xref: /openbmc/linux/arch/x86/xen/enlighten.c (revision f3a8b664)
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13 
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/export.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 #include <linux/edd.h>
35 #include <linux/frame.h>
36 
37 #include <linux/kexec.h>
38 
39 #include <xen/xen.h>
40 #include <xen/events.h>
41 #include <xen/interface/xen.h>
42 #include <xen/interface/version.h>
43 #include <xen/interface/physdev.h>
44 #include <xen/interface/vcpu.h>
45 #include <xen/interface/memory.h>
46 #include <xen/interface/nmi.h>
47 #include <xen/interface/xen-mca.h>
48 #include <xen/features.h>
49 #include <xen/page.h>
50 #include <xen/hvm.h>
51 #include <xen/hvc-console.h>
52 #include <xen/acpi.h>
53 
54 #include <asm/paravirt.h>
55 #include <asm/apic.h>
56 #include <asm/page.h>
57 #include <asm/xen/pci.h>
58 #include <asm/xen/hypercall.h>
59 #include <asm/xen/hypervisor.h>
60 #include <asm/xen/cpuid.h>
61 #include <asm/fixmap.h>
62 #include <asm/processor.h>
63 #include <asm/proto.h>
64 #include <asm/msr-index.h>
65 #include <asm/traps.h>
66 #include <asm/setup.h>
67 #include <asm/desc.h>
68 #include <asm/pgalloc.h>
69 #include <asm/pgtable.h>
70 #include <asm/tlbflush.h>
71 #include <asm/reboot.h>
72 #include <asm/stackprotector.h>
73 #include <asm/hypervisor.h>
74 #include <asm/mach_traps.h>
75 #include <asm/mwait.h>
76 #include <asm/pci_x86.h>
77 #include <asm/cpu.h>
78 
79 #ifdef CONFIG_ACPI
80 #include <linux/acpi.h>
81 #include <asm/acpi.h>
82 #include <acpi/pdc_intel.h>
83 #include <acpi/processor.h>
84 #include <xen/interface/platform.h>
85 #endif
86 
87 #include "xen-ops.h"
88 #include "mmu.h"
89 #include "smp.h"
90 #include "multicalls.h"
91 #include "pmu.h"
92 
93 EXPORT_SYMBOL_GPL(hypercall_page);
94 
95 /*
96  * Pointer to the xen_vcpu_info structure or
97  * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
98  * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
99  * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
100  * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
101  * acknowledge pending events.
102  * Also more subtly it is used by the patched version of irq enable/disable
103  * e.g. xen_irq_enable_direct and xen_iret in PV mode.
104  *
105  * The desire to be able to do those mask/unmask operations as a single
106  * instruction by using the per-cpu offset held in %gs is the real reason
107  * vcpu info is in a per-cpu pointer and the original reason for this
108  * hypercall.
109  *
110  */
111 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
112 
113 /*
114  * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
115  * hypercall. This can be used both in PV and PVHVM mode. The structure
116  * overrides the default per_cpu(xen_vcpu, cpu) value.
117  */
118 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
119 
120 /* Linux <-> Xen vCPU id mapping */
121 DEFINE_PER_CPU(uint32_t, xen_vcpu_id);
122 EXPORT_PER_CPU_SYMBOL(xen_vcpu_id);
123 
124 enum xen_domain_type xen_domain_type = XEN_NATIVE;
125 EXPORT_SYMBOL_GPL(xen_domain_type);
126 
127 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
128 EXPORT_SYMBOL(machine_to_phys_mapping);
129 unsigned long  machine_to_phys_nr;
130 EXPORT_SYMBOL(machine_to_phys_nr);
131 
132 struct start_info *xen_start_info;
133 EXPORT_SYMBOL_GPL(xen_start_info);
134 
135 struct shared_info xen_dummy_shared_info;
136 
137 void *xen_initial_gdt;
138 
139 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
140 
141 static int xen_cpu_up_prepare(unsigned int cpu);
142 static int xen_cpu_up_online(unsigned int cpu);
143 static int xen_cpu_dead(unsigned int cpu);
144 
145 /*
146  * Point at some empty memory to start with. We map the real shared_info
147  * page as soon as fixmap is up and running.
148  */
149 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
150 
151 /*
152  * Flag to determine whether vcpu info placement is available on all
153  * VCPUs.  We assume it is to start with, and then set it to zero on
154  * the first failure.  This is because it can succeed on some VCPUs
155  * and not others, since it can involve hypervisor memory allocation,
156  * or because the guest failed to guarantee all the appropriate
157  * constraints on all VCPUs (ie buffer can't cross a page boundary).
158  *
159  * Note that any particular CPU may be using a placed vcpu structure,
160  * but we can only optimise if the all are.
161  *
162  * 0: not available, 1: available
163  */
164 static int have_vcpu_info_placement = 1;
165 
166 struct tls_descs {
167 	struct desc_struct desc[3];
168 };
169 
170 /*
171  * Updating the 3 TLS descriptors in the GDT on every task switch is
172  * surprisingly expensive so we avoid updating them if they haven't
173  * changed.  Since Xen writes different descriptors than the one
174  * passed in the update_descriptor hypercall we keep shadow copies to
175  * compare against.
176  */
177 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
178 
179 static void clamp_max_cpus(void)
180 {
181 #ifdef CONFIG_SMP
182 	if (setup_max_cpus > MAX_VIRT_CPUS)
183 		setup_max_cpus = MAX_VIRT_CPUS;
184 #endif
185 }
186 
187 void xen_vcpu_setup(int cpu)
188 {
189 	struct vcpu_register_vcpu_info info;
190 	int err;
191 	struct vcpu_info *vcpup;
192 
193 	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
194 
195 	/*
196 	 * This path is called twice on PVHVM - first during bootup via
197 	 * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
198 	 * hotplugged: cpu_up -> xen_hvm_cpu_notify.
199 	 * As we can only do the VCPUOP_register_vcpu_info once lets
200 	 * not over-write its result.
201 	 *
202 	 * For PV it is called during restore (xen_vcpu_restore) and bootup
203 	 * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
204 	 * use this function.
205 	 */
206 	if (xen_hvm_domain()) {
207 		if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
208 			return;
209 	}
210 	if (xen_vcpu_nr(cpu) < MAX_VIRT_CPUS)
211 		per_cpu(xen_vcpu, cpu) =
212 			&HYPERVISOR_shared_info->vcpu_info[xen_vcpu_nr(cpu)];
213 
214 	if (!have_vcpu_info_placement) {
215 		if (cpu >= MAX_VIRT_CPUS)
216 			clamp_max_cpus();
217 		return;
218 	}
219 
220 	vcpup = &per_cpu(xen_vcpu_info, cpu);
221 	info.mfn = arbitrary_virt_to_mfn(vcpup);
222 	info.offset = offset_in_page(vcpup);
223 
224 	/* Check to see if the hypervisor will put the vcpu_info
225 	   structure where we want it, which allows direct access via
226 	   a percpu-variable.
227 	   N.B. This hypercall can _only_ be called once per CPU. Subsequent
228 	   calls will error out with -EINVAL. This is due to the fact that
229 	   hypervisor has no unregister variant and this hypercall does not
230 	   allow to over-write info.mfn and info.offset.
231 	 */
232 	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, xen_vcpu_nr(cpu),
233 				 &info);
234 
235 	if (err) {
236 		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
237 		have_vcpu_info_placement = 0;
238 		clamp_max_cpus();
239 	} else {
240 		/* This cpu is using the registered vcpu info, even if
241 		   later ones fail to. */
242 		per_cpu(xen_vcpu, cpu) = vcpup;
243 	}
244 }
245 
246 /*
247  * On restore, set the vcpu placement up again.
248  * If it fails, then we're in a bad state, since
249  * we can't back out from using it...
250  */
251 void xen_vcpu_restore(void)
252 {
253 	int cpu;
254 
255 	for_each_possible_cpu(cpu) {
256 		bool other_cpu = (cpu != smp_processor_id());
257 		bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, xen_vcpu_nr(cpu),
258 						NULL);
259 
260 		if (other_cpu && is_up &&
261 		    HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(cpu), NULL))
262 			BUG();
263 
264 		xen_setup_runstate_info(cpu);
265 
266 		if (have_vcpu_info_placement)
267 			xen_vcpu_setup(cpu);
268 
269 		if (other_cpu && is_up &&
270 		    HYPERVISOR_vcpu_op(VCPUOP_up, xen_vcpu_nr(cpu), NULL))
271 			BUG();
272 	}
273 }
274 
275 static void __init xen_banner(void)
276 {
277 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
278 	struct xen_extraversion extra;
279 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
280 
281 	pr_info("Booting paravirtualized kernel %son %s\n",
282 		xen_feature(XENFEAT_auto_translated_physmap) ?
283 			"with PVH extensions " : "", pv_info.name);
284 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
285 	       version >> 16, version & 0xffff, extra.extraversion,
286 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
287 }
288 /* Check if running on Xen version (major, minor) or later */
289 bool
290 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
291 {
292 	unsigned int version;
293 
294 	if (!xen_domain())
295 		return false;
296 
297 	version = HYPERVISOR_xen_version(XENVER_version, NULL);
298 	if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
299 		((version >> 16) > major))
300 		return true;
301 	return false;
302 }
303 
304 #define CPUID_THERM_POWER_LEAF 6
305 #define APERFMPERF_PRESENT 0
306 
307 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
308 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
309 
310 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
311 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
312 static __read_mostly unsigned int cpuid_leaf5_edx_val;
313 
314 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
315 		      unsigned int *cx, unsigned int *dx)
316 {
317 	unsigned maskebx = ~0;
318 	unsigned maskecx = ~0;
319 	unsigned maskedx = ~0;
320 	unsigned setecx = 0;
321 	/*
322 	 * Mask out inconvenient features, to try and disable as many
323 	 * unsupported kernel subsystems as possible.
324 	 */
325 	switch (*ax) {
326 	case 1:
327 		maskecx = cpuid_leaf1_ecx_mask;
328 		setecx = cpuid_leaf1_ecx_set_mask;
329 		maskedx = cpuid_leaf1_edx_mask;
330 		break;
331 
332 	case CPUID_MWAIT_LEAF:
333 		/* Synthesize the values.. */
334 		*ax = 0;
335 		*bx = 0;
336 		*cx = cpuid_leaf5_ecx_val;
337 		*dx = cpuid_leaf5_edx_val;
338 		return;
339 
340 	case CPUID_THERM_POWER_LEAF:
341 		/* Disabling APERFMPERF for kernel usage */
342 		maskecx = ~(1 << APERFMPERF_PRESENT);
343 		break;
344 
345 	case 0xb:
346 		/* Suppress extended topology stuff */
347 		maskebx = 0;
348 		break;
349 	}
350 
351 	asm(XEN_EMULATE_PREFIX "cpuid"
352 		: "=a" (*ax),
353 		  "=b" (*bx),
354 		  "=c" (*cx),
355 		  "=d" (*dx)
356 		: "0" (*ax), "2" (*cx));
357 
358 	*bx &= maskebx;
359 	*cx &= maskecx;
360 	*cx |= setecx;
361 	*dx &= maskedx;
362 }
363 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
364 
365 static bool __init xen_check_mwait(void)
366 {
367 #ifdef CONFIG_ACPI
368 	struct xen_platform_op op = {
369 		.cmd			= XENPF_set_processor_pminfo,
370 		.u.set_pminfo.id	= -1,
371 		.u.set_pminfo.type	= XEN_PM_PDC,
372 	};
373 	uint32_t buf[3];
374 	unsigned int ax, bx, cx, dx;
375 	unsigned int mwait_mask;
376 
377 	/* We need to determine whether it is OK to expose the MWAIT
378 	 * capability to the kernel to harvest deeper than C3 states from ACPI
379 	 * _CST using the processor_harvest_xen.c module. For this to work, we
380 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
381 	 * checks against). The hypervisor won't expose the MWAIT flag because
382 	 * it would break backwards compatibility; so we will find out directly
383 	 * from the hardware and hypercall.
384 	 */
385 	if (!xen_initial_domain())
386 		return false;
387 
388 	/*
389 	 * When running under platform earlier than Xen4.2, do not expose
390 	 * mwait, to avoid the risk of loading native acpi pad driver
391 	 */
392 	if (!xen_running_on_version_or_later(4, 2))
393 		return false;
394 
395 	ax = 1;
396 	cx = 0;
397 
398 	native_cpuid(&ax, &bx, &cx, &dx);
399 
400 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
401 		     (1 << (X86_FEATURE_MWAIT % 32));
402 
403 	if ((cx & mwait_mask) != mwait_mask)
404 		return false;
405 
406 	/* We need to emulate the MWAIT_LEAF and for that we need both
407 	 * ecx and edx. The hypercall provides only partial information.
408 	 */
409 
410 	ax = CPUID_MWAIT_LEAF;
411 	bx = 0;
412 	cx = 0;
413 	dx = 0;
414 
415 	native_cpuid(&ax, &bx, &cx, &dx);
416 
417 	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
418 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
419 	 */
420 	buf[0] = ACPI_PDC_REVISION_ID;
421 	buf[1] = 1;
422 	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
423 
424 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
425 
426 	if ((HYPERVISOR_platform_op(&op) == 0) &&
427 	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
428 		cpuid_leaf5_ecx_val = cx;
429 		cpuid_leaf5_edx_val = dx;
430 	}
431 	return true;
432 #else
433 	return false;
434 #endif
435 }
436 static void __init xen_init_cpuid_mask(void)
437 {
438 	unsigned int ax, bx, cx, dx;
439 	unsigned int xsave_mask;
440 
441 	cpuid_leaf1_edx_mask =
442 		~((1 << X86_FEATURE_MTRR) |  /* disable MTRR */
443 		  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
444 
445 	if (!xen_initial_domain())
446 		cpuid_leaf1_edx_mask &=
447 			~((1 << X86_FEATURE_ACPI));  /* disable ACPI */
448 
449 	cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
450 
451 	ax = 1;
452 	cx = 0;
453 	cpuid(1, &ax, &bx, &cx, &dx);
454 
455 	xsave_mask =
456 		(1 << (X86_FEATURE_XSAVE % 32)) |
457 		(1 << (X86_FEATURE_OSXSAVE % 32));
458 
459 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
460 	if ((cx & xsave_mask) != xsave_mask)
461 		cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
462 	if (xen_check_mwait())
463 		cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
464 }
465 
466 static void xen_set_debugreg(int reg, unsigned long val)
467 {
468 	HYPERVISOR_set_debugreg(reg, val);
469 }
470 
471 static unsigned long xen_get_debugreg(int reg)
472 {
473 	return HYPERVISOR_get_debugreg(reg);
474 }
475 
476 static void xen_end_context_switch(struct task_struct *next)
477 {
478 	xen_mc_flush();
479 	paravirt_end_context_switch(next);
480 }
481 
482 static unsigned long xen_store_tr(void)
483 {
484 	return 0;
485 }
486 
487 /*
488  * Set the page permissions for a particular virtual address.  If the
489  * address is a vmalloc mapping (or other non-linear mapping), then
490  * find the linear mapping of the page and also set its protections to
491  * match.
492  */
493 static void set_aliased_prot(void *v, pgprot_t prot)
494 {
495 	int level;
496 	pte_t *ptep;
497 	pte_t pte;
498 	unsigned long pfn;
499 	struct page *page;
500 	unsigned char dummy;
501 
502 	ptep = lookup_address((unsigned long)v, &level);
503 	BUG_ON(ptep == NULL);
504 
505 	pfn = pte_pfn(*ptep);
506 	page = pfn_to_page(pfn);
507 
508 	pte = pfn_pte(pfn, prot);
509 
510 	/*
511 	 * Careful: update_va_mapping() will fail if the virtual address
512 	 * we're poking isn't populated in the page tables.  We don't
513 	 * need to worry about the direct map (that's always in the page
514 	 * tables), but we need to be careful about vmap space.  In
515 	 * particular, the top level page table can lazily propagate
516 	 * entries between processes, so if we've switched mms since we
517 	 * vmapped the target in the first place, we might not have the
518 	 * top-level page table entry populated.
519 	 *
520 	 * We disable preemption because we want the same mm active when
521 	 * we probe the target and when we issue the hypercall.  We'll
522 	 * have the same nominal mm, but if we're a kernel thread, lazy
523 	 * mm dropping could change our pgd.
524 	 *
525 	 * Out of an abundance of caution, this uses __get_user() to fault
526 	 * in the target address just in case there's some obscure case
527 	 * in which the target address isn't readable.
528 	 */
529 
530 	preempt_disable();
531 
532 	probe_kernel_read(&dummy, v, 1);
533 
534 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
535 		BUG();
536 
537 	if (!PageHighMem(page)) {
538 		void *av = __va(PFN_PHYS(pfn));
539 
540 		if (av != v)
541 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
542 				BUG();
543 	} else
544 		kmap_flush_unused();
545 
546 	preempt_enable();
547 }
548 
549 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
550 {
551 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
552 	int i;
553 
554 	/*
555 	 * We need to mark the all aliases of the LDT pages RO.  We
556 	 * don't need to call vm_flush_aliases(), though, since that's
557 	 * only responsible for flushing aliases out the TLBs, not the
558 	 * page tables, and Xen will flush the TLB for us if needed.
559 	 *
560 	 * To avoid confusing future readers: none of this is necessary
561 	 * to load the LDT.  The hypervisor only checks this when the
562 	 * LDT is faulted in due to subsequent descriptor access.
563 	 */
564 
565 	for(i = 0; i < entries; i += entries_per_page)
566 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
567 }
568 
569 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
570 {
571 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
572 	int i;
573 
574 	for(i = 0; i < entries; i += entries_per_page)
575 		set_aliased_prot(ldt + i, PAGE_KERNEL);
576 }
577 
578 static void xen_set_ldt(const void *addr, unsigned entries)
579 {
580 	struct mmuext_op *op;
581 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
582 
583 	trace_xen_cpu_set_ldt(addr, entries);
584 
585 	op = mcs.args;
586 	op->cmd = MMUEXT_SET_LDT;
587 	op->arg1.linear_addr = (unsigned long)addr;
588 	op->arg2.nr_ents = entries;
589 
590 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
591 
592 	xen_mc_issue(PARAVIRT_LAZY_CPU);
593 }
594 
595 static void xen_load_gdt(const struct desc_ptr *dtr)
596 {
597 	unsigned long va = dtr->address;
598 	unsigned int size = dtr->size + 1;
599 	unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
600 	unsigned long frames[pages];
601 	int f;
602 
603 	/*
604 	 * A GDT can be up to 64k in size, which corresponds to 8192
605 	 * 8-byte entries, or 16 4k pages..
606 	 */
607 
608 	BUG_ON(size > 65536);
609 	BUG_ON(va & ~PAGE_MASK);
610 
611 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
612 		int level;
613 		pte_t *ptep;
614 		unsigned long pfn, mfn;
615 		void *virt;
616 
617 		/*
618 		 * The GDT is per-cpu and is in the percpu data area.
619 		 * That can be virtually mapped, so we need to do a
620 		 * page-walk to get the underlying MFN for the
621 		 * hypercall.  The page can also be in the kernel's
622 		 * linear range, so we need to RO that mapping too.
623 		 */
624 		ptep = lookup_address(va, &level);
625 		BUG_ON(ptep == NULL);
626 
627 		pfn = pte_pfn(*ptep);
628 		mfn = pfn_to_mfn(pfn);
629 		virt = __va(PFN_PHYS(pfn));
630 
631 		frames[f] = mfn;
632 
633 		make_lowmem_page_readonly((void *)va);
634 		make_lowmem_page_readonly(virt);
635 	}
636 
637 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
638 		BUG();
639 }
640 
641 /*
642  * load_gdt for early boot, when the gdt is only mapped once
643  */
644 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
645 {
646 	unsigned long va = dtr->address;
647 	unsigned int size = dtr->size + 1;
648 	unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
649 	unsigned long frames[pages];
650 	int f;
651 
652 	/*
653 	 * A GDT can be up to 64k in size, which corresponds to 8192
654 	 * 8-byte entries, or 16 4k pages..
655 	 */
656 
657 	BUG_ON(size > 65536);
658 	BUG_ON(va & ~PAGE_MASK);
659 
660 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
661 		pte_t pte;
662 		unsigned long pfn, mfn;
663 
664 		pfn = virt_to_pfn(va);
665 		mfn = pfn_to_mfn(pfn);
666 
667 		pte = pfn_pte(pfn, PAGE_KERNEL_RO);
668 
669 		if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
670 			BUG();
671 
672 		frames[f] = mfn;
673 	}
674 
675 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
676 		BUG();
677 }
678 
679 static inline bool desc_equal(const struct desc_struct *d1,
680 			      const struct desc_struct *d2)
681 {
682 	return d1->a == d2->a && d1->b == d2->b;
683 }
684 
685 static void load_TLS_descriptor(struct thread_struct *t,
686 				unsigned int cpu, unsigned int i)
687 {
688 	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
689 	struct desc_struct *gdt;
690 	xmaddr_t maddr;
691 	struct multicall_space mc;
692 
693 	if (desc_equal(shadow, &t->tls_array[i]))
694 		return;
695 
696 	*shadow = t->tls_array[i];
697 
698 	gdt = get_cpu_gdt_table(cpu);
699 	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
700 	mc = __xen_mc_entry(0);
701 
702 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
703 }
704 
705 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
706 {
707 	/*
708 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
709 	 * and lazy gs handling is enabled, it means we're in a
710 	 * context switch, and %gs has just been saved.  This means we
711 	 * can zero it out to prevent faults on exit from the
712 	 * hypervisor if the next process has no %gs.  Either way, it
713 	 * has been saved, and the new value will get loaded properly.
714 	 * This will go away as soon as Xen has been modified to not
715 	 * save/restore %gs for normal hypercalls.
716 	 *
717 	 * On x86_64, this hack is not used for %gs, because gs points
718 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
719 	 * must not zero %gs on x86_64
720 	 *
721 	 * For x86_64, we need to zero %fs, otherwise we may get an
722 	 * exception between the new %fs descriptor being loaded and
723 	 * %fs being effectively cleared at __switch_to().
724 	 */
725 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
726 #ifdef CONFIG_X86_32
727 		lazy_load_gs(0);
728 #else
729 		loadsegment(fs, 0);
730 #endif
731 	}
732 
733 	xen_mc_batch();
734 
735 	load_TLS_descriptor(t, cpu, 0);
736 	load_TLS_descriptor(t, cpu, 1);
737 	load_TLS_descriptor(t, cpu, 2);
738 
739 	xen_mc_issue(PARAVIRT_LAZY_CPU);
740 }
741 
742 #ifdef CONFIG_X86_64
743 static void xen_load_gs_index(unsigned int idx)
744 {
745 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
746 		BUG();
747 }
748 #endif
749 
750 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
751 				const void *ptr)
752 {
753 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
754 	u64 entry = *(u64 *)ptr;
755 
756 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
757 
758 	preempt_disable();
759 
760 	xen_mc_flush();
761 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
762 		BUG();
763 
764 	preempt_enable();
765 }
766 
767 static int cvt_gate_to_trap(int vector, const gate_desc *val,
768 			    struct trap_info *info)
769 {
770 	unsigned long addr;
771 
772 	if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
773 		return 0;
774 
775 	info->vector = vector;
776 
777 	addr = gate_offset(*val);
778 #ifdef CONFIG_X86_64
779 	/*
780 	 * Look for known traps using IST, and substitute them
781 	 * appropriately.  The debugger ones are the only ones we care
782 	 * about.  Xen will handle faults like double_fault,
783 	 * so we should never see them.  Warn if
784 	 * there's an unexpected IST-using fault handler.
785 	 */
786 	if (addr == (unsigned long)debug)
787 		addr = (unsigned long)xen_debug;
788 	else if (addr == (unsigned long)int3)
789 		addr = (unsigned long)xen_int3;
790 	else if (addr == (unsigned long)stack_segment)
791 		addr = (unsigned long)xen_stack_segment;
792 	else if (addr == (unsigned long)double_fault) {
793 		/* Don't need to handle these */
794 		return 0;
795 #ifdef CONFIG_X86_MCE
796 	} else if (addr == (unsigned long)machine_check) {
797 		/*
798 		 * when xen hypervisor inject vMCE to guest,
799 		 * use native mce handler to handle it
800 		 */
801 		;
802 #endif
803 	} else if (addr == (unsigned long)nmi)
804 		/*
805 		 * Use the native version as well.
806 		 */
807 		;
808 	else {
809 		/* Some other trap using IST? */
810 		if (WARN_ON(val->ist != 0))
811 			return 0;
812 	}
813 #endif	/* CONFIG_X86_64 */
814 	info->address = addr;
815 
816 	info->cs = gate_segment(*val);
817 	info->flags = val->dpl;
818 	/* interrupt gates clear IF */
819 	if (val->type == GATE_INTERRUPT)
820 		info->flags |= 1 << 2;
821 
822 	return 1;
823 }
824 
825 /* Locations of each CPU's IDT */
826 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
827 
828 /* Set an IDT entry.  If the entry is part of the current IDT, then
829    also update Xen. */
830 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
831 {
832 	unsigned long p = (unsigned long)&dt[entrynum];
833 	unsigned long start, end;
834 
835 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
836 
837 	preempt_disable();
838 
839 	start = __this_cpu_read(idt_desc.address);
840 	end = start + __this_cpu_read(idt_desc.size) + 1;
841 
842 	xen_mc_flush();
843 
844 	native_write_idt_entry(dt, entrynum, g);
845 
846 	if (p >= start && (p + 8) <= end) {
847 		struct trap_info info[2];
848 
849 		info[1].address = 0;
850 
851 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
852 			if (HYPERVISOR_set_trap_table(info))
853 				BUG();
854 	}
855 
856 	preempt_enable();
857 }
858 
859 static void xen_convert_trap_info(const struct desc_ptr *desc,
860 				  struct trap_info *traps)
861 {
862 	unsigned in, out, count;
863 
864 	count = (desc->size+1) / sizeof(gate_desc);
865 	BUG_ON(count > 256);
866 
867 	for (in = out = 0; in < count; in++) {
868 		gate_desc *entry = (gate_desc*)(desc->address) + in;
869 
870 		if (cvt_gate_to_trap(in, entry, &traps[out]))
871 			out++;
872 	}
873 	traps[out].address = 0;
874 }
875 
876 void xen_copy_trap_info(struct trap_info *traps)
877 {
878 	const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
879 
880 	xen_convert_trap_info(desc, traps);
881 }
882 
883 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
884    hold a spinlock to protect the static traps[] array (static because
885    it avoids allocation, and saves stack space). */
886 static void xen_load_idt(const struct desc_ptr *desc)
887 {
888 	static DEFINE_SPINLOCK(lock);
889 	static struct trap_info traps[257];
890 
891 	trace_xen_cpu_load_idt(desc);
892 
893 	spin_lock(&lock);
894 
895 	memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
896 
897 	xen_convert_trap_info(desc, traps);
898 
899 	xen_mc_flush();
900 	if (HYPERVISOR_set_trap_table(traps))
901 		BUG();
902 
903 	spin_unlock(&lock);
904 }
905 
906 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
907    they're handled differently. */
908 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
909 				const void *desc, int type)
910 {
911 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
912 
913 	preempt_disable();
914 
915 	switch (type) {
916 	case DESC_LDT:
917 	case DESC_TSS:
918 		/* ignore */
919 		break;
920 
921 	default: {
922 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
923 
924 		xen_mc_flush();
925 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
926 			BUG();
927 	}
928 
929 	}
930 
931 	preempt_enable();
932 }
933 
934 /*
935  * Version of write_gdt_entry for use at early boot-time needed to
936  * update an entry as simply as possible.
937  */
938 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
939 					    const void *desc, int type)
940 {
941 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
942 
943 	switch (type) {
944 	case DESC_LDT:
945 	case DESC_TSS:
946 		/* ignore */
947 		break;
948 
949 	default: {
950 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
951 
952 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
953 			dt[entry] = *(struct desc_struct *)desc;
954 	}
955 
956 	}
957 }
958 
959 static void xen_load_sp0(struct tss_struct *tss,
960 			 struct thread_struct *thread)
961 {
962 	struct multicall_space mcs;
963 
964 	mcs = xen_mc_entry(0);
965 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
966 	xen_mc_issue(PARAVIRT_LAZY_CPU);
967 	tss->x86_tss.sp0 = thread->sp0;
968 }
969 
970 void xen_set_iopl_mask(unsigned mask)
971 {
972 	struct physdev_set_iopl set_iopl;
973 
974 	/* Force the change at ring 0. */
975 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
976 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
977 }
978 
979 static void xen_io_delay(void)
980 {
981 }
982 
983 static void xen_clts(void)
984 {
985 	struct multicall_space mcs;
986 
987 	mcs = xen_mc_entry(0);
988 
989 	MULTI_fpu_taskswitch(mcs.mc, 0);
990 
991 	xen_mc_issue(PARAVIRT_LAZY_CPU);
992 }
993 
994 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
995 
996 static unsigned long xen_read_cr0(void)
997 {
998 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
999 
1000 	if (unlikely(cr0 == 0)) {
1001 		cr0 = native_read_cr0();
1002 		this_cpu_write(xen_cr0_value, cr0);
1003 	}
1004 
1005 	return cr0;
1006 }
1007 
1008 static void xen_write_cr0(unsigned long cr0)
1009 {
1010 	struct multicall_space mcs;
1011 
1012 	this_cpu_write(xen_cr0_value, cr0);
1013 
1014 	/* Only pay attention to cr0.TS; everything else is
1015 	   ignored. */
1016 	mcs = xen_mc_entry(0);
1017 
1018 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1019 
1020 	xen_mc_issue(PARAVIRT_LAZY_CPU);
1021 }
1022 
1023 static void xen_write_cr4(unsigned long cr4)
1024 {
1025 	cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
1026 
1027 	native_write_cr4(cr4);
1028 }
1029 #ifdef CONFIG_X86_64
1030 static inline unsigned long xen_read_cr8(void)
1031 {
1032 	return 0;
1033 }
1034 static inline void xen_write_cr8(unsigned long val)
1035 {
1036 	BUG_ON(val);
1037 }
1038 #endif
1039 
1040 static u64 xen_read_msr_safe(unsigned int msr, int *err)
1041 {
1042 	u64 val;
1043 
1044 	if (pmu_msr_read(msr, &val, err))
1045 		return val;
1046 
1047 	val = native_read_msr_safe(msr, err);
1048 	switch (msr) {
1049 	case MSR_IA32_APICBASE:
1050 #ifdef CONFIG_X86_X2APIC
1051 		if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
1052 #endif
1053 			val &= ~X2APIC_ENABLE;
1054 		break;
1055 	}
1056 	return val;
1057 }
1058 
1059 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1060 {
1061 	int ret;
1062 
1063 	ret = 0;
1064 
1065 	switch (msr) {
1066 #ifdef CONFIG_X86_64
1067 		unsigned which;
1068 		u64 base;
1069 
1070 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
1071 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
1072 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
1073 
1074 	set:
1075 		base = ((u64)high << 32) | low;
1076 		if (HYPERVISOR_set_segment_base(which, base) != 0)
1077 			ret = -EIO;
1078 		break;
1079 #endif
1080 
1081 	case MSR_STAR:
1082 	case MSR_CSTAR:
1083 	case MSR_LSTAR:
1084 	case MSR_SYSCALL_MASK:
1085 	case MSR_IA32_SYSENTER_CS:
1086 	case MSR_IA32_SYSENTER_ESP:
1087 	case MSR_IA32_SYSENTER_EIP:
1088 		/* Fast syscall setup is all done in hypercalls, so
1089 		   these are all ignored.  Stub them out here to stop
1090 		   Xen console noise. */
1091 		break;
1092 
1093 	default:
1094 		if (!pmu_msr_write(msr, low, high, &ret))
1095 			ret = native_write_msr_safe(msr, low, high);
1096 	}
1097 
1098 	return ret;
1099 }
1100 
1101 static u64 xen_read_msr(unsigned int msr)
1102 {
1103 	/*
1104 	 * This will silently swallow a #GP from RDMSR.  It may be worth
1105 	 * changing that.
1106 	 */
1107 	int err;
1108 
1109 	return xen_read_msr_safe(msr, &err);
1110 }
1111 
1112 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
1113 {
1114 	/*
1115 	 * This will silently swallow a #GP from WRMSR.  It may be worth
1116 	 * changing that.
1117 	 */
1118 	xen_write_msr_safe(msr, low, high);
1119 }
1120 
1121 void xen_setup_shared_info(void)
1122 {
1123 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1124 		set_fixmap(FIX_PARAVIRT_BOOTMAP,
1125 			   xen_start_info->shared_info);
1126 
1127 		HYPERVISOR_shared_info =
1128 			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1129 	} else
1130 		HYPERVISOR_shared_info =
1131 			(struct shared_info *)__va(xen_start_info->shared_info);
1132 
1133 #ifndef CONFIG_SMP
1134 	/* In UP this is as good a place as any to set up shared info */
1135 	xen_setup_vcpu_info_placement();
1136 #endif
1137 
1138 	xen_setup_mfn_list_list();
1139 }
1140 
1141 /* This is called once we have the cpu_possible_mask */
1142 void xen_setup_vcpu_info_placement(void)
1143 {
1144 	int cpu;
1145 
1146 	for_each_possible_cpu(cpu) {
1147 		/* Set up direct vCPU id mapping for PV guests. */
1148 		per_cpu(xen_vcpu_id, cpu) = cpu;
1149 		xen_vcpu_setup(cpu);
1150 	}
1151 
1152 	/* xen_vcpu_setup managed to place the vcpu_info within the
1153 	 * percpu area for all cpus, so make use of it. Note that for
1154 	 * PVH we want to use native IRQ mechanism. */
1155 	if (have_vcpu_info_placement && !xen_pvh_domain()) {
1156 		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1157 		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1158 		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1159 		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1160 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1161 	}
1162 }
1163 
1164 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1165 			  unsigned long addr, unsigned len)
1166 {
1167 	char *start, *end, *reloc;
1168 	unsigned ret;
1169 
1170 	start = end = reloc = NULL;
1171 
1172 #define SITE(op, x)							\
1173 	case PARAVIRT_PATCH(op.x):					\
1174 	if (have_vcpu_info_placement) {					\
1175 		start = (char *)xen_##x##_direct;			\
1176 		end = xen_##x##_direct_end;				\
1177 		reloc = xen_##x##_direct_reloc;				\
1178 	}								\
1179 	goto patch_site
1180 
1181 	switch (type) {
1182 		SITE(pv_irq_ops, irq_enable);
1183 		SITE(pv_irq_ops, irq_disable);
1184 		SITE(pv_irq_ops, save_fl);
1185 		SITE(pv_irq_ops, restore_fl);
1186 #undef SITE
1187 
1188 	patch_site:
1189 		if (start == NULL || (end-start) > len)
1190 			goto default_patch;
1191 
1192 		ret = paravirt_patch_insns(insnbuf, len, start, end);
1193 
1194 		/* Note: because reloc is assigned from something that
1195 		   appears to be an array, gcc assumes it's non-null,
1196 		   but doesn't know its relationship with start and
1197 		   end. */
1198 		if (reloc > start && reloc < end) {
1199 			int reloc_off = reloc - start;
1200 			long *relocp = (long *)(insnbuf + reloc_off);
1201 			long delta = start - (char *)addr;
1202 
1203 			*relocp += delta;
1204 		}
1205 		break;
1206 
1207 	default_patch:
1208 	default:
1209 		ret = paravirt_patch_default(type, clobbers, insnbuf,
1210 					     addr, len);
1211 		break;
1212 	}
1213 
1214 	return ret;
1215 }
1216 
1217 static const struct pv_info xen_info __initconst = {
1218 	.shared_kernel_pmd = 0,
1219 
1220 #ifdef CONFIG_X86_64
1221 	.extra_user_64bit_cs = FLAT_USER_CS64,
1222 #endif
1223 	.name = "Xen",
1224 };
1225 
1226 static const struct pv_init_ops xen_init_ops __initconst = {
1227 	.patch = xen_patch,
1228 };
1229 
1230 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1231 	.cpuid = xen_cpuid,
1232 
1233 	.set_debugreg = xen_set_debugreg,
1234 	.get_debugreg = xen_get_debugreg,
1235 
1236 	.clts = xen_clts,
1237 
1238 	.read_cr0 = xen_read_cr0,
1239 	.write_cr0 = xen_write_cr0,
1240 
1241 	.read_cr4 = native_read_cr4,
1242 	.write_cr4 = xen_write_cr4,
1243 
1244 #ifdef CONFIG_X86_64
1245 	.read_cr8 = xen_read_cr8,
1246 	.write_cr8 = xen_write_cr8,
1247 #endif
1248 
1249 	.wbinvd = native_wbinvd,
1250 
1251 	.read_msr = xen_read_msr,
1252 	.write_msr = xen_write_msr,
1253 
1254 	.read_msr_safe = xen_read_msr_safe,
1255 	.write_msr_safe = xen_write_msr_safe,
1256 
1257 	.read_pmc = xen_read_pmc,
1258 
1259 	.iret = xen_iret,
1260 #ifdef CONFIG_X86_64
1261 	.usergs_sysret64 = xen_sysret64,
1262 #endif
1263 
1264 	.load_tr_desc = paravirt_nop,
1265 	.set_ldt = xen_set_ldt,
1266 	.load_gdt = xen_load_gdt,
1267 	.load_idt = xen_load_idt,
1268 	.load_tls = xen_load_tls,
1269 #ifdef CONFIG_X86_64
1270 	.load_gs_index = xen_load_gs_index,
1271 #endif
1272 
1273 	.alloc_ldt = xen_alloc_ldt,
1274 	.free_ldt = xen_free_ldt,
1275 
1276 	.store_idt = native_store_idt,
1277 	.store_tr = xen_store_tr,
1278 
1279 	.write_ldt_entry = xen_write_ldt_entry,
1280 	.write_gdt_entry = xen_write_gdt_entry,
1281 	.write_idt_entry = xen_write_idt_entry,
1282 	.load_sp0 = xen_load_sp0,
1283 
1284 	.set_iopl_mask = xen_set_iopl_mask,
1285 	.io_delay = xen_io_delay,
1286 
1287 	/* Xen takes care of %gs when switching to usermode for us */
1288 	.swapgs = paravirt_nop,
1289 
1290 	.start_context_switch = paravirt_start_context_switch,
1291 	.end_context_switch = xen_end_context_switch,
1292 };
1293 
1294 static void xen_reboot(int reason)
1295 {
1296 	struct sched_shutdown r = { .reason = reason };
1297 	int cpu;
1298 
1299 	for_each_online_cpu(cpu)
1300 		xen_pmu_finish(cpu);
1301 
1302 	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1303 		BUG();
1304 }
1305 
1306 static void xen_restart(char *msg)
1307 {
1308 	xen_reboot(SHUTDOWN_reboot);
1309 }
1310 
1311 static void xen_emergency_restart(void)
1312 {
1313 	xen_reboot(SHUTDOWN_reboot);
1314 }
1315 
1316 static void xen_machine_halt(void)
1317 {
1318 	xen_reboot(SHUTDOWN_poweroff);
1319 }
1320 
1321 static void xen_machine_power_off(void)
1322 {
1323 	if (pm_power_off)
1324 		pm_power_off();
1325 	xen_reboot(SHUTDOWN_poweroff);
1326 }
1327 
1328 static void xen_crash_shutdown(struct pt_regs *regs)
1329 {
1330 	xen_reboot(SHUTDOWN_crash);
1331 }
1332 
1333 static int
1334 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1335 {
1336 	if (!kexec_crash_loaded())
1337 		xen_reboot(SHUTDOWN_crash);
1338 	return NOTIFY_DONE;
1339 }
1340 
1341 static struct notifier_block xen_panic_block = {
1342 	.notifier_call= xen_panic_event,
1343 	.priority = INT_MIN
1344 };
1345 
1346 int xen_panic_handler_init(void)
1347 {
1348 	atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1349 	return 0;
1350 }
1351 
1352 static const struct machine_ops xen_machine_ops __initconst = {
1353 	.restart = xen_restart,
1354 	.halt = xen_machine_halt,
1355 	.power_off = xen_machine_power_off,
1356 	.shutdown = xen_machine_halt,
1357 	.crash_shutdown = xen_crash_shutdown,
1358 	.emergency_restart = xen_emergency_restart,
1359 };
1360 
1361 static unsigned char xen_get_nmi_reason(void)
1362 {
1363 	unsigned char reason = 0;
1364 
1365 	/* Construct a value which looks like it came from port 0x61. */
1366 	if (test_bit(_XEN_NMIREASON_io_error,
1367 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1368 		reason |= NMI_REASON_IOCHK;
1369 	if (test_bit(_XEN_NMIREASON_pci_serr,
1370 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1371 		reason |= NMI_REASON_SERR;
1372 
1373 	return reason;
1374 }
1375 
1376 static void __init xen_boot_params_init_edd(void)
1377 {
1378 #if IS_ENABLED(CONFIG_EDD)
1379 	struct xen_platform_op op;
1380 	struct edd_info *edd_info;
1381 	u32 *mbr_signature;
1382 	unsigned nr;
1383 	int ret;
1384 
1385 	edd_info = boot_params.eddbuf;
1386 	mbr_signature = boot_params.edd_mbr_sig_buffer;
1387 
1388 	op.cmd = XENPF_firmware_info;
1389 
1390 	op.u.firmware_info.type = XEN_FW_DISK_INFO;
1391 	for (nr = 0; nr < EDDMAXNR; nr++) {
1392 		struct edd_info *info = edd_info + nr;
1393 
1394 		op.u.firmware_info.index = nr;
1395 		info->params.length = sizeof(info->params);
1396 		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1397 				     &info->params);
1398 		ret = HYPERVISOR_platform_op(&op);
1399 		if (ret)
1400 			break;
1401 
1402 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1403 		C(device);
1404 		C(version);
1405 		C(interface_support);
1406 		C(legacy_max_cylinder);
1407 		C(legacy_max_head);
1408 		C(legacy_sectors_per_track);
1409 #undef C
1410 	}
1411 	boot_params.eddbuf_entries = nr;
1412 
1413 	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1414 	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1415 		op.u.firmware_info.index = nr;
1416 		ret = HYPERVISOR_platform_op(&op);
1417 		if (ret)
1418 			break;
1419 		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1420 	}
1421 	boot_params.edd_mbr_sig_buf_entries = nr;
1422 #endif
1423 }
1424 
1425 /*
1426  * Set up the GDT and segment registers for -fstack-protector.  Until
1427  * we do this, we have to be careful not to call any stack-protected
1428  * function, which is most of the kernel.
1429  *
1430  * Note, that it is __ref because the only caller of this after init
1431  * is PVH which is not going to use xen_load_gdt_boot or other
1432  * __init functions.
1433  */
1434 static void __ref xen_setup_gdt(int cpu)
1435 {
1436 	if (xen_feature(XENFEAT_auto_translated_physmap)) {
1437 #ifdef CONFIG_X86_64
1438 		unsigned long dummy;
1439 
1440 		load_percpu_segment(cpu); /* We need to access per-cpu area */
1441 		switch_to_new_gdt(cpu); /* GDT and GS set */
1442 
1443 		/* We are switching of the Xen provided GDT to our HVM mode
1444 		 * GDT. The new GDT has  __KERNEL_CS with CS.L = 1
1445 		 * and we are jumping to reload it.
1446 		 */
1447 		asm volatile ("pushq %0\n"
1448 			      "leaq 1f(%%rip),%0\n"
1449 			      "pushq %0\n"
1450 			      "lretq\n"
1451 			      "1:\n"
1452 			      : "=&r" (dummy) : "0" (__KERNEL_CS));
1453 
1454 		/*
1455 		 * While not needed, we also set the %es, %ds, and %fs
1456 		 * to zero. We don't care about %ss as it is NULL.
1457 		 * Strictly speaking this is not needed as Xen zeros those
1458 		 * out (and also MSR_FS_BASE, MSR_GS_BASE, MSR_KERNEL_GS_BASE)
1459 		 *
1460 		 * Linux zeros them in cpu_init() and in secondary_startup_64
1461 		 * (for BSP).
1462 		 */
1463 		loadsegment(es, 0);
1464 		loadsegment(ds, 0);
1465 		loadsegment(fs, 0);
1466 #else
1467 		/* PVH: TODO Implement. */
1468 		BUG();
1469 #endif
1470 		return; /* PVH does not need any PV GDT ops. */
1471 	}
1472 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1473 	pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1474 
1475 	setup_stack_canary_segment(0);
1476 	switch_to_new_gdt(0);
1477 
1478 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1479 	pv_cpu_ops.load_gdt = xen_load_gdt;
1480 }
1481 
1482 #ifdef CONFIG_XEN_PVH
1483 /*
1484  * A PV guest starts with default flags that are not set for PVH, set them
1485  * here asap.
1486  */
1487 static void xen_pvh_set_cr_flags(int cpu)
1488 {
1489 
1490 	/* Some of these are setup in 'secondary_startup_64'. The others:
1491 	 * X86_CR0_TS, X86_CR0_PE, X86_CR0_ET are set by Xen for HVM guests
1492 	 * (which PVH shared codepaths), while X86_CR0_PG is for PVH. */
1493 	write_cr0(read_cr0() | X86_CR0_MP | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM);
1494 
1495 	if (!cpu)
1496 		return;
1497 	/*
1498 	 * For BSP, PSE PGE are set in probe_page_size_mask(), for APs
1499 	 * set them here. For all, OSFXSR OSXMMEXCPT are set in fpu__init_cpu().
1500 	*/
1501 	if (boot_cpu_has(X86_FEATURE_PSE))
1502 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
1503 
1504 	if (boot_cpu_has(X86_FEATURE_PGE))
1505 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
1506 }
1507 
1508 /*
1509  * Note, that it is ref - because the only caller of this after init
1510  * is PVH which is not going to use xen_load_gdt_boot or other
1511  * __init functions.
1512  */
1513 void __ref xen_pvh_secondary_vcpu_init(int cpu)
1514 {
1515 	xen_setup_gdt(cpu);
1516 	xen_pvh_set_cr_flags(cpu);
1517 }
1518 
1519 static void __init xen_pvh_early_guest_init(void)
1520 {
1521 	if (!xen_feature(XENFEAT_auto_translated_physmap))
1522 		return;
1523 
1524 	BUG_ON(!xen_feature(XENFEAT_hvm_callback_vector));
1525 
1526 	xen_pvh_early_cpu_init(0, false);
1527 	xen_pvh_set_cr_flags(0);
1528 
1529 #ifdef CONFIG_X86_32
1530 	BUG(); /* PVH: Implement proper support. */
1531 #endif
1532 }
1533 #endif    /* CONFIG_XEN_PVH */
1534 
1535 static void __init xen_dom0_set_legacy_features(void)
1536 {
1537 	x86_platform.legacy.rtc = 1;
1538 }
1539 
1540 static int xen_cpuhp_setup(void)
1541 {
1542 	int rc;
1543 
1544 	rc = cpuhp_setup_state_nocalls(CPUHP_XEN_PREPARE,
1545 				       "XEN_HVM_GUEST_PREPARE",
1546 				       xen_cpu_up_prepare, xen_cpu_dead);
1547 	if (rc >= 0) {
1548 		rc = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
1549 					       "XEN_HVM_GUEST_ONLINE",
1550 					       xen_cpu_up_online, NULL);
1551 		if (rc < 0)
1552 			cpuhp_remove_state_nocalls(CPUHP_XEN_PREPARE);
1553 	}
1554 
1555 	return rc >= 0 ? 0 : rc;
1556 }
1557 
1558 /* First C function to be called on Xen boot */
1559 asmlinkage __visible void __init xen_start_kernel(void)
1560 {
1561 	struct physdev_set_iopl set_iopl;
1562 	unsigned long initrd_start = 0;
1563 	int rc;
1564 
1565 	if (!xen_start_info)
1566 		return;
1567 
1568 	xen_domain_type = XEN_PV_DOMAIN;
1569 
1570 	xen_setup_features();
1571 #ifdef CONFIG_XEN_PVH
1572 	xen_pvh_early_guest_init();
1573 #endif
1574 	xen_setup_machphys_mapping();
1575 
1576 	/* Install Xen paravirt ops */
1577 	pv_info = xen_info;
1578 	pv_init_ops = xen_init_ops;
1579 	if (!xen_pvh_domain()) {
1580 		pv_cpu_ops = xen_cpu_ops;
1581 
1582 		x86_platform.get_nmi_reason = xen_get_nmi_reason;
1583 	}
1584 
1585 	if (xen_feature(XENFEAT_auto_translated_physmap))
1586 		x86_init.resources.memory_setup = xen_auto_xlated_memory_setup;
1587 	else
1588 		x86_init.resources.memory_setup = xen_memory_setup;
1589 	x86_init.oem.arch_setup = xen_arch_setup;
1590 	x86_init.oem.banner = xen_banner;
1591 
1592 	xen_init_time_ops();
1593 
1594 	/*
1595 	 * Set up some pagetable state before starting to set any ptes.
1596 	 */
1597 
1598 	xen_init_mmu_ops();
1599 
1600 	/* Prevent unwanted bits from being set in PTEs. */
1601 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1602 
1603 	/*
1604 	 * Prevent page tables from being allocated in highmem, even
1605 	 * if CONFIG_HIGHPTE is enabled.
1606 	 */
1607 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1608 
1609 	/* Work out if we support NX */
1610 	x86_configure_nx();
1611 
1612 	/* Get mfn list */
1613 	xen_build_dynamic_phys_to_machine();
1614 
1615 	/*
1616 	 * Set up kernel GDT and segment registers, mainly so that
1617 	 * -fstack-protector code can be executed.
1618 	 */
1619 	xen_setup_gdt(0);
1620 
1621 	xen_init_irq_ops();
1622 	xen_init_cpuid_mask();
1623 
1624 #ifdef CONFIG_X86_LOCAL_APIC
1625 	/*
1626 	 * set up the basic apic ops.
1627 	 */
1628 	xen_init_apic();
1629 #endif
1630 
1631 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1632 		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1633 		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1634 	}
1635 
1636 	machine_ops = xen_machine_ops;
1637 
1638 	/*
1639 	 * The only reliable way to retain the initial address of the
1640 	 * percpu gdt_page is to remember it here, so we can go and
1641 	 * mark it RW later, when the initial percpu area is freed.
1642 	 */
1643 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1644 
1645 	xen_smp_init();
1646 
1647 #ifdef CONFIG_ACPI_NUMA
1648 	/*
1649 	 * The pages we from Xen are not related to machine pages, so
1650 	 * any NUMA information the kernel tries to get from ACPI will
1651 	 * be meaningless.  Prevent it from trying.
1652 	 */
1653 	acpi_numa = -1;
1654 #endif
1655 	/* Don't do the full vcpu_info placement stuff until we have a
1656 	   possible map and a non-dummy shared_info. */
1657 	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1658 
1659 	WARN_ON(xen_cpuhp_setup());
1660 
1661 	local_irq_disable();
1662 	early_boot_irqs_disabled = true;
1663 
1664 	xen_raw_console_write("mapping kernel into physical memory\n");
1665 	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1666 				   xen_start_info->nr_pages);
1667 	xen_reserve_special_pages();
1668 
1669 	/* keep using Xen gdt for now; no urgent need to change it */
1670 
1671 #ifdef CONFIG_X86_32
1672 	pv_info.kernel_rpl = 1;
1673 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1674 		pv_info.kernel_rpl = 0;
1675 #else
1676 	pv_info.kernel_rpl = 0;
1677 #endif
1678 	/* set the limit of our address space */
1679 	xen_reserve_top();
1680 
1681 	/* PVH: runs at default kernel iopl of 0 */
1682 	if (!xen_pvh_domain()) {
1683 		/*
1684 		 * We used to do this in xen_arch_setup, but that is too late
1685 		 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1686 		 * early_amd_init which pokes 0xcf8 port.
1687 		 */
1688 		set_iopl.iopl = 1;
1689 		rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1690 		if (rc != 0)
1691 			xen_raw_printk("physdev_op failed %d\n", rc);
1692 	}
1693 
1694 #ifdef CONFIG_X86_32
1695 	/* set up basic CPUID stuff */
1696 	cpu_detect(&new_cpu_data);
1697 	set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1698 	new_cpu_data.wp_works_ok = 1;
1699 	new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1700 #endif
1701 
1702 	if (xen_start_info->mod_start) {
1703 	    if (xen_start_info->flags & SIF_MOD_START_PFN)
1704 		initrd_start = PFN_PHYS(xen_start_info->mod_start);
1705 	    else
1706 		initrd_start = __pa(xen_start_info->mod_start);
1707 	}
1708 
1709 	/* Poke various useful things into boot_params */
1710 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1711 	boot_params.hdr.ramdisk_image = initrd_start;
1712 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1713 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1714 	boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1715 
1716 	if (!xen_initial_domain()) {
1717 		add_preferred_console("xenboot", 0, NULL);
1718 		add_preferred_console("tty", 0, NULL);
1719 		add_preferred_console("hvc", 0, NULL);
1720 		if (pci_xen)
1721 			x86_init.pci.arch_init = pci_xen_init;
1722 	} else {
1723 		const struct dom0_vga_console_info *info =
1724 			(void *)((char *)xen_start_info +
1725 				 xen_start_info->console.dom0.info_off);
1726 		struct xen_platform_op op = {
1727 			.cmd = XENPF_firmware_info,
1728 			.interface_version = XENPF_INTERFACE_VERSION,
1729 			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1730 		};
1731 
1732 		x86_platform.set_legacy_features =
1733 				xen_dom0_set_legacy_features;
1734 		xen_init_vga(info, xen_start_info->console.dom0.info_size);
1735 		xen_start_info->console.domU.mfn = 0;
1736 		xen_start_info->console.domU.evtchn = 0;
1737 
1738 		if (HYPERVISOR_platform_op(&op) == 0)
1739 			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1740 
1741 		/* Make sure ACS will be enabled */
1742 		pci_request_acs();
1743 
1744 		xen_acpi_sleep_register();
1745 
1746 		/* Avoid searching for BIOS MP tables */
1747 		x86_init.mpparse.find_smp_config = x86_init_noop;
1748 		x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1749 
1750 		xen_boot_params_init_edd();
1751 	}
1752 #ifdef CONFIG_PCI
1753 	/* PCI BIOS service won't work from a PV guest. */
1754 	pci_probe &= ~PCI_PROBE_BIOS;
1755 #endif
1756 	xen_raw_console_write("about to get started...\n");
1757 
1758 	/* Let's presume PV guests always boot on vCPU with id 0. */
1759 	per_cpu(xen_vcpu_id, 0) = 0;
1760 
1761 	xen_setup_runstate_info(0);
1762 
1763 	xen_efi_init();
1764 
1765 	/* Start the world */
1766 #ifdef CONFIG_X86_32
1767 	i386_start_kernel();
1768 #else
1769 	cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1770 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1771 #endif
1772 }
1773 
1774 void __ref xen_hvm_init_shared_info(void)
1775 {
1776 	int cpu;
1777 	struct xen_add_to_physmap xatp;
1778 	static struct shared_info *shared_info_page = 0;
1779 
1780 	if (!shared_info_page)
1781 		shared_info_page = (struct shared_info *)
1782 			extend_brk(PAGE_SIZE, PAGE_SIZE);
1783 	xatp.domid = DOMID_SELF;
1784 	xatp.idx = 0;
1785 	xatp.space = XENMAPSPACE_shared_info;
1786 	xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1787 	if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1788 		BUG();
1789 
1790 	HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1791 
1792 	/* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1793 	 * page, we use it in the event channel upcall and in some pvclock
1794 	 * related functions. We don't need the vcpu_info placement
1795 	 * optimizations because we don't use any pv_mmu or pv_irq op on
1796 	 * HVM.
1797 	 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1798 	 * online but xen_hvm_init_shared_info is run at resume time too and
1799 	 * in that case multiple vcpus might be online. */
1800 	for_each_online_cpu(cpu) {
1801 		/* Leave it to be NULL. */
1802 		if (xen_vcpu_nr(cpu) >= MAX_VIRT_CPUS)
1803 			continue;
1804 		per_cpu(xen_vcpu, cpu) =
1805 			&HYPERVISOR_shared_info->vcpu_info[xen_vcpu_nr(cpu)];
1806 	}
1807 }
1808 
1809 #ifdef CONFIG_XEN_PVHVM
1810 static void __init init_hvm_pv_info(void)
1811 {
1812 	int major, minor;
1813 	uint32_t eax, ebx, ecx, edx, pages, msr, base;
1814 	u64 pfn;
1815 
1816 	base = xen_cpuid_base();
1817 	cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1818 
1819 	major = eax >> 16;
1820 	minor = eax & 0xffff;
1821 	printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1822 
1823 	cpuid(base + 2, &pages, &msr, &ecx, &edx);
1824 
1825 	pfn = __pa(hypercall_page);
1826 	wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1827 
1828 	xen_setup_features();
1829 
1830 	cpuid(base + 4, &eax, &ebx, &ecx, &edx);
1831 	if (eax & XEN_HVM_CPUID_VCPU_ID_PRESENT)
1832 		this_cpu_write(xen_vcpu_id, ebx);
1833 	else
1834 		this_cpu_write(xen_vcpu_id, smp_processor_id());
1835 
1836 	pv_info.name = "Xen HVM";
1837 
1838 	xen_domain_type = XEN_HVM_DOMAIN;
1839 }
1840 #endif
1841 
1842 static int xen_cpu_up_prepare(unsigned int cpu)
1843 {
1844 	int rc;
1845 
1846 	if (xen_hvm_domain()) {
1847 		/*
1848 		 * This can happen if CPU was offlined earlier and
1849 		 * offlining timed out in common_cpu_die().
1850 		 */
1851 		if (cpu_report_state(cpu) == CPU_DEAD_FROZEN) {
1852 			xen_smp_intr_free(cpu);
1853 			xen_uninit_lock_cpu(cpu);
1854 		}
1855 
1856 		if (cpu_acpi_id(cpu) != U32_MAX)
1857 			per_cpu(xen_vcpu_id, cpu) = cpu_acpi_id(cpu);
1858 		else
1859 			per_cpu(xen_vcpu_id, cpu) = cpu;
1860 		xen_vcpu_setup(cpu);
1861 	}
1862 
1863 	if (xen_pv_domain() || xen_feature(XENFEAT_hvm_safe_pvclock))
1864 		xen_setup_timer(cpu);
1865 
1866 	rc = xen_smp_intr_init(cpu);
1867 	if (rc) {
1868 		WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1869 		     cpu, rc);
1870 		return rc;
1871 	}
1872 	return 0;
1873 }
1874 
1875 static int xen_cpu_dead(unsigned int cpu)
1876 {
1877 	xen_smp_intr_free(cpu);
1878 
1879 	if (xen_pv_domain() || xen_feature(XENFEAT_hvm_safe_pvclock))
1880 		xen_teardown_timer(cpu);
1881 
1882 	return 0;
1883 }
1884 
1885 static int xen_cpu_up_online(unsigned int cpu)
1886 {
1887 	xen_init_lock_cpu(cpu);
1888 	return 0;
1889 }
1890 
1891 #ifdef CONFIG_XEN_PVHVM
1892 #ifdef CONFIG_KEXEC_CORE
1893 static void xen_hvm_shutdown(void)
1894 {
1895 	native_machine_shutdown();
1896 	if (kexec_in_progress)
1897 		xen_reboot(SHUTDOWN_soft_reset);
1898 }
1899 
1900 static void xen_hvm_crash_shutdown(struct pt_regs *regs)
1901 {
1902 	native_machine_crash_shutdown(regs);
1903 	xen_reboot(SHUTDOWN_soft_reset);
1904 }
1905 #endif
1906 
1907 static void __init xen_hvm_guest_init(void)
1908 {
1909 	if (xen_pv_domain())
1910 		return;
1911 
1912 	init_hvm_pv_info();
1913 
1914 	xen_hvm_init_shared_info();
1915 
1916 	xen_panic_handler_init();
1917 
1918 	BUG_ON(!xen_feature(XENFEAT_hvm_callback_vector));
1919 
1920 	xen_hvm_smp_init();
1921 	WARN_ON(xen_cpuhp_setup());
1922 	xen_unplug_emulated_devices();
1923 	x86_init.irqs.intr_init = xen_init_IRQ;
1924 	xen_hvm_init_time_ops();
1925 	xen_hvm_init_mmu_ops();
1926 #ifdef CONFIG_KEXEC_CORE
1927 	machine_ops.shutdown = xen_hvm_shutdown;
1928 	machine_ops.crash_shutdown = xen_hvm_crash_shutdown;
1929 #endif
1930 }
1931 #endif
1932 
1933 static bool xen_nopv = false;
1934 static __init int xen_parse_nopv(char *arg)
1935 {
1936        xen_nopv = true;
1937        return 0;
1938 }
1939 early_param("xen_nopv", xen_parse_nopv);
1940 
1941 static uint32_t __init xen_platform(void)
1942 {
1943 	if (xen_nopv)
1944 		return 0;
1945 
1946 	return xen_cpuid_base();
1947 }
1948 
1949 bool xen_hvm_need_lapic(void)
1950 {
1951 	if (xen_nopv)
1952 		return false;
1953 	if (xen_pv_domain())
1954 		return false;
1955 	if (!xen_hvm_domain())
1956 		return false;
1957 	if (xen_feature(XENFEAT_hvm_pirqs))
1958 		return false;
1959 	return true;
1960 }
1961 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1962 
1963 static void xen_set_cpu_features(struct cpuinfo_x86 *c)
1964 {
1965 	if (xen_pv_domain()) {
1966 		clear_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS);
1967 		set_cpu_cap(c, X86_FEATURE_XENPV);
1968 	}
1969 }
1970 
1971 static void xen_pin_vcpu(int cpu)
1972 {
1973 	static bool disable_pinning;
1974 	struct sched_pin_override pin_override;
1975 	int ret;
1976 
1977 	if (disable_pinning)
1978 		return;
1979 
1980 	pin_override.pcpu = cpu;
1981 	ret = HYPERVISOR_sched_op(SCHEDOP_pin_override, &pin_override);
1982 
1983 	/* Ignore errors when removing override. */
1984 	if (cpu < 0)
1985 		return;
1986 
1987 	switch (ret) {
1988 	case -ENOSYS:
1989 		pr_warn("Unable to pin on physical cpu %d. In case of problems consider vcpu pinning.\n",
1990 			cpu);
1991 		disable_pinning = true;
1992 		break;
1993 	case -EPERM:
1994 		WARN(1, "Trying to pin vcpu without having privilege to do so\n");
1995 		disable_pinning = true;
1996 		break;
1997 	case -EINVAL:
1998 	case -EBUSY:
1999 		pr_warn("Physical cpu %d not available for pinning. Check Xen cpu configuration.\n",
2000 			cpu);
2001 		break;
2002 	case 0:
2003 		break;
2004 	default:
2005 		WARN(1, "rc %d while trying to pin vcpu\n", ret);
2006 		disable_pinning = true;
2007 	}
2008 }
2009 
2010 const struct hypervisor_x86 x86_hyper_xen = {
2011 	.name			= "Xen",
2012 	.detect			= xen_platform,
2013 #ifdef CONFIG_XEN_PVHVM
2014 	.init_platform		= xen_hvm_guest_init,
2015 #endif
2016 	.x2apic_available	= xen_x2apic_para_available,
2017 	.set_cpu_features       = xen_set_cpu_features,
2018 	.pin_vcpu               = xen_pin_vcpu,
2019 };
2020 EXPORT_SYMBOL(x86_hyper_xen);
2021 
2022 #ifdef CONFIG_HOTPLUG_CPU
2023 void xen_arch_register_cpu(int num)
2024 {
2025 	arch_register_cpu(num);
2026 }
2027 EXPORT_SYMBOL(xen_arch_register_cpu);
2028 
2029 void xen_arch_unregister_cpu(int num)
2030 {
2031 	arch_unregister_cpu(num);
2032 }
2033 EXPORT_SYMBOL(xen_arch_unregister_cpu);
2034 #endif
2035