cpu_data.wp_works_ok = 1;
1340 	new_cpu_data.x86_capability[0] = cpuid_edx(1);
1341 #endif
1342 
1343 	/* Poke various useful things into boot_params */
1344 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1345 	boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1346 		? __pa(xen_start_info->mod_start) : 0;
1347 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1348 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1349 
1350 	if (!xen_initial_domain()) {
1351 		add_preferred_console("xenboot", 0, NULL);
1352 		add_preferred_console("tty", 0, NULL);
1353 		add_preferred_console("hvc", 0, NULL);
1354 		if (pci_xen)
1355 			x86_init.pci.arch_init = pci_xen_init;
1356 	} else {
1357 		const struct dom0_vga_console_info *info =
1358 			(void *)((char *)xen_start_info +
1359 				 xen_start_info->console.dom0.info_off);
1360 
1361 		xen_init_vga(info, xen_start_info->console.dom0.info_size);
1362 		xen_start_info->console.domU.mfn = 0;
1363 		xen_start_info->console.domU.evtchn = 0;
1364 
1365 		/* Make sure ACS will be enabled */
1366 		pci_request_acs();
1367 	}
1368 
1369 
1370 	xen_raw_console_write("about to get started...\n");
1371 
1372 	xen_setup_runstate_info(0);
1373 
1374 	/* Start the world */
1375 #ifdef CONFIG_X86_32
1376 	i386_start_kernel();
1377 #else
1378 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1379 #endif
1380 }
1381 
1382 static int init_hvm_pv_info(int *major, int *minor)
1383 {
1384 	uint32_t eax, ebx, ecx, edx, pages, msr, base;
1385 	u64 pfn;
1386 
1387 	base = xen_cpuid_base();
1388 	cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1389 
1390 	*major = eax >> 16;
1391 	*minor = eax & 0xffff;
1392 	printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor);
1393 
1394 	cpuid(base + 2, &pages, &msr, &ecx, &edx);
1395 
1396 	pfn = __pa(hypercall_page);
1397 	wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1398 
1399 	xen_setup_features();
1400 
1401 	pv_info.name = "Xen HVM";
1402 
1403 	xen_domain_type = XEN_HVM_DOMAIN;
1404 
1405 	return 0;
1406 }
1407 
1408 void __ref xen_hvm_init_shared_info(void)
1409 {
1410 	int cpu;
1411 	struct xen_add_to_physmap xatp;
1412 	static struct shared_info *shared_info_page = 0;
1413 
1414 	if (!shared_info_page)
1415 		shared_info_page = (struct shared_info *)
1416 			extend_brk(PAGE_SIZE, PAGE_SIZE);
1417 	xatp.domid = DOMID_SELF;
1418 	xatp.idx = 0;
1419 	xatp.space = XENMAPSPACE_shared_info;
1420 	xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1421 	if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1422 		BUG();
1423 
1424 	HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1425 
1426 	/* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1427 	 * page, we use it in the event channel upcall and in some pvclock
1428 	 * related functions. We don't need the vcpu_info placement
1429 	 * optimizations because we don't use any pv_mmu or pv_irq op on
1430 	 * HVM.
1431 	 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1432 	 * online but xen_hvm_init_shared_info is run at resume time too and
1433 	 * in that case multiple vcpus might be online. */
1434 	for_each_online_cpu(cpu) {
1435 		per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1436 	}
1437 }
1438 
1439 #ifdef CONFIG_XEN_PVHVM
1440 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1441 				    unsigned long action, void *hcpu)
1442 {
1443 	int cpu = (long)hcpu;
1444 	switch (action) {
1445 	case CPU_UP_PREPARE:
1446 		xen_vcpu_setup(cpu);
1447 		if (xen_have_vector_callback)
1448 			xen_init_lock_cpu(cpu);
1449 		break;
1450 	default:
1451 		break;
1452 	}
1453 	return NOTIFY_OK;
1454 }
1455 
1456 static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
1457 	.notifier_call	= xen_hvm_cpu_notify,
1458 };
1459 
1460 static void __init xen_hvm_guest_init(void)
1461 {
1462 	int r;
1463 	int major, minor;
1464 
1465 	r = init_hvm_pv_info(&major, &minor);
1466 	if (r < 0)
1467 		return;
1468 
1469 	xen_hvm_init_shared_info();
1470 
1471 	if (xen_feature(XENFEAT_hvm_callback_vector))
1472 		xen_have_vector_callback = 1;
1473 	xen_hvm_smp_init();
1474 	register_cpu_notifier(&xen_hvm_cpu_notifier);
1475 	xen_unplug_emulated_devices();
1476 	x86_init.irqs.intr_init = xen_init_IRQ;
1477 	xen_hvm_init_time_ops();
1478 	xen_hvm_init_mmu_ops();
1479 }
1480 
1481 static bool __init xen_hvm_platform(void)
1482 {
1483 	if (xen_pv_domain())
1484 		return false;
1485 
1486 	if (!xen_cpuid_base())
1487 		return false;
1488 
1489 	return true;
1490 }
1491 
1492 bool xen_hvm_need_lapic(void)
1493 {
1494 	if (xen_pv_domain())
1495 		return false;
1496 	if (!xen_hvm_domain())
1497 		return false;
1498 	if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1499 		return false;
1500 	return true;
1501 }
1502 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1503 
1504 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1505 	.name			= "Xen HVM",
1506 	.detect			= xen_hvm_platform,
1507 	.init_platform		= xen_hvm_guest_init,
1508 };
1509 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1510 #endif
1511