xref: /openbmc/linux/arch/x86/xen/enlighten.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13 
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 
35 #include <xen/xen.h>
36 #include <xen/interface/xen.h>
37 #include <xen/interface/version.h>
38 #include <xen/interface/physdev.h>
39 #include <xen/interface/vcpu.h>
40 #include <xen/interface/memory.h>
41 #include <xen/features.h>
42 #include <xen/page.h>
43 #include <xen/hvm.h>
44 #include <xen/hvc-console.h>
45 
46 #include <asm/paravirt.h>
47 #include <asm/apic.h>
48 #include <asm/page.h>
49 #include <asm/xen/pci.h>
50 #include <asm/xen/hypercall.h>
51 #include <asm/xen/hypervisor.h>
52 #include <asm/fixmap.h>
53 #include <asm/processor.h>
54 #include <asm/proto.h>
55 #include <asm/msr-index.h>
56 #include <asm/traps.h>
57 #include <asm/setup.h>
58 #include <asm/desc.h>
59 #include <asm/pgalloc.h>
60 #include <asm/pgtable.h>
61 #include <asm/tlbflush.h>
62 #include <asm/reboot.h>
63 #include <asm/stackprotector.h>
64 #include <asm/hypervisor.h>
65 
66 #include "xen-ops.h"
67 #include "mmu.h"
68 #include "multicalls.h"
69 
70 EXPORT_SYMBOL_GPL(hypercall_page);
71 
72 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
73 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
74 
75 enum xen_domain_type xen_domain_type = XEN_NATIVE;
76 EXPORT_SYMBOL_GPL(xen_domain_type);
77 
78 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
79 EXPORT_SYMBOL(machine_to_phys_mapping);
80 unsigned int   machine_to_phys_order;
81 EXPORT_SYMBOL(machine_to_phys_order);
82 
83 struct start_info *xen_start_info;
84 EXPORT_SYMBOL_GPL(xen_start_info);
85 
86 struct shared_info xen_dummy_shared_info;
87 
88 void *xen_initial_gdt;
89 
90 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
91 __read_mostly int xen_have_vector_callback;
92 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
93 
94 /*
95  * Point at some empty memory to start with. We map the real shared_info
96  * page as soon as fixmap is up and running.
97  */
98 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
99 
100 /*
101  * Flag to determine whether vcpu info placement is available on all
102  * VCPUs.  We assume it is to start with, and then set it to zero on
103  * the first failure.  This is because it can succeed on some VCPUs
104  * and not others, since it can involve hypervisor memory allocation,
105  * or because the guest failed to guarantee all the appropriate
106  * constraints on all VCPUs (ie buffer can't cross a page boundary).
107  *
108  * Note that any particular CPU may be using a placed vcpu structure,
109  * but we can only optimise if the all are.
110  *
111  * 0: not available, 1: available
112  */
113 static int have_vcpu_info_placement = 1;
114 
115 static void clamp_max_cpus(void)
116 {
117 #ifdef CONFIG_SMP
118 	if (setup_max_cpus > MAX_VIRT_CPUS)
119 		setup_max_cpus = MAX_VIRT_CPUS;
120 #endif
121 }
122 
123 static void xen_vcpu_setup(int cpu)
124 {
125 	struct vcpu_register_vcpu_info info;
126 	int err;
127 	struct vcpu_info *vcpup;
128 
129 	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
130 
131 	if (cpu < MAX_VIRT_CPUS)
132 		per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
133 
134 	if (!have_vcpu_info_placement) {
135 		if (cpu >= MAX_VIRT_CPUS)
136 			clamp_max_cpus();
137 		return;
138 	}
139 
140 	vcpup = &per_cpu(xen_vcpu_info, cpu);
141 	info.mfn = arbitrary_virt_to_mfn(vcpup);
142 	info.offset = offset_in_page(vcpup);
143 
144 	/* Check to see if the hypervisor will put the vcpu_info
145 	   structure where we want it, which allows direct access via
146 	   a percpu-variable. */
147 	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
148 
149 	if (err) {
150 		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
151 		have_vcpu_info_placement = 0;
152 		clamp_max_cpus();
153 	} else {
154 		/* This cpu is using the registered vcpu info, even if
155 		   later ones fail to. */
156 		per_cpu(xen_vcpu, cpu) = vcpup;
157 	}
158 }
159 
160 /*
161  * On restore, set the vcpu placement up again.
162  * If it fails, then we're in a bad state, since
163  * we can't back out from using it...
164  */
165 void xen_vcpu_restore(void)
166 {
167 	int cpu;
168 
169 	for_each_online_cpu(cpu) {
170 		bool other_cpu = (cpu != smp_processor_id());
171 
172 		if (other_cpu &&
173 		    HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
174 			BUG();
175 
176 		xen_setup_runstate_info(cpu);
177 
178 		if (have_vcpu_info_placement)
179 			xen_vcpu_setup(cpu);
180 
181 		if (other_cpu &&
182 		    HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
183 			BUG();
184 	}
185 }
186 
187 static void __init xen_banner(void)
188 {
189 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
190 	struct xen_extraversion extra;
191 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
192 
193 	printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
194 	       pv_info.name);
195 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
196 	       version >> 16, version & 0xffff, extra.extraversion,
197 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
198 }
199 
200 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
201 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
202 
203 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
204 		      unsigned int *cx, unsigned int *dx)
205 {
206 	unsigned maskebx = ~0;
207 	unsigned maskecx = ~0;
208 	unsigned maskedx = ~0;
209 
210 	/*
211 	 * Mask out inconvenient features, to try and disable as many
212 	 * unsupported kernel subsystems as possible.
213 	 */
214 	switch (*ax) {
215 	case 1:
216 		maskecx = cpuid_leaf1_ecx_mask;
217 		maskedx = cpuid_leaf1_edx_mask;
218 		break;
219 
220 	case 0xb:
221 		/* Suppress extended topology stuff */
222 		maskebx = 0;
223 		break;
224 	}
225 
226 	asm(XEN_EMULATE_PREFIX "cpuid"
227 		: "=a" (*ax),
228 		  "=b" (*bx),
229 		  "=c" (*cx),
230 		  "=d" (*dx)
231 		: "0" (*ax), "2" (*cx));
232 
233 	*bx &= maskebx;
234 	*cx &= maskecx;
235 	*dx &= maskedx;
236 }
237 
238 static __init void xen_init_cpuid_mask(void)
239 {
240 	unsigned int ax, bx, cx, dx;
241 
242 	cpuid_leaf1_edx_mask =
243 		~((1 << X86_FEATURE_MCE)  |  /* disable MCE */
244 		  (1 << X86_FEATURE_MCA)  |  /* disable MCA */
245 		  (1 << X86_FEATURE_MTRR) |  /* disable MTRR */
246 		  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
247 
248 	if (!xen_initial_domain())
249 		cpuid_leaf1_edx_mask &=
250 			~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
251 			  (1 << X86_FEATURE_ACPI));  /* disable ACPI */
252 
253 	ax = 1;
254 	cx = 0;
255 	xen_cpuid(&ax, &bx, &cx, &dx);
256 
257 	/* cpuid claims we support xsave; try enabling it to see what happens */
258 	if (cx & (1 << (X86_FEATURE_XSAVE % 32))) {
259 		unsigned long cr4;
260 
261 		set_in_cr4(X86_CR4_OSXSAVE);
262 
263 		cr4 = read_cr4();
264 
265 		if ((cr4 & X86_CR4_OSXSAVE) == 0)
266 			cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_XSAVE % 32));
267 
268 		clear_in_cr4(X86_CR4_OSXSAVE);
269 	}
270 }
271 
272 static void xen_set_debugreg(int reg, unsigned long val)
273 {
274 	HYPERVISOR_set_debugreg(reg, val);
275 }
276 
277 static unsigned long xen_get_debugreg(int reg)
278 {
279 	return HYPERVISOR_get_debugreg(reg);
280 }
281 
282 static void xen_end_context_switch(struct task_struct *next)
283 {
284 	xen_mc_flush();
285 	paravirt_end_context_switch(next);
286 }
287 
288 static unsigned long xen_store_tr(void)
289 {
290 	return 0;
291 }
292 
293 /*
294  * Set the page permissions for a particular virtual address.  If the
295  * address is a vmalloc mapping (or other non-linear mapping), then
296  * find the linear mapping of the page and also set its protections to
297  * match.
298  */
299 static void set_aliased_prot(void *v, pgprot_t prot)
300 {
301 	int level;
302 	pte_t *ptep;
303 	pte_t pte;
304 	unsigned long pfn;
305 	struct page *page;
306 
307 	ptep = lookup_address((unsigned long)v, &level);
308 	BUG_ON(ptep == NULL);
309 
310 	pfn = pte_pfn(*ptep);
311 	page = pfn_to_page(pfn);
312 
313 	pte = pfn_pte(pfn, prot);
314 
315 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
316 		BUG();
317 
318 	if (!PageHighMem(page)) {
319 		void *av = __va(PFN_PHYS(pfn));
320 
321 		if (av != v)
322 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
323 				BUG();
324 	} else
325 		kmap_flush_unused();
326 }
327 
328 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
329 {
330 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
331 	int i;
332 
333 	for(i = 0; i < entries; i += entries_per_page)
334 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
335 }
336 
337 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
338 {
339 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
340 	int i;
341 
342 	for(i = 0; i < entries; i += entries_per_page)
343 		set_aliased_prot(ldt + i, PAGE_KERNEL);
344 }
345 
346 static void xen_set_ldt(const void *addr, unsigned entries)
347 {
348 	struct mmuext_op *op;
349 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
350 
351 	op = mcs.args;
352 	op->cmd = MMUEXT_SET_LDT;
353 	op->arg1.linear_addr = (unsigned long)addr;
354 	op->arg2.nr_ents = entries;
355 
356 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
357 
358 	xen_mc_issue(PARAVIRT_LAZY_CPU);
359 }
360 
361 static void xen_load_gdt(const struct desc_ptr *dtr)
362 {
363 	unsigned long va = dtr->address;
364 	unsigned int size = dtr->size + 1;
365 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
366 	unsigned long frames[pages];
367 	int f;
368 
369 	/*
370 	 * A GDT can be up to 64k in size, which corresponds to 8192
371 	 * 8-byte entries, or 16 4k pages..
372 	 */
373 
374 	BUG_ON(size > 65536);
375 	BUG_ON(va & ~PAGE_MASK);
376 
377 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
378 		int level;
379 		pte_t *ptep;
380 		unsigned long pfn, mfn;
381 		void *virt;
382 
383 		/*
384 		 * The GDT is per-cpu and is in the percpu data area.
385 		 * That can be virtually mapped, so we need to do a
386 		 * page-walk to get the underlying MFN for the
387 		 * hypercall.  The page can also be in the kernel's
388 		 * linear range, so we need to RO that mapping too.
389 		 */
390 		ptep = lookup_address(va, &level);
391 		BUG_ON(ptep == NULL);
392 
393 		pfn = pte_pfn(*ptep);
394 		mfn = pfn_to_mfn(pfn);
395 		virt = __va(PFN_PHYS(pfn));
396 
397 		frames[f] = mfn;
398 
399 		make_lowmem_page_readonly((void *)va);
400 		make_lowmem_page_readonly(virt);
401 	}
402 
403 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
404 		BUG();
405 }
406 
407 /*
408  * load_gdt for early boot, when the gdt is only mapped once
409  */
410 static __init void xen_load_gdt_boot(const struct desc_ptr *dtr)
411 {
412 	unsigned long va = dtr->address;
413 	unsigned int size = dtr->size + 1;
414 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
415 	unsigned long frames[pages];
416 	int f;
417 
418 	/*
419 	 * A GDT can be up to 64k in size, which corresponds to 8192
420 	 * 8-byte entries, or 16 4k pages..
421 	 */
422 
423 	BUG_ON(size > 65536);
424 	BUG_ON(va & ~PAGE_MASK);
425 
426 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
427 		pte_t pte;
428 		unsigned long pfn, mfn;
429 
430 		pfn = virt_to_pfn(va);
431 		mfn = pfn_to_mfn(pfn);
432 
433 		pte = pfn_pte(pfn, PAGE_KERNEL_RO);
434 
435 		if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
436 			BUG();
437 
438 		frames[f] = mfn;
439 	}
440 
441 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
442 		BUG();
443 }
444 
445 static void load_TLS_descriptor(struct thread_struct *t,
446 				unsigned int cpu, unsigned int i)
447 {
448 	struct desc_struct *gdt = get_cpu_gdt_table(cpu);
449 	xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
450 	struct multicall_space mc = __xen_mc_entry(0);
451 
452 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
453 }
454 
455 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
456 {
457 	/*
458 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
459 	 * and lazy gs handling is enabled, it means we're in a
460 	 * context switch, and %gs has just been saved.  This means we
461 	 * can zero it out to prevent faults on exit from the
462 	 * hypervisor if the next process has no %gs.  Either way, it
463 	 * has been saved, and the new value will get loaded properly.
464 	 * This will go away as soon as Xen has been modified to not
465 	 * save/restore %gs for normal hypercalls.
466 	 *
467 	 * On x86_64, this hack is not used for %gs, because gs points
468 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
469 	 * must not zero %gs on x86_64
470 	 *
471 	 * For x86_64, we need to zero %fs, otherwise we may get an
472 	 * exception between the new %fs descriptor being loaded and
473 	 * %fs being effectively cleared at __switch_to().
474 	 */
475 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
476 #ifdef CONFIG_X86_32
477 		lazy_load_gs(0);
478 #else
479 		loadsegment(fs, 0);
480 #endif
481 	}
482 
483 	xen_mc_batch();
484 
485 	load_TLS_descriptor(t, cpu, 0);
486 	load_TLS_descriptor(t, cpu, 1);
487 	load_TLS_descriptor(t, cpu, 2);
488 
489 	xen_mc_issue(PARAVIRT_LAZY_CPU);
490 }
491 
492 #ifdef CONFIG_X86_64
493 static void xen_load_gs_index(unsigned int idx)
494 {
495 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
496 		BUG();
497 }
498 #endif
499 
500 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
501 				const void *ptr)
502 {
503 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
504 	u64 entry = *(u64 *)ptr;
505 
506 	preempt_disable();
507 
508 	xen_mc_flush();
509 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
510 		BUG();
511 
512 	preempt_enable();
513 }
514 
515 static int cvt_gate_to_trap(int vector, const gate_desc *val,
516 			    struct trap_info *info)
517 {
518 	unsigned long addr;
519 
520 	if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
521 		return 0;
522 
523 	info->vector = vector;
524 
525 	addr = gate_offset(*val);
526 #ifdef CONFIG_X86_64
527 	/*
528 	 * Look for known traps using IST, and substitute them
529 	 * appropriately.  The debugger ones are the only ones we care
530 	 * about.  Xen will handle faults like double_fault and
531 	 * machine_check, so we should never see them.  Warn if
532 	 * there's an unexpected IST-using fault handler.
533 	 */
534 	if (addr == (unsigned long)debug)
535 		addr = (unsigned long)xen_debug;
536 	else if (addr == (unsigned long)int3)
537 		addr = (unsigned long)xen_int3;
538 	else if (addr == (unsigned long)stack_segment)
539 		addr = (unsigned long)xen_stack_segment;
540 	else if (addr == (unsigned long)double_fault ||
541 		 addr == (unsigned long)nmi) {
542 		/* Don't need to handle these */
543 		return 0;
544 #ifdef CONFIG_X86_MCE
545 	} else if (addr == (unsigned long)machine_check) {
546 		return 0;
547 #endif
548 	} else {
549 		/* Some other trap using IST? */
550 		if (WARN_ON(val->ist != 0))
551 			return 0;
552 	}
553 #endif	/* CONFIG_X86_64 */
554 	info->address = addr;
555 
556 	info->cs = gate_segment(*val);
557 	info->flags = val->dpl;
558 	/* interrupt gates clear IF */
559 	if (val->type == GATE_INTERRUPT)
560 		info->flags |= 1 << 2;
561 
562 	return 1;
563 }
564 
565 /* Locations of each CPU's IDT */
566 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
567 
568 /* Set an IDT entry.  If the entry is part of the current IDT, then
569    also update Xen. */
570 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
571 {
572 	unsigned long p = (unsigned long)&dt[entrynum];
573 	unsigned long start, end;
574 
575 	preempt_disable();
576 
577 	start = __get_cpu_var(idt_desc).address;
578 	end = start + __get_cpu_var(idt_desc).size + 1;
579 
580 	xen_mc_flush();
581 
582 	native_write_idt_entry(dt, entrynum, g);
583 
584 	if (p >= start && (p + 8) <= end) {
585 		struct trap_info info[2];
586 
587 		info[1].address = 0;
588 
589 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
590 			if (HYPERVISOR_set_trap_table(info))
591 				BUG();
592 	}
593 
594 	preempt_enable();
595 }
596 
597 static void xen_convert_trap_info(const struct desc_ptr *desc,
598 				  struct trap_info *traps)
599 {
600 	unsigned in, out, count;
601 
602 	count = (desc->size+1) / sizeof(gate_desc);
603 	BUG_ON(count > 256);
604 
605 	for (in = out = 0; in < count; in++) {
606 		gate_desc *entry = (gate_desc*)(desc->address) + in;
607 
608 		if (cvt_gate_to_trap(in, entry, &traps[out]))
609 			out++;
610 	}
611 	traps[out].address = 0;
612 }
613 
614 void xen_copy_trap_info(struct trap_info *traps)
615 {
616 	const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
617 
618 	xen_convert_trap_info(desc, traps);
619 }
620 
621 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
622    hold a spinlock to protect the static traps[] array (static because
623    it avoids allocation, and saves stack space). */
624 static void xen_load_idt(const struct desc_ptr *desc)
625 {
626 	static DEFINE_SPINLOCK(lock);
627 	static struct trap_info traps[257];
628 
629 	spin_lock(&lock);
630 
631 	__get_cpu_var(idt_desc) = *desc;
632 
633 	xen_convert_trap_info(desc, traps);
634 
635 	xen_mc_flush();
636 	if (HYPERVISOR_set_trap_table(traps))
637 		BUG();
638 
639 	spin_unlock(&lock);
640 }
641 
642 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
643    they're handled differently. */
644 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
645 				const void *desc, int type)
646 {
647 	preempt_disable();
648 
649 	switch (type) {
650 	case DESC_LDT:
651 	case DESC_TSS:
652 		/* ignore */
653 		break;
654 
655 	default: {
656 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
657 
658 		xen_mc_flush();
659 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
660 			BUG();
661 	}
662 
663 	}
664 
665 	preempt_enable();
666 }
667 
668 /*
669  * Version of write_gdt_entry for use at early boot-time needed to
670  * update an entry as simply as possible.
671  */
672 static __init void xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
673 					    const void *desc, int type)
674 {
675 	switch (type) {
676 	case DESC_LDT:
677 	case DESC_TSS:
678 		/* ignore */
679 		break;
680 
681 	default: {
682 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
683 
684 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
685 			dt[entry] = *(struct desc_struct *)desc;
686 	}
687 
688 	}
689 }
690 
691 static void xen_load_sp0(struct tss_struct *tss,
692 			 struct thread_struct *thread)
693 {
694 	struct multicall_space mcs = xen_mc_entry(0);
695 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
696 	xen_mc_issue(PARAVIRT_LAZY_CPU);
697 }
698 
699 static void xen_set_iopl_mask(unsigned mask)
700 {
701 	struct physdev_set_iopl set_iopl;
702 
703 	/* Force the change at ring 0. */
704 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
705 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
706 }
707 
708 static void xen_io_delay(void)
709 {
710 }
711 
712 #ifdef CONFIG_X86_LOCAL_APIC
713 static u32 xen_apic_read(u32 reg)
714 {
715 	return 0;
716 }
717 
718 static void xen_apic_write(u32 reg, u32 val)
719 {
720 	/* Warn to see if there's any stray references */
721 	WARN_ON(1);
722 }
723 
724 static u64 xen_apic_icr_read(void)
725 {
726 	return 0;
727 }
728 
729 static void xen_apic_icr_write(u32 low, u32 id)
730 {
731 	/* Warn to see if there's any stray references */
732 	WARN_ON(1);
733 }
734 
735 static void xen_apic_wait_icr_idle(void)
736 {
737         return;
738 }
739 
740 static u32 xen_safe_apic_wait_icr_idle(void)
741 {
742         return 0;
743 }
744 
745 static void set_xen_basic_apic_ops(void)
746 {
747 	apic->read = xen_apic_read;
748 	apic->write = xen_apic_write;
749 	apic->icr_read = xen_apic_icr_read;
750 	apic->icr_write = xen_apic_icr_write;
751 	apic->wait_icr_idle = xen_apic_wait_icr_idle;
752 	apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
753 }
754 
755 #endif
756 
757 static void xen_clts(void)
758 {
759 	struct multicall_space mcs;
760 
761 	mcs = xen_mc_entry(0);
762 
763 	MULTI_fpu_taskswitch(mcs.mc, 0);
764 
765 	xen_mc_issue(PARAVIRT_LAZY_CPU);
766 }
767 
768 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
769 
770 static unsigned long xen_read_cr0(void)
771 {
772 	unsigned long cr0 = percpu_read(xen_cr0_value);
773 
774 	if (unlikely(cr0 == 0)) {
775 		cr0 = native_read_cr0();
776 		percpu_write(xen_cr0_value, cr0);
777 	}
778 
779 	return cr0;
780 }
781 
782 static void xen_write_cr0(unsigned long cr0)
783 {
784 	struct multicall_space mcs;
785 
786 	percpu_write(xen_cr0_value, cr0);
787 
788 	/* Only pay attention to cr0.TS; everything else is
789 	   ignored. */
790 	mcs = xen_mc_entry(0);
791 
792 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
793 
794 	xen_mc_issue(PARAVIRT_LAZY_CPU);
795 }
796 
797 static void xen_write_cr4(unsigned long cr4)
798 {
799 	cr4 &= ~X86_CR4_PGE;
800 	cr4 &= ~X86_CR4_PSE;
801 
802 	native_write_cr4(cr4);
803 }
804 
805 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
806 {
807 	int ret;
808 
809 	ret = 0;
810 
811 	switch (msr) {
812 #ifdef CONFIG_X86_64
813 		unsigned which;
814 		u64 base;
815 
816 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
817 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
818 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
819 
820 	set:
821 		base = ((u64)high << 32) | low;
822 		if (HYPERVISOR_set_segment_base(which, base) != 0)
823 			ret = -EIO;
824 		break;
825 #endif
826 
827 	case MSR_STAR:
828 	case MSR_CSTAR:
829 	case MSR_LSTAR:
830 	case MSR_SYSCALL_MASK:
831 	case MSR_IA32_SYSENTER_CS:
832 	case MSR_IA32_SYSENTER_ESP:
833 	case MSR_IA32_SYSENTER_EIP:
834 		/* Fast syscall setup is all done in hypercalls, so
835 		   these are all ignored.  Stub them out here to stop
836 		   Xen console noise. */
837 		break;
838 
839 	case MSR_IA32_CR_PAT:
840 		if (smp_processor_id() == 0)
841 			xen_set_pat(((u64)high << 32) | low);
842 		break;
843 
844 	default:
845 		ret = native_write_msr_safe(msr, low, high);
846 	}
847 
848 	return ret;
849 }
850 
851 void xen_setup_shared_info(void)
852 {
853 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
854 		set_fixmap(FIX_PARAVIRT_BOOTMAP,
855 			   xen_start_info->shared_info);
856 
857 		HYPERVISOR_shared_info =
858 			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
859 	} else
860 		HYPERVISOR_shared_info =
861 			(struct shared_info *)__va(xen_start_info->shared_info);
862 
863 #ifndef CONFIG_SMP
864 	/* In UP this is as good a place as any to set up shared info */
865 	xen_setup_vcpu_info_placement();
866 #endif
867 
868 	xen_setup_mfn_list_list();
869 }
870 
871 /* This is called once we have the cpu_possible_map */
872 void xen_setup_vcpu_info_placement(void)
873 {
874 	int cpu;
875 
876 	for_each_possible_cpu(cpu)
877 		xen_vcpu_setup(cpu);
878 
879 	/* xen_vcpu_setup managed to place the vcpu_info within the
880 	   percpu area for all cpus, so make use of it */
881 	if (have_vcpu_info_placement) {
882 		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
883 		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
884 		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
885 		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
886 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
887 	}
888 }
889 
890 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
891 			  unsigned long addr, unsigned len)
892 {
893 	char *start, *end, *reloc;
894 	unsigned ret;
895 
896 	start = end = reloc = NULL;
897 
898 #define SITE(op, x)							\
899 	case PARAVIRT_PATCH(op.x):					\
900 	if (have_vcpu_info_placement) {					\
901 		start = (char *)xen_##x##_direct;			\
902 		end = xen_##x##_direct_end;				\
903 		reloc = xen_##x##_direct_reloc;				\
904 	}								\
905 	goto patch_site
906 
907 	switch (type) {
908 		SITE(pv_irq_ops, irq_enable);
909 		SITE(pv_irq_ops, irq_disable);
910 		SITE(pv_irq_ops, save_fl);
911 		SITE(pv_irq_ops, restore_fl);
912 #undef SITE
913 
914 	patch_site:
915 		if (start == NULL || (end-start) > len)
916 			goto default_patch;
917 
918 		ret = paravirt_patch_insns(insnbuf, len, start, end);
919 
920 		/* Note: because reloc is assigned from something that
921 		   appears to be an array, gcc assumes it's non-null,
922 		   but doesn't know its relationship with start and
923 		   end. */
924 		if (reloc > start && reloc < end) {
925 			int reloc_off = reloc - start;
926 			long *relocp = (long *)(insnbuf + reloc_off);
927 			long delta = start - (char *)addr;
928 
929 			*relocp += delta;
930 		}
931 		break;
932 
933 	default_patch:
934 	default:
935 		ret = paravirt_patch_default(type, clobbers, insnbuf,
936 					     addr, len);
937 		break;
938 	}
939 
940 	return ret;
941 }
942 
943 static const struct pv_info xen_info __initdata = {
944 	.paravirt_enabled = 1,
945 	.shared_kernel_pmd = 0,
946 
947 	.name = "Xen",
948 };
949 
950 static const struct pv_init_ops xen_init_ops __initdata = {
951 	.patch = xen_patch,
952 };
953 
954 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
955 	.cpuid = xen_cpuid,
956 
957 	.set_debugreg = xen_set_debugreg,
958 	.get_debugreg = xen_get_debugreg,
959 
960 	.clts = xen_clts,
961 
962 	.read_cr0 = xen_read_cr0,
963 	.write_cr0 = xen_write_cr0,
964 
965 	.read_cr4 = native_read_cr4,
966 	.read_cr4_safe = native_read_cr4_safe,
967 	.write_cr4 = xen_write_cr4,
968 
969 	.wbinvd = native_wbinvd,
970 
971 	.read_msr = native_read_msr_safe,
972 	.write_msr = xen_write_msr_safe,
973 	.read_tsc = native_read_tsc,
974 	.read_pmc = native_read_pmc,
975 
976 	.iret = xen_iret,
977 	.irq_enable_sysexit = xen_sysexit,
978 #ifdef CONFIG_X86_64
979 	.usergs_sysret32 = xen_sysret32,
980 	.usergs_sysret64 = xen_sysret64,
981 #endif
982 
983 	.load_tr_desc = paravirt_nop,
984 	.set_ldt = xen_set_ldt,
985 	.load_gdt = xen_load_gdt,
986 	.load_idt = xen_load_idt,
987 	.load_tls = xen_load_tls,
988 #ifdef CONFIG_X86_64
989 	.load_gs_index = xen_load_gs_index,
990 #endif
991 
992 	.alloc_ldt = xen_alloc_ldt,
993 	.free_ldt = xen_free_ldt,
994 
995 	.store_gdt = native_store_gdt,
996 	.store_idt = native_store_idt,
997 	.store_tr = xen_store_tr,
998 
999 	.write_ldt_entry = xen_write_ldt_entry,
1000 	.write_gdt_entry = xen_write_gdt_entry,
1001 	.write_idt_entry = xen_write_idt_entry,
1002 	.load_sp0 = xen_load_sp0,
1003 
1004 	.set_iopl_mask = xen_set_iopl_mask,
1005 	.io_delay = xen_io_delay,
1006 
1007 	/* Xen takes care of %gs when switching to usermode for us */
1008 	.swapgs = paravirt_nop,
1009 
1010 	.start_context_switch = paravirt_start_context_switch,
1011 	.end_context_switch = xen_end_context_switch,
1012 };
1013 
1014 static const struct pv_apic_ops xen_apic_ops __initdata = {
1015 #ifdef CONFIG_X86_LOCAL_APIC
1016 	.startup_ipi_hook = paravirt_nop,
1017 #endif
1018 };
1019 
1020 static void xen_reboot(int reason)
1021 {
1022 	struct sched_shutdown r = { .reason = reason };
1023 
1024 	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1025 		BUG();
1026 }
1027 
1028 static void xen_restart(char *msg)
1029 {
1030 	xen_reboot(SHUTDOWN_reboot);
1031 }
1032 
1033 static void xen_emergency_restart(void)
1034 {
1035 	xen_reboot(SHUTDOWN_reboot);
1036 }
1037 
1038 static void xen_machine_halt(void)
1039 {
1040 	xen_reboot(SHUTDOWN_poweroff);
1041 }
1042 
1043 static void xen_crash_shutdown(struct pt_regs *regs)
1044 {
1045 	xen_reboot(SHUTDOWN_crash);
1046 }
1047 
1048 static int
1049 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1050 {
1051 	xen_reboot(SHUTDOWN_crash);
1052 	return NOTIFY_DONE;
1053 }
1054 
1055 static struct notifier_block xen_panic_block = {
1056 	.notifier_call= xen_panic_event,
1057 };
1058 
1059 int xen_panic_handler_init(void)
1060 {
1061 	atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1062 	return 0;
1063 }
1064 
1065 static const struct machine_ops __initdata xen_machine_ops = {
1066 	.restart = xen_restart,
1067 	.halt = xen_machine_halt,
1068 	.power_off = xen_machine_halt,
1069 	.shutdown = xen_machine_halt,
1070 	.crash_shutdown = xen_crash_shutdown,
1071 	.emergency_restart = xen_emergency_restart,
1072 };
1073 
1074 /*
1075  * Set up the GDT and segment registers for -fstack-protector.  Until
1076  * we do this, we have to be careful not to call any stack-protected
1077  * function, which is most of the kernel.
1078  */
1079 static void __init xen_setup_stackprotector(void)
1080 {
1081 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1082 	pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1083 
1084 	setup_stack_canary_segment(0);
1085 	switch_to_new_gdt(0);
1086 
1087 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1088 	pv_cpu_ops.load_gdt = xen_load_gdt;
1089 }
1090 
1091 /* First C function to be called on Xen boot */
1092 asmlinkage void __init xen_start_kernel(void)
1093 {
1094 	struct physdev_set_iopl set_iopl;
1095 	int rc;
1096 	pgd_t *pgd;
1097 
1098 	if (!xen_start_info)
1099 		return;
1100 
1101 	xen_domain_type = XEN_PV_DOMAIN;
1102 
1103 	xen_setup_machphys_mapping();
1104 
1105 	/* Install Xen paravirt ops */
1106 	pv_info = xen_info;
1107 	pv_init_ops = xen_init_ops;
1108 	pv_cpu_ops = xen_cpu_ops;
1109 	pv_apic_ops = xen_apic_ops;
1110 
1111 	x86_init.resources.memory_setup = xen_memory_setup;
1112 	x86_init.oem.arch_setup = xen_arch_setup;
1113 	x86_init.oem.banner = xen_banner;
1114 
1115 	xen_init_time_ops();
1116 
1117 	/*
1118 	 * Set up some pagetable state before starting to set any ptes.
1119 	 */
1120 
1121 	xen_init_mmu_ops();
1122 
1123 	/* Prevent unwanted bits from being set in PTEs. */
1124 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1125 	if (!xen_initial_domain())
1126 		__supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1127 
1128 	__supported_pte_mask |= _PAGE_IOMAP;
1129 
1130 	/*
1131 	 * Prevent page tables from being allocated in highmem, even
1132 	 * if CONFIG_HIGHPTE is enabled.
1133 	 */
1134 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1135 
1136 	/* Work out if we support NX */
1137 	x86_configure_nx();
1138 
1139 	xen_setup_features();
1140 
1141 	/* Get mfn list */
1142 	if (!xen_feature(XENFEAT_auto_translated_physmap))
1143 		xen_build_dynamic_phys_to_machine();
1144 
1145 	/*
1146 	 * Set up kernel GDT and segment registers, mainly so that
1147 	 * -fstack-protector code can be executed.
1148 	 */
1149 	xen_setup_stackprotector();
1150 
1151 	xen_init_irq_ops();
1152 	xen_init_cpuid_mask();
1153 
1154 #ifdef CONFIG_X86_LOCAL_APIC
1155 	/*
1156 	 * set up the basic apic ops.
1157 	 */
1158 	set_xen_basic_apic_ops();
1159 #endif
1160 
1161 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1162 		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1163 		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1164 	}
1165 
1166 	machine_ops = xen_machine_ops;
1167 
1168 	/*
1169 	 * The only reliable way to retain the initial address of the
1170 	 * percpu gdt_page is to remember it here, so we can go and
1171 	 * mark it RW later, when the initial percpu area is freed.
1172 	 */
1173 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1174 
1175 	xen_smp_init();
1176 
1177 	pgd = (pgd_t *)xen_start_info->pt_base;
1178 
1179 	if (!xen_initial_domain())
1180 		__supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1181 
1182 	__supported_pte_mask |= _PAGE_IOMAP;
1183 	/* Don't do the full vcpu_info placement stuff until we have a
1184 	   possible map and a non-dummy shared_info. */
1185 	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1186 
1187 	local_irq_disable();
1188 	early_boot_irqs_off();
1189 
1190 	memblock_init();
1191 
1192 	xen_raw_console_write("mapping kernel into physical memory\n");
1193 	pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1194 	xen_ident_map_ISA();
1195 
1196 	/* Allocate and initialize top and mid mfn levels for p2m structure */
1197 	xen_build_mfn_list_list();
1198 
1199 	/* keep using Xen gdt for now; no urgent need to change it */
1200 
1201 #ifdef CONFIG_X86_32
1202 	pv_info.kernel_rpl = 1;
1203 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1204 		pv_info.kernel_rpl = 0;
1205 #else
1206 	pv_info.kernel_rpl = 0;
1207 #endif
1208 	/* set the limit of our address space */
1209 	xen_reserve_top();
1210 
1211 	/* We used to do this in xen_arch_setup, but that is too late on AMD
1212 	 * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1213 	 * which pokes 0xcf8 port.
1214 	 */
1215 	set_iopl.iopl = 1;
1216 	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1217 	if (rc != 0)
1218 		xen_raw_printk("physdev_op failed %d\n", rc);
1219 
1220 #ifdef CONFIG_X86_32
1221 	/* set up basic CPUID stuff */
1222 	cpu_detect(&new_cpu_data);
1223 	new_cpu_data.hard_math = 1;
1224 	new_cpu_data.wp_works_ok = 1;
1225 	new_cpu_data.x86_capability[0] = cpuid_edx(1);
1226 #endif
1227 
1228 	/* Poke various useful things into boot_params */
1229 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1230 	boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1231 		? __pa(xen_start_info->mod_start) : 0;
1232 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1233 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1234 
1235 	if (!xen_initial_domain()) {
1236 		add_preferred_console("xenboot", 0, NULL);
1237 		add_preferred_console("tty", 0, NULL);
1238 		add_preferred_console("hvc", 0, NULL);
1239 		if (pci_xen)
1240 			x86_init.pci.arch_init = pci_xen_init;
1241 	} else {
1242 		/* Make sure ACS will be enabled */
1243 		pci_request_acs();
1244 	}
1245 
1246 
1247 	xen_raw_console_write("about to get started...\n");
1248 
1249 	xen_setup_runstate_info(0);
1250 
1251 	/* Start the world */
1252 #ifdef CONFIG_X86_32
1253 	i386_start_kernel();
1254 #else
1255 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1256 #endif
1257 }
1258 
1259 static uint32_t xen_cpuid_base(void)
1260 {
1261 	uint32_t base, eax, ebx, ecx, edx;
1262 	char signature[13];
1263 
1264 	for (base = 0x40000000; base < 0x40010000; base += 0x100) {
1265 		cpuid(base, &eax, &ebx, &ecx, &edx);
1266 		*(uint32_t *)(signature + 0) = ebx;
1267 		*(uint32_t *)(signature + 4) = ecx;
1268 		*(uint32_t *)(signature + 8) = edx;
1269 		signature[12] = 0;
1270 
1271 		if (!strcmp("XenVMMXenVMM", signature) && ((eax - base) >= 2))
1272 			return base;
1273 	}
1274 
1275 	return 0;
1276 }
1277 
1278 static int init_hvm_pv_info(int *major, int *minor)
1279 {
1280 	uint32_t eax, ebx, ecx, edx, pages, msr, base;
1281 	u64 pfn;
1282 
1283 	base = xen_cpuid_base();
1284 	cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1285 
1286 	*major = eax >> 16;
1287 	*minor = eax & 0xffff;
1288 	printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor);
1289 
1290 	cpuid(base + 2, &pages, &msr, &ecx, &edx);
1291 
1292 	pfn = __pa(hypercall_page);
1293 	wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1294 
1295 	xen_setup_features();
1296 
1297 	pv_info = xen_info;
1298 	pv_info.kernel_rpl = 0;
1299 
1300 	xen_domain_type = XEN_HVM_DOMAIN;
1301 
1302 	return 0;
1303 }
1304 
1305 void xen_hvm_init_shared_info(void)
1306 {
1307 	int cpu;
1308 	struct xen_add_to_physmap xatp;
1309 	static struct shared_info *shared_info_page = 0;
1310 
1311 	if (!shared_info_page)
1312 		shared_info_page = (struct shared_info *)
1313 			extend_brk(PAGE_SIZE, PAGE_SIZE);
1314 	xatp.domid = DOMID_SELF;
1315 	xatp.idx = 0;
1316 	xatp.space = XENMAPSPACE_shared_info;
1317 	xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1318 	if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1319 		BUG();
1320 
1321 	HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1322 
1323 	/* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1324 	 * page, we use it in the event channel upcall and in some pvclock
1325 	 * related functions. We don't need the vcpu_info placement
1326 	 * optimizations because we don't use any pv_mmu or pv_irq op on
1327 	 * HVM.
1328 	 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1329 	 * online but xen_hvm_init_shared_info is run at resume time too and
1330 	 * in that case multiple vcpus might be online. */
1331 	for_each_online_cpu(cpu) {
1332 		per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1333 	}
1334 }
1335 
1336 #ifdef CONFIG_XEN_PVHVM
1337 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1338 				    unsigned long action, void *hcpu)
1339 {
1340 	int cpu = (long)hcpu;
1341 	switch (action) {
1342 	case CPU_UP_PREPARE:
1343 		per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1344 		break;
1345 	default:
1346 		break;
1347 	}
1348 	return NOTIFY_OK;
1349 }
1350 
1351 static struct notifier_block __cpuinitdata xen_hvm_cpu_notifier = {
1352 	.notifier_call	= xen_hvm_cpu_notify,
1353 };
1354 
1355 static void __init xen_hvm_guest_init(void)
1356 {
1357 	int r;
1358 	int major, minor;
1359 
1360 	r = init_hvm_pv_info(&major, &minor);
1361 	if (r < 0)
1362 		return;
1363 
1364 	xen_hvm_init_shared_info();
1365 
1366 	if (xen_feature(XENFEAT_hvm_callback_vector))
1367 		xen_have_vector_callback = 1;
1368 	register_cpu_notifier(&xen_hvm_cpu_notifier);
1369 	xen_unplug_emulated_devices();
1370 	have_vcpu_info_placement = 0;
1371 	x86_init.irqs.intr_init = xen_init_IRQ;
1372 	xen_hvm_init_time_ops();
1373 	xen_hvm_init_mmu_ops();
1374 }
1375 
1376 static bool __init xen_hvm_platform(void)
1377 {
1378 	if (xen_pv_domain())
1379 		return false;
1380 
1381 	if (!xen_cpuid_base())
1382 		return false;
1383 
1384 	return true;
1385 }
1386 
1387 const __refconst struct hypervisor_x86 x86_hyper_xen_hvm = {
1388 	.name			= "Xen HVM",
1389 	.detect			= xen_hvm_platform,
1390 	.init_platform		= xen_hvm_guest_init,
1391 };
1392 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1393 #endif
1394