1 /* 2 * Core of Xen paravirt_ops implementation. 3 * 4 * This file contains the xen_paravirt_ops structure itself, and the 5 * implementations for: 6 * - privileged instructions 7 * - interrupt flags 8 * - segment operations 9 * - booting and setup 10 * 11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 12 */ 13 14 #include <linux/cpu.h> 15 #include <linux/kernel.h> 16 #include <linux/init.h> 17 #include <linux/smp.h> 18 #include <linux/preempt.h> 19 #include <linux/hardirq.h> 20 #include <linux/percpu.h> 21 #include <linux/delay.h> 22 #include <linux/start_kernel.h> 23 #include <linux/sched.h> 24 #include <linux/kprobes.h> 25 #include <linux/bootmem.h> 26 #include <linux/module.h> 27 #include <linux/mm.h> 28 #include <linux/page-flags.h> 29 #include <linux/highmem.h> 30 #include <linux/console.h> 31 #include <linux/pci.h> 32 #include <linux/gfp.h> 33 #include <linux/memblock.h> 34 35 #include <xen/xen.h> 36 #include <xen/interface/xen.h> 37 #include <xen/interface/version.h> 38 #include <xen/interface/physdev.h> 39 #include <xen/interface/vcpu.h> 40 #include <xen/interface/memory.h> 41 #include <xen/features.h> 42 #include <xen/page.h> 43 #include <xen/hvm.h> 44 #include <xen/hvc-console.h> 45 46 #include <asm/paravirt.h> 47 #include <asm/apic.h> 48 #include <asm/page.h> 49 #include <asm/xen/pci.h> 50 #include <asm/xen/hypercall.h> 51 #include <asm/xen/hypervisor.h> 52 #include <asm/fixmap.h> 53 #include <asm/processor.h> 54 #include <asm/proto.h> 55 #include <asm/msr-index.h> 56 #include <asm/traps.h> 57 #include <asm/setup.h> 58 #include <asm/desc.h> 59 #include <asm/pgalloc.h> 60 #include <asm/pgtable.h> 61 #include <asm/tlbflush.h> 62 #include <asm/reboot.h> 63 #include <asm/stackprotector.h> 64 #include <asm/hypervisor.h> 65 66 #include "xen-ops.h" 67 #include "mmu.h" 68 #include "multicalls.h" 69 70 EXPORT_SYMBOL_GPL(hypercall_page); 71 72 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu); 73 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info); 74 75 enum xen_domain_type xen_domain_type = XEN_NATIVE; 76 EXPORT_SYMBOL_GPL(xen_domain_type); 77 78 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START; 79 EXPORT_SYMBOL(machine_to_phys_mapping); 80 unsigned int machine_to_phys_order; 81 EXPORT_SYMBOL(machine_to_phys_order); 82 83 struct start_info *xen_start_info; 84 EXPORT_SYMBOL_GPL(xen_start_info); 85 86 struct shared_info xen_dummy_shared_info; 87 88 void *xen_initial_gdt; 89 90 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE); 91 __read_mostly int xen_have_vector_callback; 92 EXPORT_SYMBOL_GPL(xen_have_vector_callback); 93 94 /* 95 * Point at some empty memory to start with. We map the real shared_info 96 * page as soon as fixmap is up and running. 97 */ 98 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info; 99 100 /* 101 * Flag to determine whether vcpu info placement is available on all 102 * VCPUs. We assume it is to start with, and then set it to zero on 103 * the first failure. This is because it can succeed on some VCPUs 104 * and not others, since it can involve hypervisor memory allocation, 105 * or because the guest failed to guarantee all the appropriate 106 * constraints on all VCPUs (ie buffer can't cross a page boundary). 107 * 108 * Note that any particular CPU may be using a placed vcpu structure, 109 * but we can only optimise if the all are. 110 * 111 * 0: not available, 1: available 112 */ 113 static int have_vcpu_info_placement = 1; 114 115 static void clamp_max_cpus(void) 116 { 117 #ifdef CONFIG_SMP 118 if (setup_max_cpus > MAX_VIRT_CPUS) 119 setup_max_cpus = MAX_VIRT_CPUS; 120 #endif 121 } 122 123 static void xen_vcpu_setup(int cpu) 124 { 125 struct vcpu_register_vcpu_info info; 126 int err; 127 struct vcpu_info *vcpup; 128 129 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info); 130 131 if (cpu < MAX_VIRT_CPUS) 132 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu]; 133 134 if (!have_vcpu_info_placement) { 135 if (cpu >= MAX_VIRT_CPUS) 136 clamp_max_cpus(); 137 return; 138 } 139 140 vcpup = &per_cpu(xen_vcpu_info, cpu); 141 info.mfn = arbitrary_virt_to_mfn(vcpup); 142 info.offset = offset_in_page(vcpup); 143 144 /* Check to see if the hypervisor will put the vcpu_info 145 structure where we want it, which allows direct access via 146 a percpu-variable. */ 147 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info); 148 149 if (err) { 150 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err); 151 have_vcpu_info_placement = 0; 152 clamp_max_cpus(); 153 } else { 154 /* This cpu is using the registered vcpu info, even if 155 later ones fail to. */ 156 per_cpu(xen_vcpu, cpu) = vcpup; 157 } 158 } 159 160 /* 161 * On restore, set the vcpu placement up again. 162 * If it fails, then we're in a bad state, since 163 * we can't back out from using it... 164 */ 165 void xen_vcpu_restore(void) 166 { 167 int cpu; 168 169 for_each_online_cpu(cpu) { 170 bool other_cpu = (cpu != smp_processor_id()); 171 172 if (other_cpu && 173 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL)) 174 BUG(); 175 176 xen_setup_runstate_info(cpu); 177 178 if (have_vcpu_info_placement) 179 xen_vcpu_setup(cpu); 180 181 if (other_cpu && 182 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL)) 183 BUG(); 184 } 185 } 186 187 static void __init xen_banner(void) 188 { 189 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL); 190 struct xen_extraversion extra; 191 HYPERVISOR_xen_version(XENVER_extraversion, &extra); 192 193 printk(KERN_INFO "Booting paravirtualized kernel on %s\n", 194 pv_info.name); 195 printk(KERN_INFO "Xen version: %d.%d%s%s\n", 196 version >> 16, version & 0xffff, extra.extraversion, 197 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : ""); 198 } 199 200 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0; 201 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0; 202 203 static void xen_cpuid(unsigned int *ax, unsigned int *bx, 204 unsigned int *cx, unsigned int *dx) 205 { 206 unsigned maskebx = ~0; 207 unsigned maskecx = ~0; 208 unsigned maskedx = ~0; 209 210 /* 211 * Mask out inconvenient features, to try and disable as many 212 * unsupported kernel subsystems as possible. 213 */ 214 switch (*ax) { 215 case 1: 216 maskecx = cpuid_leaf1_ecx_mask; 217 maskedx = cpuid_leaf1_edx_mask; 218 break; 219 220 case 0xb: 221 /* Suppress extended topology stuff */ 222 maskebx = 0; 223 break; 224 } 225 226 asm(XEN_EMULATE_PREFIX "cpuid" 227 : "=a" (*ax), 228 "=b" (*bx), 229 "=c" (*cx), 230 "=d" (*dx) 231 : "0" (*ax), "2" (*cx)); 232 233 *bx &= maskebx; 234 *cx &= maskecx; 235 *dx &= maskedx; 236 } 237 238 static __init void xen_init_cpuid_mask(void) 239 { 240 unsigned int ax, bx, cx, dx; 241 242 cpuid_leaf1_edx_mask = 243 ~((1 << X86_FEATURE_MCE) | /* disable MCE */ 244 (1 << X86_FEATURE_MCA) | /* disable MCA */ 245 (1 << X86_FEATURE_MTRR) | /* disable MTRR */ 246 (1 << X86_FEATURE_ACC)); /* thermal monitoring */ 247 248 if (!xen_initial_domain()) 249 cpuid_leaf1_edx_mask &= 250 ~((1 << X86_FEATURE_APIC) | /* disable local APIC */ 251 (1 << X86_FEATURE_ACPI)); /* disable ACPI */ 252 253 ax = 1; 254 cx = 0; 255 xen_cpuid(&ax, &bx, &cx, &dx); 256 257 /* cpuid claims we support xsave; try enabling it to see what happens */ 258 if (cx & (1 << (X86_FEATURE_XSAVE % 32))) { 259 unsigned long cr4; 260 261 set_in_cr4(X86_CR4_OSXSAVE); 262 263 cr4 = read_cr4(); 264 265 if ((cr4 & X86_CR4_OSXSAVE) == 0) 266 cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_XSAVE % 32)); 267 268 clear_in_cr4(X86_CR4_OSXSAVE); 269 } 270 } 271 272 static void xen_set_debugreg(int reg, unsigned long val) 273 { 274 HYPERVISOR_set_debugreg(reg, val); 275 } 276 277 static unsigned long xen_get_debugreg(int reg) 278 { 279 return HYPERVISOR_get_debugreg(reg); 280 } 281 282 static void xen_end_context_switch(struct task_struct *next) 283 { 284 xen_mc_flush(); 285 paravirt_end_context_switch(next); 286 } 287 288 static unsigned long xen_store_tr(void) 289 { 290 return 0; 291 } 292 293 /* 294 * Set the page permissions for a particular virtual address. If the 295 * address is a vmalloc mapping (or other non-linear mapping), then 296 * find the linear mapping of the page and also set its protections to 297 * match. 298 */ 299 static void set_aliased_prot(void *v, pgprot_t prot) 300 { 301 int level; 302 pte_t *ptep; 303 pte_t pte; 304 unsigned long pfn; 305 struct page *page; 306 307 ptep = lookup_address((unsigned long)v, &level); 308 BUG_ON(ptep == NULL); 309 310 pfn = pte_pfn(*ptep); 311 page = pfn_to_page(pfn); 312 313 pte = pfn_pte(pfn, prot); 314 315 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0)) 316 BUG(); 317 318 if (!PageHighMem(page)) { 319 void *av = __va(PFN_PHYS(pfn)); 320 321 if (av != v) 322 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0)) 323 BUG(); 324 } else 325 kmap_flush_unused(); 326 } 327 328 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries) 329 { 330 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; 331 int i; 332 333 for(i = 0; i < entries; i += entries_per_page) 334 set_aliased_prot(ldt + i, PAGE_KERNEL_RO); 335 } 336 337 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries) 338 { 339 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; 340 int i; 341 342 for(i = 0; i < entries; i += entries_per_page) 343 set_aliased_prot(ldt + i, PAGE_KERNEL); 344 } 345 346 static void xen_set_ldt(const void *addr, unsigned entries) 347 { 348 struct mmuext_op *op; 349 struct multicall_space mcs = xen_mc_entry(sizeof(*op)); 350 351 op = mcs.args; 352 op->cmd = MMUEXT_SET_LDT; 353 op->arg1.linear_addr = (unsigned long)addr; 354 op->arg2.nr_ents = entries; 355 356 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 357 358 xen_mc_issue(PARAVIRT_LAZY_CPU); 359 } 360 361 static void xen_load_gdt(const struct desc_ptr *dtr) 362 { 363 unsigned long va = dtr->address; 364 unsigned int size = dtr->size + 1; 365 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE; 366 unsigned long frames[pages]; 367 int f; 368 369 /* 370 * A GDT can be up to 64k in size, which corresponds to 8192 371 * 8-byte entries, or 16 4k pages.. 372 */ 373 374 BUG_ON(size > 65536); 375 BUG_ON(va & ~PAGE_MASK); 376 377 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) { 378 int level; 379 pte_t *ptep; 380 unsigned long pfn, mfn; 381 void *virt; 382 383 /* 384 * The GDT is per-cpu and is in the percpu data area. 385 * That can be virtually mapped, so we need to do a 386 * page-walk to get the underlying MFN for the 387 * hypercall. The page can also be in the kernel's 388 * linear range, so we need to RO that mapping too. 389 */ 390 ptep = lookup_address(va, &level); 391 BUG_ON(ptep == NULL); 392 393 pfn = pte_pfn(*ptep); 394 mfn = pfn_to_mfn(pfn); 395 virt = __va(PFN_PHYS(pfn)); 396 397 frames[f] = mfn; 398 399 make_lowmem_page_readonly((void *)va); 400 make_lowmem_page_readonly(virt); 401 } 402 403 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct))) 404 BUG(); 405 } 406 407 /* 408 * load_gdt for early boot, when the gdt is only mapped once 409 */ 410 static __init void xen_load_gdt_boot(const struct desc_ptr *dtr) 411 { 412 unsigned long va = dtr->address; 413 unsigned int size = dtr->size + 1; 414 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE; 415 unsigned long frames[pages]; 416 int f; 417 418 /* 419 * A GDT can be up to 64k in size, which corresponds to 8192 420 * 8-byte entries, or 16 4k pages.. 421 */ 422 423 BUG_ON(size > 65536); 424 BUG_ON(va & ~PAGE_MASK); 425 426 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) { 427 pte_t pte; 428 unsigned long pfn, mfn; 429 430 pfn = virt_to_pfn(va); 431 mfn = pfn_to_mfn(pfn); 432 433 pte = pfn_pte(pfn, PAGE_KERNEL_RO); 434 435 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0)) 436 BUG(); 437 438 frames[f] = mfn; 439 } 440 441 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct))) 442 BUG(); 443 } 444 445 static void load_TLS_descriptor(struct thread_struct *t, 446 unsigned int cpu, unsigned int i) 447 { 448 struct desc_struct *gdt = get_cpu_gdt_table(cpu); 449 xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]); 450 struct multicall_space mc = __xen_mc_entry(0); 451 452 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]); 453 } 454 455 static void xen_load_tls(struct thread_struct *t, unsigned int cpu) 456 { 457 /* 458 * XXX sleazy hack: If we're being called in a lazy-cpu zone 459 * and lazy gs handling is enabled, it means we're in a 460 * context switch, and %gs has just been saved. This means we 461 * can zero it out to prevent faults on exit from the 462 * hypervisor if the next process has no %gs. Either way, it 463 * has been saved, and the new value will get loaded properly. 464 * This will go away as soon as Xen has been modified to not 465 * save/restore %gs for normal hypercalls. 466 * 467 * On x86_64, this hack is not used for %gs, because gs points 468 * to KERNEL_GS_BASE (and uses it for PDA references), so we 469 * must not zero %gs on x86_64 470 * 471 * For x86_64, we need to zero %fs, otherwise we may get an 472 * exception between the new %fs descriptor being loaded and 473 * %fs being effectively cleared at __switch_to(). 474 */ 475 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) { 476 #ifdef CONFIG_X86_32 477 lazy_load_gs(0); 478 #else 479 loadsegment(fs, 0); 480 #endif 481 } 482 483 xen_mc_batch(); 484 485 load_TLS_descriptor(t, cpu, 0); 486 load_TLS_descriptor(t, cpu, 1); 487 load_TLS_descriptor(t, cpu, 2); 488 489 xen_mc_issue(PARAVIRT_LAZY_CPU); 490 } 491 492 #ifdef CONFIG_X86_64 493 static void xen_load_gs_index(unsigned int idx) 494 { 495 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx)) 496 BUG(); 497 } 498 #endif 499 500 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum, 501 const void *ptr) 502 { 503 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]); 504 u64 entry = *(u64 *)ptr; 505 506 preempt_disable(); 507 508 xen_mc_flush(); 509 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry)) 510 BUG(); 511 512 preempt_enable(); 513 } 514 515 static int cvt_gate_to_trap(int vector, const gate_desc *val, 516 struct trap_info *info) 517 { 518 unsigned long addr; 519 520 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT) 521 return 0; 522 523 info->vector = vector; 524 525 addr = gate_offset(*val); 526 #ifdef CONFIG_X86_64 527 /* 528 * Look for known traps using IST, and substitute them 529 * appropriately. The debugger ones are the only ones we care 530 * about. Xen will handle faults like double_fault and 531 * machine_check, so we should never see them. Warn if 532 * there's an unexpected IST-using fault handler. 533 */ 534 if (addr == (unsigned long)debug) 535 addr = (unsigned long)xen_debug; 536 else if (addr == (unsigned long)int3) 537 addr = (unsigned long)xen_int3; 538 else if (addr == (unsigned long)stack_segment) 539 addr = (unsigned long)xen_stack_segment; 540 else if (addr == (unsigned long)double_fault || 541 addr == (unsigned long)nmi) { 542 /* Don't need to handle these */ 543 return 0; 544 #ifdef CONFIG_X86_MCE 545 } else if (addr == (unsigned long)machine_check) { 546 return 0; 547 #endif 548 } else { 549 /* Some other trap using IST? */ 550 if (WARN_ON(val->ist != 0)) 551 return 0; 552 } 553 #endif /* CONFIG_X86_64 */ 554 info->address = addr; 555 556 info->cs = gate_segment(*val); 557 info->flags = val->dpl; 558 /* interrupt gates clear IF */ 559 if (val->type == GATE_INTERRUPT) 560 info->flags |= 1 << 2; 561 562 return 1; 563 } 564 565 /* Locations of each CPU's IDT */ 566 static DEFINE_PER_CPU(struct desc_ptr, idt_desc); 567 568 /* Set an IDT entry. If the entry is part of the current IDT, then 569 also update Xen. */ 570 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g) 571 { 572 unsigned long p = (unsigned long)&dt[entrynum]; 573 unsigned long start, end; 574 575 preempt_disable(); 576 577 start = __get_cpu_var(idt_desc).address; 578 end = start + __get_cpu_var(idt_desc).size + 1; 579 580 xen_mc_flush(); 581 582 native_write_idt_entry(dt, entrynum, g); 583 584 if (p >= start && (p + 8) <= end) { 585 struct trap_info info[2]; 586 587 info[1].address = 0; 588 589 if (cvt_gate_to_trap(entrynum, g, &info[0])) 590 if (HYPERVISOR_set_trap_table(info)) 591 BUG(); 592 } 593 594 preempt_enable(); 595 } 596 597 static void xen_convert_trap_info(const struct desc_ptr *desc, 598 struct trap_info *traps) 599 { 600 unsigned in, out, count; 601 602 count = (desc->size+1) / sizeof(gate_desc); 603 BUG_ON(count > 256); 604 605 for (in = out = 0; in < count; in++) { 606 gate_desc *entry = (gate_desc*)(desc->address) + in; 607 608 if (cvt_gate_to_trap(in, entry, &traps[out])) 609 out++; 610 } 611 traps[out].address = 0; 612 } 613 614 void xen_copy_trap_info(struct trap_info *traps) 615 { 616 const struct desc_ptr *desc = &__get_cpu_var(idt_desc); 617 618 xen_convert_trap_info(desc, traps); 619 } 620 621 /* Load a new IDT into Xen. In principle this can be per-CPU, so we 622 hold a spinlock to protect the static traps[] array (static because 623 it avoids allocation, and saves stack space). */ 624 static void xen_load_idt(const struct desc_ptr *desc) 625 { 626 static DEFINE_SPINLOCK(lock); 627 static struct trap_info traps[257]; 628 629 spin_lock(&lock); 630 631 __get_cpu_var(idt_desc) = *desc; 632 633 xen_convert_trap_info(desc, traps); 634 635 xen_mc_flush(); 636 if (HYPERVISOR_set_trap_table(traps)) 637 BUG(); 638 639 spin_unlock(&lock); 640 } 641 642 /* Write a GDT descriptor entry. Ignore LDT descriptors, since 643 they're handled differently. */ 644 static void xen_write_gdt_entry(struct desc_struct *dt, int entry, 645 const void *desc, int type) 646 { 647 preempt_disable(); 648 649 switch (type) { 650 case DESC_LDT: 651 case DESC_TSS: 652 /* ignore */ 653 break; 654 655 default: { 656 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]); 657 658 xen_mc_flush(); 659 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) 660 BUG(); 661 } 662 663 } 664 665 preempt_enable(); 666 } 667 668 /* 669 * Version of write_gdt_entry for use at early boot-time needed to 670 * update an entry as simply as possible. 671 */ 672 static __init void xen_write_gdt_entry_boot(struct desc_struct *dt, int entry, 673 const void *desc, int type) 674 { 675 switch (type) { 676 case DESC_LDT: 677 case DESC_TSS: 678 /* ignore */ 679 break; 680 681 default: { 682 xmaddr_t maddr = virt_to_machine(&dt[entry]); 683 684 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) 685 dt[entry] = *(struct desc_struct *)desc; 686 } 687 688 } 689 } 690 691 static void xen_load_sp0(struct tss_struct *tss, 692 struct thread_struct *thread) 693 { 694 struct multicall_space mcs = xen_mc_entry(0); 695 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0); 696 xen_mc_issue(PARAVIRT_LAZY_CPU); 697 } 698 699 static void xen_set_iopl_mask(unsigned mask) 700 { 701 struct physdev_set_iopl set_iopl; 702 703 /* Force the change at ring 0. */ 704 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3; 705 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); 706 } 707 708 static void xen_io_delay(void) 709 { 710 } 711 712 #ifdef CONFIG_X86_LOCAL_APIC 713 static u32 xen_apic_read(u32 reg) 714 { 715 return 0; 716 } 717 718 static void xen_apic_write(u32 reg, u32 val) 719 { 720 /* Warn to see if there's any stray references */ 721 WARN_ON(1); 722 } 723 724 static u64 xen_apic_icr_read(void) 725 { 726 return 0; 727 } 728 729 static void xen_apic_icr_write(u32 low, u32 id) 730 { 731 /* Warn to see if there's any stray references */ 732 WARN_ON(1); 733 } 734 735 static void xen_apic_wait_icr_idle(void) 736 { 737 return; 738 } 739 740 static u32 xen_safe_apic_wait_icr_idle(void) 741 { 742 return 0; 743 } 744 745 static void set_xen_basic_apic_ops(void) 746 { 747 apic->read = xen_apic_read; 748 apic->write = xen_apic_write; 749 apic->icr_read = xen_apic_icr_read; 750 apic->icr_write = xen_apic_icr_write; 751 apic->wait_icr_idle = xen_apic_wait_icr_idle; 752 apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle; 753 } 754 755 #endif 756 757 static void xen_clts(void) 758 { 759 struct multicall_space mcs; 760 761 mcs = xen_mc_entry(0); 762 763 MULTI_fpu_taskswitch(mcs.mc, 0); 764 765 xen_mc_issue(PARAVIRT_LAZY_CPU); 766 } 767 768 static DEFINE_PER_CPU(unsigned long, xen_cr0_value); 769 770 static unsigned long xen_read_cr0(void) 771 { 772 unsigned long cr0 = percpu_read(xen_cr0_value); 773 774 if (unlikely(cr0 == 0)) { 775 cr0 = native_read_cr0(); 776 percpu_write(xen_cr0_value, cr0); 777 } 778 779 return cr0; 780 } 781 782 static void xen_write_cr0(unsigned long cr0) 783 { 784 struct multicall_space mcs; 785 786 percpu_write(xen_cr0_value, cr0); 787 788 /* Only pay attention to cr0.TS; everything else is 789 ignored. */ 790 mcs = xen_mc_entry(0); 791 792 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0); 793 794 xen_mc_issue(PARAVIRT_LAZY_CPU); 795 } 796 797 static void xen_write_cr4(unsigned long cr4) 798 { 799 cr4 &= ~X86_CR4_PGE; 800 cr4 &= ~X86_CR4_PSE; 801 802 native_write_cr4(cr4); 803 } 804 805 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high) 806 { 807 int ret; 808 809 ret = 0; 810 811 switch (msr) { 812 #ifdef CONFIG_X86_64 813 unsigned which; 814 u64 base; 815 816 case MSR_FS_BASE: which = SEGBASE_FS; goto set; 817 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set; 818 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set; 819 820 set: 821 base = ((u64)high << 32) | low; 822 if (HYPERVISOR_set_segment_base(which, base) != 0) 823 ret = -EIO; 824 break; 825 #endif 826 827 case MSR_STAR: 828 case MSR_CSTAR: 829 case MSR_LSTAR: 830 case MSR_SYSCALL_MASK: 831 case MSR_IA32_SYSENTER_CS: 832 case MSR_IA32_SYSENTER_ESP: 833 case MSR_IA32_SYSENTER_EIP: 834 /* Fast syscall setup is all done in hypercalls, so 835 these are all ignored. Stub them out here to stop 836 Xen console noise. */ 837 break; 838 839 case MSR_IA32_CR_PAT: 840 if (smp_processor_id() == 0) 841 xen_set_pat(((u64)high << 32) | low); 842 break; 843 844 default: 845 ret = native_write_msr_safe(msr, low, high); 846 } 847 848 return ret; 849 } 850 851 void xen_setup_shared_info(void) 852 { 853 if (!xen_feature(XENFEAT_auto_translated_physmap)) { 854 set_fixmap(FIX_PARAVIRT_BOOTMAP, 855 xen_start_info->shared_info); 856 857 HYPERVISOR_shared_info = 858 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP); 859 } else 860 HYPERVISOR_shared_info = 861 (struct shared_info *)__va(xen_start_info->shared_info); 862 863 #ifndef CONFIG_SMP 864 /* In UP this is as good a place as any to set up shared info */ 865 xen_setup_vcpu_info_placement(); 866 #endif 867 868 xen_setup_mfn_list_list(); 869 } 870 871 /* This is called once we have the cpu_possible_map */ 872 void xen_setup_vcpu_info_placement(void) 873 { 874 int cpu; 875 876 for_each_possible_cpu(cpu) 877 xen_vcpu_setup(cpu); 878 879 /* xen_vcpu_setup managed to place the vcpu_info within the 880 percpu area for all cpus, so make use of it */ 881 if (have_vcpu_info_placement) { 882 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct); 883 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct); 884 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct); 885 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct); 886 pv_mmu_ops.read_cr2 = xen_read_cr2_direct; 887 } 888 } 889 890 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf, 891 unsigned long addr, unsigned len) 892 { 893 char *start, *end, *reloc; 894 unsigned ret; 895 896 start = end = reloc = NULL; 897 898 #define SITE(op, x) \ 899 case PARAVIRT_PATCH(op.x): \ 900 if (have_vcpu_info_placement) { \ 901 start = (char *)xen_##x##_direct; \ 902 end = xen_##x##_direct_end; \ 903 reloc = xen_##x##_direct_reloc; \ 904 } \ 905 goto patch_site 906 907 switch (type) { 908 SITE(pv_irq_ops, irq_enable); 909 SITE(pv_irq_ops, irq_disable); 910 SITE(pv_irq_ops, save_fl); 911 SITE(pv_irq_ops, restore_fl); 912 #undef SITE 913 914 patch_site: 915 if (start == NULL || (end-start) > len) 916 goto default_patch; 917 918 ret = paravirt_patch_insns(insnbuf, len, start, end); 919 920 /* Note: because reloc is assigned from something that 921 appears to be an array, gcc assumes it's non-null, 922 but doesn't know its relationship with start and 923 end. */ 924 if (reloc > start && reloc < end) { 925 int reloc_off = reloc - start; 926 long *relocp = (long *)(insnbuf + reloc_off); 927 long delta = start - (char *)addr; 928 929 *relocp += delta; 930 } 931 break; 932 933 default_patch: 934 default: 935 ret = paravirt_patch_default(type, clobbers, insnbuf, 936 addr, len); 937 break; 938 } 939 940 return ret; 941 } 942 943 static const struct pv_info xen_info __initdata = { 944 .paravirt_enabled = 1, 945 .shared_kernel_pmd = 0, 946 947 .name = "Xen", 948 }; 949 950 static const struct pv_init_ops xen_init_ops __initdata = { 951 .patch = xen_patch, 952 }; 953 954 static const struct pv_cpu_ops xen_cpu_ops __initdata = { 955 .cpuid = xen_cpuid, 956 957 .set_debugreg = xen_set_debugreg, 958 .get_debugreg = xen_get_debugreg, 959 960 .clts = xen_clts, 961 962 .read_cr0 = xen_read_cr0, 963 .write_cr0 = xen_write_cr0, 964 965 .read_cr4 = native_read_cr4, 966 .read_cr4_safe = native_read_cr4_safe, 967 .write_cr4 = xen_write_cr4, 968 969 .wbinvd = native_wbinvd, 970 971 .read_msr = native_read_msr_safe, 972 .write_msr = xen_write_msr_safe, 973 .read_tsc = native_read_tsc, 974 .read_pmc = native_read_pmc, 975 976 .iret = xen_iret, 977 .irq_enable_sysexit = xen_sysexit, 978 #ifdef CONFIG_X86_64 979 .usergs_sysret32 = xen_sysret32, 980 .usergs_sysret64 = xen_sysret64, 981 #endif 982 983 .load_tr_desc = paravirt_nop, 984 .set_ldt = xen_set_ldt, 985 .load_gdt = xen_load_gdt, 986 .load_idt = xen_load_idt, 987 .load_tls = xen_load_tls, 988 #ifdef CONFIG_X86_64 989 .load_gs_index = xen_load_gs_index, 990 #endif 991 992 .alloc_ldt = xen_alloc_ldt, 993 .free_ldt = xen_free_ldt, 994 995 .store_gdt = native_store_gdt, 996 .store_idt = native_store_idt, 997 .store_tr = xen_store_tr, 998 999 .write_ldt_entry = xen_write_ldt_entry, 1000 .write_gdt_entry = xen_write_gdt_entry, 1001 .write_idt_entry = xen_write_idt_entry, 1002 .load_sp0 = xen_load_sp0, 1003 1004 .set_iopl_mask = xen_set_iopl_mask, 1005 .io_delay = xen_io_delay, 1006 1007 /* Xen takes care of %gs when switching to usermode for us */ 1008 .swapgs = paravirt_nop, 1009 1010 .start_context_switch = paravirt_start_context_switch, 1011 .end_context_switch = xen_end_context_switch, 1012 }; 1013 1014 static const struct pv_apic_ops xen_apic_ops __initdata = { 1015 #ifdef CONFIG_X86_LOCAL_APIC 1016 .startup_ipi_hook = paravirt_nop, 1017 #endif 1018 }; 1019 1020 static void xen_reboot(int reason) 1021 { 1022 struct sched_shutdown r = { .reason = reason }; 1023 1024 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r)) 1025 BUG(); 1026 } 1027 1028 static void xen_restart(char *msg) 1029 { 1030 xen_reboot(SHUTDOWN_reboot); 1031 } 1032 1033 static void xen_emergency_restart(void) 1034 { 1035 xen_reboot(SHUTDOWN_reboot); 1036 } 1037 1038 static void xen_machine_halt(void) 1039 { 1040 xen_reboot(SHUTDOWN_poweroff); 1041 } 1042 1043 static void xen_crash_shutdown(struct pt_regs *regs) 1044 { 1045 xen_reboot(SHUTDOWN_crash); 1046 } 1047 1048 static int 1049 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr) 1050 { 1051 xen_reboot(SHUTDOWN_crash); 1052 return NOTIFY_DONE; 1053 } 1054 1055 static struct notifier_block xen_panic_block = { 1056 .notifier_call= xen_panic_event, 1057 }; 1058 1059 int xen_panic_handler_init(void) 1060 { 1061 atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block); 1062 return 0; 1063 } 1064 1065 static const struct machine_ops __initdata xen_machine_ops = { 1066 .restart = xen_restart, 1067 .halt = xen_machine_halt, 1068 .power_off = xen_machine_halt, 1069 .shutdown = xen_machine_halt, 1070 .crash_shutdown = xen_crash_shutdown, 1071 .emergency_restart = xen_emergency_restart, 1072 }; 1073 1074 /* 1075 * Set up the GDT and segment registers for -fstack-protector. Until 1076 * we do this, we have to be careful not to call any stack-protected 1077 * function, which is most of the kernel. 1078 */ 1079 static void __init xen_setup_stackprotector(void) 1080 { 1081 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot; 1082 pv_cpu_ops.load_gdt = xen_load_gdt_boot; 1083 1084 setup_stack_canary_segment(0); 1085 switch_to_new_gdt(0); 1086 1087 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry; 1088 pv_cpu_ops.load_gdt = xen_load_gdt; 1089 } 1090 1091 /* First C function to be called on Xen boot */ 1092 asmlinkage void __init xen_start_kernel(void) 1093 { 1094 struct physdev_set_iopl set_iopl; 1095 int rc; 1096 pgd_t *pgd; 1097 1098 if (!xen_start_info) 1099 return; 1100 1101 xen_domain_type = XEN_PV_DOMAIN; 1102 1103 xen_setup_machphys_mapping(); 1104 1105 /* Install Xen paravirt ops */ 1106 pv_info = xen_info; 1107 pv_init_ops = xen_init_ops; 1108 pv_cpu_ops = xen_cpu_ops; 1109 pv_apic_ops = xen_apic_ops; 1110 1111 x86_init.resources.memory_setup = xen_memory_setup; 1112 x86_init.oem.arch_setup = xen_arch_setup; 1113 x86_init.oem.banner = xen_banner; 1114 1115 xen_init_time_ops(); 1116 1117 /* 1118 * Set up some pagetable state before starting to set any ptes. 1119 */ 1120 1121 xen_init_mmu_ops(); 1122 1123 /* Prevent unwanted bits from being set in PTEs. */ 1124 __supported_pte_mask &= ~_PAGE_GLOBAL; 1125 if (!xen_initial_domain()) 1126 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD); 1127 1128 __supported_pte_mask |= _PAGE_IOMAP; 1129 1130 /* 1131 * Prevent page tables from being allocated in highmem, even 1132 * if CONFIG_HIGHPTE is enabled. 1133 */ 1134 __userpte_alloc_gfp &= ~__GFP_HIGHMEM; 1135 1136 /* Work out if we support NX */ 1137 x86_configure_nx(); 1138 1139 xen_setup_features(); 1140 1141 /* Get mfn list */ 1142 if (!xen_feature(XENFEAT_auto_translated_physmap)) 1143 xen_build_dynamic_phys_to_machine(); 1144 1145 /* 1146 * Set up kernel GDT and segment registers, mainly so that 1147 * -fstack-protector code can be executed. 1148 */ 1149 xen_setup_stackprotector(); 1150 1151 xen_init_irq_ops(); 1152 xen_init_cpuid_mask(); 1153 1154 #ifdef CONFIG_X86_LOCAL_APIC 1155 /* 1156 * set up the basic apic ops. 1157 */ 1158 set_xen_basic_apic_ops(); 1159 #endif 1160 1161 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) { 1162 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start; 1163 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit; 1164 } 1165 1166 machine_ops = xen_machine_ops; 1167 1168 /* 1169 * The only reliable way to retain the initial address of the 1170 * percpu gdt_page is to remember it here, so we can go and 1171 * mark it RW later, when the initial percpu area is freed. 1172 */ 1173 xen_initial_gdt = &per_cpu(gdt_page, 0); 1174 1175 xen_smp_init(); 1176 1177 pgd = (pgd_t *)xen_start_info->pt_base; 1178 1179 if (!xen_initial_domain()) 1180 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD); 1181 1182 __supported_pte_mask |= _PAGE_IOMAP; 1183 /* Don't do the full vcpu_info placement stuff until we have a 1184 possible map and a non-dummy shared_info. */ 1185 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0]; 1186 1187 local_irq_disable(); 1188 early_boot_irqs_off(); 1189 1190 memblock_init(); 1191 1192 xen_raw_console_write("mapping kernel into physical memory\n"); 1193 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages); 1194 xen_ident_map_ISA(); 1195 1196 /* Allocate and initialize top and mid mfn levels for p2m structure */ 1197 xen_build_mfn_list_list(); 1198 1199 /* keep using Xen gdt for now; no urgent need to change it */ 1200 1201 #ifdef CONFIG_X86_32 1202 pv_info.kernel_rpl = 1; 1203 if (xen_feature(XENFEAT_supervisor_mode_kernel)) 1204 pv_info.kernel_rpl = 0; 1205 #else 1206 pv_info.kernel_rpl = 0; 1207 #endif 1208 /* set the limit of our address space */ 1209 xen_reserve_top(); 1210 1211 /* We used to do this in xen_arch_setup, but that is too late on AMD 1212 * were early_cpu_init (run before ->arch_setup()) calls early_amd_init 1213 * which pokes 0xcf8 port. 1214 */ 1215 set_iopl.iopl = 1; 1216 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); 1217 if (rc != 0) 1218 xen_raw_printk("physdev_op failed %d\n", rc); 1219 1220 #ifdef CONFIG_X86_32 1221 /* set up basic CPUID stuff */ 1222 cpu_detect(&new_cpu_data); 1223 new_cpu_data.hard_math = 1; 1224 new_cpu_data.wp_works_ok = 1; 1225 new_cpu_data.x86_capability[0] = cpuid_edx(1); 1226 #endif 1227 1228 /* Poke various useful things into boot_params */ 1229 boot_params.hdr.type_of_loader = (9 << 4) | 0; 1230 boot_params.hdr.ramdisk_image = xen_start_info->mod_start 1231 ? __pa(xen_start_info->mod_start) : 0; 1232 boot_params.hdr.ramdisk_size = xen_start_info->mod_len; 1233 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line); 1234 1235 if (!xen_initial_domain()) { 1236 add_preferred_console("xenboot", 0, NULL); 1237 add_preferred_console("tty", 0, NULL); 1238 add_preferred_console("hvc", 0, NULL); 1239 if (pci_xen) 1240 x86_init.pci.arch_init = pci_xen_init; 1241 } else { 1242 /* Make sure ACS will be enabled */ 1243 pci_request_acs(); 1244 } 1245 1246 1247 xen_raw_console_write("about to get started...\n"); 1248 1249 xen_setup_runstate_info(0); 1250 1251 /* Start the world */ 1252 #ifdef CONFIG_X86_32 1253 i386_start_kernel(); 1254 #else 1255 x86_64_start_reservations((char *)__pa_symbol(&boot_params)); 1256 #endif 1257 } 1258 1259 static uint32_t xen_cpuid_base(void) 1260 { 1261 uint32_t base, eax, ebx, ecx, edx; 1262 char signature[13]; 1263 1264 for (base = 0x40000000; base < 0x40010000; base += 0x100) { 1265 cpuid(base, &eax, &ebx, &ecx, &edx); 1266 *(uint32_t *)(signature + 0) = ebx; 1267 *(uint32_t *)(signature + 4) = ecx; 1268 *(uint32_t *)(signature + 8) = edx; 1269 signature[12] = 0; 1270 1271 if (!strcmp("XenVMMXenVMM", signature) && ((eax - base) >= 2)) 1272 return base; 1273 } 1274 1275 return 0; 1276 } 1277 1278 static int init_hvm_pv_info(int *major, int *minor) 1279 { 1280 uint32_t eax, ebx, ecx, edx, pages, msr, base; 1281 u64 pfn; 1282 1283 base = xen_cpuid_base(); 1284 cpuid(base + 1, &eax, &ebx, &ecx, &edx); 1285 1286 *major = eax >> 16; 1287 *minor = eax & 0xffff; 1288 printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor); 1289 1290 cpuid(base + 2, &pages, &msr, &ecx, &edx); 1291 1292 pfn = __pa(hypercall_page); 1293 wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32)); 1294 1295 xen_setup_features(); 1296 1297 pv_info = xen_info; 1298 pv_info.kernel_rpl = 0; 1299 1300 xen_domain_type = XEN_HVM_DOMAIN; 1301 1302 return 0; 1303 } 1304 1305 void xen_hvm_init_shared_info(void) 1306 { 1307 int cpu; 1308 struct xen_add_to_physmap xatp; 1309 static struct shared_info *shared_info_page = 0; 1310 1311 if (!shared_info_page) 1312 shared_info_page = (struct shared_info *) 1313 extend_brk(PAGE_SIZE, PAGE_SIZE); 1314 xatp.domid = DOMID_SELF; 1315 xatp.idx = 0; 1316 xatp.space = XENMAPSPACE_shared_info; 1317 xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT; 1318 if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp)) 1319 BUG(); 1320 1321 HYPERVISOR_shared_info = (struct shared_info *)shared_info_page; 1322 1323 /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info 1324 * page, we use it in the event channel upcall and in some pvclock 1325 * related functions. We don't need the vcpu_info placement 1326 * optimizations because we don't use any pv_mmu or pv_irq op on 1327 * HVM. 1328 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is 1329 * online but xen_hvm_init_shared_info is run at resume time too and 1330 * in that case multiple vcpus might be online. */ 1331 for_each_online_cpu(cpu) { 1332 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu]; 1333 } 1334 } 1335 1336 #ifdef CONFIG_XEN_PVHVM 1337 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self, 1338 unsigned long action, void *hcpu) 1339 { 1340 int cpu = (long)hcpu; 1341 switch (action) { 1342 case CPU_UP_PREPARE: 1343 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu]; 1344 break; 1345 default: 1346 break; 1347 } 1348 return NOTIFY_OK; 1349 } 1350 1351 static struct notifier_block __cpuinitdata xen_hvm_cpu_notifier = { 1352 .notifier_call = xen_hvm_cpu_notify, 1353 }; 1354 1355 static void __init xen_hvm_guest_init(void) 1356 { 1357 int r; 1358 int major, minor; 1359 1360 r = init_hvm_pv_info(&major, &minor); 1361 if (r < 0) 1362 return; 1363 1364 xen_hvm_init_shared_info(); 1365 1366 if (xen_feature(XENFEAT_hvm_callback_vector)) 1367 xen_have_vector_callback = 1; 1368 register_cpu_notifier(&xen_hvm_cpu_notifier); 1369 xen_unplug_emulated_devices(); 1370 have_vcpu_info_placement = 0; 1371 x86_init.irqs.intr_init = xen_init_IRQ; 1372 xen_hvm_init_time_ops(); 1373 xen_hvm_init_mmu_ops(); 1374 } 1375 1376 static bool __init xen_hvm_platform(void) 1377 { 1378 if (xen_pv_domain()) 1379 return false; 1380 1381 if (!xen_cpuid_base()) 1382 return false; 1383 1384 return true; 1385 } 1386 1387 const __refconst struct hypervisor_x86 x86_hyper_xen_hvm = { 1388 .name = "Xen HVM", 1389 .detect = xen_hvm_platform, 1390 .init_platform = xen_hvm_guest_init, 1391 }; 1392 EXPORT_SYMBOL(x86_hyper_xen_hvm); 1393 #endif 1394