xref: /openbmc/linux/arch/x86/xen/enlighten.c (revision e23feb16)
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13 
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 #include <linux/edd.h>
35 
36 #include <xen/xen.h>
37 #include <xen/events.h>
38 #include <xen/interface/xen.h>
39 #include <xen/interface/version.h>
40 #include <xen/interface/physdev.h>
41 #include <xen/interface/vcpu.h>
42 #include <xen/interface/memory.h>
43 #include <xen/interface/xen-mca.h>
44 #include <xen/features.h>
45 #include <xen/page.h>
46 #include <xen/hvm.h>
47 #include <xen/hvc-console.h>
48 #include <xen/acpi.h>
49 
50 #include <asm/paravirt.h>
51 #include <asm/apic.h>
52 #include <asm/page.h>
53 #include <asm/xen/pci.h>
54 #include <asm/xen/hypercall.h>
55 #include <asm/xen/hypervisor.h>
56 #include <asm/fixmap.h>
57 #include <asm/processor.h>
58 #include <asm/proto.h>
59 #include <asm/msr-index.h>
60 #include <asm/traps.h>
61 #include <asm/setup.h>
62 #include <asm/desc.h>
63 #include <asm/pgalloc.h>
64 #include <asm/pgtable.h>
65 #include <asm/tlbflush.h>
66 #include <asm/reboot.h>
67 #include <asm/stackprotector.h>
68 #include <asm/hypervisor.h>
69 #include <asm/mwait.h>
70 #include <asm/pci_x86.h>
71 #include <asm/pat.h>
72 
73 #ifdef CONFIG_ACPI
74 #include <linux/acpi.h>
75 #include <asm/acpi.h>
76 #include <acpi/pdc_intel.h>
77 #include <acpi/processor.h>
78 #include <xen/interface/platform.h>
79 #endif
80 
81 #include "xen-ops.h"
82 #include "mmu.h"
83 #include "smp.h"
84 #include "multicalls.h"
85 
86 EXPORT_SYMBOL_GPL(hypercall_page);
87 
88 /*
89  * Pointer to the xen_vcpu_info structure or
90  * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
91  * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
92  * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
93  * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
94  * acknowledge pending events.
95  * Also more subtly it is used by the patched version of irq enable/disable
96  * e.g. xen_irq_enable_direct and xen_iret in PV mode.
97  *
98  * The desire to be able to do those mask/unmask operations as a single
99  * instruction by using the per-cpu offset held in %gs is the real reason
100  * vcpu info is in a per-cpu pointer and the original reason for this
101  * hypercall.
102  *
103  */
104 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
105 
106 /*
107  * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
108  * hypercall. This can be used both in PV and PVHVM mode. The structure
109  * overrides the default per_cpu(xen_vcpu, cpu) value.
110  */
111 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
112 
113 enum xen_domain_type xen_domain_type = XEN_NATIVE;
114 EXPORT_SYMBOL_GPL(xen_domain_type);
115 
116 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
117 EXPORT_SYMBOL(machine_to_phys_mapping);
118 unsigned long  machine_to_phys_nr;
119 EXPORT_SYMBOL(machine_to_phys_nr);
120 
121 struct start_info *xen_start_info;
122 EXPORT_SYMBOL_GPL(xen_start_info);
123 
124 struct shared_info xen_dummy_shared_info;
125 
126 void *xen_initial_gdt;
127 
128 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
129 __read_mostly int xen_have_vector_callback;
130 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
131 
132 /*
133  * Point at some empty memory to start with. We map the real shared_info
134  * page as soon as fixmap is up and running.
135  */
136 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
137 
138 /*
139  * Flag to determine whether vcpu info placement is available on all
140  * VCPUs.  We assume it is to start with, and then set it to zero on
141  * the first failure.  This is because it can succeed on some VCPUs
142  * and not others, since it can involve hypervisor memory allocation,
143  * or because the guest failed to guarantee all the appropriate
144  * constraints on all VCPUs (ie buffer can't cross a page boundary).
145  *
146  * Note that any particular CPU may be using a placed vcpu structure,
147  * but we can only optimise if the all are.
148  *
149  * 0: not available, 1: available
150  */
151 static int have_vcpu_info_placement = 1;
152 
153 struct tls_descs {
154 	struct desc_struct desc[3];
155 };
156 
157 /*
158  * Updating the 3 TLS descriptors in the GDT on every task switch is
159  * surprisingly expensive so we avoid updating them if they haven't
160  * changed.  Since Xen writes different descriptors than the one
161  * passed in the update_descriptor hypercall we keep shadow copies to
162  * compare against.
163  */
164 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
165 
166 static void clamp_max_cpus(void)
167 {
168 #ifdef CONFIG_SMP
169 	if (setup_max_cpus > MAX_VIRT_CPUS)
170 		setup_max_cpus = MAX_VIRT_CPUS;
171 #endif
172 }
173 
174 static void xen_vcpu_setup(int cpu)
175 {
176 	struct vcpu_register_vcpu_info info;
177 	int err;
178 	struct vcpu_info *vcpup;
179 
180 	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
181 
182 	/*
183 	 * This path is called twice on PVHVM - first during bootup via
184 	 * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
185 	 * hotplugged: cpu_up -> xen_hvm_cpu_notify.
186 	 * As we can only do the VCPUOP_register_vcpu_info once lets
187 	 * not over-write its result.
188 	 *
189 	 * For PV it is called during restore (xen_vcpu_restore) and bootup
190 	 * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
191 	 * use this function.
192 	 */
193 	if (xen_hvm_domain()) {
194 		if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
195 			return;
196 	}
197 	if (cpu < MAX_VIRT_CPUS)
198 		per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
199 
200 	if (!have_vcpu_info_placement) {
201 		if (cpu >= MAX_VIRT_CPUS)
202 			clamp_max_cpus();
203 		return;
204 	}
205 
206 	vcpup = &per_cpu(xen_vcpu_info, cpu);
207 	info.mfn = arbitrary_virt_to_mfn(vcpup);
208 	info.offset = offset_in_page(vcpup);
209 
210 	/* Check to see if the hypervisor will put the vcpu_info
211 	   structure where we want it, which allows direct access via
212 	   a percpu-variable.
213 	   N.B. This hypercall can _only_ be called once per CPU. Subsequent
214 	   calls will error out with -EINVAL. This is due to the fact that
215 	   hypervisor has no unregister variant and this hypercall does not
216 	   allow to over-write info.mfn and info.offset.
217 	 */
218 	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
219 
220 	if (err) {
221 		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
222 		have_vcpu_info_placement = 0;
223 		clamp_max_cpus();
224 	} else {
225 		/* This cpu is using the registered vcpu info, even if
226 		   later ones fail to. */
227 		per_cpu(xen_vcpu, cpu) = vcpup;
228 	}
229 }
230 
231 /*
232  * On restore, set the vcpu placement up again.
233  * If it fails, then we're in a bad state, since
234  * we can't back out from using it...
235  */
236 void xen_vcpu_restore(void)
237 {
238 	int cpu;
239 
240 	for_each_possible_cpu(cpu) {
241 		bool other_cpu = (cpu != smp_processor_id());
242 		bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL);
243 
244 		if (other_cpu && is_up &&
245 		    HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
246 			BUG();
247 
248 		xen_setup_runstate_info(cpu);
249 
250 		if (have_vcpu_info_placement)
251 			xen_vcpu_setup(cpu);
252 
253 		if (other_cpu && is_up &&
254 		    HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
255 			BUG();
256 	}
257 }
258 
259 static void __init xen_banner(void)
260 {
261 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
262 	struct xen_extraversion extra;
263 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
264 
265 	printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
266 	       pv_info.name);
267 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
268 	       version >> 16, version & 0xffff, extra.extraversion,
269 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
270 }
271 /* Check if running on Xen version (major, minor) or later */
272 bool
273 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
274 {
275 	unsigned int version;
276 
277 	if (!xen_domain())
278 		return false;
279 
280 	version = HYPERVISOR_xen_version(XENVER_version, NULL);
281 	if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
282 		((version >> 16) > major))
283 		return true;
284 	return false;
285 }
286 
287 #define CPUID_THERM_POWER_LEAF 6
288 #define APERFMPERF_PRESENT 0
289 
290 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
291 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
292 
293 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
294 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
295 static __read_mostly unsigned int cpuid_leaf5_edx_val;
296 
297 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
298 		      unsigned int *cx, unsigned int *dx)
299 {
300 	unsigned maskebx = ~0;
301 	unsigned maskecx = ~0;
302 	unsigned maskedx = ~0;
303 	unsigned setecx = 0;
304 	/*
305 	 * Mask out inconvenient features, to try and disable as many
306 	 * unsupported kernel subsystems as possible.
307 	 */
308 	switch (*ax) {
309 	case 1:
310 		maskecx = cpuid_leaf1_ecx_mask;
311 		setecx = cpuid_leaf1_ecx_set_mask;
312 		maskedx = cpuid_leaf1_edx_mask;
313 		break;
314 
315 	case CPUID_MWAIT_LEAF:
316 		/* Synthesize the values.. */
317 		*ax = 0;
318 		*bx = 0;
319 		*cx = cpuid_leaf5_ecx_val;
320 		*dx = cpuid_leaf5_edx_val;
321 		return;
322 
323 	case CPUID_THERM_POWER_LEAF:
324 		/* Disabling APERFMPERF for kernel usage */
325 		maskecx = ~(1 << APERFMPERF_PRESENT);
326 		break;
327 
328 	case 0xb:
329 		/* Suppress extended topology stuff */
330 		maskebx = 0;
331 		break;
332 	}
333 
334 	asm(XEN_EMULATE_PREFIX "cpuid"
335 		: "=a" (*ax),
336 		  "=b" (*bx),
337 		  "=c" (*cx),
338 		  "=d" (*dx)
339 		: "0" (*ax), "2" (*cx));
340 
341 	*bx &= maskebx;
342 	*cx &= maskecx;
343 	*cx |= setecx;
344 	*dx &= maskedx;
345 
346 }
347 
348 static bool __init xen_check_mwait(void)
349 {
350 #ifdef CONFIG_ACPI
351 	struct xen_platform_op op = {
352 		.cmd			= XENPF_set_processor_pminfo,
353 		.u.set_pminfo.id	= -1,
354 		.u.set_pminfo.type	= XEN_PM_PDC,
355 	};
356 	uint32_t buf[3];
357 	unsigned int ax, bx, cx, dx;
358 	unsigned int mwait_mask;
359 
360 	/* We need to determine whether it is OK to expose the MWAIT
361 	 * capability to the kernel to harvest deeper than C3 states from ACPI
362 	 * _CST using the processor_harvest_xen.c module. For this to work, we
363 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
364 	 * checks against). The hypervisor won't expose the MWAIT flag because
365 	 * it would break backwards compatibility; so we will find out directly
366 	 * from the hardware and hypercall.
367 	 */
368 	if (!xen_initial_domain())
369 		return false;
370 
371 	/*
372 	 * When running under platform earlier than Xen4.2, do not expose
373 	 * mwait, to avoid the risk of loading native acpi pad driver
374 	 */
375 	if (!xen_running_on_version_or_later(4, 2))
376 		return false;
377 
378 	ax = 1;
379 	cx = 0;
380 
381 	native_cpuid(&ax, &bx, &cx, &dx);
382 
383 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
384 		     (1 << (X86_FEATURE_MWAIT % 32));
385 
386 	if ((cx & mwait_mask) != mwait_mask)
387 		return false;
388 
389 	/* We need to emulate the MWAIT_LEAF and for that we need both
390 	 * ecx and edx. The hypercall provides only partial information.
391 	 */
392 
393 	ax = CPUID_MWAIT_LEAF;
394 	bx = 0;
395 	cx = 0;
396 	dx = 0;
397 
398 	native_cpuid(&ax, &bx, &cx, &dx);
399 
400 	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
401 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
402 	 */
403 	buf[0] = ACPI_PDC_REVISION_ID;
404 	buf[1] = 1;
405 	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
406 
407 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
408 
409 	if ((HYPERVISOR_dom0_op(&op) == 0) &&
410 	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
411 		cpuid_leaf5_ecx_val = cx;
412 		cpuid_leaf5_edx_val = dx;
413 	}
414 	return true;
415 #else
416 	return false;
417 #endif
418 }
419 static void __init xen_init_cpuid_mask(void)
420 {
421 	unsigned int ax, bx, cx, dx;
422 	unsigned int xsave_mask;
423 
424 	cpuid_leaf1_edx_mask =
425 		~((1 << X86_FEATURE_MTRR) |  /* disable MTRR */
426 		  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
427 
428 	if (!xen_initial_domain())
429 		cpuid_leaf1_edx_mask &=
430 			~((1 << X86_FEATURE_ACPI));  /* disable ACPI */
431 
432 	cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
433 
434 	ax = 1;
435 	cx = 0;
436 	xen_cpuid(&ax, &bx, &cx, &dx);
437 
438 	xsave_mask =
439 		(1 << (X86_FEATURE_XSAVE % 32)) |
440 		(1 << (X86_FEATURE_OSXSAVE % 32));
441 
442 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
443 	if ((cx & xsave_mask) != xsave_mask)
444 		cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
445 	if (xen_check_mwait())
446 		cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
447 }
448 
449 static void xen_set_debugreg(int reg, unsigned long val)
450 {
451 	HYPERVISOR_set_debugreg(reg, val);
452 }
453 
454 static unsigned long xen_get_debugreg(int reg)
455 {
456 	return HYPERVISOR_get_debugreg(reg);
457 }
458 
459 static void xen_end_context_switch(struct task_struct *next)
460 {
461 	xen_mc_flush();
462 	paravirt_end_context_switch(next);
463 }
464 
465 static unsigned long xen_store_tr(void)
466 {
467 	return 0;
468 }
469 
470 /*
471  * Set the page permissions for a particular virtual address.  If the
472  * address is a vmalloc mapping (or other non-linear mapping), then
473  * find the linear mapping of the page and also set its protections to
474  * match.
475  */
476 static void set_aliased_prot(void *v, pgprot_t prot)
477 {
478 	int level;
479 	pte_t *ptep;
480 	pte_t pte;
481 	unsigned long pfn;
482 	struct page *page;
483 
484 	ptep = lookup_address((unsigned long)v, &level);
485 	BUG_ON(ptep == NULL);
486 
487 	pfn = pte_pfn(*ptep);
488 	page = pfn_to_page(pfn);
489 
490 	pte = pfn_pte(pfn, prot);
491 
492 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
493 		BUG();
494 
495 	if (!PageHighMem(page)) {
496 		void *av = __va(PFN_PHYS(pfn));
497 
498 		if (av != v)
499 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
500 				BUG();
501 	} else
502 		kmap_flush_unused();
503 }
504 
505 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
506 {
507 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
508 	int i;
509 
510 	for(i = 0; i < entries; i += entries_per_page)
511 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
512 }
513 
514 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
515 {
516 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
517 	int i;
518 
519 	for(i = 0; i < entries; i += entries_per_page)
520 		set_aliased_prot(ldt + i, PAGE_KERNEL);
521 }
522 
523 static void xen_set_ldt(const void *addr, unsigned entries)
524 {
525 	struct mmuext_op *op;
526 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
527 
528 	trace_xen_cpu_set_ldt(addr, entries);
529 
530 	op = mcs.args;
531 	op->cmd = MMUEXT_SET_LDT;
532 	op->arg1.linear_addr = (unsigned long)addr;
533 	op->arg2.nr_ents = entries;
534 
535 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
536 
537 	xen_mc_issue(PARAVIRT_LAZY_CPU);
538 }
539 
540 static void xen_load_gdt(const struct desc_ptr *dtr)
541 {
542 	unsigned long va = dtr->address;
543 	unsigned int size = dtr->size + 1;
544 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
545 	unsigned long frames[pages];
546 	int f;
547 
548 	/*
549 	 * A GDT can be up to 64k in size, which corresponds to 8192
550 	 * 8-byte entries, or 16 4k pages..
551 	 */
552 
553 	BUG_ON(size > 65536);
554 	BUG_ON(va & ~PAGE_MASK);
555 
556 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
557 		int level;
558 		pte_t *ptep;
559 		unsigned long pfn, mfn;
560 		void *virt;
561 
562 		/*
563 		 * The GDT is per-cpu and is in the percpu data area.
564 		 * That can be virtually mapped, so we need to do a
565 		 * page-walk to get the underlying MFN for the
566 		 * hypercall.  The page can also be in the kernel's
567 		 * linear range, so we need to RO that mapping too.
568 		 */
569 		ptep = lookup_address(va, &level);
570 		BUG_ON(ptep == NULL);
571 
572 		pfn = pte_pfn(*ptep);
573 		mfn = pfn_to_mfn(pfn);
574 		virt = __va(PFN_PHYS(pfn));
575 
576 		frames[f] = mfn;
577 
578 		make_lowmem_page_readonly((void *)va);
579 		make_lowmem_page_readonly(virt);
580 	}
581 
582 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
583 		BUG();
584 }
585 
586 /*
587  * load_gdt for early boot, when the gdt is only mapped once
588  */
589 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
590 {
591 	unsigned long va = dtr->address;
592 	unsigned int size = dtr->size + 1;
593 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
594 	unsigned long frames[pages];
595 	int f;
596 
597 	/*
598 	 * A GDT can be up to 64k in size, which corresponds to 8192
599 	 * 8-byte entries, or 16 4k pages..
600 	 */
601 
602 	BUG_ON(size > 65536);
603 	BUG_ON(va & ~PAGE_MASK);
604 
605 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
606 		pte_t pte;
607 		unsigned long pfn, mfn;
608 
609 		pfn = virt_to_pfn(va);
610 		mfn = pfn_to_mfn(pfn);
611 
612 		pte = pfn_pte(pfn, PAGE_KERNEL_RO);
613 
614 		if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
615 			BUG();
616 
617 		frames[f] = mfn;
618 	}
619 
620 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
621 		BUG();
622 }
623 
624 static inline bool desc_equal(const struct desc_struct *d1,
625 			      const struct desc_struct *d2)
626 {
627 	return d1->a == d2->a && d1->b == d2->b;
628 }
629 
630 static void load_TLS_descriptor(struct thread_struct *t,
631 				unsigned int cpu, unsigned int i)
632 {
633 	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
634 	struct desc_struct *gdt;
635 	xmaddr_t maddr;
636 	struct multicall_space mc;
637 
638 	if (desc_equal(shadow, &t->tls_array[i]))
639 		return;
640 
641 	*shadow = t->tls_array[i];
642 
643 	gdt = get_cpu_gdt_table(cpu);
644 	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
645 	mc = __xen_mc_entry(0);
646 
647 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
648 }
649 
650 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
651 {
652 	/*
653 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
654 	 * and lazy gs handling is enabled, it means we're in a
655 	 * context switch, and %gs has just been saved.  This means we
656 	 * can zero it out to prevent faults on exit from the
657 	 * hypervisor if the next process has no %gs.  Either way, it
658 	 * has been saved, and the new value will get loaded properly.
659 	 * This will go away as soon as Xen has been modified to not
660 	 * save/restore %gs for normal hypercalls.
661 	 *
662 	 * On x86_64, this hack is not used for %gs, because gs points
663 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
664 	 * must not zero %gs on x86_64
665 	 *
666 	 * For x86_64, we need to zero %fs, otherwise we may get an
667 	 * exception between the new %fs descriptor being loaded and
668 	 * %fs being effectively cleared at __switch_to().
669 	 */
670 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
671 #ifdef CONFIG_X86_32
672 		lazy_load_gs(0);
673 #else
674 		loadsegment(fs, 0);
675 #endif
676 	}
677 
678 	xen_mc_batch();
679 
680 	load_TLS_descriptor(t, cpu, 0);
681 	load_TLS_descriptor(t, cpu, 1);
682 	load_TLS_descriptor(t, cpu, 2);
683 
684 	xen_mc_issue(PARAVIRT_LAZY_CPU);
685 }
686 
687 #ifdef CONFIG_X86_64
688 static void xen_load_gs_index(unsigned int idx)
689 {
690 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
691 		BUG();
692 }
693 #endif
694 
695 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
696 				const void *ptr)
697 {
698 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
699 	u64 entry = *(u64 *)ptr;
700 
701 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
702 
703 	preempt_disable();
704 
705 	xen_mc_flush();
706 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
707 		BUG();
708 
709 	preempt_enable();
710 }
711 
712 static int cvt_gate_to_trap(int vector, const gate_desc *val,
713 			    struct trap_info *info)
714 {
715 	unsigned long addr;
716 
717 	if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
718 		return 0;
719 
720 	info->vector = vector;
721 
722 	addr = gate_offset(*val);
723 #ifdef CONFIG_X86_64
724 	/*
725 	 * Look for known traps using IST, and substitute them
726 	 * appropriately.  The debugger ones are the only ones we care
727 	 * about.  Xen will handle faults like double_fault,
728 	 * so we should never see them.  Warn if
729 	 * there's an unexpected IST-using fault handler.
730 	 */
731 	if (addr == (unsigned long)debug)
732 		addr = (unsigned long)xen_debug;
733 	else if (addr == (unsigned long)int3)
734 		addr = (unsigned long)xen_int3;
735 	else if (addr == (unsigned long)stack_segment)
736 		addr = (unsigned long)xen_stack_segment;
737 	else if (addr == (unsigned long)double_fault) {
738 		/* Don't need to handle these */
739 		return 0;
740 #ifdef CONFIG_X86_MCE
741 	} else if (addr == (unsigned long)machine_check) {
742 		/*
743 		 * when xen hypervisor inject vMCE to guest,
744 		 * use native mce handler to handle it
745 		 */
746 		;
747 #endif
748 	} else if (addr == (unsigned long)nmi)
749 		/*
750 		 * Use the native version as well.
751 		 */
752 		;
753 	else {
754 		/* Some other trap using IST? */
755 		if (WARN_ON(val->ist != 0))
756 			return 0;
757 	}
758 #endif	/* CONFIG_X86_64 */
759 	info->address = addr;
760 
761 	info->cs = gate_segment(*val);
762 	info->flags = val->dpl;
763 	/* interrupt gates clear IF */
764 	if (val->type == GATE_INTERRUPT)
765 		info->flags |= 1 << 2;
766 
767 	return 1;
768 }
769 
770 /* Locations of each CPU's IDT */
771 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
772 
773 /* Set an IDT entry.  If the entry is part of the current IDT, then
774    also update Xen. */
775 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
776 {
777 	unsigned long p = (unsigned long)&dt[entrynum];
778 	unsigned long start, end;
779 
780 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
781 
782 	preempt_disable();
783 
784 	start = __this_cpu_read(idt_desc.address);
785 	end = start + __this_cpu_read(idt_desc.size) + 1;
786 
787 	xen_mc_flush();
788 
789 	native_write_idt_entry(dt, entrynum, g);
790 
791 	if (p >= start && (p + 8) <= end) {
792 		struct trap_info info[2];
793 
794 		info[1].address = 0;
795 
796 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
797 			if (HYPERVISOR_set_trap_table(info))
798 				BUG();
799 	}
800 
801 	preempt_enable();
802 }
803 
804 static void xen_convert_trap_info(const struct desc_ptr *desc,
805 				  struct trap_info *traps)
806 {
807 	unsigned in, out, count;
808 
809 	count = (desc->size+1) / sizeof(gate_desc);
810 	BUG_ON(count > 256);
811 
812 	for (in = out = 0; in < count; in++) {
813 		gate_desc *entry = (gate_desc*)(desc->address) + in;
814 
815 		if (cvt_gate_to_trap(in, entry, &traps[out]))
816 			out++;
817 	}
818 	traps[out].address = 0;
819 }
820 
821 void xen_copy_trap_info(struct trap_info *traps)
822 {
823 	const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
824 
825 	xen_convert_trap_info(desc, traps);
826 }
827 
828 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
829    hold a spinlock to protect the static traps[] array (static because
830    it avoids allocation, and saves stack space). */
831 static void xen_load_idt(const struct desc_ptr *desc)
832 {
833 	static DEFINE_SPINLOCK(lock);
834 	static struct trap_info traps[257];
835 
836 	trace_xen_cpu_load_idt(desc);
837 
838 	spin_lock(&lock);
839 
840 	__get_cpu_var(idt_desc) = *desc;
841 
842 	xen_convert_trap_info(desc, traps);
843 
844 	xen_mc_flush();
845 	if (HYPERVISOR_set_trap_table(traps))
846 		BUG();
847 
848 	spin_unlock(&lock);
849 }
850 
851 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
852    they're handled differently. */
853 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
854 				const void *desc, int type)
855 {
856 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
857 
858 	preempt_disable();
859 
860 	switch (type) {
861 	case DESC_LDT:
862 	case DESC_TSS:
863 		/* ignore */
864 		break;
865 
866 	default: {
867 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
868 
869 		xen_mc_flush();
870 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
871 			BUG();
872 	}
873 
874 	}
875 
876 	preempt_enable();
877 }
878 
879 /*
880  * Version of write_gdt_entry for use at early boot-time needed to
881  * update an entry as simply as possible.
882  */
883 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
884 					    const void *desc, int type)
885 {
886 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
887 
888 	switch (type) {
889 	case DESC_LDT:
890 	case DESC_TSS:
891 		/* ignore */
892 		break;
893 
894 	default: {
895 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
896 
897 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
898 			dt[entry] = *(struct desc_struct *)desc;
899 	}
900 
901 	}
902 }
903 
904 static void xen_load_sp0(struct tss_struct *tss,
905 			 struct thread_struct *thread)
906 {
907 	struct multicall_space mcs;
908 
909 	mcs = xen_mc_entry(0);
910 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
911 	xen_mc_issue(PARAVIRT_LAZY_CPU);
912 }
913 
914 static void xen_set_iopl_mask(unsigned mask)
915 {
916 	struct physdev_set_iopl set_iopl;
917 
918 	/* Force the change at ring 0. */
919 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
920 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
921 }
922 
923 static void xen_io_delay(void)
924 {
925 }
926 
927 #ifdef CONFIG_X86_LOCAL_APIC
928 static unsigned long xen_set_apic_id(unsigned int x)
929 {
930 	WARN_ON(1);
931 	return x;
932 }
933 static unsigned int xen_get_apic_id(unsigned long x)
934 {
935 	return ((x)>>24) & 0xFFu;
936 }
937 static u32 xen_apic_read(u32 reg)
938 {
939 	struct xen_platform_op op = {
940 		.cmd = XENPF_get_cpuinfo,
941 		.interface_version = XENPF_INTERFACE_VERSION,
942 		.u.pcpu_info.xen_cpuid = 0,
943 	};
944 	int ret = 0;
945 
946 	/* Shouldn't need this as APIC is turned off for PV, and we only
947 	 * get called on the bootup processor. But just in case. */
948 	if (!xen_initial_domain() || smp_processor_id())
949 		return 0;
950 
951 	if (reg == APIC_LVR)
952 		return 0x10;
953 
954 	if (reg != APIC_ID)
955 		return 0;
956 
957 	ret = HYPERVISOR_dom0_op(&op);
958 	if (ret)
959 		return 0;
960 
961 	return op.u.pcpu_info.apic_id << 24;
962 }
963 
964 static void xen_apic_write(u32 reg, u32 val)
965 {
966 	/* Warn to see if there's any stray references */
967 	WARN_ON(1);
968 }
969 
970 static u64 xen_apic_icr_read(void)
971 {
972 	return 0;
973 }
974 
975 static void xen_apic_icr_write(u32 low, u32 id)
976 {
977 	/* Warn to see if there's any stray references */
978 	WARN_ON(1);
979 }
980 
981 static void xen_apic_wait_icr_idle(void)
982 {
983         return;
984 }
985 
986 static u32 xen_safe_apic_wait_icr_idle(void)
987 {
988         return 0;
989 }
990 
991 static void set_xen_basic_apic_ops(void)
992 {
993 	apic->read = xen_apic_read;
994 	apic->write = xen_apic_write;
995 	apic->icr_read = xen_apic_icr_read;
996 	apic->icr_write = xen_apic_icr_write;
997 	apic->wait_icr_idle = xen_apic_wait_icr_idle;
998 	apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
999 	apic->set_apic_id = xen_set_apic_id;
1000 	apic->get_apic_id = xen_get_apic_id;
1001 
1002 #ifdef CONFIG_SMP
1003 	apic->send_IPI_allbutself = xen_send_IPI_allbutself;
1004 	apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself;
1005 	apic->send_IPI_mask = xen_send_IPI_mask;
1006 	apic->send_IPI_all = xen_send_IPI_all;
1007 	apic->send_IPI_self = xen_send_IPI_self;
1008 #endif
1009 }
1010 
1011 #endif
1012 
1013 static void xen_clts(void)
1014 {
1015 	struct multicall_space mcs;
1016 
1017 	mcs = xen_mc_entry(0);
1018 
1019 	MULTI_fpu_taskswitch(mcs.mc, 0);
1020 
1021 	xen_mc_issue(PARAVIRT_LAZY_CPU);
1022 }
1023 
1024 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
1025 
1026 static unsigned long xen_read_cr0(void)
1027 {
1028 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
1029 
1030 	if (unlikely(cr0 == 0)) {
1031 		cr0 = native_read_cr0();
1032 		this_cpu_write(xen_cr0_value, cr0);
1033 	}
1034 
1035 	return cr0;
1036 }
1037 
1038 static void xen_write_cr0(unsigned long cr0)
1039 {
1040 	struct multicall_space mcs;
1041 
1042 	this_cpu_write(xen_cr0_value, cr0);
1043 
1044 	/* Only pay attention to cr0.TS; everything else is
1045 	   ignored. */
1046 	mcs = xen_mc_entry(0);
1047 
1048 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1049 
1050 	xen_mc_issue(PARAVIRT_LAZY_CPU);
1051 }
1052 
1053 static void xen_write_cr4(unsigned long cr4)
1054 {
1055 	cr4 &= ~X86_CR4_PGE;
1056 	cr4 &= ~X86_CR4_PSE;
1057 
1058 	native_write_cr4(cr4);
1059 }
1060 #ifdef CONFIG_X86_64
1061 static inline unsigned long xen_read_cr8(void)
1062 {
1063 	return 0;
1064 }
1065 static inline void xen_write_cr8(unsigned long val)
1066 {
1067 	BUG_ON(val);
1068 }
1069 #endif
1070 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1071 {
1072 	int ret;
1073 
1074 	ret = 0;
1075 
1076 	switch (msr) {
1077 #ifdef CONFIG_X86_64
1078 		unsigned which;
1079 		u64 base;
1080 
1081 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
1082 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
1083 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
1084 
1085 	set:
1086 		base = ((u64)high << 32) | low;
1087 		if (HYPERVISOR_set_segment_base(which, base) != 0)
1088 			ret = -EIO;
1089 		break;
1090 #endif
1091 
1092 	case MSR_STAR:
1093 	case MSR_CSTAR:
1094 	case MSR_LSTAR:
1095 	case MSR_SYSCALL_MASK:
1096 	case MSR_IA32_SYSENTER_CS:
1097 	case MSR_IA32_SYSENTER_ESP:
1098 	case MSR_IA32_SYSENTER_EIP:
1099 		/* Fast syscall setup is all done in hypercalls, so
1100 		   these are all ignored.  Stub them out here to stop
1101 		   Xen console noise. */
1102 		break;
1103 
1104 	case MSR_IA32_CR_PAT:
1105 		if (smp_processor_id() == 0)
1106 			xen_set_pat(((u64)high << 32) | low);
1107 		break;
1108 
1109 	default:
1110 		ret = native_write_msr_safe(msr, low, high);
1111 	}
1112 
1113 	return ret;
1114 }
1115 
1116 void xen_setup_shared_info(void)
1117 {
1118 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1119 		set_fixmap(FIX_PARAVIRT_BOOTMAP,
1120 			   xen_start_info->shared_info);
1121 
1122 		HYPERVISOR_shared_info =
1123 			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1124 	} else
1125 		HYPERVISOR_shared_info =
1126 			(struct shared_info *)__va(xen_start_info->shared_info);
1127 
1128 #ifndef CONFIG_SMP
1129 	/* In UP this is as good a place as any to set up shared info */
1130 	xen_setup_vcpu_info_placement();
1131 #endif
1132 
1133 	xen_setup_mfn_list_list();
1134 }
1135 
1136 /* This is called once we have the cpu_possible_mask */
1137 void xen_setup_vcpu_info_placement(void)
1138 {
1139 	int cpu;
1140 
1141 	for_each_possible_cpu(cpu)
1142 		xen_vcpu_setup(cpu);
1143 
1144 	/* xen_vcpu_setup managed to place the vcpu_info within the
1145 	   percpu area for all cpus, so make use of it */
1146 	if (have_vcpu_info_placement) {
1147 		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1148 		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1149 		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1150 		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1151 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1152 	}
1153 }
1154 
1155 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1156 			  unsigned long addr, unsigned len)
1157 {
1158 	char *start, *end, *reloc;
1159 	unsigned ret;
1160 
1161 	start = end = reloc = NULL;
1162 
1163 #define SITE(op, x)							\
1164 	case PARAVIRT_PATCH(op.x):					\
1165 	if (have_vcpu_info_placement) {					\
1166 		start = (char *)xen_##x##_direct;			\
1167 		end = xen_##x##_direct_end;				\
1168 		reloc = xen_##x##_direct_reloc;				\
1169 	}								\
1170 	goto patch_site
1171 
1172 	switch (type) {
1173 		SITE(pv_irq_ops, irq_enable);
1174 		SITE(pv_irq_ops, irq_disable);
1175 		SITE(pv_irq_ops, save_fl);
1176 		SITE(pv_irq_ops, restore_fl);
1177 #undef SITE
1178 
1179 	patch_site:
1180 		if (start == NULL || (end-start) > len)
1181 			goto default_patch;
1182 
1183 		ret = paravirt_patch_insns(insnbuf, len, start, end);
1184 
1185 		/* Note: because reloc is assigned from something that
1186 		   appears to be an array, gcc assumes it's non-null,
1187 		   but doesn't know its relationship with start and
1188 		   end. */
1189 		if (reloc > start && reloc < end) {
1190 			int reloc_off = reloc - start;
1191 			long *relocp = (long *)(insnbuf + reloc_off);
1192 			long delta = start - (char *)addr;
1193 
1194 			*relocp += delta;
1195 		}
1196 		break;
1197 
1198 	default_patch:
1199 	default:
1200 		ret = paravirt_patch_default(type, clobbers, insnbuf,
1201 					     addr, len);
1202 		break;
1203 	}
1204 
1205 	return ret;
1206 }
1207 
1208 static const struct pv_info xen_info __initconst = {
1209 	.paravirt_enabled = 1,
1210 	.shared_kernel_pmd = 0,
1211 
1212 #ifdef CONFIG_X86_64
1213 	.extra_user_64bit_cs = FLAT_USER_CS64,
1214 #endif
1215 
1216 	.name = "Xen",
1217 };
1218 
1219 static const struct pv_init_ops xen_init_ops __initconst = {
1220 	.patch = xen_patch,
1221 };
1222 
1223 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1224 	.cpuid = xen_cpuid,
1225 
1226 	.set_debugreg = xen_set_debugreg,
1227 	.get_debugreg = xen_get_debugreg,
1228 
1229 	.clts = xen_clts,
1230 
1231 	.read_cr0 = xen_read_cr0,
1232 	.write_cr0 = xen_write_cr0,
1233 
1234 	.read_cr4 = native_read_cr4,
1235 	.read_cr4_safe = native_read_cr4_safe,
1236 	.write_cr4 = xen_write_cr4,
1237 
1238 #ifdef CONFIG_X86_64
1239 	.read_cr8 = xen_read_cr8,
1240 	.write_cr8 = xen_write_cr8,
1241 #endif
1242 
1243 	.wbinvd = native_wbinvd,
1244 
1245 	.read_msr = native_read_msr_safe,
1246 	.write_msr = xen_write_msr_safe,
1247 
1248 	.read_tsc = native_read_tsc,
1249 	.read_pmc = native_read_pmc,
1250 
1251 	.read_tscp = native_read_tscp,
1252 
1253 	.iret = xen_iret,
1254 	.irq_enable_sysexit = xen_sysexit,
1255 #ifdef CONFIG_X86_64
1256 	.usergs_sysret32 = xen_sysret32,
1257 	.usergs_sysret64 = xen_sysret64,
1258 #endif
1259 
1260 	.load_tr_desc = paravirt_nop,
1261 	.set_ldt = xen_set_ldt,
1262 	.load_gdt = xen_load_gdt,
1263 	.load_idt = xen_load_idt,
1264 	.load_tls = xen_load_tls,
1265 #ifdef CONFIG_X86_64
1266 	.load_gs_index = xen_load_gs_index,
1267 #endif
1268 
1269 	.alloc_ldt = xen_alloc_ldt,
1270 	.free_ldt = xen_free_ldt,
1271 
1272 	.store_idt = native_store_idt,
1273 	.store_tr = xen_store_tr,
1274 
1275 	.write_ldt_entry = xen_write_ldt_entry,
1276 	.write_gdt_entry = xen_write_gdt_entry,
1277 	.write_idt_entry = xen_write_idt_entry,
1278 	.load_sp0 = xen_load_sp0,
1279 
1280 	.set_iopl_mask = xen_set_iopl_mask,
1281 	.io_delay = xen_io_delay,
1282 
1283 	/* Xen takes care of %gs when switching to usermode for us */
1284 	.swapgs = paravirt_nop,
1285 
1286 	.start_context_switch = paravirt_start_context_switch,
1287 	.end_context_switch = xen_end_context_switch,
1288 };
1289 
1290 static const struct pv_apic_ops xen_apic_ops __initconst = {
1291 #ifdef CONFIG_X86_LOCAL_APIC
1292 	.startup_ipi_hook = paravirt_nop,
1293 #endif
1294 };
1295 
1296 static void xen_reboot(int reason)
1297 {
1298 	struct sched_shutdown r = { .reason = reason };
1299 
1300 	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1301 		BUG();
1302 }
1303 
1304 static void xen_restart(char *msg)
1305 {
1306 	xen_reboot(SHUTDOWN_reboot);
1307 }
1308 
1309 static void xen_emergency_restart(void)
1310 {
1311 	xen_reboot(SHUTDOWN_reboot);
1312 }
1313 
1314 static void xen_machine_halt(void)
1315 {
1316 	xen_reboot(SHUTDOWN_poweroff);
1317 }
1318 
1319 static void xen_machine_power_off(void)
1320 {
1321 	if (pm_power_off)
1322 		pm_power_off();
1323 	xen_reboot(SHUTDOWN_poweroff);
1324 }
1325 
1326 static void xen_crash_shutdown(struct pt_regs *regs)
1327 {
1328 	xen_reboot(SHUTDOWN_crash);
1329 }
1330 
1331 static int
1332 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1333 {
1334 	xen_reboot(SHUTDOWN_crash);
1335 	return NOTIFY_DONE;
1336 }
1337 
1338 static struct notifier_block xen_panic_block = {
1339 	.notifier_call= xen_panic_event,
1340 };
1341 
1342 int xen_panic_handler_init(void)
1343 {
1344 	atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1345 	return 0;
1346 }
1347 
1348 static const struct machine_ops xen_machine_ops __initconst = {
1349 	.restart = xen_restart,
1350 	.halt = xen_machine_halt,
1351 	.power_off = xen_machine_power_off,
1352 	.shutdown = xen_machine_halt,
1353 	.crash_shutdown = xen_crash_shutdown,
1354 	.emergency_restart = xen_emergency_restart,
1355 };
1356 
1357 static void __init xen_boot_params_init_edd(void)
1358 {
1359 #if IS_ENABLED(CONFIG_EDD)
1360 	struct xen_platform_op op;
1361 	struct edd_info *edd_info;
1362 	u32 *mbr_signature;
1363 	unsigned nr;
1364 	int ret;
1365 
1366 	edd_info = boot_params.eddbuf;
1367 	mbr_signature = boot_params.edd_mbr_sig_buffer;
1368 
1369 	op.cmd = XENPF_firmware_info;
1370 
1371 	op.u.firmware_info.type = XEN_FW_DISK_INFO;
1372 	for (nr = 0; nr < EDDMAXNR; nr++) {
1373 		struct edd_info *info = edd_info + nr;
1374 
1375 		op.u.firmware_info.index = nr;
1376 		info->params.length = sizeof(info->params);
1377 		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1378 				     &info->params);
1379 		ret = HYPERVISOR_dom0_op(&op);
1380 		if (ret)
1381 			break;
1382 
1383 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1384 		C(device);
1385 		C(version);
1386 		C(interface_support);
1387 		C(legacy_max_cylinder);
1388 		C(legacy_max_head);
1389 		C(legacy_sectors_per_track);
1390 #undef C
1391 	}
1392 	boot_params.eddbuf_entries = nr;
1393 
1394 	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1395 	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1396 		op.u.firmware_info.index = nr;
1397 		ret = HYPERVISOR_dom0_op(&op);
1398 		if (ret)
1399 			break;
1400 		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1401 	}
1402 	boot_params.edd_mbr_sig_buf_entries = nr;
1403 #endif
1404 }
1405 
1406 /*
1407  * Set up the GDT and segment registers for -fstack-protector.  Until
1408  * we do this, we have to be careful not to call any stack-protected
1409  * function, which is most of the kernel.
1410  */
1411 static void __init xen_setup_stackprotector(void)
1412 {
1413 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1414 	pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1415 
1416 	setup_stack_canary_segment(0);
1417 	switch_to_new_gdt(0);
1418 
1419 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1420 	pv_cpu_ops.load_gdt = xen_load_gdt;
1421 }
1422 
1423 /* First C function to be called on Xen boot */
1424 asmlinkage void __init xen_start_kernel(void)
1425 {
1426 	struct physdev_set_iopl set_iopl;
1427 	int rc;
1428 
1429 	if (!xen_start_info)
1430 		return;
1431 
1432 	xen_domain_type = XEN_PV_DOMAIN;
1433 
1434 	xen_setup_machphys_mapping();
1435 
1436 	/* Install Xen paravirt ops */
1437 	pv_info = xen_info;
1438 	pv_init_ops = xen_init_ops;
1439 	pv_cpu_ops = xen_cpu_ops;
1440 	pv_apic_ops = xen_apic_ops;
1441 
1442 	x86_init.resources.memory_setup = xen_memory_setup;
1443 	x86_init.oem.arch_setup = xen_arch_setup;
1444 	x86_init.oem.banner = xen_banner;
1445 
1446 	xen_init_time_ops();
1447 
1448 	/*
1449 	 * Set up some pagetable state before starting to set any ptes.
1450 	 */
1451 
1452 	xen_init_mmu_ops();
1453 
1454 	/* Prevent unwanted bits from being set in PTEs. */
1455 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1456 #if 0
1457 	if (!xen_initial_domain())
1458 #endif
1459 		__supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1460 
1461 	__supported_pte_mask |= _PAGE_IOMAP;
1462 
1463 	/*
1464 	 * Prevent page tables from being allocated in highmem, even
1465 	 * if CONFIG_HIGHPTE is enabled.
1466 	 */
1467 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1468 
1469 	/* Work out if we support NX */
1470 	x86_configure_nx();
1471 
1472 	xen_setup_features();
1473 
1474 	/* Get mfn list */
1475 	if (!xen_feature(XENFEAT_auto_translated_physmap))
1476 		xen_build_dynamic_phys_to_machine();
1477 
1478 	/*
1479 	 * Set up kernel GDT and segment registers, mainly so that
1480 	 * -fstack-protector code can be executed.
1481 	 */
1482 	xen_setup_stackprotector();
1483 
1484 	xen_init_irq_ops();
1485 	xen_init_cpuid_mask();
1486 
1487 #ifdef CONFIG_X86_LOCAL_APIC
1488 	/*
1489 	 * set up the basic apic ops.
1490 	 */
1491 	set_xen_basic_apic_ops();
1492 #endif
1493 
1494 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1495 		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1496 		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1497 	}
1498 
1499 	machine_ops = xen_machine_ops;
1500 
1501 	/*
1502 	 * The only reliable way to retain the initial address of the
1503 	 * percpu gdt_page is to remember it here, so we can go and
1504 	 * mark it RW later, when the initial percpu area is freed.
1505 	 */
1506 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1507 
1508 	xen_smp_init();
1509 
1510 #ifdef CONFIG_ACPI_NUMA
1511 	/*
1512 	 * The pages we from Xen are not related to machine pages, so
1513 	 * any NUMA information the kernel tries to get from ACPI will
1514 	 * be meaningless.  Prevent it from trying.
1515 	 */
1516 	acpi_numa = -1;
1517 #endif
1518 #ifdef CONFIG_X86_PAT
1519 	/*
1520 	 * For right now disable the PAT. We should remove this once
1521 	 * git commit 8eaffa67b43e99ae581622c5133e20b0f48bcef1
1522 	 * (xen/pat: Disable PAT support for now) is reverted.
1523 	 */
1524 	pat_enabled = 0;
1525 #endif
1526 	/* Don't do the full vcpu_info placement stuff until we have a
1527 	   possible map and a non-dummy shared_info. */
1528 	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1529 
1530 	local_irq_disable();
1531 	early_boot_irqs_disabled = true;
1532 
1533 	xen_raw_console_write("mapping kernel into physical memory\n");
1534 	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, xen_start_info->nr_pages);
1535 
1536 	/* Allocate and initialize top and mid mfn levels for p2m structure */
1537 	xen_build_mfn_list_list();
1538 
1539 	/* keep using Xen gdt for now; no urgent need to change it */
1540 
1541 #ifdef CONFIG_X86_32
1542 	pv_info.kernel_rpl = 1;
1543 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1544 		pv_info.kernel_rpl = 0;
1545 #else
1546 	pv_info.kernel_rpl = 0;
1547 #endif
1548 	/* set the limit of our address space */
1549 	xen_reserve_top();
1550 
1551 	/* We used to do this in xen_arch_setup, but that is too late on AMD
1552 	 * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1553 	 * which pokes 0xcf8 port.
1554 	 */
1555 	set_iopl.iopl = 1;
1556 	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1557 	if (rc != 0)
1558 		xen_raw_printk("physdev_op failed %d\n", rc);
1559 
1560 #ifdef CONFIG_X86_32
1561 	/* set up basic CPUID stuff */
1562 	cpu_detect(&new_cpu_data);
1563 	set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1564 	new_cpu_data.wp_works_ok = 1;
1565 	new_cpu_data.x86_capability[0] = cpuid_edx(1);
1566 #endif
1567 
1568 	/* Poke various useful things into boot_params */
1569 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1570 	boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1571 		? __pa(xen_start_info->mod_start) : 0;
1572 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1573 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1574 
1575 	if (!xen_initial_domain()) {
1576 		add_preferred_console("xenboot", 0, NULL);
1577 		add_preferred_console("tty", 0, NULL);
1578 		add_preferred_console("hvc", 0, NULL);
1579 		if (pci_xen)
1580 			x86_init.pci.arch_init = pci_xen_init;
1581 	} else {
1582 		const struct dom0_vga_console_info *info =
1583 			(void *)((char *)xen_start_info +
1584 				 xen_start_info->console.dom0.info_off);
1585 		struct xen_platform_op op = {
1586 			.cmd = XENPF_firmware_info,
1587 			.interface_version = XENPF_INTERFACE_VERSION,
1588 			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1589 		};
1590 
1591 		xen_init_vga(info, xen_start_info->console.dom0.info_size);
1592 		xen_start_info->console.domU.mfn = 0;
1593 		xen_start_info->console.domU.evtchn = 0;
1594 
1595 		if (HYPERVISOR_dom0_op(&op) == 0)
1596 			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1597 
1598 		xen_init_apic();
1599 
1600 		/* Make sure ACS will be enabled */
1601 		pci_request_acs();
1602 
1603 		xen_acpi_sleep_register();
1604 
1605 		/* Avoid searching for BIOS MP tables */
1606 		x86_init.mpparse.find_smp_config = x86_init_noop;
1607 		x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1608 
1609 		xen_boot_params_init_edd();
1610 	}
1611 #ifdef CONFIG_PCI
1612 	/* PCI BIOS service won't work from a PV guest. */
1613 	pci_probe &= ~PCI_PROBE_BIOS;
1614 #endif
1615 	xen_raw_console_write("about to get started...\n");
1616 
1617 	xen_setup_runstate_info(0);
1618 
1619 	/* Start the world */
1620 #ifdef CONFIG_X86_32
1621 	i386_start_kernel();
1622 #else
1623 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1624 #endif
1625 }
1626 
1627 void __ref xen_hvm_init_shared_info(void)
1628 {
1629 	int cpu;
1630 	struct xen_add_to_physmap xatp;
1631 	static struct shared_info *shared_info_page = 0;
1632 
1633 	if (!shared_info_page)
1634 		shared_info_page = (struct shared_info *)
1635 			extend_brk(PAGE_SIZE, PAGE_SIZE);
1636 	xatp.domid = DOMID_SELF;
1637 	xatp.idx = 0;
1638 	xatp.space = XENMAPSPACE_shared_info;
1639 	xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1640 	if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1641 		BUG();
1642 
1643 	HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1644 
1645 	/* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1646 	 * page, we use it in the event channel upcall and in some pvclock
1647 	 * related functions. We don't need the vcpu_info placement
1648 	 * optimizations because we don't use any pv_mmu or pv_irq op on
1649 	 * HVM.
1650 	 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1651 	 * online but xen_hvm_init_shared_info is run at resume time too and
1652 	 * in that case multiple vcpus might be online. */
1653 	for_each_online_cpu(cpu) {
1654 		/* Leave it to be NULL. */
1655 		if (cpu >= MAX_VIRT_CPUS)
1656 			continue;
1657 		per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1658 	}
1659 }
1660 
1661 #ifdef CONFIG_XEN_PVHVM
1662 static void __init init_hvm_pv_info(void)
1663 {
1664 	int major, minor;
1665 	uint32_t eax, ebx, ecx, edx, pages, msr, base;
1666 	u64 pfn;
1667 
1668 	base = xen_cpuid_base();
1669 	cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1670 
1671 	major = eax >> 16;
1672 	minor = eax & 0xffff;
1673 	printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1674 
1675 	cpuid(base + 2, &pages, &msr, &ecx, &edx);
1676 
1677 	pfn = __pa(hypercall_page);
1678 	wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1679 
1680 	xen_setup_features();
1681 
1682 	pv_info.name = "Xen HVM";
1683 
1684 	xen_domain_type = XEN_HVM_DOMAIN;
1685 }
1686 
1687 static int xen_hvm_cpu_notify(struct notifier_block *self, unsigned long action,
1688 			      void *hcpu)
1689 {
1690 	int cpu = (long)hcpu;
1691 	switch (action) {
1692 	case CPU_UP_PREPARE:
1693 		xen_vcpu_setup(cpu);
1694 		if (xen_have_vector_callback) {
1695 			if (xen_feature(XENFEAT_hvm_safe_pvclock))
1696 				xen_setup_timer(cpu);
1697 		}
1698 		break;
1699 	default:
1700 		break;
1701 	}
1702 	return NOTIFY_OK;
1703 }
1704 
1705 static struct notifier_block xen_hvm_cpu_notifier = {
1706 	.notifier_call	= xen_hvm_cpu_notify,
1707 };
1708 
1709 static void __init xen_hvm_guest_init(void)
1710 {
1711 	init_hvm_pv_info();
1712 
1713 	xen_hvm_init_shared_info();
1714 
1715 	xen_panic_handler_init();
1716 
1717 	if (xen_feature(XENFEAT_hvm_callback_vector))
1718 		xen_have_vector_callback = 1;
1719 	xen_hvm_smp_init();
1720 	register_cpu_notifier(&xen_hvm_cpu_notifier);
1721 	xen_unplug_emulated_devices();
1722 	x86_init.irqs.intr_init = xen_init_IRQ;
1723 	xen_hvm_init_time_ops();
1724 	xen_hvm_init_mmu_ops();
1725 }
1726 
1727 static uint32_t __init xen_hvm_platform(void)
1728 {
1729 	if (xen_pv_domain())
1730 		return 0;
1731 
1732 	return xen_cpuid_base();
1733 }
1734 
1735 bool xen_hvm_need_lapic(void)
1736 {
1737 	if (xen_pv_domain())
1738 		return false;
1739 	if (!xen_hvm_domain())
1740 		return false;
1741 	if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1742 		return false;
1743 	return true;
1744 }
1745 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1746 
1747 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1748 	.name			= "Xen HVM",
1749 	.detect			= xen_hvm_platform,
1750 	.init_platform		= xen_hvm_guest_init,
1751 	.x2apic_available	= xen_x2apic_para_available,
1752 };
1753 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1754 #endif
1755