xref: /openbmc/linux/arch/x86/xen/enlighten.c (revision a8950e49)
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13 
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 #include <linux/edd.h>
35 #include <linux/frame.h>
36 
37 #ifdef CONFIG_KEXEC_CORE
38 #include <linux/kexec.h>
39 #endif
40 
41 #include <xen/xen.h>
42 #include <xen/events.h>
43 #include <xen/interface/xen.h>
44 #include <xen/interface/version.h>
45 #include <xen/interface/physdev.h>
46 #include <xen/interface/vcpu.h>
47 #include <xen/interface/memory.h>
48 #include <xen/interface/nmi.h>
49 #include <xen/interface/xen-mca.h>
50 #include <xen/features.h>
51 #include <xen/page.h>
52 #include <xen/hvm.h>
53 #include <xen/hvc-console.h>
54 #include <xen/acpi.h>
55 
56 #include <asm/paravirt.h>
57 #include <asm/apic.h>
58 #include <asm/page.h>
59 #include <asm/xen/pci.h>
60 #include <asm/xen/hypercall.h>
61 #include <asm/xen/hypervisor.h>
62 #include <asm/fixmap.h>
63 #include <asm/processor.h>
64 #include <asm/proto.h>
65 #include <asm/msr-index.h>
66 #include <asm/traps.h>
67 #include <asm/setup.h>
68 #include <asm/desc.h>
69 #include <asm/pgalloc.h>
70 #include <asm/pgtable.h>
71 #include <asm/tlbflush.h>
72 #include <asm/reboot.h>
73 #include <asm/stackprotector.h>
74 #include <asm/hypervisor.h>
75 #include <asm/mach_traps.h>
76 #include <asm/mwait.h>
77 #include <asm/pci_x86.h>
78 #include <asm/pat.h>
79 #include <asm/cpu.h>
80 
81 #ifdef CONFIG_ACPI
82 #include <linux/acpi.h>
83 #include <asm/acpi.h>
84 #include <acpi/pdc_intel.h>
85 #include <acpi/processor.h>
86 #include <xen/interface/platform.h>
87 #endif
88 
89 #include "xen-ops.h"
90 #include "mmu.h"
91 #include "smp.h"
92 #include "multicalls.h"
93 #include "pmu.h"
94 
95 EXPORT_SYMBOL_GPL(hypercall_page);
96 
97 /*
98  * Pointer to the xen_vcpu_info structure or
99  * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
100  * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
101  * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
102  * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
103  * acknowledge pending events.
104  * Also more subtly it is used by the patched version of irq enable/disable
105  * e.g. xen_irq_enable_direct and xen_iret in PV mode.
106  *
107  * The desire to be able to do those mask/unmask operations as a single
108  * instruction by using the per-cpu offset held in %gs is the real reason
109  * vcpu info is in a per-cpu pointer and the original reason for this
110  * hypercall.
111  *
112  */
113 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
114 
115 /*
116  * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
117  * hypercall. This can be used both in PV and PVHVM mode. The structure
118  * overrides the default per_cpu(xen_vcpu, cpu) value.
119  */
120 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
121 
122 enum xen_domain_type xen_domain_type = XEN_NATIVE;
123 EXPORT_SYMBOL_GPL(xen_domain_type);
124 
125 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
126 EXPORT_SYMBOL(machine_to_phys_mapping);
127 unsigned long  machine_to_phys_nr;
128 EXPORT_SYMBOL(machine_to_phys_nr);
129 
130 struct start_info *xen_start_info;
131 EXPORT_SYMBOL_GPL(xen_start_info);
132 
133 struct shared_info xen_dummy_shared_info;
134 
135 void *xen_initial_gdt;
136 
137 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
138 __read_mostly int xen_have_vector_callback;
139 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
140 
141 /*
142  * Point at some empty memory to start with. We map the real shared_info
143  * page as soon as fixmap is up and running.
144  */
145 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
146 
147 /*
148  * Flag to determine whether vcpu info placement is available on all
149  * VCPUs.  We assume it is to start with, and then set it to zero on
150  * the first failure.  This is because it can succeed on some VCPUs
151  * and not others, since it can involve hypervisor memory allocation,
152  * or because the guest failed to guarantee all the appropriate
153  * constraints on all VCPUs (ie buffer can't cross a page boundary).
154  *
155  * Note that any particular CPU may be using a placed vcpu structure,
156  * but we can only optimise if the all are.
157  *
158  * 0: not available, 1: available
159  */
160 static int have_vcpu_info_placement = 1;
161 
162 struct tls_descs {
163 	struct desc_struct desc[3];
164 };
165 
166 /*
167  * Updating the 3 TLS descriptors in the GDT on every task switch is
168  * surprisingly expensive so we avoid updating them if they haven't
169  * changed.  Since Xen writes different descriptors than the one
170  * passed in the update_descriptor hypercall we keep shadow copies to
171  * compare against.
172  */
173 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
174 
175 static void clamp_max_cpus(void)
176 {
177 #ifdef CONFIG_SMP
178 	if (setup_max_cpus > MAX_VIRT_CPUS)
179 		setup_max_cpus = MAX_VIRT_CPUS;
180 #endif
181 }
182 
183 static void xen_vcpu_setup(int cpu)
184 {
185 	struct vcpu_register_vcpu_info info;
186 	int err;
187 	struct vcpu_info *vcpup;
188 
189 	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
190 
191 	/*
192 	 * This path is called twice on PVHVM - first during bootup via
193 	 * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
194 	 * hotplugged: cpu_up -> xen_hvm_cpu_notify.
195 	 * As we can only do the VCPUOP_register_vcpu_info once lets
196 	 * not over-write its result.
197 	 *
198 	 * For PV it is called during restore (xen_vcpu_restore) and bootup
199 	 * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
200 	 * use this function.
201 	 */
202 	if (xen_hvm_domain()) {
203 		if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
204 			return;
205 	}
206 	if (cpu < MAX_VIRT_CPUS)
207 		per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
208 
209 	if (!have_vcpu_info_placement) {
210 		if (cpu >= MAX_VIRT_CPUS)
211 			clamp_max_cpus();
212 		return;
213 	}
214 
215 	vcpup = &per_cpu(xen_vcpu_info, cpu);
216 	info.mfn = arbitrary_virt_to_mfn(vcpup);
217 	info.offset = offset_in_page(vcpup);
218 
219 	/* Check to see if the hypervisor will put the vcpu_info
220 	   structure where we want it, which allows direct access via
221 	   a percpu-variable.
222 	   N.B. This hypercall can _only_ be called once per CPU. Subsequent
223 	   calls will error out with -EINVAL. This is due to the fact that
224 	   hypervisor has no unregister variant and this hypercall does not
225 	   allow to over-write info.mfn and info.offset.
226 	 */
227 	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
228 
229 	if (err) {
230 		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
231 		have_vcpu_info_placement = 0;
232 		clamp_max_cpus();
233 	} else {
234 		/* This cpu is using the registered vcpu info, even if
235 		   later ones fail to. */
236 		per_cpu(xen_vcpu, cpu) = vcpup;
237 	}
238 }
239 
240 /*
241  * On restore, set the vcpu placement up again.
242  * If it fails, then we're in a bad state, since
243  * we can't back out from using it...
244  */
245 void xen_vcpu_restore(void)
246 {
247 	int cpu;
248 
249 	for_each_possible_cpu(cpu) {
250 		bool other_cpu = (cpu != smp_processor_id());
251 		bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL);
252 
253 		if (other_cpu && is_up &&
254 		    HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
255 			BUG();
256 
257 		xen_setup_runstate_info(cpu);
258 
259 		if (have_vcpu_info_placement)
260 			xen_vcpu_setup(cpu);
261 
262 		if (other_cpu && is_up &&
263 		    HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
264 			BUG();
265 	}
266 }
267 
268 static void __init xen_banner(void)
269 {
270 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
271 	struct xen_extraversion extra;
272 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
273 
274 	pr_info("Booting paravirtualized kernel %son %s\n",
275 		xen_feature(XENFEAT_auto_translated_physmap) ?
276 			"with PVH extensions " : "", pv_info.name);
277 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
278 	       version >> 16, version & 0xffff, extra.extraversion,
279 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
280 }
281 /* Check if running on Xen version (major, minor) or later */
282 bool
283 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
284 {
285 	unsigned int version;
286 
287 	if (!xen_domain())
288 		return false;
289 
290 	version = HYPERVISOR_xen_version(XENVER_version, NULL);
291 	if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
292 		((version >> 16) > major))
293 		return true;
294 	return false;
295 }
296 
297 #define CPUID_THERM_POWER_LEAF 6
298 #define APERFMPERF_PRESENT 0
299 
300 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
301 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
302 
303 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
304 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
305 static __read_mostly unsigned int cpuid_leaf5_edx_val;
306 
307 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
308 		      unsigned int *cx, unsigned int *dx)
309 {
310 	unsigned maskebx = ~0;
311 	unsigned maskecx = ~0;
312 	unsigned maskedx = ~0;
313 	unsigned setecx = 0;
314 	/*
315 	 * Mask out inconvenient features, to try and disable as many
316 	 * unsupported kernel subsystems as possible.
317 	 */
318 	switch (*ax) {
319 	case 1:
320 		maskecx = cpuid_leaf1_ecx_mask;
321 		setecx = cpuid_leaf1_ecx_set_mask;
322 		maskedx = cpuid_leaf1_edx_mask;
323 		break;
324 
325 	case CPUID_MWAIT_LEAF:
326 		/* Synthesize the values.. */
327 		*ax = 0;
328 		*bx = 0;
329 		*cx = cpuid_leaf5_ecx_val;
330 		*dx = cpuid_leaf5_edx_val;
331 		return;
332 
333 	case CPUID_THERM_POWER_LEAF:
334 		/* Disabling APERFMPERF for kernel usage */
335 		maskecx = ~(1 << APERFMPERF_PRESENT);
336 		break;
337 
338 	case 0xb:
339 		/* Suppress extended topology stuff */
340 		maskebx = 0;
341 		break;
342 	}
343 
344 	asm(XEN_EMULATE_PREFIX "cpuid"
345 		: "=a" (*ax),
346 		  "=b" (*bx),
347 		  "=c" (*cx),
348 		  "=d" (*dx)
349 		: "0" (*ax), "2" (*cx));
350 
351 	*bx &= maskebx;
352 	*cx &= maskecx;
353 	*cx |= setecx;
354 	*dx &= maskedx;
355 }
356 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
357 
358 static bool __init xen_check_mwait(void)
359 {
360 #ifdef CONFIG_ACPI
361 	struct xen_platform_op op = {
362 		.cmd			= XENPF_set_processor_pminfo,
363 		.u.set_pminfo.id	= -1,
364 		.u.set_pminfo.type	= XEN_PM_PDC,
365 	};
366 	uint32_t buf[3];
367 	unsigned int ax, bx, cx, dx;
368 	unsigned int mwait_mask;
369 
370 	/* We need to determine whether it is OK to expose the MWAIT
371 	 * capability to the kernel to harvest deeper than C3 states from ACPI
372 	 * _CST using the processor_harvest_xen.c module. For this to work, we
373 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
374 	 * checks against). The hypervisor won't expose the MWAIT flag because
375 	 * it would break backwards compatibility; so we will find out directly
376 	 * from the hardware and hypercall.
377 	 */
378 	if (!xen_initial_domain())
379 		return false;
380 
381 	/*
382 	 * When running under platform earlier than Xen4.2, do not expose
383 	 * mwait, to avoid the risk of loading native acpi pad driver
384 	 */
385 	if (!xen_running_on_version_or_later(4, 2))
386 		return false;
387 
388 	ax = 1;
389 	cx = 0;
390 
391 	native_cpuid(&ax, &bx, &cx, &dx);
392 
393 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
394 		     (1 << (X86_FEATURE_MWAIT % 32));
395 
396 	if ((cx & mwait_mask) != mwait_mask)
397 		return false;
398 
399 	/* We need to emulate the MWAIT_LEAF and for that we need both
400 	 * ecx and edx. The hypercall provides only partial information.
401 	 */
402 
403 	ax = CPUID_MWAIT_LEAF;
404 	bx = 0;
405 	cx = 0;
406 	dx = 0;
407 
408 	native_cpuid(&ax, &bx, &cx, &dx);
409 
410 	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
411 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
412 	 */
413 	buf[0] = ACPI_PDC_REVISION_ID;
414 	buf[1] = 1;
415 	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
416 
417 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
418 
419 	if ((HYPERVISOR_platform_op(&op) == 0) &&
420 	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
421 		cpuid_leaf5_ecx_val = cx;
422 		cpuid_leaf5_edx_val = dx;
423 	}
424 	return true;
425 #else
426 	return false;
427 #endif
428 }
429 static void __init xen_init_cpuid_mask(void)
430 {
431 	unsigned int ax, bx, cx, dx;
432 	unsigned int xsave_mask;
433 
434 	cpuid_leaf1_edx_mask =
435 		~((1 << X86_FEATURE_MTRR) |  /* disable MTRR */
436 		  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
437 
438 	if (!xen_initial_domain())
439 		cpuid_leaf1_edx_mask &=
440 			~((1 << X86_FEATURE_ACPI));  /* disable ACPI */
441 
442 	cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
443 
444 	ax = 1;
445 	cx = 0;
446 	cpuid(1, &ax, &bx, &cx, &dx);
447 
448 	xsave_mask =
449 		(1 << (X86_FEATURE_XSAVE % 32)) |
450 		(1 << (X86_FEATURE_OSXSAVE % 32));
451 
452 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
453 	if ((cx & xsave_mask) != xsave_mask)
454 		cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
455 	if (xen_check_mwait())
456 		cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
457 }
458 
459 static void xen_set_debugreg(int reg, unsigned long val)
460 {
461 	HYPERVISOR_set_debugreg(reg, val);
462 }
463 
464 static unsigned long xen_get_debugreg(int reg)
465 {
466 	return HYPERVISOR_get_debugreg(reg);
467 }
468 
469 static void xen_end_context_switch(struct task_struct *next)
470 {
471 	xen_mc_flush();
472 	paravirt_end_context_switch(next);
473 }
474 
475 static unsigned long xen_store_tr(void)
476 {
477 	return 0;
478 }
479 
480 /*
481  * Set the page permissions for a particular virtual address.  If the
482  * address is a vmalloc mapping (or other non-linear mapping), then
483  * find the linear mapping of the page and also set its protections to
484  * match.
485  */
486 static void set_aliased_prot(void *v, pgprot_t prot)
487 {
488 	int level;
489 	pte_t *ptep;
490 	pte_t pte;
491 	unsigned long pfn;
492 	struct page *page;
493 	unsigned char dummy;
494 
495 	ptep = lookup_address((unsigned long)v, &level);
496 	BUG_ON(ptep == NULL);
497 
498 	pfn = pte_pfn(*ptep);
499 	page = pfn_to_page(pfn);
500 
501 	pte = pfn_pte(pfn, prot);
502 
503 	/*
504 	 * Careful: update_va_mapping() will fail if the virtual address
505 	 * we're poking isn't populated in the page tables.  We don't
506 	 * need to worry about the direct map (that's always in the page
507 	 * tables), but we need to be careful about vmap space.  In
508 	 * particular, the top level page table can lazily propagate
509 	 * entries between processes, so if we've switched mms since we
510 	 * vmapped the target in the first place, we might not have the
511 	 * top-level page table entry populated.
512 	 *
513 	 * We disable preemption because we want the same mm active when
514 	 * we probe the target and when we issue the hypercall.  We'll
515 	 * have the same nominal mm, but if we're a kernel thread, lazy
516 	 * mm dropping could change our pgd.
517 	 *
518 	 * Out of an abundance of caution, this uses __get_user() to fault
519 	 * in the target address just in case there's some obscure case
520 	 * in which the target address isn't readable.
521 	 */
522 
523 	preempt_disable();
524 
525 	pagefault_disable();	/* Avoid warnings due to being atomic. */
526 	__get_user(dummy, (unsigned char __user __force *)v);
527 	pagefault_enable();
528 
529 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
530 		BUG();
531 
532 	if (!PageHighMem(page)) {
533 		void *av = __va(PFN_PHYS(pfn));
534 
535 		if (av != v)
536 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
537 				BUG();
538 	} else
539 		kmap_flush_unused();
540 
541 	preempt_enable();
542 }
543 
544 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
545 {
546 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
547 	int i;
548 
549 	/*
550 	 * We need to mark the all aliases of the LDT pages RO.  We
551 	 * don't need to call vm_flush_aliases(), though, since that's
552 	 * only responsible for flushing aliases out the TLBs, not the
553 	 * page tables, and Xen will flush the TLB for us if needed.
554 	 *
555 	 * To avoid confusing future readers: none of this is necessary
556 	 * to load the LDT.  The hypervisor only checks this when the
557 	 * LDT is faulted in due to subsequent descriptor access.
558 	 */
559 
560 	for(i = 0; i < entries; i += entries_per_page)
561 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
562 }
563 
564 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
565 {
566 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
567 	int i;
568 
569 	for(i = 0; i < entries; i += entries_per_page)
570 		set_aliased_prot(ldt + i, PAGE_KERNEL);
571 }
572 
573 static void xen_set_ldt(const void *addr, unsigned entries)
574 {
575 	struct mmuext_op *op;
576 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
577 
578 	trace_xen_cpu_set_ldt(addr, entries);
579 
580 	op = mcs.args;
581 	op->cmd = MMUEXT_SET_LDT;
582 	op->arg1.linear_addr = (unsigned long)addr;
583 	op->arg2.nr_ents = entries;
584 
585 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
586 
587 	xen_mc_issue(PARAVIRT_LAZY_CPU);
588 }
589 
590 static void xen_load_gdt(const struct desc_ptr *dtr)
591 {
592 	unsigned long va = dtr->address;
593 	unsigned int size = dtr->size + 1;
594 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
595 	unsigned long frames[pages];
596 	int f;
597 
598 	/*
599 	 * A GDT can be up to 64k in size, which corresponds to 8192
600 	 * 8-byte entries, or 16 4k pages..
601 	 */
602 
603 	BUG_ON(size > 65536);
604 	BUG_ON(va & ~PAGE_MASK);
605 
606 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
607 		int level;
608 		pte_t *ptep;
609 		unsigned long pfn, mfn;
610 		void *virt;
611 
612 		/*
613 		 * The GDT is per-cpu and is in the percpu data area.
614 		 * That can be virtually mapped, so we need to do a
615 		 * page-walk to get the underlying MFN for the
616 		 * hypercall.  The page can also be in the kernel's
617 		 * linear range, so we need to RO that mapping too.
618 		 */
619 		ptep = lookup_address(va, &level);
620 		BUG_ON(ptep == NULL);
621 
622 		pfn = pte_pfn(*ptep);
623 		mfn = pfn_to_mfn(pfn);
624 		virt = __va(PFN_PHYS(pfn));
625 
626 		frames[f] = mfn;
627 
628 		make_lowmem_page_readonly((void *)va);
629 		make_lowmem_page_readonly(virt);
630 	}
631 
632 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
633 		BUG();
634 }
635 
636 /*
637  * load_gdt for early boot, when the gdt is only mapped once
638  */
639 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
640 {
641 	unsigned long va = dtr->address;
642 	unsigned int size = dtr->size + 1;
643 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
644 	unsigned long frames[pages];
645 	int f;
646 
647 	/*
648 	 * A GDT can be up to 64k in size, which corresponds to 8192
649 	 * 8-byte entries, or 16 4k pages..
650 	 */
651 
652 	BUG_ON(size > 65536);
653 	BUG_ON(va & ~PAGE_MASK);
654 
655 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
656 		pte_t pte;
657 		unsigned long pfn, mfn;
658 
659 		pfn = virt_to_pfn(va);
660 		mfn = pfn_to_mfn(pfn);
661 
662 		pte = pfn_pte(pfn, PAGE_KERNEL_RO);
663 
664 		if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
665 			BUG();
666 
667 		frames[f] = mfn;
668 	}
669 
670 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
671 		BUG();
672 }
673 
674 static inline bool desc_equal(const struct desc_struct *d1,
675 			      const struct desc_struct *d2)
676 {
677 	return d1->a == d2->a && d1->b == d2->b;
678 }
679 
680 static void load_TLS_descriptor(struct thread_struct *t,
681 				unsigned int cpu, unsigned int i)
682 {
683 	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
684 	struct desc_struct *gdt;
685 	xmaddr_t maddr;
686 	struct multicall_space mc;
687 
688 	if (desc_equal(shadow, &t->tls_array[i]))
689 		return;
690 
691 	*shadow = t->tls_array[i];
692 
693 	gdt = get_cpu_gdt_table(cpu);
694 	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
695 	mc = __xen_mc_entry(0);
696 
697 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
698 }
699 
700 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
701 {
702 	/*
703 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
704 	 * and lazy gs handling is enabled, it means we're in a
705 	 * context switch, and %gs has just been saved.  This means we
706 	 * can zero it out to prevent faults on exit from the
707 	 * hypervisor if the next process has no %gs.  Either way, it
708 	 * has been saved, and the new value will get loaded properly.
709 	 * This will go away as soon as Xen has been modified to not
710 	 * save/restore %gs for normal hypercalls.
711 	 *
712 	 * On x86_64, this hack is not used for %gs, because gs points
713 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
714 	 * must not zero %gs on x86_64
715 	 *
716 	 * For x86_64, we need to zero %fs, otherwise we may get an
717 	 * exception between the new %fs descriptor being loaded and
718 	 * %fs being effectively cleared at __switch_to().
719 	 */
720 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
721 #ifdef CONFIG_X86_32
722 		lazy_load_gs(0);
723 #else
724 		loadsegment(fs, 0);
725 #endif
726 	}
727 
728 	xen_mc_batch();
729 
730 	load_TLS_descriptor(t, cpu, 0);
731 	load_TLS_descriptor(t, cpu, 1);
732 	load_TLS_descriptor(t, cpu, 2);
733 
734 	xen_mc_issue(PARAVIRT_LAZY_CPU);
735 }
736 
737 #ifdef CONFIG_X86_64
738 static void xen_load_gs_index(unsigned int idx)
739 {
740 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
741 		BUG();
742 }
743 #endif
744 
745 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
746 				const void *ptr)
747 {
748 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
749 	u64 entry = *(u64 *)ptr;
750 
751 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
752 
753 	preempt_disable();
754 
755 	xen_mc_flush();
756 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
757 		BUG();
758 
759 	preempt_enable();
760 }
761 
762 static int cvt_gate_to_trap(int vector, const gate_desc *val,
763 			    struct trap_info *info)
764 {
765 	unsigned long addr;
766 
767 	if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
768 		return 0;
769 
770 	info->vector = vector;
771 
772 	addr = gate_offset(*val);
773 #ifdef CONFIG_X86_64
774 	/*
775 	 * Look for known traps using IST, and substitute them
776 	 * appropriately.  The debugger ones are the only ones we care
777 	 * about.  Xen will handle faults like double_fault,
778 	 * so we should never see them.  Warn if
779 	 * there's an unexpected IST-using fault handler.
780 	 */
781 	if (addr == (unsigned long)debug)
782 		addr = (unsigned long)xen_debug;
783 	else if (addr == (unsigned long)int3)
784 		addr = (unsigned long)xen_int3;
785 	else if (addr == (unsigned long)stack_segment)
786 		addr = (unsigned long)xen_stack_segment;
787 	else if (addr == (unsigned long)double_fault) {
788 		/* Don't need to handle these */
789 		return 0;
790 #ifdef CONFIG_X86_MCE
791 	} else if (addr == (unsigned long)machine_check) {
792 		/*
793 		 * when xen hypervisor inject vMCE to guest,
794 		 * use native mce handler to handle it
795 		 */
796 		;
797 #endif
798 	} else if (addr == (unsigned long)nmi)
799 		/*
800 		 * Use the native version as well.
801 		 */
802 		;
803 	else {
804 		/* Some other trap using IST? */
805 		if (WARN_ON(val->ist != 0))
806 			return 0;
807 	}
808 #endif	/* CONFIG_X86_64 */
809 	info->address = addr;
810 
811 	info->cs = gate_segment(*val);
812 	info->flags = val->dpl;
813 	/* interrupt gates clear IF */
814 	if (val->type == GATE_INTERRUPT)
815 		info->flags |= 1 << 2;
816 
817 	return 1;
818 }
819 
820 /* Locations of each CPU's IDT */
821 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
822 
823 /* Set an IDT entry.  If the entry is part of the current IDT, then
824    also update Xen. */
825 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
826 {
827 	unsigned long p = (unsigned long)&dt[entrynum];
828 	unsigned long start, end;
829 
830 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
831 
832 	preempt_disable();
833 
834 	start = __this_cpu_read(idt_desc.address);
835 	end = start + __this_cpu_read(idt_desc.size) + 1;
836 
837 	xen_mc_flush();
838 
839 	native_write_idt_entry(dt, entrynum, g);
840 
841 	if (p >= start && (p + 8) <= end) {
842 		struct trap_info info[2];
843 
844 		info[1].address = 0;
845 
846 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
847 			if (HYPERVISOR_set_trap_table(info))
848 				BUG();
849 	}
850 
851 	preempt_enable();
852 }
853 
854 static void xen_convert_trap_info(const struct desc_ptr *desc,
855 				  struct trap_info *traps)
856 {
857 	unsigned in, out, count;
858 
859 	count = (desc->size+1) / sizeof(gate_desc);
860 	BUG_ON(count > 256);
861 
862 	for (in = out = 0; in < count; in++) {
863 		gate_desc *entry = (gate_desc*)(desc->address) + in;
864 
865 		if (cvt_gate_to_trap(in, entry, &traps[out]))
866 			out++;
867 	}
868 	traps[out].address = 0;
869 }
870 
871 void xen_copy_trap_info(struct trap_info *traps)
872 {
873 	const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
874 
875 	xen_convert_trap_info(desc, traps);
876 }
877 
878 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
879    hold a spinlock to protect the static traps[] array (static because
880    it avoids allocation, and saves stack space). */
881 static void xen_load_idt(const struct desc_ptr *desc)
882 {
883 	static DEFINE_SPINLOCK(lock);
884 	static struct trap_info traps[257];
885 
886 	trace_xen_cpu_load_idt(desc);
887 
888 	spin_lock(&lock);
889 
890 	memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
891 
892 	xen_convert_trap_info(desc, traps);
893 
894 	xen_mc_flush();
895 	if (HYPERVISOR_set_trap_table(traps))
896 		BUG();
897 
898 	spin_unlock(&lock);
899 }
900 
901 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
902    they're handled differently. */
903 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
904 				const void *desc, int type)
905 {
906 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
907 
908 	preempt_disable();
909 
910 	switch (type) {
911 	case DESC_LDT:
912 	case DESC_TSS:
913 		/* ignore */
914 		break;
915 
916 	default: {
917 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
918 
919 		xen_mc_flush();
920 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
921 			BUG();
922 	}
923 
924 	}
925 
926 	preempt_enable();
927 }
928 
929 /*
930  * Version of write_gdt_entry for use at early boot-time needed to
931  * update an entry as simply as possible.
932  */
933 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
934 					    const void *desc, int type)
935 {
936 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
937 
938 	switch (type) {
939 	case DESC_LDT:
940 	case DESC_TSS:
941 		/* ignore */
942 		break;
943 
944 	default: {
945 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
946 
947 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
948 			dt[entry] = *(struct desc_struct *)desc;
949 	}
950 
951 	}
952 }
953 
954 static void xen_load_sp0(struct tss_struct *tss,
955 			 struct thread_struct *thread)
956 {
957 	struct multicall_space mcs;
958 
959 	mcs = xen_mc_entry(0);
960 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
961 	xen_mc_issue(PARAVIRT_LAZY_CPU);
962 	tss->x86_tss.sp0 = thread->sp0;
963 }
964 
965 void xen_set_iopl_mask(unsigned mask)
966 {
967 	struct physdev_set_iopl set_iopl;
968 
969 	/* Force the change at ring 0. */
970 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
971 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
972 }
973 
974 static void xen_io_delay(void)
975 {
976 }
977 
978 static void xen_clts(void)
979 {
980 	struct multicall_space mcs;
981 
982 	mcs = xen_mc_entry(0);
983 
984 	MULTI_fpu_taskswitch(mcs.mc, 0);
985 
986 	xen_mc_issue(PARAVIRT_LAZY_CPU);
987 }
988 
989 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
990 
991 static unsigned long xen_read_cr0(void)
992 {
993 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
994 
995 	if (unlikely(cr0 == 0)) {
996 		cr0 = native_read_cr0();
997 		this_cpu_write(xen_cr0_value, cr0);
998 	}
999 
1000 	return cr0;
1001 }
1002 
1003 static void xen_write_cr0(unsigned long cr0)
1004 {
1005 	struct multicall_space mcs;
1006 
1007 	this_cpu_write(xen_cr0_value, cr0);
1008 
1009 	/* Only pay attention to cr0.TS; everything else is
1010 	   ignored. */
1011 	mcs = xen_mc_entry(0);
1012 
1013 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1014 
1015 	xen_mc_issue(PARAVIRT_LAZY_CPU);
1016 }
1017 
1018 static void xen_write_cr4(unsigned long cr4)
1019 {
1020 	cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
1021 
1022 	native_write_cr4(cr4);
1023 }
1024 #ifdef CONFIG_X86_64
1025 static inline unsigned long xen_read_cr8(void)
1026 {
1027 	return 0;
1028 }
1029 static inline void xen_write_cr8(unsigned long val)
1030 {
1031 	BUG_ON(val);
1032 }
1033 #endif
1034 
1035 static u64 xen_read_msr_safe(unsigned int msr, int *err)
1036 {
1037 	u64 val;
1038 
1039 	if (pmu_msr_read(msr, &val, err))
1040 		return val;
1041 
1042 	val = native_read_msr_safe(msr, err);
1043 	switch (msr) {
1044 	case MSR_IA32_APICBASE:
1045 #ifdef CONFIG_X86_X2APIC
1046 		if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
1047 #endif
1048 			val &= ~X2APIC_ENABLE;
1049 		break;
1050 	}
1051 	return val;
1052 }
1053 
1054 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1055 {
1056 	int ret;
1057 
1058 	ret = 0;
1059 
1060 	switch (msr) {
1061 #ifdef CONFIG_X86_64
1062 		unsigned which;
1063 		u64 base;
1064 
1065 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
1066 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
1067 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
1068 
1069 	set:
1070 		base = ((u64)high << 32) | low;
1071 		if (HYPERVISOR_set_segment_base(which, base) != 0)
1072 			ret = -EIO;
1073 		break;
1074 #endif
1075 
1076 	case MSR_STAR:
1077 	case MSR_CSTAR:
1078 	case MSR_LSTAR:
1079 	case MSR_SYSCALL_MASK:
1080 	case MSR_IA32_SYSENTER_CS:
1081 	case MSR_IA32_SYSENTER_ESP:
1082 	case MSR_IA32_SYSENTER_EIP:
1083 		/* Fast syscall setup is all done in hypercalls, so
1084 		   these are all ignored.  Stub them out here to stop
1085 		   Xen console noise. */
1086 		break;
1087 
1088 	default:
1089 		if (!pmu_msr_write(msr, low, high, &ret))
1090 			ret = native_write_msr_safe(msr, low, high);
1091 	}
1092 
1093 	return ret;
1094 }
1095 
1096 void xen_setup_shared_info(void)
1097 {
1098 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1099 		set_fixmap(FIX_PARAVIRT_BOOTMAP,
1100 			   xen_start_info->shared_info);
1101 
1102 		HYPERVISOR_shared_info =
1103 			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1104 	} else
1105 		HYPERVISOR_shared_info =
1106 			(struct shared_info *)__va(xen_start_info->shared_info);
1107 
1108 #ifndef CONFIG_SMP
1109 	/* In UP this is as good a place as any to set up shared info */
1110 	xen_setup_vcpu_info_placement();
1111 #endif
1112 
1113 	xen_setup_mfn_list_list();
1114 }
1115 
1116 /* This is called once we have the cpu_possible_mask */
1117 void xen_setup_vcpu_info_placement(void)
1118 {
1119 	int cpu;
1120 
1121 	for_each_possible_cpu(cpu)
1122 		xen_vcpu_setup(cpu);
1123 
1124 	/* xen_vcpu_setup managed to place the vcpu_info within the
1125 	 * percpu area for all cpus, so make use of it. Note that for
1126 	 * PVH we want to use native IRQ mechanism. */
1127 	if (have_vcpu_info_placement && !xen_pvh_domain()) {
1128 		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1129 		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1130 		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1131 		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1132 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1133 	}
1134 }
1135 
1136 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1137 			  unsigned long addr, unsigned len)
1138 {
1139 	char *start, *end, *reloc;
1140 	unsigned ret;
1141 
1142 	start = end = reloc = NULL;
1143 
1144 #define SITE(op, x)							\
1145 	case PARAVIRT_PATCH(op.x):					\
1146 	if (have_vcpu_info_placement) {					\
1147 		start = (char *)xen_##x##_direct;			\
1148 		end = xen_##x##_direct_end;				\
1149 		reloc = xen_##x##_direct_reloc;				\
1150 	}								\
1151 	goto patch_site
1152 
1153 	switch (type) {
1154 		SITE(pv_irq_ops, irq_enable);
1155 		SITE(pv_irq_ops, irq_disable);
1156 		SITE(pv_irq_ops, save_fl);
1157 		SITE(pv_irq_ops, restore_fl);
1158 #undef SITE
1159 
1160 	patch_site:
1161 		if (start == NULL || (end-start) > len)
1162 			goto default_patch;
1163 
1164 		ret = paravirt_patch_insns(insnbuf, len, start, end);
1165 
1166 		/* Note: because reloc is assigned from something that
1167 		   appears to be an array, gcc assumes it's non-null,
1168 		   but doesn't know its relationship with start and
1169 		   end. */
1170 		if (reloc > start && reloc < end) {
1171 			int reloc_off = reloc - start;
1172 			long *relocp = (long *)(insnbuf + reloc_off);
1173 			long delta = start - (char *)addr;
1174 
1175 			*relocp += delta;
1176 		}
1177 		break;
1178 
1179 	default_patch:
1180 	default:
1181 		ret = paravirt_patch_default(type, clobbers, insnbuf,
1182 					     addr, len);
1183 		break;
1184 	}
1185 
1186 	return ret;
1187 }
1188 
1189 static const struct pv_info xen_info __initconst = {
1190 	.paravirt_enabled = 1,
1191 	.shared_kernel_pmd = 0,
1192 
1193 #ifdef CONFIG_X86_64
1194 	.extra_user_64bit_cs = FLAT_USER_CS64,
1195 #endif
1196 	.features = 0,
1197 	.name = "Xen",
1198 };
1199 
1200 static const struct pv_init_ops xen_init_ops __initconst = {
1201 	.patch = xen_patch,
1202 };
1203 
1204 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1205 	.cpuid = xen_cpuid,
1206 
1207 	.set_debugreg = xen_set_debugreg,
1208 	.get_debugreg = xen_get_debugreg,
1209 
1210 	.clts = xen_clts,
1211 
1212 	.read_cr0 = xen_read_cr0,
1213 	.write_cr0 = xen_write_cr0,
1214 
1215 	.read_cr4 = native_read_cr4,
1216 	.read_cr4_safe = native_read_cr4_safe,
1217 	.write_cr4 = xen_write_cr4,
1218 
1219 #ifdef CONFIG_X86_64
1220 	.read_cr8 = xen_read_cr8,
1221 	.write_cr8 = xen_write_cr8,
1222 #endif
1223 
1224 	.wbinvd = native_wbinvd,
1225 
1226 	.read_msr = xen_read_msr_safe,
1227 	.write_msr = xen_write_msr_safe,
1228 
1229 	.read_pmc = xen_read_pmc,
1230 
1231 	.iret = xen_iret,
1232 #ifdef CONFIG_X86_64
1233 	.usergs_sysret64 = xen_sysret64,
1234 #endif
1235 
1236 	.load_tr_desc = paravirt_nop,
1237 	.set_ldt = xen_set_ldt,
1238 	.load_gdt = xen_load_gdt,
1239 	.load_idt = xen_load_idt,
1240 	.load_tls = xen_load_tls,
1241 #ifdef CONFIG_X86_64
1242 	.load_gs_index = xen_load_gs_index,
1243 #endif
1244 
1245 	.alloc_ldt = xen_alloc_ldt,
1246 	.free_ldt = xen_free_ldt,
1247 
1248 	.store_idt = native_store_idt,
1249 	.store_tr = xen_store_tr,
1250 
1251 	.write_ldt_entry = xen_write_ldt_entry,
1252 	.write_gdt_entry = xen_write_gdt_entry,
1253 	.write_idt_entry = xen_write_idt_entry,
1254 	.load_sp0 = xen_load_sp0,
1255 
1256 	.set_iopl_mask = xen_set_iopl_mask,
1257 	.io_delay = xen_io_delay,
1258 
1259 	/* Xen takes care of %gs when switching to usermode for us */
1260 	.swapgs = paravirt_nop,
1261 
1262 	.start_context_switch = paravirt_start_context_switch,
1263 	.end_context_switch = xen_end_context_switch,
1264 };
1265 
1266 static void xen_reboot(int reason)
1267 {
1268 	struct sched_shutdown r = { .reason = reason };
1269 	int cpu;
1270 
1271 	for_each_online_cpu(cpu)
1272 		xen_pmu_finish(cpu);
1273 
1274 	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1275 		BUG();
1276 }
1277 
1278 static void xen_restart(char *msg)
1279 {
1280 	xen_reboot(SHUTDOWN_reboot);
1281 }
1282 
1283 static void xen_emergency_restart(void)
1284 {
1285 	xen_reboot(SHUTDOWN_reboot);
1286 }
1287 
1288 static void xen_machine_halt(void)
1289 {
1290 	xen_reboot(SHUTDOWN_poweroff);
1291 }
1292 
1293 static void xen_machine_power_off(void)
1294 {
1295 	if (pm_power_off)
1296 		pm_power_off();
1297 	xen_reboot(SHUTDOWN_poweroff);
1298 }
1299 
1300 static void xen_crash_shutdown(struct pt_regs *regs)
1301 {
1302 	xen_reboot(SHUTDOWN_crash);
1303 }
1304 
1305 static int
1306 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1307 {
1308 	xen_reboot(SHUTDOWN_crash);
1309 	return NOTIFY_DONE;
1310 }
1311 
1312 static struct notifier_block xen_panic_block = {
1313 	.notifier_call= xen_panic_event,
1314 	.priority = INT_MIN
1315 };
1316 
1317 int xen_panic_handler_init(void)
1318 {
1319 	atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1320 	return 0;
1321 }
1322 
1323 static const struct machine_ops xen_machine_ops __initconst = {
1324 	.restart = xen_restart,
1325 	.halt = xen_machine_halt,
1326 	.power_off = xen_machine_power_off,
1327 	.shutdown = xen_machine_halt,
1328 	.crash_shutdown = xen_crash_shutdown,
1329 	.emergency_restart = xen_emergency_restart,
1330 };
1331 
1332 static unsigned char xen_get_nmi_reason(void)
1333 {
1334 	unsigned char reason = 0;
1335 
1336 	/* Construct a value which looks like it came from port 0x61. */
1337 	if (test_bit(_XEN_NMIREASON_io_error,
1338 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1339 		reason |= NMI_REASON_IOCHK;
1340 	if (test_bit(_XEN_NMIREASON_pci_serr,
1341 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1342 		reason |= NMI_REASON_SERR;
1343 
1344 	return reason;
1345 }
1346 
1347 static void __init xen_boot_params_init_edd(void)
1348 {
1349 #if IS_ENABLED(CONFIG_EDD)
1350 	struct xen_platform_op op;
1351 	struct edd_info *edd_info;
1352 	u32 *mbr_signature;
1353 	unsigned nr;
1354 	int ret;
1355 
1356 	edd_info = boot_params.eddbuf;
1357 	mbr_signature = boot_params.edd_mbr_sig_buffer;
1358 
1359 	op.cmd = XENPF_firmware_info;
1360 
1361 	op.u.firmware_info.type = XEN_FW_DISK_INFO;
1362 	for (nr = 0; nr < EDDMAXNR; nr++) {
1363 		struct edd_info *info = edd_info + nr;
1364 
1365 		op.u.firmware_info.index = nr;
1366 		info->params.length = sizeof(info->params);
1367 		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1368 				     &info->params);
1369 		ret = HYPERVISOR_platform_op(&op);
1370 		if (ret)
1371 			break;
1372 
1373 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1374 		C(device);
1375 		C(version);
1376 		C(interface_support);
1377 		C(legacy_max_cylinder);
1378 		C(legacy_max_head);
1379 		C(legacy_sectors_per_track);
1380 #undef C
1381 	}
1382 	boot_params.eddbuf_entries = nr;
1383 
1384 	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1385 	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1386 		op.u.firmware_info.index = nr;
1387 		ret = HYPERVISOR_platform_op(&op);
1388 		if (ret)
1389 			break;
1390 		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1391 	}
1392 	boot_params.edd_mbr_sig_buf_entries = nr;
1393 #endif
1394 }
1395 
1396 /*
1397  * Set up the GDT and segment registers for -fstack-protector.  Until
1398  * we do this, we have to be careful not to call any stack-protected
1399  * function, which is most of the kernel.
1400  *
1401  * Note, that it is __ref because the only caller of this after init
1402  * is PVH which is not going to use xen_load_gdt_boot or other
1403  * __init functions.
1404  */
1405 static void __ref xen_setup_gdt(int cpu)
1406 {
1407 	if (xen_feature(XENFEAT_auto_translated_physmap)) {
1408 #ifdef CONFIG_X86_64
1409 		unsigned long dummy;
1410 
1411 		load_percpu_segment(cpu); /* We need to access per-cpu area */
1412 		switch_to_new_gdt(cpu); /* GDT and GS set */
1413 
1414 		/* We are switching of the Xen provided GDT to our HVM mode
1415 		 * GDT. The new GDT has  __KERNEL_CS with CS.L = 1
1416 		 * and we are jumping to reload it.
1417 		 */
1418 		asm volatile ("pushq %0\n"
1419 			      "leaq 1f(%%rip),%0\n"
1420 			      "pushq %0\n"
1421 			      "lretq\n"
1422 			      "1:\n"
1423 			      : "=&r" (dummy) : "0" (__KERNEL_CS));
1424 
1425 		/*
1426 		 * While not needed, we also set the %es, %ds, and %fs
1427 		 * to zero. We don't care about %ss as it is NULL.
1428 		 * Strictly speaking this is not needed as Xen zeros those
1429 		 * out (and also MSR_FS_BASE, MSR_GS_BASE, MSR_KERNEL_GS_BASE)
1430 		 *
1431 		 * Linux zeros them in cpu_init() and in secondary_startup_64
1432 		 * (for BSP).
1433 		 */
1434 		loadsegment(es, 0);
1435 		loadsegment(ds, 0);
1436 		loadsegment(fs, 0);
1437 #else
1438 		/* PVH: TODO Implement. */
1439 		BUG();
1440 #endif
1441 		return; /* PVH does not need any PV GDT ops. */
1442 	}
1443 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1444 	pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1445 
1446 	setup_stack_canary_segment(0);
1447 	switch_to_new_gdt(0);
1448 
1449 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1450 	pv_cpu_ops.load_gdt = xen_load_gdt;
1451 }
1452 
1453 #ifdef CONFIG_XEN_PVH
1454 /*
1455  * A PV guest starts with default flags that are not set for PVH, set them
1456  * here asap.
1457  */
1458 static void xen_pvh_set_cr_flags(int cpu)
1459 {
1460 
1461 	/* Some of these are setup in 'secondary_startup_64'. The others:
1462 	 * X86_CR0_TS, X86_CR0_PE, X86_CR0_ET are set by Xen for HVM guests
1463 	 * (which PVH shared codepaths), while X86_CR0_PG is for PVH. */
1464 	write_cr0(read_cr0() | X86_CR0_MP | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM);
1465 
1466 	if (!cpu)
1467 		return;
1468 	/*
1469 	 * For BSP, PSE PGE are set in probe_page_size_mask(), for APs
1470 	 * set them here. For all, OSFXSR OSXMMEXCPT are set in fpu__init_cpu().
1471 	*/
1472 	if (cpu_has_pse)
1473 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
1474 
1475 	if (cpu_has_pge)
1476 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
1477 }
1478 
1479 /*
1480  * Note, that it is ref - because the only caller of this after init
1481  * is PVH which is not going to use xen_load_gdt_boot or other
1482  * __init functions.
1483  */
1484 void __ref xen_pvh_secondary_vcpu_init(int cpu)
1485 {
1486 	xen_setup_gdt(cpu);
1487 	xen_pvh_set_cr_flags(cpu);
1488 }
1489 
1490 static void __init xen_pvh_early_guest_init(void)
1491 {
1492 	if (!xen_feature(XENFEAT_auto_translated_physmap))
1493 		return;
1494 
1495 	if (!xen_feature(XENFEAT_hvm_callback_vector))
1496 		return;
1497 
1498 	xen_have_vector_callback = 1;
1499 
1500 	xen_pvh_early_cpu_init(0, false);
1501 	xen_pvh_set_cr_flags(0);
1502 
1503 #ifdef CONFIG_X86_32
1504 	BUG(); /* PVH: Implement proper support. */
1505 #endif
1506 }
1507 #endif    /* CONFIG_XEN_PVH */
1508 
1509 /* First C function to be called on Xen boot */
1510 asmlinkage __visible void __init xen_start_kernel(void)
1511 {
1512 	struct physdev_set_iopl set_iopl;
1513 	unsigned long initrd_start = 0;
1514 	u64 pat;
1515 	int rc;
1516 
1517 	if (!xen_start_info)
1518 		return;
1519 
1520 	xen_domain_type = XEN_PV_DOMAIN;
1521 
1522 	xen_setup_features();
1523 #ifdef CONFIG_XEN_PVH
1524 	xen_pvh_early_guest_init();
1525 #endif
1526 	xen_setup_machphys_mapping();
1527 
1528 	/* Install Xen paravirt ops */
1529 	pv_info = xen_info;
1530 	if (xen_initial_domain())
1531 		pv_info.features |= PV_SUPPORTED_RTC;
1532 	pv_init_ops = xen_init_ops;
1533 	if (!xen_pvh_domain()) {
1534 		pv_cpu_ops = xen_cpu_ops;
1535 
1536 		x86_platform.get_nmi_reason = xen_get_nmi_reason;
1537 	}
1538 
1539 	if (xen_feature(XENFEAT_auto_translated_physmap))
1540 		x86_init.resources.memory_setup = xen_auto_xlated_memory_setup;
1541 	else
1542 		x86_init.resources.memory_setup = xen_memory_setup;
1543 	x86_init.oem.arch_setup = xen_arch_setup;
1544 	x86_init.oem.banner = xen_banner;
1545 
1546 	xen_init_time_ops();
1547 
1548 	/*
1549 	 * Set up some pagetable state before starting to set any ptes.
1550 	 */
1551 
1552 	xen_init_mmu_ops();
1553 
1554 	/* Prevent unwanted bits from being set in PTEs. */
1555 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1556 
1557 	/*
1558 	 * Prevent page tables from being allocated in highmem, even
1559 	 * if CONFIG_HIGHPTE is enabled.
1560 	 */
1561 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1562 
1563 	/* Work out if we support NX */
1564 	x86_configure_nx();
1565 
1566 	/* Get mfn list */
1567 	xen_build_dynamic_phys_to_machine();
1568 
1569 	/*
1570 	 * Set up kernel GDT and segment registers, mainly so that
1571 	 * -fstack-protector code can be executed.
1572 	 */
1573 	xen_setup_gdt(0);
1574 
1575 	xen_init_irq_ops();
1576 	xen_init_cpuid_mask();
1577 
1578 #ifdef CONFIG_X86_LOCAL_APIC
1579 	/*
1580 	 * set up the basic apic ops.
1581 	 */
1582 	xen_init_apic();
1583 #endif
1584 
1585 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1586 		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1587 		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1588 	}
1589 
1590 	machine_ops = xen_machine_ops;
1591 
1592 	/*
1593 	 * The only reliable way to retain the initial address of the
1594 	 * percpu gdt_page is to remember it here, so we can go and
1595 	 * mark it RW later, when the initial percpu area is freed.
1596 	 */
1597 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1598 
1599 	xen_smp_init();
1600 
1601 #ifdef CONFIG_ACPI_NUMA
1602 	/*
1603 	 * The pages we from Xen are not related to machine pages, so
1604 	 * any NUMA information the kernel tries to get from ACPI will
1605 	 * be meaningless.  Prevent it from trying.
1606 	 */
1607 	acpi_numa = -1;
1608 #endif
1609 	/* Don't do the full vcpu_info placement stuff until we have a
1610 	   possible map and a non-dummy shared_info. */
1611 	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1612 
1613 	local_irq_disable();
1614 	early_boot_irqs_disabled = true;
1615 
1616 	xen_raw_console_write("mapping kernel into physical memory\n");
1617 	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1618 				   xen_start_info->nr_pages);
1619 	xen_reserve_special_pages();
1620 
1621 	/*
1622 	 * Modify the cache mode translation tables to match Xen's PAT
1623 	 * configuration.
1624 	 */
1625 	rdmsrl(MSR_IA32_CR_PAT, pat);
1626 	pat_init_cache_modes(pat);
1627 
1628 	/* keep using Xen gdt for now; no urgent need to change it */
1629 
1630 #ifdef CONFIG_X86_32
1631 	pv_info.kernel_rpl = 1;
1632 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1633 		pv_info.kernel_rpl = 0;
1634 #else
1635 	pv_info.kernel_rpl = 0;
1636 #endif
1637 	/* set the limit of our address space */
1638 	xen_reserve_top();
1639 
1640 	/* PVH: runs at default kernel iopl of 0 */
1641 	if (!xen_pvh_domain()) {
1642 		/*
1643 		 * We used to do this in xen_arch_setup, but that is too late
1644 		 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1645 		 * early_amd_init which pokes 0xcf8 port.
1646 		 */
1647 		set_iopl.iopl = 1;
1648 		rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1649 		if (rc != 0)
1650 			xen_raw_printk("physdev_op failed %d\n", rc);
1651 	}
1652 
1653 #ifdef CONFIG_X86_32
1654 	/* set up basic CPUID stuff */
1655 	cpu_detect(&new_cpu_data);
1656 	set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1657 	new_cpu_data.wp_works_ok = 1;
1658 	new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1659 #endif
1660 
1661 	if (xen_start_info->mod_start) {
1662 	    if (xen_start_info->flags & SIF_MOD_START_PFN)
1663 		initrd_start = PFN_PHYS(xen_start_info->mod_start);
1664 	    else
1665 		initrd_start = __pa(xen_start_info->mod_start);
1666 	}
1667 
1668 	/* Poke various useful things into boot_params */
1669 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1670 	boot_params.hdr.ramdisk_image = initrd_start;
1671 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1672 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1673 
1674 	if (!xen_initial_domain()) {
1675 		add_preferred_console("xenboot", 0, NULL);
1676 		add_preferred_console("tty", 0, NULL);
1677 		add_preferred_console("hvc", 0, NULL);
1678 		if (pci_xen)
1679 			x86_init.pci.arch_init = pci_xen_init;
1680 	} else {
1681 		const struct dom0_vga_console_info *info =
1682 			(void *)((char *)xen_start_info +
1683 				 xen_start_info->console.dom0.info_off);
1684 		struct xen_platform_op op = {
1685 			.cmd = XENPF_firmware_info,
1686 			.interface_version = XENPF_INTERFACE_VERSION,
1687 			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1688 		};
1689 
1690 		xen_init_vga(info, xen_start_info->console.dom0.info_size);
1691 		xen_start_info->console.domU.mfn = 0;
1692 		xen_start_info->console.domU.evtchn = 0;
1693 
1694 		if (HYPERVISOR_platform_op(&op) == 0)
1695 			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1696 
1697 		/* Make sure ACS will be enabled */
1698 		pci_request_acs();
1699 
1700 		xen_acpi_sleep_register();
1701 
1702 		/* Avoid searching for BIOS MP tables */
1703 		x86_init.mpparse.find_smp_config = x86_init_noop;
1704 		x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1705 
1706 		xen_boot_params_init_edd();
1707 	}
1708 #ifdef CONFIG_PCI
1709 	/* PCI BIOS service won't work from a PV guest. */
1710 	pci_probe &= ~PCI_PROBE_BIOS;
1711 #endif
1712 	xen_raw_console_write("about to get started...\n");
1713 
1714 	xen_setup_runstate_info(0);
1715 
1716 	xen_efi_init();
1717 
1718 	/* Start the world */
1719 #ifdef CONFIG_X86_32
1720 	i386_start_kernel();
1721 #else
1722 	cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1723 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1724 #endif
1725 }
1726 
1727 void __ref xen_hvm_init_shared_info(void)
1728 {
1729 	int cpu;
1730 	struct xen_add_to_physmap xatp;
1731 	static struct shared_info *shared_info_page = 0;
1732 
1733 	if (!shared_info_page)
1734 		shared_info_page = (struct shared_info *)
1735 			extend_brk(PAGE_SIZE, PAGE_SIZE);
1736 	xatp.domid = DOMID_SELF;
1737 	xatp.idx = 0;
1738 	xatp.space = XENMAPSPACE_shared_info;
1739 	xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1740 	if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1741 		BUG();
1742 
1743 	HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1744 
1745 	/* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1746 	 * page, we use it in the event channel upcall and in some pvclock
1747 	 * related functions. We don't need the vcpu_info placement
1748 	 * optimizations because we don't use any pv_mmu or pv_irq op on
1749 	 * HVM.
1750 	 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1751 	 * online but xen_hvm_init_shared_info is run at resume time too and
1752 	 * in that case multiple vcpus might be online. */
1753 	for_each_online_cpu(cpu) {
1754 		/* Leave it to be NULL. */
1755 		if (cpu >= MAX_VIRT_CPUS)
1756 			continue;
1757 		per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1758 	}
1759 }
1760 
1761 #ifdef CONFIG_XEN_PVHVM
1762 static void __init init_hvm_pv_info(void)
1763 {
1764 	int major, minor;
1765 	uint32_t eax, ebx, ecx, edx, pages, msr, base;
1766 	u64 pfn;
1767 
1768 	base = xen_cpuid_base();
1769 	cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1770 
1771 	major = eax >> 16;
1772 	minor = eax & 0xffff;
1773 	printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1774 
1775 	cpuid(base + 2, &pages, &msr, &ecx, &edx);
1776 
1777 	pfn = __pa(hypercall_page);
1778 	wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1779 
1780 	xen_setup_features();
1781 
1782 	pv_info.name = "Xen HVM";
1783 
1784 	xen_domain_type = XEN_HVM_DOMAIN;
1785 }
1786 
1787 static int xen_hvm_cpu_notify(struct notifier_block *self, unsigned long action,
1788 			      void *hcpu)
1789 {
1790 	int cpu = (long)hcpu;
1791 	switch (action) {
1792 	case CPU_UP_PREPARE:
1793 		xen_vcpu_setup(cpu);
1794 		if (xen_have_vector_callback) {
1795 			if (xen_feature(XENFEAT_hvm_safe_pvclock))
1796 				xen_setup_timer(cpu);
1797 		}
1798 		break;
1799 	default:
1800 		break;
1801 	}
1802 	return NOTIFY_OK;
1803 }
1804 
1805 static struct notifier_block xen_hvm_cpu_notifier = {
1806 	.notifier_call	= xen_hvm_cpu_notify,
1807 };
1808 
1809 #ifdef CONFIG_KEXEC_CORE
1810 static void xen_hvm_shutdown(void)
1811 {
1812 	native_machine_shutdown();
1813 	if (kexec_in_progress)
1814 		xen_reboot(SHUTDOWN_soft_reset);
1815 }
1816 
1817 static void xen_hvm_crash_shutdown(struct pt_regs *regs)
1818 {
1819 	native_machine_crash_shutdown(regs);
1820 	xen_reboot(SHUTDOWN_soft_reset);
1821 }
1822 #endif
1823 
1824 static void __init xen_hvm_guest_init(void)
1825 {
1826 	if (xen_pv_domain())
1827 		return;
1828 
1829 	init_hvm_pv_info();
1830 
1831 	xen_hvm_init_shared_info();
1832 
1833 	xen_panic_handler_init();
1834 
1835 	if (xen_feature(XENFEAT_hvm_callback_vector))
1836 		xen_have_vector_callback = 1;
1837 	xen_hvm_smp_init();
1838 	register_cpu_notifier(&xen_hvm_cpu_notifier);
1839 	xen_unplug_emulated_devices();
1840 	x86_init.irqs.intr_init = xen_init_IRQ;
1841 	xen_hvm_init_time_ops();
1842 	xen_hvm_init_mmu_ops();
1843 #ifdef CONFIG_KEXEC_CORE
1844 	machine_ops.shutdown = xen_hvm_shutdown;
1845 	machine_ops.crash_shutdown = xen_hvm_crash_shutdown;
1846 #endif
1847 }
1848 #endif
1849 
1850 static bool xen_nopv = false;
1851 static __init int xen_parse_nopv(char *arg)
1852 {
1853        xen_nopv = true;
1854        return 0;
1855 }
1856 early_param("xen_nopv", xen_parse_nopv);
1857 
1858 static uint32_t __init xen_platform(void)
1859 {
1860 	if (xen_nopv)
1861 		return 0;
1862 
1863 	return xen_cpuid_base();
1864 }
1865 
1866 bool xen_hvm_need_lapic(void)
1867 {
1868 	if (xen_nopv)
1869 		return false;
1870 	if (xen_pv_domain())
1871 		return false;
1872 	if (!xen_hvm_domain())
1873 		return false;
1874 	if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1875 		return false;
1876 	return true;
1877 }
1878 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1879 
1880 static void xen_set_cpu_features(struct cpuinfo_x86 *c)
1881 {
1882 	if (xen_pv_domain()) {
1883 		clear_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS);
1884 		set_cpu_cap(c, X86_FEATURE_XENPV);
1885 	}
1886 }
1887 
1888 const struct hypervisor_x86 x86_hyper_xen = {
1889 	.name			= "Xen",
1890 	.detect			= xen_platform,
1891 #ifdef CONFIG_XEN_PVHVM
1892 	.init_platform		= xen_hvm_guest_init,
1893 #endif
1894 	.x2apic_available	= xen_x2apic_para_available,
1895 	.set_cpu_features       = xen_set_cpu_features,
1896 };
1897 EXPORT_SYMBOL(x86_hyper_xen);
1898 
1899 #ifdef CONFIG_HOTPLUG_CPU
1900 void xen_arch_register_cpu(int num)
1901 {
1902 	arch_register_cpu(num);
1903 }
1904 EXPORT_SYMBOL(xen_arch_register_cpu);
1905 
1906 void xen_arch_unregister_cpu(int num)
1907 {
1908 	arch_unregister_cpu(num);
1909 }
1910 EXPORT_SYMBOL(xen_arch_unregister_cpu);
1911 #endif
1912