xref: /openbmc/linux/arch/x86/xen/enlighten.c (revision e2f1cf25)
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13 
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 #include <linux/edd.h>
35 
36 #include <xen/xen.h>
37 #include <xen/events.h>
38 #include <xen/interface/xen.h>
39 #include <xen/interface/version.h>
40 #include <xen/interface/physdev.h>
41 #include <xen/interface/vcpu.h>
42 #include <xen/interface/memory.h>
43 #include <xen/interface/nmi.h>
44 #include <xen/interface/xen-mca.h>
45 #include <xen/features.h>
46 #include <xen/page.h>
47 #include <xen/hvm.h>
48 #include <xen/hvc-console.h>
49 #include <xen/acpi.h>
50 
51 #include <asm/paravirt.h>
52 #include <asm/apic.h>
53 #include <asm/page.h>
54 #include <asm/xen/pci.h>
55 #include <asm/xen/hypercall.h>
56 #include <asm/xen/hypervisor.h>
57 #include <asm/fixmap.h>
58 #include <asm/processor.h>
59 #include <asm/proto.h>
60 #include <asm/msr-index.h>
61 #include <asm/traps.h>
62 #include <asm/setup.h>
63 #include <asm/desc.h>
64 #include <asm/pgalloc.h>
65 #include <asm/pgtable.h>
66 #include <asm/tlbflush.h>
67 #include <asm/reboot.h>
68 #include <asm/stackprotector.h>
69 #include <asm/hypervisor.h>
70 #include <asm/mach_traps.h>
71 #include <asm/mwait.h>
72 #include <asm/pci_x86.h>
73 #include <asm/pat.h>
74 
75 #ifdef CONFIG_ACPI
76 #include <linux/acpi.h>
77 #include <asm/acpi.h>
78 #include <acpi/pdc_intel.h>
79 #include <acpi/processor.h>
80 #include <xen/interface/platform.h>
81 #endif
82 
83 #include "xen-ops.h"
84 #include "mmu.h"
85 #include "smp.h"
86 #include "multicalls.h"
87 
88 EXPORT_SYMBOL_GPL(hypercall_page);
89 
90 /*
91  * Pointer to the xen_vcpu_info structure or
92  * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
93  * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
94  * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
95  * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
96  * acknowledge pending events.
97  * Also more subtly it is used by the patched version of irq enable/disable
98  * e.g. xen_irq_enable_direct and xen_iret in PV mode.
99  *
100  * The desire to be able to do those mask/unmask operations as a single
101  * instruction by using the per-cpu offset held in %gs is the real reason
102  * vcpu info is in a per-cpu pointer and the original reason for this
103  * hypercall.
104  *
105  */
106 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
107 
108 /*
109  * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
110  * hypercall. This can be used both in PV and PVHVM mode. The structure
111  * overrides the default per_cpu(xen_vcpu, cpu) value.
112  */
113 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
114 
115 enum xen_domain_type xen_domain_type = XEN_NATIVE;
116 EXPORT_SYMBOL_GPL(xen_domain_type);
117 
118 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
119 EXPORT_SYMBOL(machine_to_phys_mapping);
120 unsigned long  machine_to_phys_nr;
121 EXPORT_SYMBOL(machine_to_phys_nr);
122 
123 struct start_info *xen_start_info;
124 EXPORT_SYMBOL_GPL(xen_start_info);
125 
126 struct shared_info xen_dummy_shared_info;
127 
128 void *xen_initial_gdt;
129 
130 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
131 __read_mostly int xen_have_vector_callback;
132 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
133 
134 /*
135  * Point at some empty memory to start with. We map the real shared_info
136  * page as soon as fixmap is up and running.
137  */
138 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
139 
140 /*
141  * Flag to determine whether vcpu info placement is available on all
142  * VCPUs.  We assume it is to start with, and then set it to zero on
143  * the first failure.  This is because it can succeed on some VCPUs
144  * and not others, since it can involve hypervisor memory allocation,
145  * or because the guest failed to guarantee all the appropriate
146  * constraints on all VCPUs (ie buffer can't cross a page boundary).
147  *
148  * Note that any particular CPU may be using a placed vcpu structure,
149  * but we can only optimise if the all are.
150  *
151  * 0: not available, 1: available
152  */
153 static int have_vcpu_info_placement = 1;
154 
155 struct tls_descs {
156 	struct desc_struct desc[3];
157 };
158 
159 /*
160  * Updating the 3 TLS descriptors in the GDT on every task switch is
161  * surprisingly expensive so we avoid updating them if they haven't
162  * changed.  Since Xen writes different descriptors than the one
163  * passed in the update_descriptor hypercall we keep shadow copies to
164  * compare against.
165  */
166 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
167 
168 static void clamp_max_cpus(void)
169 {
170 #ifdef CONFIG_SMP
171 	if (setup_max_cpus > MAX_VIRT_CPUS)
172 		setup_max_cpus = MAX_VIRT_CPUS;
173 #endif
174 }
175 
176 static void xen_vcpu_setup(int cpu)
177 {
178 	struct vcpu_register_vcpu_info info;
179 	int err;
180 	struct vcpu_info *vcpup;
181 
182 	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
183 
184 	/*
185 	 * This path is called twice on PVHVM - first during bootup via
186 	 * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
187 	 * hotplugged: cpu_up -> xen_hvm_cpu_notify.
188 	 * As we can only do the VCPUOP_register_vcpu_info once lets
189 	 * not over-write its result.
190 	 *
191 	 * For PV it is called during restore (xen_vcpu_restore) and bootup
192 	 * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
193 	 * use this function.
194 	 */
195 	if (xen_hvm_domain()) {
196 		if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
197 			return;
198 	}
199 	if (cpu < MAX_VIRT_CPUS)
200 		per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
201 
202 	if (!have_vcpu_info_placement) {
203 		if (cpu >= MAX_VIRT_CPUS)
204 			clamp_max_cpus();
205 		return;
206 	}
207 
208 	vcpup = &per_cpu(xen_vcpu_info, cpu);
209 	info.mfn = arbitrary_virt_to_mfn(vcpup);
210 	info.offset = offset_in_page(vcpup);
211 
212 	/* Check to see if the hypervisor will put the vcpu_info
213 	   structure where we want it, which allows direct access via
214 	   a percpu-variable.
215 	   N.B. This hypercall can _only_ be called once per CPU. Subsequent
216 	   calls will error out with -EINVAL. This is due to the fact that
217 	   hypervisor has no unregister variant and this hypercall does not
218 	   allow to over-write info.mfn and info.offset.
219 	 */
220 	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
221 
222 	if (err) {
223 		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
224 		have_vcpu_info_placement = 0;
225 		clamp_max_cpus();
226 	} else {
227 		/* This cpu is using the registered vcpu info, even if
228 		   later ones fail to. */
229 		per_cpu(xen_vcpu, cpu) = vcpup;
230 	}
231 }
232 
233 /*
234  * On restore, set the vcpu placement up again.
235  * If it fails, then we're in a bad state, since
236  * we can't back out from using it...
237  */
238 void xen_vcpu_restore(void)
239 {
240 	int cpu;
241 
242 	for_each_possible_cpu(cpu) {
243 		bool other_cpu = (cpu != smp_processor_id());
244 		bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL);
245 
246 		if (other_cpu && is_up &&
247 		    HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
248 			BUG();
249 
250 		xen_setup_runstate_info(cpu);
251 
252 		if (have_vcpu_info_placement)
253 			xen_vcpu_setup(cpu);
254 
255 		if (other_cpu && is_up &&
256 		    HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
257 			BUG();
258 	}
259 }
260 
261 static void __init xen_banner(void)
262 {
263 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
264 	struct xen_extraversion extra;
265 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
266 
267 	pr_info("Booting paravirtualized kernel %son %s\n",
268 		xen_feature(XENFEAT_auto_translated_physmap) ?
269 			"with PVH extensions " : "", pv_info.name);
270 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
271 	       version >> 16, version & 0xffff, extra.extraversion,
272 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
273 }
274 /* Check if running on Xen version (major, minor) or later */
275 bool
276 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
277 {
278 	unsigned int version;
279 
280 	if (!xen_domain())
281 		return false;
282 
283 	version = HYPERVISOR_xen_version(XENVER_version, NULL);
284 	if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
285 		((version >> 16) > major))
286 		return true;
287 	return false;
288 }
289 
290 #define CPUID_THERM_POWER_LEAF 6
291 #define APERFMPERF_PRESENT 0
292 
293 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
294 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
295 
296 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
297 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
298 static __read_mostly unsigned int cpuid_leaf5_edx_val;
299 
300 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
301 		      unsigned int *cx, unsigned int *dx)
302 {
303 	unsigned maskebx = ~0;
304 	unsigned maskecx = ~0;
305 	unsigned maskedx = ~0;
306 	unsigned setecx = 0;
307 	/*
308 	 * Mask out inconvenient features, to try and disable as many
309 	 * unsupported kernel subsystems as possible.
310 	 */
311 	switch (*ax) {
312 	case 1:
313 		maskecx = cpuid_leaf1_ecx_mask;
314 		setecx = cpuid_leaf1_ecx_set_mask;
315 		maskedx = cpuid_leaf1_edx_mask;
316 		break;
317 
318 	case CPUID_MWAIT_LEAF:
319 		/* Synthesize the values.. */
320 		*ax = 0;
321 		*bx = 0;
322 		*cx = cpuid_leaf5_ecx_val;
323 		*dx = cpuid_leaf5_edx_val;
324 		return;
325 
326 	case CPUID_THERM_POWER_LEAF:
327 		/* Disabling APERFMPERF for kernel usage */
328 		maskecx = ~(1 << APERFMPERF_PRESENT);
329 		break;
330 
331 	case 0xb:
332 		/* Suppress extended topology stuff */
333 		maskebx = 0;
334 		break;
335 	}
336 
337 	asm(XEN_EMULATE_PREFIX "cpuid"
338 		: "=a" (*ax),
339 		  "=b" (*bx),
340 		  "=c" (*cx),
341 		  "=d" (*dx)
342 		: "0" (*ax), "2" (*cx));
343 
344 	*bx &= maskebx;
345 	*cx &= maskecx;
346 	*cx |= setecx;
347 	*dx &= maskedx;
348 
349 }
350 
351 static bool __init xen_check_mwait(void)
352 {
353 #ifdef CONFIG_ACPI
354 	struct xen_platform_op op = {
355 		.cmd			= XENPF_set_processor_pminfo,
356 		.u.set_pminfo.id	= -1,
357 		.u.set_pminfo.type	= XEN_PM_PDC,
358 	};
359 	uint32_t buf[3];
360 	unsigned int ax, bx, cx, dx;
361 	unsigned int mwait_mask;
362 
363 	/* We need to determine whether it is OK to expose the MWAIT
364 	 * capability to the kernel to harvest deeper than C3 states from ACPI
365 	 * _CST using the processor_harvest_xen.c module. For this to work, we
366 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
367 	 * checks against). The hypervisor won't expose the MWAIT flag because
368 	 * it would break backwards compatibility; so we will find out directly
369 	 * from the hardware and hypercall.
370 	 */
371 	if (!xen_initial_domain())
372 		return false;
373 
374 	/*
375 	 * When running under platform earlier than Xen4.2, do not expose
376 	 * mwait, to avoid the risk of loading native acpi pad driver
377 	 */
378 	if (!xen_running_on_version_or_later(4, 2))
379 		return false;
380 
381 	ax = 1;
382 	cx = 0;
383 
384 	native_cpuid(&ax, &bx, &cx, &dx);
385 
386 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
387 		     (1 << (X86_FEATURE_MWAIT % 32));
388 
389 	if ((cx & mwait_mask) != mwait_mask)
390 		return false;
391 
392 	/* We need to emulate the MWAIT_LEAF and for that we need both
393 	 * ecx and edx. The hypercall provides only partial information.
394 	 */
395 
396 	ax = CPUID_MWAIT_LEAF;
397 	bx = 0;
398 	cx = 0;
399 	dx = 0;
400 
401 	native_cpuid(&ax, &bx, &cx, &dx);
402 
403 	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
404 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
405 	 */
406 	buf[0] = ACPI_PDC_REVISION_ID;
407 	buf[1] = 1;
408 	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
409 
410 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
411 
412 	if ((HYPERVISOR_dom0_op(&op) == 0) &&
413 	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
414 		cpuid_leaf5_ecx_val = cx;
415 		cpuid_leaf5_edx_val = dx;
416 	}
417 	return true;
418 #else
419 	return false;
420 #endif
421 }
422 static void __init xen_init_cpuid_mask(void)
423 {
424 	unsigned int ax, bx, cx, dx;
425 	unsigned int xsave_mask;
426 
427 	cpuid_leaf1_edx_mask =
428 		~((1 << X86_FEATURE_MTRR) |  /* disable MTRR */
429 		  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
430 
431 	if (!xen_initial_domain())
432 		cpuid_leaf1_edx_mask &=
433 			~((1 << X86_FEATURE_ACPI));  /* disable ACPI */
434 
435 	cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
436 
437 	ax = 1;
438 	cx = 0;
439 	cpuid(1, &ax, &bx, &cx, &dx);
440 
441 	xsave_mask =
442 		(1 << (X86_FEATURE_XSAVE % 32)) |
443 		(1 << (X86_FEATURE_OSXSAVE % 32));
444 
445 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
446 	if ((cx & xsave_mask) != xsave_mask)
447 		cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
448 	if (xen_check_mwait())
449 		cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
450 }
451 
452 static void xen_set_debugreg(int reg, unsigned long val)
453 {
454 	HYPERVISOR_set_debugreg(reg, val);
455 }
456 
457 static unsigned long xen_get_debugreg(int reg)
458 {
459 	return HYPERVISOR_get_debugreg(reg);
460 }
461 
462 static void xen_end_context_switch(struct task_struct *next)
463 {
464 	xen_mc_flush();
465 	paravirt_end_context_switch(next);
466 }
467 
468 static unsigned long xen_store_tr(void)
469 {
470 	return 0;
471 }
472 
473 /*
474  * Set the page permissions for a particular virtual address.  If the
475  * address is a vmalloc mapping (or other non-linear mapping), then
476  * find the linear mapping of the page and also set its protections to
477  * match.
478  */
479 static void set_aliased_prot(void *v, pgprot_t prot)
480 {
481 	int level;
482 	pte_t *ptep;
483 	pte_t pte;
484 	unsigned long pfn;
485 	struct page *page;
486 	unsigned char dummy;
487 
488 	ptep = lookup_address((unsigned long)v, &level);
489 	BUG_ON(ptep == NULL);
490 
491 	pfn = pte_pfn(*ptep);
492 	page = pfn_to_page(pfn);
493 
494 	pte = pfn_pte(pfn, prot);
495 
496 	/*
497 	 * Careful: update_va_mapping() will fail if the virtual address
498 	 * we're poking isn't populated in the page tables.  We don't
499 	 * need to worry about the direct map (that's always in the page
500 	 * tables), but we need to be careful about vmap space.  In
501 	 * particular, the top level page table can lazily propagate
502 	 * entries between processes, so if we've switched mms since we
503 	 * vmapped the target in the first place, we might not have the
504 	 * top-level page table entry populated.
505 	 *
506 	 * We disable preemption because we want the same mm active when
507 	 * we probe the target and when we issue the hypercall.  We'll
508 	 * have the same nominal mm, but if we're a kernel thread, lazy
509 	 * mm dropping could change our pgd.
510 	 *
511 	 * Out of an abundance of caution, this uses __get_user() to fault
512 	 * in the target address just in case there's some obscure case
513 	 * in which the target address isn't readable.
514 	 */
515 
516 	preempt_disable();
517 
518 	pagefault_disable();	/* Avoid warnings due to being atomic. */
519 	__get_user(dummy, (unsigned char __user __force *)v);
520 	pagefault_enable();
521 
522 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
523 		BUG();
524 
525 	if (!PageHighMem(page)) {
526 		void *av = __va(PFN_PHYS(pfn));
527 
528 		if (av != v)
529 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
530 				BUG();
531 	} else
532 		kmap_flush_unused();
533 
534 	preempt_enable();
535 }
536 
537 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
538 {
539 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
540 	int i;
541 
542 	/*
543 	 * We need to mark the all aliases of the LDT pages RO.  We
544 	 * don't need to call vm_flush_aliases(), though, since that's
545 	 * only responsible for flushing aliases out the TLBs, not the
546 	 * page tables, and Xen will flush the TLB for us if needed.
547 	 *
548 	 * To avoid confusing future readers: none of this is necessary
549 	 * to load the LDT.  The hypervisor only checks this when the
550 	 * LDT is faulted in due to subsequent descriptor access.
551 	 */
552 
553 	for(i = 0; i < entries; i += entries_per_page)
554 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
555 }
556 
557 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
558 {
559 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
560 	int i;
561 
562 	for(i = 0; i < entries; i += entries_per_page)
563 		set_aliased_prot(ldt + i, PAGE_KERNEL);
564 }
565 
566 static void xen_set_ldt(const void *addr, unsigned entries)
567 {
568 	struct mmuext_op *op;
569 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
570 
571 	trace_xen_cpu_set_ldt(addr, entries);
572 
573 	op = mcs.args;
574 	op->cmd = MMUEXT_SET_LDT;
575 	op->arg1.linear_addr = (unsigned long)addr;
576 	op->arg2.nr_ents = entries;
577 
578 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
579 
580 	xen_mc_issue(PARAVIRT_LAZY_CPU);
581 }
582 
583 static void xen_load_gdt(const struct desc_ptr *dtr)
584 {
585 	unsigned long va = dtr->address;
586 	unsigned int size = dtr->size + 1;
587 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
588 	unsigned long frames[pages];
589 	int f;
590 
591 	/*
592 	 * A GDT can be up to 64k in size, which corresponds to 8192
593 	 * 8-byte entries, or 16 4k pages..
594 	 */
595 
596 	BUG_ON(size > 65536);
597 	BUG_ON(va & ~PAGE_MASK);
598 
599 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
600 		int level;
601 		pte_t *ptep;
602 		unsigned long pfn, mfn;
603 		void *virt;
604 
605 		/*
606 		 * The GDT is per-cpu and is in the percpu data area.
607 		 * That can be virtually mapped, so we need to do a
608 		 * page-walk to get the underlying MFN for the
609 		 * hypercall.  The page can also be in the kernel's
610 		 * linear range, so we need to RO that mapping too.
611 		 */
612 		ptep = lookup_address(va, &level);
613 		BUG_ON(ptep == NULL);
614 
615 		pfn = pte_pfn(*ptep);
616 		mfn = pfn_to_mfn(pfn);
617 		virt = __va(PFN_PHYS(pfn));
618 
619 		frames[f] = mfn;
620 
621 		make_lowmem_page_readonly((void *)va);
622 		make_lowmem_page_readonly(virt);
623 	}
624 
625 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
626 		BUG();
627 }
628 
629 /*
630  * load_gdt for early boot, when the gdt is only mapped once
631  */
632 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
633 {
634 	unsigned long va = dtr->address;
635 	unsigned int size = dtr->size + 1;
636 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
637 	unsigned long frames[pages];
638 	int f;
639 
640 	/*
641 	 * A GDT can be up to 64k in size, which corresponds to 8192
642 	 * 8-byte entries, or 16 4k pages..
643 	 */
644 
645 	BUG_ON(size > 65536);
646 	BUG_ON(va & ~PAGE_MASK);
647 
648 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
649 		pte_t pte;
650 		unsigned long pfn, mfn;
651 
652 		pfn = virt_to_pfn(va);
653 		mfn = pfn_to_mfn(pfn);
654 
655 		pte = pfn_pte(pfn, PAGE_KERNEL_RO);
656 
657 		if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
658 			BUG();
659 
660 		frames[f] = mfn;
661 	}
662 
663 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
664 		BUG();
665 }
666 
667 static inline bool desc_equal(const struct desc_struct *d1,
668 			      const struct desc_struct *d2)
669 {
670 	return d1->a == d2->a && d1->b == d2->b;
671 }
672 
673 static void load_TLS_descriptor(struct thread_struct *t,
674 				unsigned int cpu, unsigned int i)
675 {
676 	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
677 	struct desc_struct *gdt;
678 	xmaddr_t maddr;
679 	struct multicall_space mc;
680 
681 	if (desc_equal(shadow, &t->tls_array[i]))
682 		return;
683 
684 	*shadow = t->tls_array[i];
685 
686 	gdt = get_cpu_gdt_table(cpu);
687 	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
688 	mc = __xen_mc_entry(0);
689 
690 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
691 }
692 
693 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
694 {
695 	/*
696 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
697 	 * and lazy gs handling is enabled, it means we're in a
698 	 * context switch, and %gs has just been saved.  This means we
699 	 * can zero it out to prevent faults on exit from the
700 	 * hypervisor if the next process has no %gs.  Either way, it
701 	 * has been saved, and the new value will get loaded properly.
702 	 * This will go away as soon as Xen has been modified to not
703 	 * save/restore %gs for normal hypercalls.
704 	 *
705 	 * On x86_64, this hack is not used for %gs, because gs points
706 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
707 	 * must not zero %gs on x86_64
708 	 *
709 	 * For x86_64, we need to zero %fs, otherwise we may get an
710 	 * exception between the new %fs descriptor being loaded and
711 	 * %fs being effectively cleared at __switch_to().
712 	 */
713 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
714 #ifdef CONFIG_X86_32
715 		lazy_load_gs(0);
716 #else
717 		loadsegment(fs, 0);
718 #endif
719 	}
720 
721 	xen_mc_batch();
722 
723 	load_TLS_descriptor(t, cpu, 0);
724 	load_TLS_descriptor(t, cpu, 1);
725 	load_TLS_descriptor(t, cpu, 2);
726 
727 	xen_mc_issue(PARAVIRT_LAZY_CPU);
728 }
729 
730 #ifdef CONFIG_X86_64
731 static void xen_load_gs_index(unsigned int idx)
732 {
733 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
734 		BUG();
735 }
736 #endif
737 
738 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
739 				const void *ptr)
740 {
741 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
742 	u64 entry = *(u64 *)ptr;
743 
744 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
745 
746 	preempt_disable();
747 
748 	xen_mc_flush();
749 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
750 		BUG();
751 
752 	preempt_enable();
753 }
754 
755 static int cvt_gate_to_trap(int vector, const gate_desc *val,
756 			    struct trap_info *info)
757 {
758 	unsigned long addr;
759 
760 	if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
761 		return 0;
762 
763 	info->vector = vector;
764 
765 	addr = gate_offset(*val);
766 #ifdef CONFIG_X86_64
767 	/*
768 	 * Look for known traps using IST, and substitute them
769 	 * appropriately.  The debugger ones are the only ones we care
770 	 * about.  Xen will handle faults like double_fault,
771 	 * so we should never see them.  Warn if
772 	 * there's an unexpected IST-using fault handler.
773 	 */
774 	if (addr == (unsigned long)debug)
775 		addr = (unsigned long)xen_debug;
776 	else if (addr == (unsigned long)int3)
777 		addr = (unsigned long)xen_int3;
778 	else if (addr == (unsigned long)stack_segment)
779 		addr = (unsigned long)xen_stack_segment;
780 	else if (addr == (unsigned long)double_fault) {
781 		/* Don't need to handle these */
782 		return 0;
783 #ifdef CONFIG_X86_MCE
784 	} else if (addr == (unsigned long)machine_check) {
785 		/*
786 		 * when xen hypervisor inject vMCE to guest,
787 		 * use native mce handler to handle it
788 		 */
789 		;
790 #endif
791 	} else if (addr == (unsigned long)nmi)
792 		/*
793 		 * Use the native version as well.
794 		 */
795 		;
796 	else {
797 		/* Some other trap using IST? */
798 		if (WARN_ON(val->ist != 0))
799 			return 0;
800 	}
801 #endif	/* CONFIG_X86_64 */
802 	info->address = addr;
803 
804 	info->cs = gate_segment(*val);
805 	info->flags = val->dpl;
806 	/* interrupt gates clear IF */
807 	if (val->type == GATE_INTERRUPT)
808 		info->flags |= 1 << 2;
809 
810 	return 1;
811 }
812 
813 /* Locations of each CPU's IDT */
814 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
815 
816 /* Set an IDT entry.  If the entry is part of the current IDT, then
817    also update Xen. */
818 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
819 {
820 	unsigned long p = (unsigned long)&dt[entrynum];
821 	unsigned long start, end;
822 
823 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
824 
825 	preempt_disable();
826 
827 	start = __this_cpu_read(idt_desc.address);
828 	end = start + __this_cpu_read(idt_desc.size) + 1;
829 
830 	xen_mc_flush();
831 
832 	native_write_idt_entry(dt, entrynum, g);
833 
834 	if (p >= start && (p + 8) <= end) {
835 		struct trap_info info[2];
836 
837 		info[1].address = 0;
838 
839 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
840 			if (HYPERVISOR_set_trap_table(info))
841 				BUG();
842 	}
843 
844 	preempt_enable();
845 }
846 
847 static void xen_convert_trap_info(const struct desc_ptr *desc,
848 				  struct trap_info *traps)
849 {
850 	unsigned in, out, count;
851 
852 	count = (desc->size+1) / sizeof(gate_desc);
853 	BUG_ON(count > 256);
854 
855 	for (in = out = 0; in < count; in++) {
856 		gate_desc *entry = (gate_desc*)(desc->address) + in;
857 
858 		if (cvt_gate_to_trap(in, entry, &traps[out]))
859 			out++;
860 	}
861 	traps[out].address = 0;
862 }
863 
864 void xen_copy_trap_info(struct trap_info *traps)
865 {
866 	const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
867 
868 	xen_convert_trap_info(desc, traps);
869 }
870 
871 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
872    hold a spinlock to protect the static traps[] array (static because
873    it avoids allocation, and saves stack space). */
874 static void xen_load_idt(const struct desc_ptr *desc)
875 {
876 	static DEFINE_SPINLOCK(lock);
877 	static struct trap_info traps[257];
878 
879 	trace_xen_cpu_load_idt(desc);
880 
881 	spin_lock(&lock);
882 
883 	memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
884 
885 	xen_convert_trap_info(desc, traps);
886 
887 	xen_mc_flush();
888 	if (HYPERVISOR_set_trap_table(traps))
889 		BUG();
890 
891 	spin_unlock(&lock);
892 }
893 
894 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
895    they're handled differently. */
896 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
897 				const void *desc, int type)
898 {
899 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
900 
901 	preempt_disable();
902 
903 	switch (type) {
904 	case DESC_LDT:
905 	case DESC_TSS:
906 		/* ignore */
907 		break;
908 
909 	default: {
910 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
911 
912 		xen_mc_flush();
913 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
914 			BUG();
915 	}
916 
917 	}
918 
919 	preempt_enable();
920 }
921 
922 /*
923  * Version of write_gdt_entry for use at early boot-time needed to
924  * update an entry as simply as possible.
925  */
926 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
927 					    const void *desc, int type)
928 {
929 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
930 
931 	switch (type) {
932 	case DESC_LDT:
933 	case DESC_TSS:
934 		/* ignore */
935 		break;
936 
937 	default: {
938 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
939 
940 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
941 			dt[entry] = *(struct desc_struct *)desc;
942 	}
943 
944 	}
945 }
946 
947 static void xen_load_sp0(struct tss_struct *tss,
948 			 struct thread_struct *thread)
949 {
950 	struct multicall_space mcs;
951 
952 	mcs = xen_mc_entry(0);
953 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
954 	xen_mc_issue(PARAVIRT_LAZY_CPU);
955 	tss->x86_tss.sp0 = thread->sp0;
956 }
957 
958 static void xen_set_iopl_mask(unsigned mask)
959 {
960 	struct physdev_set_iopl set_iopl;
961 
962 	/* Force the change at ring 0. */
963 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
964 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
965 }
966 
967 static void xen_io_delay(void)
968 {
969 }
970 
971 static void xen_clts(void)
972 {
973 	struct multicall_space mcs;
974 
975 	mcs = xen_mc_entry(0);
976 
977 	MULTI_fpu_taskswitch(mcs.mc, 0);
978 
979 	xen_mc_issue(PARAVIRT_LAZY_CPU);
980 }
981 
982 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
983 
984 static unsigned long xen_read_cr0(void)
985 {
986 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
987 
988 	if (unlikely(cr0 == 0)) {
989 		cr0 = native_read_cr0();
990 		this_cpu_write(xen_cr0_value, cr0);
991 	}
992 
993 	return cr0;
994 }
995 
996 static void xen_write_cr0(unsigned long cr0)
997 {
998 	struct multicall_space mcs;
999 
1000 	this_cpu_write(xen_cr0_value, cr0);
1001 
1002 	/* Only pay attention to cr0.TS; everything else is
1003 	   ignored. */
1004 	mcs = xen_mc_entry(0);
1005 
1006 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1007 
1008 	xen_mc_issue(PARAVIRT_LAZY_CPU);
1009 }
1010 
1011 static void xen_write_cr4(unsigned long cr4)
1012 {
1013 	cr4 &= ~X86_CR4_PGE;
1014 	cr4 &= ~X86_CR4_PSE;
1015 
1016 	native_write_cr4(cr4);
1017 }
1018 #ifdef CONFIG_X86_64
1019 static inline unsigned long xen_read_cr8(void)
1020 {
1021 	return 0;
1022 }
1023 static inline void xen_write_cr8(unsigned long val)
1024 {
1025 	BUG_ON(val);
1026 }
1027 #endif
1028 
1029 static u64 xen_read_msr_safe(unsigned int msr, int *err)
1030 {
1031 	u64 val;
1032 
1033 	val = native_read_msr_safe(msr, err);
1034 	switch (msr) {
1035 	case MSR_IA32_APICBASE:
1036 #ifdef CONFIG_X86_X2APIC
1037 		if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
1038 #endif
1039 			val &= ~X2APIC_ENABLE;
1040 		break;
1041 	}
1042 	return val;
1043 }
1044 
1045 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1046 {
1047 	int ret;
1048 
1049 	ret = 0;
1050 
1051 	switch (msr) {
1052 #ifdef CONFIG_X86_64
1053 		unsigned which;
1054 		u64 base;
1055 
1056 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
1057 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
1058 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
1059 
1060 	set:
1061 		base = ((u64)high << 32) | low;
1062 		if (HYPERVISOR_set_segment_base(which, base) != 0)
1063 			ret = -EIO;
1064 		break;
1065 #endif
1066 
1067 	case MSR_STAR:
1068 	case MSR_CSTAR:
1069 	case MSR_LSTAR:
1070 	case MSR_SYSCALL_MASK:
1071 	case MSR_IA32_SYSENTER_CS:
1072 	case MSR_IA32_SYSENTER_ESP:
1073 	case MSR_IA32_SYSENTER_EIP:
1074 		/* Fast syscall setup is all done in hypercalls, so
1075 		   these are all ignored.  Stub them out here to stop
1076 		   Xen console noise. */
1077 
1078 	default:
1079 		ret = native_write_msr_safe(msr, low, high);
1080 	}
1081 
1082 	return ret;
1083 }
1084 
1085 void xen_setup_shared_info(void)
1086 {
1087 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1088 		set_fixmap(FIX_PARAVIRT_BOOTMAP,
1089 			   xen_start_info->shared_info);
1090 
1091 		HYPERVISOR_shared_info =
1092 			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1093 	} else
1094 		HYPERVISOR_shared_info =
1095 			(struct shared_info *)__va(xen_start_info->shared_info);
1096 
1097 #ifndef CONFIG_SMP
1098 	/* In UP this is as good a place as any to set up shared info */
1099 	xen_setup_vcpu_info_placement();
1100 #endif
1101 
1102 	xen_setup_mfn_list_list();
1103 }
1104 
1105 /* This is called once we have the cpu_possible_mask */
1106 void xen_setup_vcpu_info_placement(void)
1107 {
1108 	int cpu;
1109 
1110 	for_each_possible_cpu(cpu)
1111 		xen_vcpu_setup(cpu);
1112 
1113 	/* xen_vcpu_setup managed to place the vcpu_info within the
1114 	 * percpu area for all cpus, so make use of it. Note that for
1115 	 * PVH we want to use native IRQ mechanism. */
1116 	if (have_vcpu_info_placement && !xen_pvh_domain()) {
1117 		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1118 		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1119 		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1120 		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1121 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1122 	}
1123 }
1124 
1125 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1126 			  unsigned long addr, unsigned len)
1127 {
1128 	char *start, *end, *reloc;
1129 	unsigned ret;
1130 
1131 	start = end = reloc = NULL;
1132 
1133 #define SITE(op, x)							\
1134 	case PARAVIRT_PATCH(op.x):					\
1135 	if (have_vcpu_info_placement) {					\
1136 		start = (char *)xen_##x##_direct;			\
1137 		end = xen_##x##_direct_end;				\
1138 		reloc = xen_##x##_direct_reloc;				\
1139 	}								\
1140 	goto patch_site
1141 
1142 	switch (type) {
1143 		SITE(pv_irq_ops, irq_enable);
1144 		SITE(pv_irq_ops, irq_disable);
1145 		SITE(pv_irq_ops, save_fl);
1146 		SITE(pv_irq_ops, restore_fl);
1147 #undef SITE
1148 
1149 	patch_site:
1150 		if (start == NULL || (end-start) > len)
1151 			goto default_patch;
1152 
1153 		ret = paravirt_patch_insns(insnbuf, len, start, end);
1154 
1155 		/* Note: because reloc is assigned from something that
1156 		   appears to be an array, gcc assumes it's non-null,
1157 		   but doesn't know its relationship with start and
1158 		   end. */
1159 		if (reloc > start && reloc < end) {
1160 			int reloc_off = reloc - start;
1161 			long *relocp = (long *)(insnbuf + reloc_off);
1162 			long delta = start - (char *)addr;
1163 
1164 			*relocp += delta;
1165 		}
1166 		break;
1167 
1168 	default_patch:
1169 	default:
1170 		ret = paravirt_patch_default(type, clobbers, insnbuf,
1171 					     addr, len);
1172 		break;
1173 	}
1174 
1175 	return ret;
1176 }
1177 
1178 static const struct pv_info xen_info __initconst = {
1179 	.paravirt_enabled = 1,
1180 	.shared_kernel_pmd = 0,
1181 
1182 #ifdef CONFIG_X86_64
1183 	.extra_user_64bit_cs = FLAT_USER_CS64,
1184 #endif
1185 
1186 	.name = "Xen",
1187 };
1188 
1189 static const struct pv_init_ops xen_init_ops __initconst = {
1190 	.patch = xen_patch,
1191 };
1192 
1193 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1194 	.cpuid = xen_cpuid,
1195 
1196 	.set_debugreg = xen_set_debugreg,
1197 	.get_debugreg = xen_get_debugreg,
1198 
1199 	.clts = xen_clts,
1200 
1201 	.read_cr0 = xen_read_cr0,
1202 	.write_cr0 = xen_write_cr0,
1203 
1204 	.read_cr4 = native_read_cr4,
1205 	.read_cr4_safe = native_read_cr4_safe,
1206 	.write_cr4 = xen_write_cr4,
1207 
1208 #ifdef CONFIG_X86_64
1209 	.read_cr8 = xen_read_cr8,
1210 	.write_cr8 = xen_write_cr8,
1211 #endif
1212 
1213 	.wbinvd = native_wbinvd,
1214 
1215 	.read_msr = xen_read_msr_safe,
1216 	.write_msr = xen_write_msr_safe,
1217 
1218 	.read_tsc = native_read_tsc,
1219 	.read_pmc = native_read_pmc,
1220 
1221 	.read_tscp = native_read_tscp,
1222 
1223 	.iret = xen_iret,
1224 #ifdef CONFIG_X86_64
1225 	.usergs_sysret32 = xen_sysret32,
1226 	.usergs_sysret64 = xen_sysret64,
1227 #else
1228 	.irq_enable_sysexit = xen_sysexit,
1229 #endif
1230 
1231 	.load_tr_desc = paravirt_nop,
1232 	.set_ldt = xen_set_ldt,
1233 	.load_gdt = xen_load_gdt,
1234 	.load_idt = xen_load_idt,
1235 	.load_tls = xen_load_tls,
1236 #ifdef CONFIG_X86_64
1237 	.load_gs_index = xen_load_gs_index,
1238 #endif
1239 
1240 	.alloc_ldt = xen_alloc_ldt,
1241 	.free_ldt = xen_free_ldt,
1242 
1243 	.store_idt = native_store_idt,
1244 	.store_tr = xen_store_tr,
1245 
1246 	.write_ldt_entry = xen_write_ldt_entry,
1247 	.write_gdt_entry = xen_write_gdt_entry,
1248 	.write_idt_entry = xen_write_idt_entry,
1249 	.load_sp0 = xen_load_sp0,
1250 
1251 	.set_iopl_mask = xen_set_iopl_mask,
1252 	.io_delay = xen_io_delay,
1253 
1254 	/* Xen takes care of %gs when switching to usermode for us */
1255 	.swapgs = paravirt_nop,
1256 
1257 	.start_context_switch = paravirt_start_context_switch,
1258 	.end_context_switch = xen_end_context_switch,
1259 };
1260 
1261 static const struct pv_apic_ops xen_apic_ops __initconst = {
1262 #ifdef CONFIG_X86_LOCAL_APIC
1263 	.startup_ipi_hook = paravirt_nop,
1264 #endif
1265 };
1266 
1267 static void xen_reboot(int reason)
1268 {
1269 	struct sched_shutdown r = { .reason = reason };
1270 
1271 	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1272 		BUG();
1273 }
1274 
1275 static void xen_restart(char *msg)
1276 {
1277 	xen_reboot(SHUTDOWN_reboot);
1278 }
1279 
1280 static void xen_emergency_restart(void)
1281 {
1282 	xen_reboot(SHUTDOWN_reboot);
1283 }
1284 
1285 static void xen_machine_halt(void)
1286 {
1287 	xen_reboot(SHUTDOWN_poweroff);
1288 }
1289 
1290 static void xen_machine_power_off(void)
1291 {
1292 	if (pm_power_off)
1293 		pm_power_off();
1294 	xen_reboot(SHUTDOWN_poweroff);
1295 }
1296 
1297 static void xen_crash_shutdown(struct pt_regs *regs)
1298 {
1299 	xen_reboot(SHUTDOWN_crash);
1300 }
1301 
1302 static int
1303 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1304 {
1305 	xen_reboot(SHUTDOWN_crash);
1306 	return NOTIFY_DONE;
1307 }
1308 
1309 static struct notifier_block xen_panic_block = {
1310 	.notifier_call= xen_panic_event,
1311 	.priority = INT_MIN
1312 };
1313 
1314 int xen_panic_handler_init(void)
1315 {
1316 	atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1317 	return 0;
1318 }
1319 
1320 static const struct machine_ops xen_machine_ops __initconst = {
1321 	.restart = xen_restart,
1322 	.halt = xen_machine_halt,
1323 	.power_off = xen_machine_power_off,
1324 	.shutdown = xen_machine_halt,
1325 	.crash_shutdown = xen_crash_shutdown,
1326 	.emergency_restart = xen_emergency_restart,
1327 };
1328 
1329 static unsigned char xen_get_nmi_reason(void)
1330 {
1331 	unsigned char reason = 0;
1332 
1333 	/* Construct a value which looks like it came from port 0x61. */
1334 	if (test_bit(_XEN_NMIREASON_io_error,
1335 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1336 		reason |= NMI_REASON_IOCHK;
1337 	if (test_bit(_XEN_NMIREASON_pci_serr,
1338 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1339 		reason |= NMI_REASON_SERR;
1340 
1341 	return reason;
1342 }
1343 
1344 static void __init xen_boot_params_init_edd(void)
1345 {
1346 #if IS_ENABLED(CONFIG_EDD)
1347 	struct xen_platform_op op;
1348 	struct edd_info *edd_info;
1349 	u32 *mbr_signature;
1350 	unsigned nr;
1351 	int ret;
1352 
1353 	edd_info = boot_params.eddbuf;
1354 	mbr_signature = boot_params.edd_mbr_sig_buffer;
1355 
1356 	op.cmd = XENPF_firmware_info;
1357 
1358 	op.u.firmware_info.type = XEN_FW_DISK_INFO;
1359 	for (nr = 0; nr < EDDMAXNR; nr++) {
1360 		struct edd_info *info = edd_info + nr;
1361 
1362 		op.u.firmware_info.index = nr;
1363 		info->params.length = sizeof(info->params);
1364 		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1365 				     &info->params);
1366 		ret = HYPERVISOR_dom0_op(&op);
1367 		if (ret)
1368 			break;
1369 
1370 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1371 		C(device);
1372 		C(version);
1373 		C(interface_support);
1374 		C(legacy_max_cylinder);
1375 		C(legacy_max_head);
1376 		C(legacy_sectors_per_track);
1377 #undef C
1378 	}
1379 	boot_params.eddbuf_entries = nr;
1380 
1381 	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1382 	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1383 		op.u.firmware_info.index = nr;
1384 		ret = HYPERVISOR_dom0_op(&op);
1385 		if (ret)
1386 			break;
1387 		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1388 	}
1389 	boot_params.edd_mbr_sig_buf_entries = nr;
1390 #endif
1391 }
1392 
1393 /*
1394  * Set up the GDT and segment registers for -fstack-protector.  Until
1395  * we do this, we have to be careful not to call any stack-protected
1396  * function, which is most of the kernel.
1397  *
1398  * Note, that it is __ref because the only caller of this after init
1399  * is PVH which is not going to use xen_load_gdt_boot or other
1400  * __init functions.
1401  */
1402 static void __ref xen_setup_gdt(int cpu)
1403 {
1404 	if (xen_feature(XENFEAT_auto_translated_physmap)) {
1405 #ifdef CONFIG_X86_64
1406 		unsigned long dummy;
1407 
1408 		load_percpu_segment(cpu); /* We need to access per-cpu area */
1409 		switch_to_new_gdt(cpu); /* GDT and GS set */
1410 
1411 		/* We are switching of the Xen provided GDT to our HVM mode
1412 		 * GDT. The new GDT has  __KERNEL_CS with CS.L = 1
1413 		 * and we are jumping to reload it.
1414 		 */
1415 		asm volatile ("pushq %0\n"
1416 			      "leaq 1f(%%rip),%0\n"
1417 			      "pushq %0\n"
1418 			      "lretq\n"
1419 			      "1:\n"
1420 			      : "=&r" (dummy) : "0" (__KERNEL_CS));
1421 
1422 		/*
1423 		 * While not needed, we also set the %es, %ds, and %fs
1424 		 * to zero. We don't care about %ss as it is NULL.
1425 		 * Strictly speaking this is not needed as Xen zeros those
1426 		 * out (and also MSR_FS_BASE, MSR_GS_BASE, MSR_KERNEL_GS_BASE)
1427 		 *
1428 		 * Linux zeros them in cpu_init() and in secondary_startup_64
1429 		 * (for BSP).
1430 		 */
1431 		loadsegment(es, 0);
1432 		loadsegment(ds, 0);
1433 		loadsegment(fs, 0);
1434 #else
1435 		/* PVH: TODO Implement. */
1436 		BUG();
1437 #endif
1438 		return; /* PVH does not need any PV GDT ops. */
1439 	}
1440 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1441 	pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1442 
1443 	setup_stack_canary_segment(0);
1444 	switch_to_new_gdt(0);
1445 
1446 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1447 	pv_cpu_ops.load_gdt = xen_load_gdt;
1448 }
1449 
1450 #ifdef CONFIG_XEN_PVH
1451 /*
1452  * A PV guest starts with default flags that are not set for PVH, set them
1453  * here asap.
1454  */
1455 static void xen_pvh_set_cr_flags(int cpu)
1456 {
1457 
1458 	/* Some of these are setup in 'secondary_startup_64'. The others:
1459 	 * X86_CR0_TS, X86_CR0_PE, X86_CR0_ET are set by Xen for HVM guests
1460 	 * (which PVH shared codepaths), while X86_CR0_PG is for PVH. */
1461 	write_cr0(read_cr0() | X86_CR0_MP | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM);
1462 
1463 	if (!cpu)
1464 		return;
1465 	/*
1466 	 * For BSP, PSE PGE are set in probe_page_size_mask(), for APs
1467 	 * set them here. For all, OSFXSR OSXMMEXCPT are set in fpu__init_cpu().
1468 	*/
1469 	if (cpu_has_pse)
1470 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
1471 
1472 	if (cpu_has_pge)
1473 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
1474 }
1475 
1476 /*
1477  * Note, that it is ref - because the only caller of this after init
1478  * is PVH which is not going to use xen_load_gdt_boot or other
1479  * __init functions.
1480  */
1481 void __ref xen_pvh_secondary_vcpu_init(int cpu)
1482 {
1483 	xen_setup_gdt(cpu);
1484 	xen_pvh_set_cr_flags(cpu);
1485 }
1486 
1487 static void __init xen_pvh_early_guest_init(void)
1488 {
1489 	if (!xen_feature(XENFEAT_auto_translated_physmap))
1490 		return;
1491 
1492 	if (!xen_feature(XENFEAT_hvm_callback_vector))
1493 		return;
1494 
1495 	xen_have_vector_callback = 1;
1496 
1497 	xen_pvh_early_cpu_init(0, false);
1498 	xen_pvh_set_cr_flags(0);
1499 
1500 #ifdef CONFIG_X86_32
1501 	BUG(); /* PVH: Implement proper support. */
1502 #endif
1503 }
1504 #endif    /* CONFIG_XEN_PVH */
1505 
1506 /* First C function to be called on Xen boot */
1507 asmlinkage __visible void __init xen_start_kernel(void)
1508 {
1509 	struct physdev_set_iopl set_iopl;
1510 	unsigned long initrd_start = 0;
1511 	u64 pat;
1512 	int rc;
1513 
1514 	if (!xen_start_info)
1515 		return;
1516 
1517 	xen_domain_type = XEN_PV_DOMAIN;
1518 
1519 	xen_setup_features();
1520 #ifdef CONFIG_XEN_PVH
1521 	xen_pvh_early_guest_init();
1522 #endif
1523 	xen_setup_machphys_mapping();
1524 
1525 	/* Install Xen paravirt ops */
1526 	pv_info = xen_info;
1527 	pv_init_ops = xen_init_ops;
1528 	pv_apic_ops = xen_apic_ops;
1529 	if (!xen_pvh_domain()) {
1530 		pv_cpu_ops = xen_cpu_ops;
1531 
1532 		x86_platform.get_nmi_reason = xen_get_nmi_reason;
1533 	}
1534 
1535 	if (xen_feature(XENFEAT_auto_translated_physmap))
1536 		x86_init.resources.memory_setup = xen_auto_xlated_memory_setup;
1537 	else
1538 		x86_init.resources.memory_setup = xen_memory_setup;
1539 	x86_init.oem.arch_setup = xen_arch_setup;
1540 	x86_init.oem.banner = xen_banner;
1541 
1542 	xen_init_time_ops();
1543 
1544 	/*
1545 	 * Set up some pagetable state before starting to set any ptes.
1546 	 */
1547 
1548 	xen_init_mmu_ops();
1549 
1550 	/* Prevent unwanted bits from being set in PTEs. */
1551 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1552 
1553 	/*
1554 	 * Prevent page tables from being allocated in highmem, even
1555 	 * if CONFIG_HIGHPTE is enabled.
1556 	 */
1557 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1558 
1559 	/* Work out if we support NX */
1560 	x86_configure_nx();
1561 
1562 	/* Get mfn list */
1563 	xen_build_dynamic_phys_to_machine();
1564 
1565 	/*
1566 	 * Set up kernel GDT and segment registers, mainly so that
1567 	 * -fstack-protector code can be executed.
1568 	 */
1569 	xen_setup_gdt(0);
1570 
1571 	xen_init_irq_ops();
1572 	xen_init_cpuid_mask();
1573 
1574 #ifdef CONFIG_X86_LOCAL_APIC
1575 	/*
1576 	 * set up the basic apic ops.
1577 	 */
1578 	xen_init_apic();
1579 #endif
1580 
1581 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1582 		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1583 		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1584 	}
1585 
1586 	machine_ops = xen_machine_ops;
1587 
1588 	/*
1589 	 * The only reliable way to retain the initial address of the
1590 	 * percpu gdt_page is to remember it here, so we can go and
1591 	 * mark it RW later, when the initial percpu area is freed.
1592 	 */
1593 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1594 
1595 	xen_smp_init();
1596 
1597 #ifdef CONFIG_ACPI_NUMA
1598 	/*
1599 	 * The pages we from Xen are not related to machine pages, so
1600 	 * any NUMA information the kernel tries to get from ACPI will
1601 	 * be meaningless.  Prevent it from trying.
1602 	 */
1603 	acpi_numa = -1;
1604 #endif
1605 	/* Don't do the full vcpu_info placement stuff until we have a
1606 	   possible map and a non-dummy shared_info. */
1607 	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1608 
1609 	local_irq_disable();
1610 	early_boot_irqs_disabled = true;
1611 
1612 	xen_raw_console_write("mapping kernel into physical memory\n");
1613 	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, xen_start_info->nr_pages);
1614 
1615 	/*
1616 	 * Modify the cache mode translation tables to match Xen's PAT
1617 	 * configuration.
1618 	 */
1619 	rdmsrl(MSR_IA32_CR_PAT, pat);
1620 	pat_init_cache_modes(pat);
1621 
1622 	/* keep using Xen gdt for now; no urgent need to change it */
1623 
1624 #ifdef CONFIG_X86_32
1625 	pv_info.kernel_rpl = 1;
1626 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1627 		pv_info.kernel_rpl = 0;
1628 #else
1629 	pv_info.kernel_rpl = 0;
1630 #endif
1631 	/* set the limit of our address space */
1632 	xen_reserve_top();
1633 
1634 	/* PVH: runs at default kernel iopl of 0 */
1635 	if (!xen_pvh_domain()) {
1636 		/*
1637 		 * We used to do this in xen_arch_setup, but that is too late
1638 		 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1639 		 * early_amd_init which pokes 0xcf8 port.
1640 		 */
1641 		set_iopl.iopl = 1;
1642 		rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1643 		if (rc != 0)
1644 			xen_raw_printk("physdev_op failed %d\n", rc);
1645 	}
1646 
1647 #ifdef CONFIG_X86_32
1648 	/* set up basic CPUID stuff */
1649 	cpu_detect(&new_cpu_data);
1650 	set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1651 	new_cpu_data.wp_works_ok = 1;
1652 	new_cpu_data.x86_capability[0] = cpuid_edx(1);
1653 #endif
1654 
1655 	if (xen_start_info->mod_start) {
1656 	    if (xen_start_info->flags & SIF_MOD_START_PFN)
1657 		initrd_start = PFN_PHYS(xen_start_info->mod_start);
1658 	    else
1659 		initrd_start = __pa(xen_start_info->mod_start);
1660 	}
1661 
1662 	/* Poke various useful things into boot_params */
1663 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1664 	boot_params.hdr.ramdisk_image = initrd_start;
1665 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1666 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1667 
1668 	if (!xen_initial_domain()) {
1669 		add_preferred_console("xenboot", 0, NULL);
1670 		add_preferred_console("tty", 0, NULL);
1671 		add_preferred_console("hvc", 0, NULL);
1672 		if (pci_xen)
1673 			x86_init.pci.arch_init = pci_xen_init;
1674 	} else {
1675 		const struct dom0_vga_console_info *info =
1676 			(void *)((char *)xen_start_info +
1677 				 xen_start_info->console.dom0.info_off);
1678 		struct xen_platform_op op = {
1679 			.cmd = XENPF_firmware_info,
1680 			.interface_version = XENPF_INTERFACE_VERSION,
1681 			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1682 		};
1683 
1684 		xen_init_vga(info, xen_start_info->console.dom0.info_size);
1685 		xen_start_info->console.domU.mfn = 0;
1686 		xen_start_info->console.domU.evtchn = 0;
1687 
1688 		if (HYPERVISOR_dom0_op(&op) == 0)
1689 			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1690 
1691 		/* Make sure ACS will be enabled */
1692 		pci_request_acs();
1693 
1694 		xen_acpi_sleep_register();
1695 
1696 		/* Avoid searching for BIOS MP tables */
1697 		x86_init.mpparse.find_smp_config = x86_init_noop;
1698 		x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1699 
1700 		xen_boot_params_init_edd();
1701 	}
1702 #ifdef CONFIG_PCI
1703 	/* PCI BIOS service won't work from a PV guest. */
1704 	pci_probe &= ~PCI_PROBE_BIOS;
1705 #endif
1706 	xen_raw_console_write("about to get started...\n");
1707 
1708 	xen_setup_runstate_info(0);
1709 
1710 	xen_efi_init();
1711 
1712 	/* Start the world */
1713 #ifdef CONFIG_X86_32
1714 	i386_start_kernel();
1715 #else
1716 	cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1717 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1718 #endif
1719 }
1720 
1721 void __ref xen_hvm_init_shared_info(void)
1722 {
1723 	int cpu;
1724 	struct xen_add_to_physmap xatp;
1725 	static struct shared_info *shared_info_page = 0;
1726 
1727 	if (!shared_info_page)
1728 		shared_info_page = (struct shared_info *)
1729 			extend_brk(PAGE_SIZE, PAGE_SIZE);
1730 	xatp.domid = DOMID_SELF;
1731 	xatp.idx = 0;
1732 	xatp.space = XENMAPSPACE_shared_info;
1733 	xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1734 	if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1735 		BUG();
1736 
1737 	HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1738 
1739 	/* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1740 	 * page, we use it in the event channel upcall and in some pvclock
1741 	 * related functions. We don't need the vcpu_info placement
1742 	 * optimizations because we don't use any pv_mmu or pv_irq op on
1743 	 * HVM.
1744 	 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1745 	 * online but xen_hvm_init_shared_info is run at resume time too and
1746 	 * in that case multiple vcpus might be online. */
1747 	for_each_online_cpu(cpu) {
1748 		/* Leave it to be NULL. */
1749 		if (cpu >= MAX_VIRT_CPUS)
1750 			continue;
1751 		per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1752 	}
1753 }
1754 
1755 #ifdef CONFIG_XEN_PVHVM
1756 static void __init init_hvm_pv_info(void)
1757 {
1758 	int major, minor;
1759 	uint32_t eax, ebx, ecx, edx, pages, msr, base;
1760 	u64 pfn;
1761 
1762 	base = xen_cpuid_base();
1763 	cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1764 
1765 	major = eax >> 16;
1766 	minor = eax & 0xffff;
1767 	printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1768 
1769 	cpuid(base + 2, &pages, &msr, &ecx, &edx);
1770 
1771 	pfn = __pa(hypercall_page);
1772 	wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1773 
1774 	xen_setup_features();
1775 
1776 	pv_info.name = "Xen HVM";
1777 
1778 	xen_domain_type = XEN_HVM_DOMAIN;
1779 }
1780 
1781 static int xen_hvm_cpu_notify(struct notifier_block *self, unsigned long action,
1782 			      void *hcpu)
1783 {
1784 	int cpu = (long)hcpu;
1785 	switch (action) {
1786 	case CPU_UP_PREPARE:
1787 		xen_vcpu_setup(cpu);
1788 		if (xen_have_vector_callback) {
1789 			if (xen_feature(XENFEAT_hvm_safe_pvclock))
1790 				xen_setup_timer(cpu);
1791 		}
1792 		break;
1793 	default:
1794 		break;
1795 	}
1796 	return NOTIFY_OK;
1797 }
1798 
1799 static struct notifier_block xen_hvm_cpu_notifier = {
1800 	.notifier_call	= xen_hvm_cpu_notify,
1801 };
1802 
1803 static void __init xen_hvm_guest_init(void)
1804 {
1805 	if (xen_pv_domain())
1806 		return;
1807 
1808 	init_hvm_pv_info();
1809 
1810 	xen_hvm_init_shared_info();
1811 
1812 	xen_panic_handler_init();
1813 
1814 	if (xen_feature(XENFEAT_hvm_callback_vector))
1815 		xen_have_vector_callback = 1;
1816 	xen_hvm_smp_init();
1817 	register_cpu_notifier(&xen_hvm_cpu_notifier);
1818 	xen_unplug_emulated_devices();
1819 	x86_init.irqs.intr_init = xen_init_IRQ;
1820 	xen_hvm_init_time_ops();
1821 	xen_hvm_init_mmu_ops();
1822 }
1823 #endif
1824 
1825 static bool xen_nopv = false;
1826 static __init int xen_parse_nopv(char *arg)
1827 {
1828        xen_nopv = true;
1829        return 0;
1830 }
1831 early_param("xen_nopv", xen_parse_nopv);
1832 
1833 static uint32_t __init xen_platform(void)
1834 {
1835 	if (xen_nopv)
1836 		return 0;
1837 
1838 	return xen_cpuid_base();
1839 }
1840 
1841 bool xen_hvm_need_lapic(void)
1842 {
1843 	if (xen_nopv)
1844 		return false;
1845 	if (xen_pv_domain())
1846 		return false;
1847 	if (!xen_hvm_domain())
1848 		return false;
1849 	if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1850 		return false;
1851 	return true;
1852 }
1853 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1854 
1855 static void xen_set_cpu_features(struct cpuinfo_x86 *c)
1856 {
1857 	if (xen_pv_domain())
1858 		clear_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS);
1859 }
1860 
1861 const struct hypervisor_x86 x86_hyper_xen = {
1862 	.name			= "Xen",
1863 	.detect			= xen_platform,
1864 #ifdef CONFIG_XEN_PVHVM
1865 	.init_platform		= xen_hvm_guest_init,
1866 #endif
1867 	.x2apic_available	= xen_x2apic_para_available,
1868 	.set_cpu_features       = xen_set_cpu_features,
1869 };
1870 EXPORT_SYMBOL(x86_hyper_xen);
1871