1 /* 2 * Core of Xen paravirt_ops implementation. 3 * 4 * This file contains the xen_paravirt_ops structure itself, and the 5 * implementations for: 6 * - privileged instructions 7 * - interrupt flags 8 * - segment operations 9 * - booting and setup 10 * 11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 12 */ 13 14 #include <linux/cpu.h> 15 #include <linux/kernel.h> 16 #include <linux/init.h> 17 #include <linux/smp.h> 18 #include <linux/preempt.h> 19 #include <linux/hardirq.h> 20 #include <linux/percpu.h> 21 #include <linux/delay.h> 22 #include <linux/start_kernel.h> 23 #include <linux/sched.h> 24 #include <linux/kprobes.h> 25 #include <linux/bootmem.h> 26 #include <linux/module.h> 27 #include <linux/mm.h> 28 #include <linux/page-flags.h> 29 #include <linux/highmem.h> 30 #include <linux/console.h> 31 #include <linux/pci.h> 32 #include <linux/gfp.h> 33 #include <linux/memblock.h> 34 #include <linux/edd.h> 35 36 #include <xen/xen.h> 37 #include <xen/events.h> 38 #include <xen/interface/xen.h> 39 #include <xen/interface/version.h> 40 #include <xen/interface/physdev.h> 41 #include <xen/interface/vcpu.h> 42 #include <xen/interface/memory.h> 43 #include <xen/interface/nmi.h> 44 #include <xen/interface/xen-mca.h> 45 #include <xen/features.h> 46 #include <xen/page.h> 47 #include <xen/hvm.h> 48 #include <xen/hvc-console.h> 49 #include <xen/acpi.h> 50 51 #include <asm/paravirt.h> 52 #include <asm/apic.h> 53 #include <asm/page.h> 54 #include <asm/xen/pci.h> 55 #include <asm/xen/hypercall.h> 56 #include <asm/xen/hypervisor.h> 57 #include <asm/fixmap.h> 58 #include <asm/processor.h> 59 #include <asm/proto.h> 60 #include <asm/msr-index.h> 61 #include <asm/traps.h> 62 #include <asm/setup.h> 63 #include <asm/desc.h> 64 #include <asm/pgalloc.h> 65 #include <asm/pgtable.h> 66 #include <asm/tlbflush.h> 67 #include <asm/reboot.h> 68 #include <asm/stackprotector.h> 69 #include <asm/hypervisor.h> 70 #include <asm/mach_traps.h> 71 #include <asm/mwait.h> 72 #include <asm/pci_x86.h> 73 #include <asm/pat.h> 74 75 #ifdef CONFIG_ACPI 76 #include <linux/acpi.h> 77 #include <asm/acpi.h> 78 #include <acpi/pdc_intel.h> 79 #include <acpi/processor.h> 80 #include <xen/interface/platform.h> 81 #endif 82 83 #include "xen-ops.h" 84 #include "mmu.h" 85 #include "smp.h" 86 #include "multicalls.h" 87 88 EXPORT_SYMBOL_GPL(hypercall_page); 89 90 /* 91 * Pointer to the xen_vcpu_info structure or 92 * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info 93 * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info 94 * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point 95 * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to 96 * acknowledge pending events. 97 * Also more subtly it is used by the patched version of irq enable/disable 98 * e.g. xen_irq_enable_direct and xen_iret in PV mode. 99 * 100 * The desire to be able to do those mask/unmask operations as a single 101 * instruction by using the per-cpu offset held in %gs is the real reason 102 * vcpu info is in a per-cpu pointer and the original reason for this 103 * hypercall. 104 * 105 */ 106 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu); 107 108 /* 109 * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info 110 * hypercall. This can be used both in PV and PVHVM mode. The structure 111 * overrides the default per_cpu(xen_vcpu, cpu) value. 112 */ 113 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info); 114 115 enum xen_domain_type xen_domain_type = XEN_NATIVE; 116 EXPORT_SYMBOL_GPL(xen_domain_type); 117 118 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START; 119 EXPORT_SYMBOL(machine_to_phys_mapping); 120 unsigned long machine_to_phys_nr; 121 EXPORT_SYMBOL(machine_to_phys_nr); 122 123 struct start_info *xen_start_info; 124 EXPORT_SYMBOL_GPL(xen_start_info); 125 126 struct shared_info xen_dummy_shared_info; 127 128 void *xen_initial_gdt; 129 130 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE); 131 __read_mostly int xen_have_vector_callback; 132 EXPORT_SYMBOL_GPL(xen_have_vector_callback); 133 134 /* 135 * Point at some empty memory to start with. We map the real shared_info 136 * page as soon as fixmap is up and running. 137 */ 138 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info; 139 140 /* 141 * Flag to determine whether vcpu info placement is available on all 142 * VCPUs. We assume it is to start with, and then set it to zero on 143 * the first failure. This is because it can succeed on some VCPUs 144 * and not others, since it can involve hypervisor memory allocation, 145 * or because the guest failed to guarantee all the appropriate 146 * constraints on all VCPUs (ie buffer can't cross a page boundary). 147 * 148 * Note that any particular CPU may be using a placed vcpu structure, 149 * but we can only optimise if the all are. 150 * 151 * 0: not available, 1: available 152 */ 153 static int have_vcpu_info_placement = 1; 154 155 struct tls_descs { 156 struct desc_struct desc[3]; 157 }; 158 159 /* 160 * Updating the 3 TLS descriptors in the GDT on every task switch is 161 * surprisingly expensive so we avoid updating them if they haven't 162 * changed. Since Xen writes different descriptors than the one 163 * passed in the update_descriptor hypercall we keep shadow copies to 164 * compare against. 165 */ 166 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc); 167 168 static void clamp_max_cpus(void) 169 { 170 #ifdef CONFIG_SMP 171 if (setup_max_cpus > MAX_VIRT_CPUS) 172 setup_max_cpus = MAX_VIRT_CPUS; 173 #endif 174 } 175 176 static void xen_vcpu_setup(int cpu) 177 { 178 struct vcpu_register_vcpu_info info; 179 int err; 180 struct vcpu_info *vcpup; 181 182 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info); 183 184 /* 185 * This path is called twice on PVHVM - first during bootup via 186 * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being 187 * hotplugged: cpu_up -> xen_hvm_cpu_notify. 188 * As we can only do the VCPUOP_register_vcpu_info once lets 189 * not over-write its result. 190 * 191 * For PV it is called during restore (xen_vcpu_restore) and bootup 192 * (xen_setup_vcpu_info_placement). The hotplug mechanism does not 193 * use this function. 194 */ 195 if (xen_hvm_domain()) { 196 if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu)) 197 return; 198 } 199 if (cpu < MAX_VIRT_CPUS) 200 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu]; 201 202 if (!have_vcpu_info_placement) { 203 if (cpu >= MAX_VIRT_CPUS) 204 clamp_max_cpus(); 205 return; 206 } 207 208 vcpup = &per_cpu(xen_vcpu_info, cpu); 209 info.mfn = arbitrary_virt_to_mfn(vcpup); 210 info.offset = offset_in_page(vcpup); 211 212 /* Check to see if the hypervisor will put the vcpu_info 213 structure where we want it, which allows direct access via 214 a percpu-variable. 215 N.B. This hypercall can _only_ be called once per CPU. Subsequent 216 calls will error out with -EINVAL. This is due to the fact that 217 hypervisor has no unregister variant and this hypercall does not 218 allow to over-write info.mfn and info.offset. 219 */ 220 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info); 221 222 if (err) { 223 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err); 224 have_vcpu_info_placement = 0; 225 clamp_max_cpus(); 226 } else { 227 /* This cpu is using the registered vcpu info, even if 228 later ones fail to. */ 229 per_cpu(xen_vcpu, cpu) = vcpup; 230 } 231 } 232 233 /* 234 * On restore, set the vcpu placement up again. 235 * If it fails, then we're in a bad state, since 236 * we can't back out from using it... 237 */ 238 void xen_vcpu_restore(void) 239 { 240 int cpu; 241 242 for_each_possible_cpu(cpu) { 243 bool other_cpu = (cpu != smp_processor_id()); 244 bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL); 245 246 if (other_cpu && is_up && 247 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL)) 248 BUG(); 249 250 xen_setup_runstate_info(cpu); 251 252 if (have_vcpu_info_placement) 253 xen_vcpu_setup(cpu); 254 255 if (other_cpu && is_up && 256 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL)) 257 BUG(); 258 } 259 } 260 261 static void __init xen_banner(void) 262 { 263 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL); 264 struct xen_extraversion extra; 265 HYPERVISOR_xen_version(XENVER_extraversion, &extra); 266 267 pr_info("Booting paravirtualized kernel %son %s\n", 268 xen_feature(XENFEAT_auto_translated_physmap) ? 269 "with PVH extensions " : "", pv_info.name); 270 printk(KERN_INFO "Xen version: %d.%d%s%s\n", 271 version >> 16, version & 0xffff, extra.extraversion, 272 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : ""); 273 } 274 /* Check if running on Xen version (major, minor) or later */ 275 bool 276 xen_running_on_version_or_later(unsigned int major, unsigned int minor) 277 { 278 unsigned int version; 279 280 if (!xen_domain()) 281 return false; 282 283 version = HYPERVISOR_xen_version(XENVER_version, NULL); 284 if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) || 285 ((version >> 16) > major)) 286 return true; 287 return false; 288 } 289 290 #define CPUID_THERM_POWER_LEAF 6 291 #define APERFMPERF_PRESENT 0 292 293 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0; 294 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0; 295 296 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask; 297 static __read_mostly unsigned int cpuid_leaf5_ecx_val; 298 static __read_mostly unsigned int cpuid_leaf5_edx_val; 299 300 static void xen_cpuid(unsigned int *ax, unsigned int *bx, 301 unsigned int *cx, unsigned int *dx) 302 { 303 unsigned maskebx = ~0; 304 unsigned maskecx = ~0; 305 unsigned maskedx = ~0; 306 unsigned setecx = 0; 307 /* 308 * Mask out inconvenient features, to try and disable as many 309 * unsupported kernel subsystems as possible. 310 */ 311 switch (*ax) { 312 case 1: 313 maskecx = cpuid_leaf1_ecx_mask; 314 setecx = cpuid_leaf1_ecx_set_mask; 315 maskedx = cpuid_leaf1_edx_mask; 316 break; 317 318 case CPUID_MWAIT_LEAF: 319 /* Synthesize the values.. */ 320 *ax = 0; 321 *bx = 0; 322 *cx = cpuid_leaf5_ecx_val; 323 *dx = cpuid_leaf5_edx_val; 324 return; 325 326 case CPUID_THERM_POWER_LEAF: 327 /* Disabling APERFMPERF for kernel usage */ 328 maskecx = ~(1 << APERFMPERF_PRESENT); 329 break; 330 331 case 0xb: 332 /* Suppress extended topology stuff */ 333 maskebx = 0; 334 break; 335 } 336 337 asm(XEN_EMULATE_PREFIX "cpuid" 338 : "=a" (*ax), 339 "=b" (*bx), 340 "=c" (*cx), 341 "=d" (*dx) 342 : "0" (*ax), "2" (*cx)); 343 344 *bx &= maskebx; 345 *cx &= maskecx; 346 *cx |= setecx; 347 *dx &= maskedx; 348 349 } 350 351 static bool __init xen_check_mwait(void) 352 { 353 #ifdef CONFIG_ACPI 354 struct xen_platform_op op = { 355 .cmd = XENPF_set_processor_pminfo, 356 .u.set_pminfo.id = -1, 357 .u.set_pminfo.type = XEN_PM_PDC, 358 }; 359 uint32_t buf[3]; 360 unsigned int ax, bx, cx, dx; 361 unsigned int mwait_mask; 362 363 /* We need to determine whether it is OK to expose the MWAIT 364 * capability to the kernel to harvest deeper than C3 states from ACPI 365 * _CST using the processor_harvest_xen.c module. For this to work, we 366 * need to gather the MWAIT_LEAF values (which the cstate.c code 367 * checks against). The hypervisor won't expose the MWAIT flag because 368 * it would break backwards compatibility; so we will find out directly 369 * from the hardware and hypercall. 370 */ 371 if (!xen_initial_domain()) 372 return false; 373 374 /* 375 * When running under platform earlier than Xen4.2, do not expose 376 * mwait, to avoid the risk of loading native acpi pad driver 377 */ 378 if (!xen_running_on_version_or_later(4, 2)) 379 return false; 380 381 ax = 1; 382 cx = 0; 383 384 native_cpuid(&ax, &bx, &cx, &dx); 385 386 mwait_mask = (1 << (X86_FEATURE_EST % 32)) | 387 (1 << (X86_FEATURE_MWAIT % 32)); 388 389 if ((cx & mwait_mask) != mwait_mask) 390 return false; 391 392 /* We need to emulate the MWAIT_LEAF and for that we need both 393 * ecx and edx. The hypercall provides only partial information. 394 */ 395 396 ax = CPUID_MWAIT_LEAF; 397 bx = 0; 398 cx = 0; 399 dx = 0; 400 401 native_cpuid(&ax, &bx, &cx, &dx); 402 403 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so, 404 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3. 405 */ 406 buf[0] = ACPI_PDC_REVISION_ID; 407 buf[1] = 1; 408 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP); 409 410 set_xen_guest_handle(op.u.set_pminfo.pdc, buf); 411 412 if ((HYPERVISOR_dom0_op(&op) == 0) && 413 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) { 414 cpuid_leaf5_ecx_val = cx; 415 cpuid_leaf5_edx_val = dx; 416 } 417 return true; 418 #else 419 return false; 420 #endif 421 } 422 static void __init xen_init_cpuid_mask(void) 423 { 424 unsigned int ax, bx, cx, dx; 425 unsigned int xsave_mask; 426 427 cpuid_leaf1_edx_mask = 428 ~((1 << X86_FEATURE_MTRR) | /* disable MTRR */ 429 (1 << X86_FEATURE_ACC)); /* thermal monitoring */ 430 431 if (!xen_initial_domain()) 432 cpuid_leaf1_edx_mask &= 433 ~((1 << X86_FEATURE_ACPI)); /* disable ACPI */ 434 435 cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32)); 436 437 ax = 1; 438 cx = 0; 439 cpuid(1, &ax, &bx, &cx, &dx); 440 441 xsave_mask = 442 (1 << (X86_FEATURE_XSAVE % 32)) | 443 (1 << (X86_FEATURE_OSXSAVE % 32)); 444 445 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */ 446 if ((cx & xsave_mask) != xsave_mask) 447 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */ 448 if (xen_check_mwait()) 449 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32)); 450 } 451 452 static void xen_set_debugreg(int reg, unsigned long val) 453 { 454 HYPERVISOR_set_debugreg(reg, val); 455 } 456 457 static unsigned long xen_get_debugreg(int reg) 458 { 459 return HYPERVISOR_get_debugreg(reg); 460 } 461 462 static void xen_end_context_switch(struct task_struct *next) 463 { 464 xen_mc_flush(); 465 paravirt_end_context_switch(next); 466 } 467 468 static unsigned long xen_store_tr(void) 469 { 470 return 0; 471 } 472 473 /* 474 * Set the page permissions for a particular virtual address. If the 475 * address is a vmalloc mapping (or other non-linear mapping), then 476 * find the linear mapping of the page and also set its protections to 477 * match. 478 */ 479 static void set_aliased_prot(void *v, pgprot_t prot) 480 { 481 int level; 482 pte_t *ptep; 483 pte_t pte; 484 unsigned long pfn; 485 struct page *page; 486 unsigned char dummy; 487 488 ptep = lookup_address((unsigned long)v, &level); 489 BUG_ON(ptep == NULL); 490 491 pfn = pte_pfn(*ptep); 492 page = pfn_to_page(pfn); 493 494 pte = pfn_pte(pfn, prot); 495 496 /* 497 * Careful: update_va_mapping() will fail if the virtual address 498 * we're poking isn't populated in the page tables. We don't 499 * need to worry about the direct map (that's always in the page 500 * tables), but we need to be careful about vmap space. In 501 * particular, the top level page table can lazily propagate 502 * entries between processes, so if we've switched mms since we 503 * vmapped the target in the first place, we might not have the 504 * top-level page table entry populated. 505 * 506 * We disable preemption because we want the same mm active when 507 * we probe the target and when we issue the hypercall. We'll 508 * have the same nominal mm, but if we're a kernel thread, lazy 509 * mm dropping could change our pgd. 510 * 511 * Out of an abundance of caution, this uses __get_user() to fault 512 * in the target address just in case there's some obscure case 513 * in which the target address isn't readable. 514 */ 515 516 preempt_disable(); 517 518 pagefault_disable(); /* Avoid warnings due to being atomic. */ 519 __get_user(dummy, (unsigned char __user __force *)v); 520 pagefault_enable(); 521 522 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0)) 523 BUG(); 524 525 if (!PageHighMem(page)) { 526 void *av = __va(PFN_PHYS(pfn)); 527 528 if (av != v) 529 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0)) 530 BUG(); 531 } else 532 kmap_flush_unused(); 533 534 preempt_enable(); 535 } 536 537 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries) 538 { 539 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; 540 int i; 541 542 /* 543 * We need to mark the all aliases of the LDT pages RO. We 544 * don't need to call vm_flush_aliases(), though, since that's 545 * only responsible for flushing aliases out the TLBs, not the 546 * page tables, and Xen will flush the TLB for us if needed. 547 * 548 * To avoid confusing future readers: none of this is necessary 549 * to load the LDT. The hypervisor only checks this when the 550 * LDT is faulted in due to subsequent descriptor access. 551 */ 552 553 for(i = 0; i < entries; i += entries_per_page) 554 set_aliased_prot(ldt + i, PAGE_KERNEL_RO); 555 } 556 557 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries) 558 { 559 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; 560 int i; 561 562 for(i = 0; i < entries; i += entries_per_page) 563 set_aliased_prot(ldt + i, PAGE_KERNEL); 564 } 565 566 static void xen_set_ldt(const void *addr, unsigned entries) 567 { 568 struct mmuext_op *op; 569 struct multicall_space mcs = xen_mc_entry(sizeof(*op)); 570 571 trace_xen_cpu_set_ldt(addr, entries); 572 573 op = mcs.args; 574 op->cmd = MMUEXT_SET_LDT; 575 op->arg1.linear_addr = (unsigned long)addr; 576 op->arg2.nr_ents = entries; 577 578 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 579 580 xen_mc_issue(PARAVIRT_LAZY_CPU); 581 } 582 583 static void xen_load_gdt(const struct desc_ptr *dtr) 584 { 585 unsigned long va = dtr->address; 586 unsigned int size = dtr->size + 1; 587 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE; 588 unsigned long frames[pages]; 589 int f; 590 591 /* 592 * A GDT can be up to 64k in size, which corresponds to 8192 593 * 8-byte entries, or 16 4k pages.. 594 */ 595 596 BUG_ON(size > 65536); 597 BUG_ON(va & ~PAGE_MASK); 598 599 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) { 600 int level; 601 pte_t *ptep; 602 unsigned long pfn, mfn; 603 void *virt; 604 605 /* 606 * The GDT is per-cpu and is in the percpu data area. 607 * That can be virtually mapped, so we need to do a 608 * page-walk to get the underlying MFN for the 609 * hypercall. The page can also be in the kernel's 610 * linear range, so we need to RO that mapping too. 611 */ 612 ptep = lookup_address(va, &level); 613 BUG_ON(ptep == NULL); 614 615 pfn = pte_pfn(*ptep); 616 mfn = pfn_to_mfn(pfn); 617 virt = __va(PFN_PHYS(pfn)); 618 619 frames[f] = mfn; 620 621 make_lowmem_page_readonly((void *)va); 622 make_lowmem_page_readonly(virt); 623 } 624 625 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct))) 626 BUG(); 627 } 628 629 /* 630 * load_gdt for early boot, when the gdt is only mapped once 631 */ 632 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr) 633 { 634 unsigned long va = dtr->address; 635 unsigned int size = dtr->size + 1; 636 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE; 637 unsigned long frames[pages]; 638 int f; 639 640 /* 641 * A GDT can be up to 64k in size, which corresponds to 8192 642 * 8-byte entries, or 16 4k pages.. 643 */ 644 645 BUG_ON(size > 65536); 646 BUG_ON(va & ~PAGE_MASK); 647 648 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) { 649 pte_t pte; 650 unsigned long pfn, mfn; 651 652 pfn = virt_to_pfn(va); 653 mfn = pfn_to_mfn(pfn); 654 655 pte = pfn_pte(pfn, PAGE_KERNEL_RO); 656 657 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0)) 658 BUG(); 659 660 frames[f] = mfn; 661 } 662 663 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct))) 664 BUG(); 665 } 666 667 static inline bool desc_equal(const struct desc_struct *d1, 668 const struct desc_struct *d2) 669 { 670 return d1->a == d2->a && d1->b == d2->b; 671 } 672 673 static void load_TLS_descriptor(struct thread_struct *t, 674 unsigned int cpu, unsigned int i) 675 { 676 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i]; 677 struct desc_struct *gdt; 678 xmaddr_t maddr; 679 struct multicall_space mc; 680 681 if (desc_equal(shadow, &t->tls_array[i])) 682 return; 683 684 *shadow = t->tls_array[i]; 685 686 gdt = get_cpu_gdt_table(cpu); 687 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]); 688 mc = __xen_mc_entry(0); 689 690 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]); 691 } 692 693 static void xen_load_tls(struct thread_struct *t, unsigned int cpu) 694 { 695 /* 696 * XXX sleazy hack: If we're being called in a lazy-cpu zone 697 * and lazy gs handling is enabled, it means we're in a 698 * context switch, and %gs has just been saved. This means we 699 * can zero it out to prevent faults on exit from the 700 * hypervisor if the next process has no %gs. Either way, it 701 * has been saved, and the new value will get loaded properly. 702 * This will go away as soon as Xen has been modified to not 703 * save/restore %gs for normal hypercalls. 704 * 705 * On x86_64, this hack is not used for %gs, because gs points 706 * to KERNEL_GS_BASE (and uses it for PDA references), so we 707 * must not zero %gs on x86_64 708 * 709 * For x86_64, we need to zero %fs, otherwise we may get an 710 * exception between the new %fs descriptor being loaded and 711 * %fs being effectively cleared at __switch_to(). 712 */ 713 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) { 714 #ifdef CONFIG_X86_32 715 lazy_load_gs(0); 716 #else 717 loadsegment(fs, 0); 718 #endif 719 } 720 721 xen_mc_batch(); 722 723 load_TLS_descriptor(t, cpu, 0); 724 load_TLS_descriptor(t, cpu, 1); 725 load_TLS_descriptor(t, cpu, 2); 726 727 xen_mc_issue(PARAVIRT_LAZY_CPU); 728 } 729 730 #ifdef CONFIG_X86_64 731 static void xen_load_gs_index(unsigned int idx) 732 { 733 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx)) 734 BUG(); 735 } 736 #endif 737 738 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum, 739 const void *ptr) 740 { 741 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]); 742 u64 entry = *(u64 *)ptr; 743 744 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry); 745 746 preempt_disable(); 747 748 xen_mc_flush(); 749 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry)) 750 BUG(); 751 752 preempt_enable(); 753 } 754 755 static int cvt_gate_to_trap(int vector, const gate_desc *val, 756 struct trap_info *info) 757 { 758 unsigned long addr; 759 760 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT) 761 return 0; 762 763 info->vector = vector; 764 765 addr = gate_offset(*val); 766 #ifdef CONFIG_X86_64 767 /* 768 * Look for known traps using IST, and substitute them 769 * appropriately. The debugger ones are the only ones we care 770 * about. Xen will handle faults like double_fault, 771 * so we should never see them. Warn if 772 * there's an unexpected IST-using fault handler. 773 */ 774 if (addr == (unsigned long)debug) 775 addr = (unsigned long)xen_debug; 776 else if (addr == (unsigned long)int3) 777 addr = (unsigned long)xen_int3; 778 else if (addr == (unsigned long)stack_segment) 779 addr = (unsigned long)xen_stack_segment; 780 else if (addr == (unsigned long)double_fault) { 781 /* Don't need to handle these */ 782 return 0; 783 #ifdef CONFIG_X86_MCE 784 } else if (addr == (unsigned long)machine_check) { 785 /* 786 * when xen hypervisor inject vMCE to guest, 787 * use native mce handler to handle it 788 */ 789 ; 790 #endif 791 } else if (addr == (unsigned long)nmi) 792 /* 793 * Use the native version as well. 794 */ 795 ; 796 else { 797 /* Some other trap using IST? */ 798 if (WARN_ON(val->ist != 0)) 799 return 0; 800 } 801 #endif /* CONFIG_X86_64 */ 802 info->address = addr; 803 804 info->cs = gate_segment(*val); 805 info->flags = val->dpl; 806 /* interrupt gates clear IF */ 807 if (val->type == GATE_INTERRUPT) 808 info->flags |= 1 << 2; 809 810 return 1; 811 } 812 813 /* Locations of each CPU's IDT */ 814 static DEFINE_PER_CPU(struct desc_ptr, idt_desc); 815 816 /* Set an IDT entry. If the entry is part of the current IDT, then 817 also update Xen. */ 818 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g) 819 { 820 unsigned long p = (unsigned long)&dt[entrynum]; 821 unsigned long start, end; 822 823 trace_xen_cpu_write_idt_entry(dt, entrynum, g); 824 825 preempt_disable(); 826 827 start = __this_cpu_read(idt_desc.address); 828 end = start + __this_cpu_read(idt_desc.size) + 1; 829 830 xen_mc_flush(); 831 832 native_write_idt_entry(dt, entrynum, g); 833 834 if (p >= start && (p + 8) <= end) { 835 struct trap_info info[2]; 836 837 info[1].address = 0; 838 839 if (cvt_gate_to_trap(entrynum, g, &info[0])) 840 if (HYPERVISOR_set_trap_table(info)) 841 BUG(); 842 } 843 844 preempt_enable(); 845 } 846 847 static void xen_convert_trap_info(const struct desc_ptr *desc, 848 struct trap_info *traps) 849 { 850 unsigned in, out, count; 851 852 count = (desc->size+1) / sizeof(gate_desc); 853 BUG_ON(count > 256); 854 855 for (in = out = 0; in < count; in++) { 856 gate_desc *entry = (gate_desc*)(desc->address) + in; 857 858 if (cvt_gate_to_trap(in, entry, &traps[out])) 859 out++; 860 } 861 traps[out].address = 0; 862 } 863 864 void xen_copy_trap_info(struct trap_info *traps) 865 { 866 const struct desc_ptr *desc = this_cpu_ptr(&idt_desc); 867 868 xen_convert_trap_info(desc, traps); 869 } 870 871 /* Load a new IDT into Xen. In principle this can be per-CPU, so we 872 hold a spinlock to protect the static traps[] array (static because 873 it avoids allocation, and saves stack space). */ 874 static void xen_load_idt(const struct desc_ptr *desc) 875 { 876 static DEFINE_SPINLOCK(lock); 877 static struct trap_info traps[257]; 878 879 trace_xen_cpu_load_idt(desc); 880 881 spin_lock(&lock); 882 883 memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc)); 884 885 xen_convert_trap_info(desc, traps); 886 887 xen_mc_flush(); 888 if (HYPERVISOR_set_trap_table(traps)) 889 BUG(); 890 891 spin_unlock(&lock); 892 } 893 894 /* Write a GDT descriptor entry. Ignore LDT descriptors, since 895 they're handled differently. */ 896 static void xen_write_gdt_entry(struct desc_struct *dt, int entry, 897 const void *desc, int type) 898 { 899 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type); 900 901 preempt_disable(); 902 903 switch (type) { 904 case DESC_LDT: 905 case DESC_TSS: 906 /* ignore */ 907 break; 908 909 default: { 910 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]); 911 912 xen_mc_flush(); 913 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) 914 BUG(); 915 } 916 917 } 918 919 preempt_enable(); 920 } 921 922 /* 923 * Version of write_gdt_entry for use at early boot-time needed to 924 * update an entry as simply as possible. 925 */ 926 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry, 927 const void *desc, int type) 928 { 929 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type); 930 931 switch (type) { 932 case DESC_LDT: 933 case DESC_TSS: 934 /* ignore */ 935 break; 936 937 default: { 938 xmaddr_t maddr = virt_to_machine(&dt[entry]); 939 940 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) 941 dt[entry] = *(struct desc_struct *)desc; 942 } 943 944 } 945 } 946 947 static void xen_load_sp0(struct tss_struct *tss, 948 struct thread_struct *thread) 949 { 950 struct multicall_space mcs; 951 952 mcs = xen_mc_entry(0); 953 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0); 954 xen_mc_issue(PARAVIRT_LAZY_CPU); 955 tss->x86_tss.sp0 = thread->sp0; 956 } 957 958 static void xen_set_iopl_mask(unsigned mask) 959 { 960 struct physdev_set_iopl set_iopl; 961 962 /* Force the change at ring 0. */ 963 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3; 964 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); 965 } 966 967 static void xen_io_delay(void) 968 { 969 } 970 971 static void xen_clts(void) 972 { 973 struct multicall_space mcs; 974 975 mcs = xen_mc_entry(0); 976 977 MULTI_fpu_taskswitch(mcs.mc, 0); 978 979 xen_mc_issue(PARAVIRT_LAZY_CPU); 980 } 981 982 static DEFINE_PER_CPU(unsigned long, xen_cr0_value); 983 984 static unsigned long xen_read_cr0(void) 985 { 986 unsigned long cr0 = this_cpu_read(xen_cr0_value); 987 988 if (unlikely(cr0 == 0)) { 989 cr0 = native_read_cr0(); 990 this_cpu_write(xen_cr0_value, cr0); 991 } 992 993 return cr0; 994 } 995 996 static void xen_write_cr0(unsigned long cr0) 997 { 998 struct multicall_space mcs; 999 1000 this_cpu_write(xen_cr0_value, cr0); 1001 1002 /* Only pay attention to cr0.TS; everything else is 1003 ignored. */ 1004 mcs = xen_mc_entry(0); 1005 1006 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0); 1007 1008 xen_mc_issue(PARAVIRT_LAZY_CPU); 1009 } 1010 1011 static void xen_write_cr4(unsigned long cr4) 1012 { 1013 cr4 &= ~X86_CR4_PGE; 1014 cr4 &= ~X86_CR4_PSE; 1015 1016 native_write_cr4(cr4); 1017 } 1018 #ifdef CONFIG_X86_64 1019 static inline unsigned long xen_read_cr8(void) 1020 { 1021 return 0; 1022 } 1023 static inline void xen_write_cr8(unsigned long val) 1024 { 1025 BUG_ON(val); 1026 } 1027 #endif 1028 1029 static u64 xen_read_msr_safe(unsigned int msr, int *err) 1030 { 1031 u64 val; 1032 1033 val = native_read_msr_safe(msr, err); 1034 switch (msr) { 1035 case MSR_IA32_APICBASE: 1036 #ifdef CONFIG_X86_X2APIC 1037 if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31)))) 1038 #endif 1039 val &= ~X2APIC_ENABLE; 1040 break; 1041 } 1042 return val; 1043 } 1044 1045 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high) 1046 { 1047 int ret; 1048 1049 ret = 0; 1050 1051 switch (msr) { 1052 #ifdef CONFIG_X86_64 1053 unsigned which; 1054 u64 base; 1055 1056 case MSR_FS_BASE: which = SEGBASE_FS; goto set; 1057 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set; 1058 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set; 1059 1060 set: 1061 base = ((u64)high << 32) | low; 1062 if (HYPERVISOR_set_segment_base(which, base) != 0) 1063 ret = -EIO; 1064 break; 1065 #endif 1066 1067 case MSR_STAR: 1068 case MSR_CSTAR: 1069 case MSR_LSTAR: 1070 case MSR_SYSCALL_MASK: 1071 case MSR_IA32_SYSENTER_CS: 1072 case MSR_IA32_SYSENTER_ESP: 1073 case MSR_IA32_SYSENTER_EIP: 1074 /* Fast syscall setup is all done in hypercalls, so 1075 these are all ignored. Stub them out here to stop 1076 Xen console noise. */ 1077 1078 default: 1079 ret = native_write_msr_safe(msr, low, high); 1080 } 1081 1082 return ret; 1083 } 1084 1085 void xen_setup_shared_info(void) 1086 { 1087 if (!xen_feature(XENFEAT_auto_translated_physmap)) { 1088 set_fixmap(FIX_PARAVIRT_BOOTMAP, 1089 xen_start_info->shared_info); 1090 1091 HYPERVISOR_shared_info = 1092 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP); 1093 } else 1094 HYPERVISOR_shared_info = 1095 (struct shared_info *)__va(xen_start_info->shared_info); 1096 1097 #ifndef CONFIG_SMP 1098 /* In UP this is as good a place as any to set up shared info */ 1099 xen_setup_vcpu_info_placement(); 1100 #endif 1101 1102 xen_setup_mfn_list_list(); 1103 } 1104 1105 /* This is called once we have the cpu_possible_mask */ 1106 void xen_setup_vcpu_info_placement(void) 1107 { 1108 int cpu; 1109 1110 for_each_possible_cpu(cpu) 1111 xen_vcpu_setup(cpu); 1112 1113 /* xen_vcpu_setup managed to place the vcpu_info within the 1114 * percpu area for all cpus, so make use of it. Note that for 1115 * PVH we want to use native IRQ mechanism. */ 1116 if (have_vcpu_info_placement && !xen_pvh_domain()) { 1117 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct); 1118 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct); 1119 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct); 1120 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct); 1121 pv_mmu_ops.read_cr2 = xen_read_cr2_direct; 1122 } 1123 } 1124 1125 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf, 1126 unsigned long addr, unsigned len) 1127 { 1128 char *start, *end, *reloc; 1129 unsigned ret; 1130 1131 start = end = reloc = NULL; 1132 1133 #define SITE(op, x) \ 1134 case PARAVIRT_PATCH(op.x): \ 1135 if (have_vcpu_info_placement) { \ 1136 start = (char *)xen_##x##_direct; \ 1137 end = xen_##x##_direct_end; \ 1138 reloc = xen_##x##_direct_reloc; \ 1139 } \ 1140 goto patch_site 1141 1142 switch (type) { 1143 SITE(pv_irq_ops, irq_enable); 1144 SITE(pv_irq_ops, irq_disable); 1145 SITE(pv_irq_ops, save_fl); 1146 SITE(pv_irq_ops, restore_fl); 1147 #undef SITE 1148 1149 patch_site: 1150 if (start == NULL || (end-start) > len) 1151 goto default_patch; 1152 1153 ret = paravirt_patch_insns(insnbuf, len, start, end); 1154 1155 /* Note: because reloc is assigned from something that 1156 appears to be an array, gcc assumes it's non-null, 1157 but doesn't know its relationship with start and 1158 end. */ 1159 if (reloc > start && reloc < end) { 1160 int reloc_off = reloc - start; 1161 long *relocp = (long *)(insnbuf + reloc_off); 1162 long delta = start - (char *)addr; 1163 1164 *relocp += delta; 1165 } 1166 break; 1167 1168 default_patch: 1169 default: 1170 ret = paravirt_patch_default(type, clobbers, insnbuf, 1171 addr, len); 1172 break; 1173 } 1174 1175 return ret; 1176 } 1177 1178 static const struct pv_info xen_info __initconst = { 1179 .paravirt_enabled = 1, 1180 .shared_kernel_pmd = 0, 1181 1182 #ifdef CONFIG_X86_64 1183 .extra_user_64bit_cs = FLAT_USER_CS64, 1184 #endif 1185 1186 .name = "Xen", 1187 }; 1188 1189 static const struct pv_init_ops xen_init_ops __initconst = { 1190 .patch = xen_patch, 1191 }; 1192 1193 static const struct pv_cpu_ops xen_cpu_ops __initconst = { 1194 .cpuid = xen_cpuid, 1195 1196 .set_debugreg = xen_set_debugreg, 1197 .get_debugreg = xen_get_debugreg, 1198 1199 .clts = xen_clts, 1200 1201 .read_cr0 = xen_read_cr0, 1202 .write_cr0 = xen_write_cr0, 1203 1204 .read_cr4 = native_read_cr4, 1205 .read_cr4_safe = native_read_cr4_safe, 1206 .write_cr4 = xen_write_cr4, 1207 1208 #ifdef CONFIG_X86_64 1209 .read_cr8 = xen_read_cr8, 1210 .write_cr8 = xen_write_cr8, 1211 #endif 1212 1213 .wbinvd = native_wbinvd, 1214 1215 .read_msr = xen_read_msr_safe, 1216 .write_msr = xen_write_msr_safe, 1217 1218 .read_tsc = native_read_tsc, 1219 .read_pmc = native_read_pmc, 1220 1221 .read_tscp = native_read_tscp, 1222 1223 .iret = xen_iret, 1224 #ifdef CONFIG_X86_64 1225 .usergs_sysret32 = xen_sysret32, 1226 .usergs_sysret64 = xen_sysret64, 1227 #else 1228 .irq_enable_sysexit = xen_sysexit, 1229 #endif 1230 1231 .load_tr_desc = paravirt_nop, 1232 .set_ldt = xen_set_ldt, 1233 .load_gdt = xen_load_gdt, 1234 .load_idt = xen_load_idt, 1235 .load_tls = xen_load_tls, 1236 #ifdef CONFIG_X86_64 1237 .load_gs_index = xen_load_gs_index, 1238 #endif 1239 1240 .alloc_ldt = xen_alloc_ldt, 1241 .free_ldt = xen_free_ldt, 1242 1243 .store_idt = native_store_idt, 1244 .store_tr = xen_store_tr, 1245 1246 .write_ldt_entry = xen_write_ldt_entry, 1247 .write_gdt_entry = xen_write_gdt_entry, 1248 .write_idt_entry = xen_write_idt_entry, 1249 .load_sp0 = xen_load_sp0, 1250 1251 .set_iopl_mask = xen_set_iopl_mask, 1252 .io_delay = xen_io_delay, 1253 1254 /* Xen takes care of %gs when switching to usermode for us */ 1255 .swapgs = paravirt_nop, 1256 1257 .start_context_switch = paravirt_start_context_switch, 1258 .end_context_switch = xen_end_context_switch, 1259 }; 1260 1261 static const struct pv_apic_ops xen_apic_ops __initconst = { 1262 #ifdef CONFIG_X86_LOCAL_APIC 1263 .startup_ipi_hook = paravirt_nop, 1264 #endif 1265 }; 1266 1267 static void xen_reboot(int reason) 1268 { 1269 struct sched_shutdown r = { .reason = reason }; 1270 1271 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r)) 1272 BUG(); 1273 } 1274 1275 static void xen_restart(char *msg) 1276 { 1277 xen_reboot(SHUTDOWN_reboot); 1278 } 1279 1280 static void xen_emergency_restart(void) 1281 { 1282 xen_reboot(SHUTDOWN_reboot); 1283 } 1284 1285 static void xen_machine_halt(void) 1286 { 1287 xen_reboot(SHUTDOWN_poweroff); 1288 } 1289 1290 static void xen_machine_power_off(void) 1291 { 1292 if (pm_power_off) 1293 pm_power_off(); 1294 xen_reboot(SHUTDOWN_poweroff); 1295 } 1296 1297 static void xen_crash_shutdown(struct pt_regs *regs) 1298 { 1299 xen_reboot(SHUTDOWN_crash); 1300 } 1301 1302 static int 1303 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr) 1304 { 1305 xen_reboot(SHUTDOWN_crash); 1306 return NOTIFY_DONE; 1307 } 1308 1309 static struct notifier_block xen_panic_block = { 1310 .notifier_call= xen_panic_event, 1311 .priority = INT_MIN 1312 }; 1313 1314 int xen_panic_handler_init(void) 1315 { 1316 atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block); 1317 return 0; 1318 } 1319 1320 static const struct machine_ops xen_machine_ops __initconst = { 1321 .restart = xen_restart, 1322 .halt = xen_machine_halt, 1323 .power_off = xen_machine_power_off, 1324 .shutdown = xen_machine_halt, 1325 .crash_shutdown = xen_crash_shutdown, 1326 .emergency_restart = xen_emergency_restart, 1327 }; 1328 1329 static unsigned char xen_get_nmi_reason(void) 1330 { 1331 unsigned char reason = 0; 1332 1333 /* Construct a value which looks like it came from port 0x61. */ 1334 if (test_bit(_XEN_NMIREASON_io_error, 1335 &HYPERVISOR_shared_info->arch.nmi_reason)) 1336 reason |= NMI_REASON_IOCHK; 1337 if (test_bit(_XEN_NMIREASON_pci_serr, 1338 &HYPERVISOR_shared_info->arch.nmi_reason)) 1339 reason |= NMI_REASON_SERR; 1340 1341 return reason; 1342 } 1343 1344 static void __init xen_boot_params_init_edd(void) 1345 { 1346 #if IS_ENABLED(CONFIG_EDD) 1347 struct xen_platform_op op; 1348 struct edd_info *edd_info; 1349 u32 *mbr_signature; 1350 unsigned nr; 1351 int ret; 1352 1353 edd_info = boot_params.eddbuf; 1354 mbr_signature = boot_params.edd_mbr_sig_buffer; 1355 1356 op.cmd = XENPF_firmware_info; 1357 1358 op.u.firmware_info.type = XEN_FW_DISK_INFO; 1359 for (nr = 0; nr < EDDMAXNR; nr++) { 1360 struct edd_info *info = edd_info + nr; 1361 1362 op.u.firmware_info.index = nr; 1363 info->params.length = sizeof(info->params); 1364 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params, 1365 &info->params); 1366 ret = HYPERVISOR_dom0_op(&op); 1367 if (ret) 1368 break; 1369 1370 #define C(x) info->x = op.u.firmware_info.u.disk_info.x 1371 C(device); 1372 C(version); 1373 C(interface_support); 1374 C(legacy_max_cylinder); 1375 C(legacy_max_head); 1376 C(legacy_sectors_per_track); 1377 #undef C 1378 } 1379 boot_params.eddbuf_entries = nr; 1380 1381 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE; 1382 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) { 1383 op.u.firmware_info.index = nr; 1384 ret = HYPERVISOR_dom0_op(&op); 1385 if (ret) 1386 break; 1387 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature; 1388 } 1389 boot_params.edd_mbr_sig_buf_entries = nr; 1390 #endif 1391 } 1392 1393 /* 1394 * Set up the GDT and segment registers for -fstack-protector. Until 1395 * we do this, we have to be careful not to call any stack-protected 1396 * function, which is most of the kernel. 1397 * 1398 * Note, that it is __ref because the only caller of this after init 1399 * is PVH which is not going to use xen_load_gdt_boot or other 1400 * __init functions. 1401 */ 1402 static void __ref xen_setup_gdt(int cpu) 1403 { 1404 if (xen_feature(XENFEAT_auto_translated_physmap)) { 1405 #ifdef CONFIG_X86_64 1406 unsigned long dummy; 1407 1408 load_percpu_segment(cpu); /* We need to access per-cpu area */ 1409 switch_to_new_gdt(cpu); /* GDT and GS set */ 1410 1411 /* We are switching of the Xen provided GDT to our HVM mode 1412 * GDT. The new GDT has __KERNEL_CS with CS.L = 1 1413 * and we are jumping to reload it. 1414 */ 1415 asm volatile ("pushq %0\n" 1416 "leaq 1f(%%rip),%0\n" 1417 "pushq %0\n" 1418 "lretq\n" 1419 "1:\n" 1420 : "=&r" (dummy) : "0" (__KERNEL_CS)); 1421 1422 /* 1423 * While not needed, we also set the %es, %ds, and %fs 1424 * to zero. We don't care about %ss as it is NULL. 1425 * Strictly speaking this is not needed as Xen zeros those 1426 * out (and also MSR_FS_BASE, MSR_GS_BASE, MSR_KERNEL_GS_BASE) 1427 * 1428 * Linux zeros them in cpu_init() and in secondary_startup_64 1429 * (for BSP). 1430 */ 1431 loadsegment(es, 0); 1432 loadsegment(ds, 0); 1433 loadsegment(fs, 0); 1434 #else 1435 /* PVH: TODO Implement. */ 1436 BUG(); 1437 #endif 1438 return; /* PVH does not need any PV GDT ops. */ 1439 } 1440 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot; 1441 pv_cpu_ops.load_gdt = xen_load_gdt_boot; 1442 1443 setup_stack_canary_segment(0); 1444 switch_to_new_gdt(0); 1445 1446 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry; 1447 pv_cpu_ops.load_gdt = xen_load_gdt; 1448 } 1449 1450 #ifdef CONFIG_XEN_PVH 1451 /* 1452 * A PV guest starts with default flags that are not set for PVH, set them 1453 * here asap. 1454 */ 1455 static void xen_pvh_set_cr_flags(int cpu) 1456 { 1457 1458 /* Some of these are setup in 'secondary_startup_64'. The others: 1459 * X86_CR0_TS, X86_CR0_PE, X86_CR0_ET are set by Xen for HVM guests 1460 * (which PVH shared codepaths), while X86_CR0_PG is for PVH. */ 1461 write_cr0(read_cr0() | X86_CR0_MP | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM); 1462 1463 if (!cpu) 1464 return; 1465 /* 1466 * For BSP, PSE PGE are set in probe_page_size_mask(), for APs 1467 * set them here. For all, OSFXSR OSXMMEXCPT are set in fpu__init_cpu(). 1468 */ 1469 if (cpu_has_pse) 1470 cr4_set_bits_and_update_boot(X86_CR4_PSE); 1471 1472 if (cpu_has_pge) 1473 cr4_set_bits_and_update_boot(X86_CR4_PGE); 1474 } 1475 1476 /* 1477 * Note, that it is ref - because the only caller of this after init 1478 * is PVH which is not going to use xen_load_gdt_boot or other 1479 * __init functions. 1480 */ 1481 void __ref xen_pvh_secondary_vcpu_init(int cpu) 1482 { 1483 xen_setup_gdt(cpu); 1484 xen_pvh_set_cr_flags(cpu); 1485 } 1486 1487 static void __init xen_pvh_early_guest_init(void) 1488 { 1489 if (!xen_feature(XENFEAT_auto_translated_physmap)) 1490 return; 1491 1492 if (!xen_feature(XENFEAT_hvm_callback_vector)) 1493 return; 1494 1495 xen_have_vector_callback = 1; 1496 1497 xen_pvh_early_cpu_init(0, false); 1498 xen_pvh_set_cr_flags(0); 1499 1500 #ifdef CONFIG_X86_32 1501 BUG(); /* PVH: Implement proper support. */ 1502 #endif 1503 } 1504 #endif /* CONFIG_XEN_PVH */ 1505 1506 /* First C function to be called on Xen boot */ 1507 asmlinkage __visible void __init xen_start_kernel(void) 1508 { 1509 struct physdev_set_iopl set_iopl; 1510 unsigned long initrd_start = 0; 1511 u64 pat; 1512 int rc; 1513 1514 if (!xen_start_info) 1515 return; 1516 1517 xen_domain_type = XEN_PV_DOMAIN; 1518 1519 xen_setup_features(); 1520 #ifdef CONFIG_XEN_PVH 1521 xen_pvh_early_guest_init(); 1522 #endif 1523 xen_setup_machphys_mapping(); 1524 1525 /* Install Xen paravirt ops */ 1526 pv_info = xen_info; 1527 pv_init_ops = xen_init_ops; 1528 pv_apic_ops = xen_apic_ops; 1529 if (!xen_pvh_domain()) { 1530 pv_cpu_ops = xen_cpu_ops; 1531 1532 x86_platform.get_nmi_reason = xen_get_nmi_reason; 1533 } 1534 1535 if (xen_feature(XENFEAT_auto_translated_physmap)) 1536 x86_init.resources.memory_setup = xen_auto_xlated_memory_setup; 1537 else 1538 x86_init.resources.memory_setup = xen_memory_setup; 1539 x86_init.oem.arch_setup = xen_arch_setup; 1540 x86_init.oem.banner = xen_banner; 1541 1542 xen_init_time_ops(); 1543 1544 /* 1545 * Set up some pagetable state before starting to set any ptes. 1546 */ 1547 1548 xen_init_mmu_ops(); 1549 1550 /* Prevent unwanted bits from being set in PTEs. */ 1551 __supported_pte_mask &= ~_PAGE_GLOBAL; 1552 1553 /* 1554 * Prevent page tables from being allocated in highmem, even 1555 * if CONFIG_HIGHPTE is enabled. 1556 */ 1557 __userpte_alloc_gfp &= ~__GFP_HIGHMEM; 1558 1559 /* Work out if we support NX */ 1560 x86_configure_nx(); 1561 1562 /* Get mfn list */ 1563 xen_build_dynamic_phys_to_machine(); 1564 1565 /* 1566 * Set up kernel GDT and segment registers, mainly so that 1567 * -fstack-protector code can be executed. 1568 */ 1569 xen_setup_gdt(0); 1570 1571 xen_init_irq_ops(); 1572 xen_init_cpuid_mask(); 1573 1574 #ifdef CONFIG_X86_LOCAL_APIC 1575 /* 1576 * set up the basic apic ops. 1577 */ 1578 xen_init_apic(); 1579 #endif 1580 1581 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) { 1582 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start; 1583 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit; 1584 } 1585 1586 machine_ops = xen_machine_ops; 1587 1588 /* 1589 * The only reliable way to retain the initial address of the 1590 * percpu gdt_page is to remember it here, so we can go and 1591 * mark it RW later, when the initial percpu area is freed. 1592 */ 1593 xen_initial_gdt = &per_cpu(gdt_page, 0); 1594 1595 xen_smp_init(); 1596 1597 #ifdef CONFIG_ACPI_NUMA 1598 /* 1599 * The pages we from Xen are not related to machine pages, so 1600 * any NUMA information the kernel tries to get from ACPI will 1601 * be meaningless. Prevent it from trying. 1602 */ 1603 acpi_numa = -1; 1604 #endif 1605 /* Don't do the full vcpu_info placement stuff until we have a 1606 possible map and a non-dummy shared_info. */ 1607 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0]; 1608 1609 local_irq_disable(); 1610 early_boot_irqs_disabled = true; 1611 1612 xen_raw_console_write("mapping kernel into physical memory\n"); 1613 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, xen_start_info->nr_pages); 1614 1615 /* 1616 * Modify the cache mode translation tables to match Xen's PAT 1617 * configuration. 1618 */ 1619 rdmsrl(MSR_IA32_CR_PAT, pat); 1620 pat_init_cache_modes(pat); 1621 1622 /* keep using Xen gdt for now; no urgent need to change it */ 1623 1624 #ifdef CONFIG_X86_32 1625 pv_info.kernel_rpl = 1; 1626 if (xen_feature(XENFEAT_supervisor_mode_kernel)) 1627 pv_info.kernel_rpl = 0; 1628 #else 1629 pv_info.kernel_rpl = 0; 1630 #endif 1631 /* set the limit of our address space */ 1632 xen_reserve_top(); 1633 1634 /* PVH: runs at default kernel iopl of 0 */ 1635 if (!xen_pvh_domain()) { 1636 /* 1637 * We used to do this in xen_arch_setup, but that is too late 1638 * on AMD were early_cpu_init (run before ->arch_setup()) calls 1639 * early_amd_init which pokes 0xcf8 port. 1640 */ 1641 set_iopl.iopl = 1; 1642 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); 1643 if (rc != 0) 1644 xen_raw_printk("physdev_op failed %d\n", rc); 1645 } 1646 1647 #ifdef CONFIG_X86_32 1648 /* set up basic CPUID stuff */ 1649 cpu_detect(&new_cpu_data); 1650 set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU); 1651 new_cpu_data.wp_works_ok = 1; 1652 new_cpu_data.x86_capability[0] = cpuid_edx(1); 1653 #endif 1654 1655 if (xen_start_info->mod_start) { 1656 if (xen_start_info->flags & SIF_MOD_START_PFN) 1657 initrd_start = PFN_PHYS(xen_start_info->mod_start); 1658 else 1659 initrd_start = __pa(xen_start_info->mod_start); 1660 } 1661 1662 /* Poke various useful things into boot_params */ 1663 boot_params.hdr.type_of_loader = (9 << 4) | 0; 1664 boot_params.hdr.ramdisk_image = initrd_start; 1665 boot_params.hdr.ramdisk_size = xen_start_info->mod_len; 1666 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line); 1667 1668 if (!xen_initial_domain()) { 1669 add_preferred_console("xenboot", 0, NULL); 1670 add_preferred_console("tty", 0, NULL); 1671 add_preferred_console("hvc", 0, NULL); 1672 if (pci_xen) 1673 x86_init.pci.arch_init = pci_xen_init; 1674 } else { 1675 const struct dom0_vga_console_info *info = 1676 (void *)((char *)xen_start_info + 1677 xen_start_info->console.dom0.info_off); 1678 struct xen_platform_op op = { 1679 .cmd = XENPF_firmware_info, 1680 .interface_version = XENPF_INTERFACE_VERSION, 1681 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS, 1682 }; 1683 1684 xen_init_vga(info, xen_start_info->console.dom0.info_size); 1685 xen_start_info->console.domU.mfn = 0; 1686 xen_start_info->console.domU.evtchn = 0; 1687 1688 if (HYPERVISOR_dom0_op(&op) == 0) 1689 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags; 1690 1691 /* Make sure ACS will be enabled */ 1692 pci_request_acs(); 1693 1694 xen_acpi_sleep_register(); 1695 1696 /* Avoid searching for BIOS MP tables */ 1697 x86_init.mpparse.find_smp_config = x86_init_noop; 1698 x86_init.mpparse.get_smp_config = x86_init_uint_noop; 1699 1700 xen_boot_params_init_edd(); 1701 } 1702 #ifdef CONFIG_PCI 1703 /* PCI BIOS service won't work from a PV guest. */ 1704 pci_probe &= ~PCI_PROBE_BIOS; 1705 #endif 1706 xen_raw_console_write("about to get started...\n"); 1707 1708 xen_setup_runstate_info(0); 1709 1710 xen_efi_init(); 1711 1712 /* Start the world */ 1713 #ifdef CONFIG_X86_32 1714 i386_start_kernel(); 1715 #else 1716 cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */ 1717 x86_64_start_reservations((char *)__pa_symbol(&boot_params)); 1718 #endif 1719 } 1720 1721 void __ref xen_hvm_init_shared_info(void) 1722 { 1723 int cpu; 1724 struct xen_add_to_physmap xatp; 1725 static struct shared_info *shared_info_page = 0; 1726 1727 if (!shared_info_page) 1728 shared_info_page = (struct shared_info *) 1729 extend_brk(PAGE_SIZE, PAGE_SIZE); 1730 xatp.domid = DOMID_SELF; 1731 xatp.idx = 0; 1732 xatp.space = XENMAPSPACE_shared_info; 1733 xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT; 1734 if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp)) 1735 BUG(); 1736 1737 HYPERVISOR_shared_info = (struct shared_info *)shared_info_page; 1738 1739 /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info 1740 * page, we use it in the event channel upcall and in some pvclock 1741 * related functions. We don't need the vcpu_info placement 1742 * optimizations because we don't use any pv_mmu or pv_irq op on 1743 * HVM. 1744 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is 1745 * online but xen_hvm_init_shared_info is run at resume time too and 1746 * in that case multiple vcpus might be online. */ 1747 for_each_online_cpu(cpu) { 1748 /* Leave it to be NULL. */ 1749 if (cpu >= MAX_VIRT_CPUS) 1750 continue; 1751 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu]; 1752 } 1753 } 1754 1755 #ifdef CONFIG_XEN_PVHVM 1756 static void __init init_hvm_pv_info(void) 1757 { 1758 int major, minor; 1759 uint32_t eax, ebx, ecx, edx, pages, msr, base; 1760 u64 pfn; 1761 1762 base = xen_cpuid_base(); 1763 cpuid(base + 1, &eax, &ebx, &ecx, &edx); 1764 1765 major = eax >> 16; 1766 minor = eax & 0xffff; 1767 printk(KERN_INFO "Xen version %d.%d.\n", major, minor); 1768 1769 cpuid(base + 2, &pages, &msr, &ecx, &edx); 1770 1771 pfn = __pa(hypercall_page); 1772 wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32)); 1773 1774 xen_setup_features(); 1775 1776 pv_info.name = "Xen HVM"; 1777 1778 xen_domain_type = XEN_HVM_DOMAIN; 1779 } 1780 1781 static int xen_hvm_cpu_notify(struct notifier_block *self, unsigned long action, 1782 void *hcpu) 1783 { 1784 int cpu = (long)hcpu; 1785 switch (action) { 1786 case CPU_UP_PREPARE: 1787 xen_vcpu_setup(cpu); 1788 if (xen_have_vector_callback) { 1789 if (xen_feature(XENFEAT_hvm_safe_pvclock)) 1790 xen_setup_timer(cpu); 1791 } 1792 break; 1793 default: 1794 break; 1795 } 1796 return NOTIFY_OK; 1797 } 1798 1799 static struct notifier_block xen_hvm_cpu_notifier = { 1800 .notifier_call = xen_hvm_cpu_notify, 1801 }; 1802 1803 static void __init xen_hvm_guest_init(void) 1804 { 1805 if (xen_pv_domain()) 1806 return; 1807 1808 init_hvm_pv_info(); 1809 1810 xen_hvm_init_shared_info(); 1811 1812 xen_panic_handler_init(); 1813 1814 if (xen_feature(XENFEAT_hvm_callback_vector)) 1815 xen_have_vector_callback = 1; 1816 xen_hvm_smp_init(); 1817 register_cpu_notifier(&xen_hvm_cpu_notifier); 1818 xen_unplug_emulated_devices(); 1819 x86_init.irqs.intr_init = xen_init_IRQ; 1820 xen_hvm_init_time_ops(); 1821 xen_hvm_init_mmu_ops(); 1822 } 1823 #endif 1824 1825 static bool xen_nopv = false; 1826 static __init int xen_parse_nopv(char *arg) 1827 { 1828 xen_nopv = true; 1829 return 0; 1830 } 1831 early_param("xen_nopv", xen_parse_nopv); 1832 1833 static uint32_t __init xen_platform(void) 1834 { 1835 if (xen_nopv) 1836 return 0; 1837 1838 return xen_cpuid_base(); 1839 } 1840 1841 bool xen_hvm_need_lapic(void) 1842 { 1843 if (xen_nopv) 1844 return false; 1845 if (xen_pv_domain()) 1846 return false; 1847 if (!xen_hvm_domain()) 1848 return false; 1849 if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback) 1850 return false; 1851 return true; 1852 } 1853 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic); 1854 1855 static void xen_set_cpu_features(struct cpuinfo_x86 *c) 1856 { 1857 if (xen_pv_domain()) 1858 clear_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS); 1859 } 1860 1861 const struct hypervisor_x86 x86_hyper_xen = { 1862 .name = "Xen", 1863 .detect = xen_platform, 1864 #ifdef CONFIG_XEN_PVHVM 1865 .init_platform = xen_hvm_guest_init, 1866 #endif 1867 .x2apic_available = xen_x2apic_para_available, 1868 .set_cpu_features = xen_set_cpu_features, 1869 }; 1870 EXPORT_SYMBOL(x86_hyper_xen); 1871