xref: /openbmc/linux/arch/x86/xen/enlighten.c (revision a09d2831)
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/kprobes.h>
24 #include <linux/bootmem.h>
25 #include <linux/module.h>
26 #include <linux/mm.h>
27 #include <linux/page-flags.h>
28 #include <linux/highmem.h>
29 #include <linux/console.h>
30 #include <linux/pci.h>
31 
32 #include <xen/xen.h>
33 #include <xen/interface/xen.h>
34 #include <xen/interface/version.h>
35 #include <xen/interface/physdev.h>
36 #include <xen/interface/vcpu.h>
37 #include <xen/features.h>
38 #include <xen/page.h>
39 #include <xen/hvc-console.h>
40 
41 #include <asm/paravirt.h>
42 #include <asm/apic.h>
43 #include <asm/page.h>
44 #include <asm/xen/hypercall.h>
45 #include <asm/xen/hypervisor.h>
46 #include <asm/fixmap.h>
47 #include <asm/processor.h>
48 #include <asm/proto.h>
49 #include <asm/msr-index.h>
50 #include <asm/traps.h>
51 #include <asm/setup.h>
52 #include <asm/desc.h>
53 #include <asm/pgtable.h>
54 #include <asm/tlbflush.h>
55 #include <asm/reboot.h>
56 #include <asm/stackprotector.h>
57 
58 #include "xen-ops.h"
59 #include "mmu.h"
60 #include "multicalls.h"
61 
62 EXPORT_SYMBOL_GPL(hypercall_page);
63 
64 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
65 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
66 
67 enum xen_domain_type xen_domain_type = XEN_NATIVE;
68 EXPORT_SYMBOL_GPL(xen_domain_type);
69 
70 struct start_info *xen_start_info;
71 EXPORT_SYMBOL_GPL(xen_start_info);
72 
73 struct shared_info xen_dummy_shared_info;
74 
75 void *xen_initial_gdt;
76 
77 /*
78  * Point at some empty memory to start with. We map the real shared_info
79  * page as soon as fixmap is up and running.
80  */
81 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
82 
83 /*
84  * Flag to determine whether vcpu info placement is available on all
85  * VCPUs.  We assume it is to start with, and then set it to zero on
86  * the first failure.  This is because it can succeed on some VCPUs
87  * and not others, since it can involve hypervisor memory allocation,
88  * or because the guest failed to guarantee all the appropriate
89  * constraints on all VCPUs (ie buffer can't cross a page boundary).
90  *
91  * Note that any particular CPU may be using a placed vcpu structure,
92  * but we can only optimise if the all are.
93  *
94  * 0: not available, 1: available
95  */
96 static int have_vcpu_info_placement = 1;
97 
98 static void xen_vcpu_setup(int cpu)
99 {
100 	struct vcpu_register_vcpu_info info;
101 	int err;
102 	struct vcpu_info *vcpup;
103 
104 	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
105 	per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
106 
107 	if (!have_vcpu_info_placement)
108 		return;		/* already tested, not available */
109 
110 	vcpup = &per_cpu(xen_vcpu_info, cpu);
111 
112 	info.mfn = arbitrary_virt_to_mfn(vcpup);
113 	info.offset = offset_in_page(vcpup);
114 
115 	printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
116 	       cpu, vcpup, info.mfn, info.offset);
117 
118 	/* Check to see if the hypervisor will put the vcpu_info
119 	   structure where we want it, which allows direct access via
120 	   a percpu-variable. */
121 	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
122 
123 	if (err) {
124 		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
125 		have_vcpu_info_placement = 0;
126 	} else {
127 		/* This cpu is using the registered vcpu info, even if
128 		   later ones fail to. */
129 		per_cpu(xen_vcpu, cpu) = vcpup;
130 
131 		printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
132 		       cpu, vcpup);
133 	}
134 }
135 
136 /*
137  * On restore, set the vcpu placement up again.
138  * If it fails, then we're in a bad state, since
139  * we can't back out from using it...
140  */
141 void xen_vcpu_restore(void)
142 {
143 	int cpu;
144 
145 	for_each_online_cpu(cpu) {
146 		bool other_cpu = (cpu != smp_processor_id());
147 
148 		if (other_cpu &&
149 		    HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
150 			BUG();
151 
152 		xen_setup_runstate_info(cpu);
153 
154 		if (have_vcpu_info_placement)
155 			xen_vcpu_setup(cpu);
156 
157 		if (other_cpu &&
158 		    HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
159 			BUG();
160 	}
161 }
162 
163 static void __init xen_banner(void)
164 {
165 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
166 	struct xen_extraversion extra;
167 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
168 
169 	printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
170 	       pv_info.name);
171 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
172 	       version >> 16, version & 0xffff, extra.extraversion,
173 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
174 }
175 
176 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
177 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
178 
179 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
180 		      unsigned int *cx, unsigned int *dx)
181 {
182 	unsigned maskebx = ~0;
183 	unsigned maskecx = ~0;
184 	unsigned maskedx = ~0;
185 
186 	/*
187 	 * Mask out inconvenient features, to try and disable as many
188 	 * unsupported kernel subsystems as possible.
189 	 */
190 	switch (*ax) {
191 	case 1:
192 		maskecx = cpuid_leaf1_ecx_mask;
193 		maskedx = cpuid_leaf1_edx_mask;
194 		break;
195 
196 	case 0xb:
197 		/* Suppress extended topology stuff */
198 		maskebx = 0;
199 		break;
200 	}
201 
202 	asm(XEN_EMULATE_PREFIX "cpuid"
203 		: "=a" (*ax),
204 		  "=b" (*bx),
205 		  "=c" (*cx),
206 		  "=d" (*dx)
207 		: "0" (*ax), "2" (*cx));
208 
209 	*bx &= maskebx;
210 	*cx &= maskecx;
211 	*dx &= maskedx;
212 }
213 
214 static __init void xen_init_cpuid_mask(void)
215 {
216 	unsigned int ax, bx, cx, dx;
217 
218 	cpuid_leaf1_edx_mask =
219 		~((1 << X86_FEATURE_MCE)  |  /* disable MCE */
220 		  (1 << X86_FEATURE_MCA)  |  /* disable MCA */
221 		  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
222 
223 	if (!xen_initial_domain())
224 		cpuid_leaf1_edx_mask &=
225 			~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
226 			  (1 << X86_FEATURE_ACPI));  /* disable ACPI */
227 
228 	ax = 1;
229 	cx = 0;
230 	xen_cpuid(&ax, &bx, &cx, &dx);
231 
232 	/* cpuid claims we support xsave; try enabling it to see what happens */
233 	if (cx & (1 << (X86_FEATURE_XSAVE % 32))) {
234 		unsigned long cr4;
235 
236 		set_in_cr4(X86_CR4_OSXSAVE);
237 
238 		cr4 = read_cr4();
239 
240 		if ((cr4 & X86_CR4_OSXSAVE) == 0)
241 			cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_XSAVE % 32));
242 
243 		clear_in_cr4(X86_CR4_OSXSAVE);
244 	}
245 }
246 
247 static void xen_set_debugreg(int reg, unsigned long val)
248 {
249 	HYPERVISOR_set_debugreg(reg, val);
250 }
251 
252 static unsigned long xen_get_debugreg(int reg)
253 {
254 	return HYPERVISOR_get_debugreg(reg);
255 }
256 
257 static void xen_end_context_switch(struct task_struct *next)
258 {
259 	xen_mc_flush();
260 	paravirt_end_context_switch(next);
261 }
262 
263 static unsigned long xen_store_tr(void)
264 {
265 	return 0;
266 }
267 
268 /*
269  * Set the page permissions for a particular virtual address.  If the
270  * address is a vmalloc mapping (or other non-linear mapping), then
271  * find the linear mapping of the page and also set its protections to
272  * match.
273  */
274 static void set_aliased_prot(void *v, pgprot_t prot)
275 {
276 	int level;
277 	pte_t *ptep;
278 	pte_t pte;
279 	unsigned long pfn;
280 	struct page *page;
281 
282 	ptep = lookup_address((unsigned long)v, &level);
283 	BUG_ON(ptep == NULL);
284 
285 	pfn = pte_pfn(*ptep);
286 	page = pfn_to_page(pfn);
287 
288 	pte = pfn_pte(pfn, prot);
289 
290 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
291 		BUG();
292 
293 	if (!PageHighMem(page)) {
294 		void *av = __va(PFN_PHYS(pfn));
295 
296 		if (av != v)
297 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
298 				BUG();
299 	} else
300 		kmap_flush_unused();
301 }
302 
303 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
304 {
305 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
306 	int i;
307 
308 	for(i = 0; i < entries; i += entries_per_page)
309 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
310 }
311 
312 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
313 {
314 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
315 	int i;
316 
317 	for(i = 0; i < entries; i += entries_per_page)
318 		set_aliased_prot(ldt + i, PAGE_KERNEL);
319 }
320 
321 static void xen_set_ldt(const void *addr, unsigned entries)
322 {
323 	struct mmuext_op *op;
324 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
325 
326 	op = mcs.args;
327 	op->cmd = MMUEXT_SET_LDT;
328 	op->arg1.linear_addr = (unsigned long)addr;
329 	op->arg2.nr_ents = entries;
330 
331 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
332 
333 	xen_mc_issue(PARAVIRT_LAZY_CPU);
334 }
335 
336 static void xen_load_gdt(const struct desc_ptr *dtr)
337 {
338 	unsigned long va = dtr->address;
339 	unsigned int size = dtr->size + 1;
340 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
341 	unsigned long frames[pages];
342 	int f;
343 
344 	/*
345 	 * A GDT can be up to 64k in size, which corresponds to 8192
346 	 * 8-byte entries, or 16 4k pages..
347 	 */
348 
349 	BUG_ON(size > 65536);
350 	BUG_ON(va & ~PAGE_MASK);
351 
352 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
353 		int level;
354 		pte_t *ptep;
355 		unsigned long pfn, mfn;
356 		void *virt;
357 
358 		/*
359 		 * The GDT is per-cpu and is in the percpu data area.
360 		 * That can be virtually mapped, so we need to do a
361 		 * page-walk to get the underlying MFN for the
362 		 * hypercall.  The page can also be in the kernel's
363 		 * linear range, so we need to RO that mapping too.
364 		 */
365 		ptep = lookup_address(va, &level);
366 		BUG_ON(ptep == NULL);
367 
368 		pfn = pte_pfn(*ptep);
369 		mfn = pfn_to_mfn(pfn);
370 		virt = __va(PFN_PHYS(pfn));
371 
372 		frames[f] = mfn;
373 
374 		make_lowmem_page_readonly((void *)va);
375 		make_lowmem_page_readonly(virt);
376 	}
377 
378 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
379 		BUG();
380 }
381 
382 /*
383  * load_gdt for early boot, when the gdt is only mapped once
384  */
385 static __init void xen_load_gdt_boot(const struct desc_ptr *dtr)
386 {
387 	unsigned long va = dtr->address;
388 	unsigned int size = dtr->size + 1;
389 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
390 	unsigned long frames[pages];
391 	int f;
392 
393 	/*
394 	 * A GDT can be up to 64k in size, which corresponds to 8192
395 	 * 8-byte entries, or 16 4k pages..
396 	 */
397 
398 	BUG_ON(size > 65536);
399 	BUG_ON(va & ~PAGE_MASK);
400 
401 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
402 		pte_t pte;
403 		unsigned long pfn, mfn;
404 
405 		pfn = virt_to_pfn(va);
406 		mfn = pfn_to_mfn(pfn);
407 
408 		pte = pfn_pte(pfn, PAGE_KERNEL_RO);
409 
410 		if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
411 			BUG();
412 
413 		frames[f] = mfn;
414 	}
415 
416 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
417 		BUG();
418 }
419 
420 static void load_TLS_descriptor(struct thread_struct *t,
421 				unsigned int cpu, unsigned int i)
422 {
423 	struct desc_struct *gdt = get_cpu_gdt_table(cpu);
424 	xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
425 	struct multicall_space mc = __xen_mc_entry(0);
426 
427 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
428 }
429 
430 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
431 {
432 	/*
433 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
434 	 * and lazy gs handling is enabled, it means we're in a
435 	 * context switch, and %gs has just been saved.  This means we
436 	 * can zero it out to prevent faults on exit from the
437 	 * hypervisor if the next process has no %gs.  Either way, it
438 	 * has been saved, and the new value will get loaded properly.
439 	 * This will go away as soon as Xen has been modified to not
440 	 * save/restore %gs for normal hypercalls.
441 	 *
442 	 * On x86_64, this hack is not used for %gs, because gs points
443 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
444 	 * must not zero %gs on x86_64
445 	 *
446 	 * For x86_64, we need to zero %fs, otherwise we may get an
447 	 * exception between the new %fs descriptor being loaded and
448 	 * %fs being effectively cleared at __switch_to().
449 	 */
450 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
451 #ifdef CONFIG_X86_32
452 		lazy_load_gs(0);
453 #else
454 		loadsegment(fs, 0);
455 #endif
456 	}
457 
458 	xen_mc_batch();
459 
460 	load_TLS_descriptor(t, cpu, 0);
461 	load_TLS_descriptor(t, cpu, 1);
462 	load_TLS_descriptor(t, cpu, 2);
463 
464 	xen_mc_issue(PARAVIRT_LAZY_CPU);
465 }
466 
467 #ifdef CONFIG_X86_64
468 static void xen_load_gs_index(unsigned int idx)
469 {
470 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
471 		BUG();
472 }
473 #endif
474 
475 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
476 				const void *ptr)
477 {
478 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
479 	u64 entry = *(u64 *)ptr;
480 
481 	preempt_disable();
482 
483 	xen_mc_flush();
484 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
485 		BUG();
486 
487 	preempt_enable();
488 }
489 
490 static int cvt_gate_to_trap(int vector, const gate_desc *val,
491 			    struct trap_info *info)
492 {
493 	unsigned long addr;
494 
495 	if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
496 		return 0;
497 
498 	info->vector = vector;
499 
500 	addr = gate_offset(*val);
501 #ifdef CONFIG_X86_64
502 	/*
503 	 * Look for known traps using IST, and substitute them
504 	 * appropriately.  The debugger ones are the only ones we care
505 	 * about.  Xen will handle faults like double_fault and
506 	 * machine_check, so we should never see them.  Warn if
507 	 * there's an unexpected IST-using fault handler.
508 	 */
509 	if (addr == (unsigned long)debug)
510 		addr = (unsigned long)xen_debug;
511 	else if (addr == (unsigned long)int3)
512 		addr = (unsigned long)xen_int3;
513 	else if (addr == (unsigned long)stack_segment)
514 		addr = (unsigned long)xen_stack_segment;
515 	else if (addr == (unsigned long)double_fault ||
516 		 addr == (unsigned long)nmi) {
517 		/* Don't need to handle these */
518 		return 0;
519 #ifdef CONFIG_X86_MCE
520 	} else if (addr == (unsigned long)machine_check) {
521 		return 0;
522 #endif
523 	} else {
524 		/* Some other trap using IST? */
525 		if (WARN_ON(val->ist != 0))
526 			return 0;
527 	}
528 #endif	/* CONFIG_X86_64 */
529 	info->address = addr;
530 
531 	info->cs = gate_segment(*val);
532 	info->flags = val->dpl;
533 	/* interrupt gates clear IF */
534 	if (val->type == GATE_INTERRUPT)
535 		info->flags |= 1 << 2;
536 
537 	return 1;
538 }
539 
540 /* Locations of each CPU's IDT */
541 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
542 
543 /* Set an IDT entry.  If the entry is part of the current IDT, then
544    also update Xen. */
545 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
546 {
547 	unsigned long p = (unsigned long)&dt[entrynum];
548 	unsigned long start, end;
549 
550 	preempt_disable();
551 
552 	start = __get_cpu_var(idt_desc).address;
553 	end = start + __get_cpu_var(idt_desc).size + 1;
554 
555 	xen_mc_flush();
556 
557 	native_write_idt_entry(dt, entrynum, g);
558 
559 	if (p >= start && (p + 8) <= end) {
560 		struct trap_info info[2];
561 
562 		info[1].address = 0;
563 
564 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
565 			if (HYPERVISOR_set_trap_table(info))
566 				BUG();
567 	}
568 
569 	preempt_enable();
570 }
571 
572 static void xen_convert_trap_info(const struct desc_ptr *desc,
573 				  struct trap_info *traps)
574 {
575 	unsigned in, out, count;
576 
577 	count = (desc->size+1) / sizeof(gate_desc);
578 	BUG_ON(count > 256);
579 
580 	for (in = out = 0; in < count; in++) {
581 		gate_desc *entry = (gate_desc*)(desc->address) + in;
582 
583 		if (cvt_gate_to_trap(in, entry, &traps[out]))
584 			out++;
585 	}
586 	traps[out].address = 0;
587 }
588 
589 void xen_copy_trap_info(struct trap_info *traps)
590 {
591 	const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
592 
593 	xen_convert_trap_info(desc, traps);
594 }
595 
596 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
597    hold a spinlock to protect the static traps[] array (static because
598    it avoids allocation, and saves stack space). */
599 static void xen_load_idt(const struct desc_ptr *desc)
600 {
601 	static DEFINE_SPINLOCK(lock);
602 	static struct trap_info traps[257];
603 
604 	spin_lock(&lock);
605 
606 	__get_cpu_var(idt_desc) = *desc;
607 
608 	xen_convert_trap_info(desc, traps);
609 
610 	xen_mc_flush();
611 	if (HYPERVISOR_set_trap_table(traps))
612 		BUG();
613 
614 	spin_unlock(&lock);
615 }
616 
617 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
618    they're handled differently. */
619 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
620 				const void *desc, int type)
621 {
622 	preempt_disable();
623 
624 	switch (type) {
625 	case DESC_LDT:
626 	case DESC_TSS:
627 		/* ignore */
628 		break;
629 
630 	default: {
631 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
632 
633 		xen_mc_flush();
634 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
635 			BUG();
636 	}
637 
638 	}
639 
640 	preempt_enable();
641 }
642 
643 /*
644  * Version of write_gdt_entry for use at early boot-time needed to
645  * update an entry as simply as possible.
646  */
647 static __init void xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
648 					    const void *desc, int type)
649 {
650 	switch (type) {
651 	case DESC_LDT:
652 	case DESC_TSS:
653 		/* ignore */
654 		break;
655 
656 	default: {
657 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
658 
659 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
660 			dt[entry] = *(struct desc_struct *)desc;
661 	}
662 
663 	}
664 }
665 
666 static void xen_load_sp0(struct tss_struct *tss,
667 			 struct thread_struct *thread)
668 {
669 	struct multicall_space mcs = xen_mc_entry(0);
670 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
671 	xen_mc_issue(PARAVIRT_LAZY_CPU);
672 }
673 
674 static void xen_set_iopl_mask(unsigned mask)
675 {
676 	struct physdev_set_iopl set_iopl;
677 
678 	/* Force the change at ring 0. */
679 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
680 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
681 }
682 
683 static void xen_io_delay(void)
684 {
685 }
686 
687 #ifdef CONFIG_X86_LOCAL_APIC
688 static u32 xen_apic_read(u32 reg)
689 {
690 	return 0;
691 }
692 
693 static void xen_apic_write(u32 reg, u32 val)
694 {
695 	/* Warn to see if there's any stray references */
696 	WARN_ON(1);
697 }
698 
699 static u64 xen_apic_icr_read(void)
700 {
701 	return 0;
702 }
703 
704 static void xen_apic_icr_write(u32 low, u32 id)
705 {
706 	/* Warn to see if there's any stray references */
707 	WARN_ON(1);
708 }
709 
710 static void xen_apic_wait_icr_idle(void)
711 {
712         return;
713 }
714 
715 static u32 xen_safe_apic_wait_icr_idle(void)
716 {
717         return 0;
718 }
719 
720 static void set_xen_basic_apic_ops(void)
721 {
722 	apic->read = xen_apic_read;
723 	apic->write = xen_apic_write;
724 	apic->icr_read = xen_apic_icr_read;
725 	apic->icr_write = xen_apic_icr_write;
726 	apic->wait_icr_idle = xen_apic_wait_icr_idle;
727 	apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
728 }
729 
730 #endif
731 
732 
733 static void xen_clts(void)
734 {
735 	struct multicall_space mcs;
736 
737 	mcs = xen_mc_entry(0);
738 
739 	MULTI_fpu_taskswitch(mcs.mc, 0);
740 
741 	xen_mc_issue(PARAVIRT_LAZY_CPU);
742 }
743 
744 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
745 
746 static unsigned long xen_read_cr0(void)
747 {
748 	unsigned long cr0 = percpu_read(xen_cr0_value);
749 
750 	if (unlikely(cr0 == 0)) {
751 		cr0 = native_read_cr0();
752 		percpu_write(xen_cr0_value, cr0);
753 	}
754 
755 	return cr0;
756 }
757 
758 static void xen_write_cr0(unsigned long cr0)
759 {
760 	struct multicall_space mcs;
761 
762 	percpu_write(xen_cr0_value, cr0);
763 
764 	/* Only pay attention to cr0.TS; everything else is
765 	   ignored. */
766 	mcs = xen_mc_entry(0);
767 
768 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
769 
770 	xen_mc_issue(PARAVIRT_LAZY_CPU);
771 }
772 
773 static void xen_write_cr4(unsigned long cr4)
774 {
775 	cr4 &= ~X86_CR4_PGE;
776 	cr4 &= ~X86_CR4_PSE;
777 
778 	native_write_cr4(cr4);
779 }
780 
781 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
782 {
783 	int ret;
784 
785 	ret = 0;
786 
787 	switch (msr) {
788 #ifdef CONFIG_X86_64
789 		unsigned which;
790 		u64 base;
791 
792 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
793 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
794 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
795 
796 	set:
797 		base = ((u64)high << 32) | low;
798 		if (HYPERVISOR_set_segment_base(which, base) != 0)
799 			ret = -EIO;
800 		break;
801 #endif
802 
803 	case MSR_STAR:
804 	case MSR_CSTAR:
805 	case MSR_LSTAR:
806 	case MSR_SYSCALL_MASK:
807 	case MSR_IA32_SYSENTER_CS:
808 	case MSR_IA32_SYSENTER_ESP:
809 	case MSR_IA32_SYSENTER_EIP:
810 		/* Fast syscall setup is all done in hypercalls, so
811 		   these are all ignored.  Stub them out here to stop
812 		   Xen console noise. */
813 		break;
814 
815 	default:
816 		ret = native_write_msr_safe(msr, low, high);
817 	}
818 
819 	return ret;
820 }
821 
822 void xen_setup_shared_info(void)
823 {
824 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
825 		set_fixmap(FIX_PARAVIRT_BOOTMAP,
826 			   xen_start_info->shared_info);
827 
828 		HYPERVISOR_shared_info =
829 			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
830 	} else
831 		HYPERVISOR_shared_info =
832 			(struct shared_info *)__va(xen_start_info->shared_info);
833 
834 #ifndef CONFIG_SMP
835 	/* In UP this is as good a place as any to set up shared info */
836 	xen_setup_vcpu_info_placement();
837 #endif
838 
839 	xen_setup_mfn_list_list();
840 }
841 
842 /* This is called once we have the cpu_possible_map */
843 void xen_setup_vcpu_info_placement(void)
844 {
845 	int cpu;
846 
847 	for_each_possible_cpu(cpu)
848 		xen_vcpu_setup(cpu);
849 
850 	/* xen_vcpu_setup managed to place the vcpu_info within the
851 	   percpu area for all cpus, so make use of it */
852 	if (have_vcpu_info_placement) {
853 		printk(KERN_INFO "Xen: using vcpu_info placement\n");
854 
855 		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
856 		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
857 		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
858 		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
859 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
860 	}
861 }
862 
863 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
864 			  unsigned long addr, unsigned len)
865 {
866 	char *start, *end, *reloc;
867 	unsigned ret;
868 
869 	start = end = reloc = NULL;
870 
871 #define SITE(op, x)							\
872 	case PARAVIRT_PATCH(op.x):					\
873 	if (have_vcpu_info_placement) {					\
874 		start = (char *)xen_##x##_direct;			\
875 		end = xen_##x##_direct_end;				\
876 		reloc = xen_##x##_direct_reloc;				\
877 	}								\
878 	goto patch_site
879 
880 	switch (type) {
881 		SITE(pv_irq_ops, irq_enable);
882 		SITE(pv_irq_ops, irq_disable);
883 		SITE(pv_irq_ops, save_fl);
884 		SITE(pv_irq_ops, restore_fl);
885 #undef SITE
886 
887 	patch_site:
888 		if (start == NULL || (end-start) > len)
889 			goto default_patch;
890 
891 		ret = paravirt_patch_insns(insnbuf, len, start, end);
892 
893 		/* Note: because reloc is assigned from something that
894 		   appears to be an array, gcc assumes it's non-null,
895 		   but doesn't know its relationship with start and
896 		   end. */
897 		if (reloc > start && reloc < end) {
898 			int reloc_off = reloc - start;
899 			long *relocp = (long *)(insnbuf + reloc_off);
900 			long delta = start - (char *)addr;
901 
902 			*relocp += delta;
903 		}
904 		break;
905 
906 	default_patch:
907 	default:
908 		ret = paravirt_patch_default(type, clobbers, insnbuf,
909 					     addr, len);
910 		break;
911 	}
912 
913 	return ret;
914 }
915 
916 static const struct pv_info xen_info __initdata = {
917 	.paravirt_enabled = 1,
918 	.shared_kernel_pmd = 0,
919 
920 	.name = "Xen",
921 };
922 
923 static const struct pv_init_ops xen_init_ops __initdata = {
924 	.patch = xen_patch,
925 };
926 
927 static const struct pv_time_ops xen_time_ops __initdata = {
928 	.sched_clock = xen_sched_clock,
929 };
930 
931 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
932 	.cpuid = xen_cpuid,
933 
934 	.set_debugreg = xen_set_debugreg,
935 	.get_debugreg = xen_get_debugreg,
936 
937 	.clts = xen_clts,
938 
939 	.read_cr0 = xen_read_cr0,
940 	.write_cr0 = xen_write_cr0,
941 
942 	.read_cr4 = native_read_cr4,
943 	.read_cr4_safe = native_read_cr4_safe,
944 	.write_cr4 = xen_write_cr4,
945 
946 	.wbinvd = native_wbinvd,
947 
948 	.read_msr = native_read_msr_safe,
949 	.write_msr = xen_write_msr_safe,
950 	.read_tsc = native_read_tsc,
951 	.read_pmc = native_read_pmc,
952 
953 	.iret = xen_iret,
954 	.irq_enable_sysexit = xen_sysexit,
955 #ifdef CONFIG_X86_64
956 	.usergs_sysret32 = xen_sysret32,
957 	.usergs_sysret64 = xen_sysret64,
958 #endif
959 
960 	.load_tr_desc = paravirt_nop,
961 	.set_ldt = xen_set_ldt,
962 	.load_gdt = xen_load_gdt,
963 	.load_idt = xen_load_idt,
964 	.load_tls = xen_load_tls,
965 #ifdef CONFIG_X86_64
966 	.load_gs_index = xen_load_gs_index,
967 #endif
968 
969 	.alloc_ldt = xen_alloc_ldt,
970 	.free_ldt = xen_free_ldt,
971 
972 	.store_gdt = native_store_gdt,
973 	.store_idt = native_store_idt,
974 	.store_tr = xen_store_tr,
975 
976 	.write_ldt_entry = xen_write_ldt_entry,
977 	.write_gdt_entry = xen_write_gdt_entry,
978 	.write_idt_entry = xen_write_idt_entry,
979 	.load_sp0 = xen_load_sp0,
980 
981 	.set_iopl_mask = xen_set_iopl_mask,
982 	.io_delay = xen_io_delay,
983 
984 	/* Xen takes care of %gs when switching to usermode for us */
985 	.swapgs = paravirt_nop,
986 
987 	.start_context_switch = paravirt_start_context_switch,
988 	.end_context_switch = xen_end_context_switch,
989 };
990 
991 static const struct pv_apic_ops xen_apic_ops __initdata = {
992 #ifdef CONFIG_X86_LOCAL_APIC
993 	.startup_ipi_hook = paravirt_nop,
994 #endif
995 };
996 
997 static void xen_reboot(int reason)
998 {
999 	struct sched_shutdown r = { .reason = reason };
1000 
1001 #ifdef CONFIG_SMP
1002 	smp_send_stop();
1003 #endif
1004 
1005 	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1006 		BUG();
1007 }
1008 
1009 static void xen_restart(char *msg)
1010 {
1011 	xen_reboot(SHUTDOWN_reboot);
1012 }
1013 
1014 static void xen_emergency_restart(void)
1015 {
1016 	xen_reboot(SHUTDOWN_reboot);
1017 }
1018 
1019 static void xen_machine_halt(void)
1020 {
1021 	xen_reboot(SHUTDOWN_poweroff);
1022 }
1023 
1024 static void xen_crash_shutdown(struct pt_regs *regs)
1025 {
1026 	xen_reboot(SHUTDOWN_crash);
1027 }
1028 
1029 static const struct machine_ops __initdata xen_machine_ops = {
1030 	.restart = xen_restart,
1031 	.halt = xen_machine_halt,
1032 	.power_off = xen_machine_halt,
1033 	.shutdown = xen_machine_halt,
1034 	.crash_shutdown = xen_crash_shutdown,
1035 	.emergency_restart = xen_emergency_restart,
1036 };
1037 
1038 /*
1039  * Set up the GDT and segment registers for -fstack-protector.  Until
1040  * we do this, we have to be careful not to call any stack-protected
1041  * function, which is most of the kernel.
1042  */
1043 static void __init xen_setup_stackprotector(void)
1044 {
1045 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1046 	pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1047 
1048 	setup_stack_canary_segment(0);
1049 	switch_to_new_gdt(0);
1050 
1051 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1052 	pv_cpu_ops.load_gdt = xen_load_gdt;
1053 }
1054 
1055 /* First C function to be called on Xen boot */
1056 asmlinkage void __init xen_start_kernel(void)
1057 {
1058 	pgd_t *pgd;
1059 
1060 	if (!xen_start_info)
1061 		return;
1062 
1063 	xen_domain_type = XEN_PV_DOMAIN;
1064 
1065 	/* Install Xen paravirt ops */
1066 	pv_info = xen_info;
1067 	pv_init_ops = xen_init_ops;
1068 	pv_time_ops = xen_time_ops;
1069 	pv_cpu_ops = xen_cpu_ops;
1070 	pv_apic_ops = xen_apic_ops;
1071 
1072 	x86_init.resources.memory_setup = xen_memory_setup;
1073 	x86_init.oem.arch_setup = xen_arch_setup;
1074 	x86_init.oem.banner = xen_banner;
1075 
1076 	x86_init.timers.timer_init = xen_time_init;
1077 	x86_init.timers.setup_percpu_clockev = x86_init_noop;
1078 	x86_cpuinit.setup_percpu_clockev = x86_init_noop;
1079 
1080 	x86_platform.calibrate_tsc = xen_tsc_khz;
1081 	x86_platform.get_wallclock = xen_get_wallclock;
1082 	x86_platform.set_wallclock = xen_set_wallclock;
1083 
1084 	/*
1085 	 * Set up some pagetable state before starting to set any ptes.
1086 	 */
1087 
1088 	xen_init_mmu_ops();
1089 
1090 	/* Prevent unwanted bits from being set in PTEs. */
1091 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1092 	if (!xen_initial_domain())
1093 		__supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1094 
1095 	__supported_pte_mask |= _PAGE_IOMAP;
1096 
1097 	/* Work out if we support NX */
1098 	x86_configure_nx();
1099 
1100 	xen_setup_features();
1101 
1102 	/* Get mfn list */
1103 	if (!xen_feature(XENFEAT_auto_translated_physmap))
1104 		xen_build_dynamic_phys_to_machine();
1105 
1106 	/*
1107 	 * Set up kernel GDT and segment registers, mainly so that
1108 	 * -fstack-protector code can be executed.
1109 	 */
1110 	xen_setup_stackprotector();
1111 
1112 	xen_init_irq_ops();
1113 	xen_init_cpuid_mask();
1114 
1115 #ifdef CONFIG_X86_LOCAL_APIC
1116 	/*
1117 	 * set up the basic apic ops.
1118 	 */
1119 	set_xen_basic_apic_ops();
1120 #endif
1121 
1122 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1123 		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1124 		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1125 	}
1126 
1127 	machine_ops = xen_machine_ops;
1128 
1129 	/*
1130 	 * The only reliable way to retain the initial address of the
1131 	 * percpu gdt_page is to remember it here, so we can go and
1132 	 * mark it RW later, when the initial percpu area is freed.
1133 	 */
1134 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1135 
1136 	xen_smp_init();
1137 
1138 	pgd = (pgd_t *)xen_start_info->pt_base;
1139 
1140 	/* Don't do the full vcpu_info placement stuff until we have a
1141 	   possible map and a non-dummy shared_info. */
1142 	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1143 
1144 	local_irq_disable();
1145 	early_boot_irqs_off();
1146 
1147 	xen_raw_console_write("mapping kernel into physical memory\n");
1148 	pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1149 
1150 	init_mm.pgd = pgd;
1151 
1152 	/* keep using Xen gdt for now; no urgent need to change it */
1153 
1154 	pv_info.kernel_rpl = 1;
1155 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1156 		pv_info.kernel_rpl = 0;
1157 
1158 	/* set the limit of our address space */
1159 	xen_reserve_top();
1160 
1161 #ifdef CONFIG_X86_32
1162 	/* set up basic CPUID stuff */
1163 	cpu_detect(&new_cpu_data);
1164 	new_cpu_data.hard_math = 1;
1165 	new_cpu_data.wp_works_ok = 1;
1166 	new_cpu_data.x86_capability[0] = cpuid_edx(1);
1167 #endif
1168 
1169 	/* Poke various useful things into boot_params */
1170 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1171 	boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1172 		? __pa(xen_start_info->mod_start) : 0;
1173 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1174 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1175 
1176 	if (!xen_initial_domain()) {
1177 		add_preferred_console("xenboot", 0, NULL);
1178 		add_preferred_console("tty", 0, NULL);
1179 		add_preferred_console("hvc", 0, NULL);
1180 	} else {
1181 		/* Make sure ACS will be enabled */
1182 		pci_request_acs();
1183 	}
1184 
1185 
1186 	xen_raw_console_write("about to get started...\n");
1187 
1188 	xen_setup_runstate_info(0);
1189 
1190 	/* Start the world */
1191 #ifdef CONFIG_X86_32
1192 	i386_start_kernel();
1193 #else
1194 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1195 #endif
1196 }
1197