xref: /openbmc/linux/arch/x86/xen/enlighten.c (revision 9d749629)
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13 
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 
35 #include <xen/xen.h>
36 #include <xen/events.h>
37 #include <xen/interface/xen.h>
38 #include <xen/interface/version.h>
39 #include <xen/interface/physdev.h>
40 #include <xen/interface/vcpu.h>
41 #include <xen/interface/memory.h>
42 #include <xen/interface/xen-mca.h>
43 #include <xen/features.h>
44 #include <xen/page.h>
45 #include <xen/hvm.h>
46 #include <xen/hvc-console.h>
47 #include <xen/acpi.h>
48 
49 #include <asm/paravirt.h>
50 #include <asm/apic.h>
51 #include <asm/page.h>
52 #include <asm/xen/pci.h>
53 #include <asm/xen/hypercall.h>
54 #include <asm/xen/hypervisor.h>
55 #include <asm/fixmap.h>
56 #include <asm/processor.h>
57 #include <asm/proto.h>
58 #include <asm/msr-index.h>
59 #include <asm/traps.h>
60 #include <asm/setup.h>
61 #include <asm/desc.h>
62 #include <asm/pgalloc.h>
63 #include <asm/pgtable.h>
64 #include <asm/tlbflush.h>
65 #include <asm/reboot.h>
66 #include <asm/stackprotector.h>
67 #include <asm/hypervisor.h>
68 #include <asm/mwait.h>
69 #include <asm/pci_x86.h>
70 
71 #ifdef CONFIG_ACPI
72 #include <linux/acpi.h>
73 #include <asm/acpi.h>
74 #include <acpi/pdc_intel.h>
75 #include <acpi/processor.h>
76 #include <xen/interface/platform.h>
77 #endif
78 
79 #include "xen-ops.h"
80 #include "mmu.h"
81 #include "smp.h"
82 #include "multicalls.h"
83 
84 EXPORT_SYMBOL_GPL(hypercall_page);
85 
86 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
87 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
88 
89 enum xen_domain_type xen_domain_type = XEN_NATIVE;
90 EXPORT_SYMBOL_GPL(xen_domain_type);
91 
92 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
93 EXPORT_SYMBOL(machine_to_phys_mapping);
94 unsigned long  machine_to_phys_nr;
95 EXPORT_SYMBOL(machine_to_phys_nr);
96 
97 struct start_info *xen_start_info;
98 EXPORT_SYMBOL_GPL(xen_start_info);
99 
100 struct shared_info xen_dummy_shared_info;
101 
102 void *xen_initial_gdt;
103 
104 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
105 __read_mostly int xen_have_vector_callback;
106 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
107 
108 /*
109  * Point at some empty memory to start with. We map the real shared_info
110  * page as soon as fixmap is up and running.
111  */
112 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
113 
114 /*
115  * Flag to determine whether vcpu info placement is available on all
116  * VCPUs.  We assume it is to start with, and then set it to zero on
117  * the first failure.  This is because it can succeed on some VCPUs
118  * and not others, since it can involve hypervisor memory allocation,
119  * or because the guest failed to guarantee all the appropriate
120  * constraints on all VCPUs (ie buffer can't cross a page boundary).
121  *
122  * Note that any particular CPU may be using a placed vcpu structure,
123  * but we can only optimise if the all are.
124  *
125  * 0: not available, 1: available
126  */
127 static int have_vcpu_info_placement = 1;
128 
129 struct tls_descs {
130 	struct desc_struct desc[3];
131 };
132 
133 /*
134  * Updating the 3 TLS descriptors in the GDT on every task switch is
135  * surprisingly expensive so we avoid updating them if they haven't
136  * changed.  Since Xen writes different descriptors than the one
137  * passed in the update_descriptor hypercall we keep shadow copies to
138  * compare against.
139  */
140 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
141 
142 static void clamp_max_cpus(void)
143 {
144 #ifdef CONFIG_SMP
145 	if (setup_max_cpus > MAX_VIRT_CPUS)
146 		setup_max_cpus = MAX_VIRT_CPUS;
147 #endif
148 }
149 
150 static void xen_vcpu_setup(int cpu)
151 {
152 	struct vcpu_register_vcpu_info info;
153 	int err;
154 	struct vcpu_info *vcpup;
155 
156 	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
157 
158 	if (cpu < MAX_VIRT_CPUS)
159 		per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
160 
161 	if (!have_vcpu_info_placement) {
162 		if (cpu >= MAX_VIRT_CPUS)
163 			clamp_max_cpus();
164 		return;
165 	}
166 
167 	vcpup = &per_cpu(xen_vcpu_info, cpu);
168 	info.mfn = arbitrary_virt_to_mfn(vcpup);
169 	info.offset = offset_in_page(vcpup);
170 
171 	/* Check to see if the hypervisor will put the vcpu_info
172 	   structure where we want it, which allows direct access via
173 	   a percpu-variable. */
174 	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
175 
176 	if (err) {
177 		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
178 		have_vcpu_info_placement = 0;
179 		clamp_max_cpus();
180 	} else {
181 		/* This cpu is using the registered vcpu info, even if
182 		   later ones fail to. */
183 		per_cpu(xen_vcpu, cpu) = vcpup;
184 	}
185 }
186 
187 /*
188  * On restore, set the vcpu placement up again.
189  * If it fails, then we're in a bad state, since
190  * we can't back out from using it...
191  */
192 void xen_vcpu_restore(void)
193 {
194 	int cpu;
195 
196 	for_each_possible_cpu(cpu) {
197 		bool other_cpu = (cpu != smp_processor_id());
198 		bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL);
199 
200 		if (other_cpu && is_up &&
201 		    HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
202 			BUG();
203 
204 		xen_setup_runstate_info(cpu);
205 
206 		if (have_vcpu_info_placement)
207 			xen_vcpu_setup(cpu);
208 
209 		if (other_cpu && is_up &&
210 		    HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
211 			BUG();
212 	}
213 }
214 
215 static void __init xen_banner(void)
216 {
217 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
218 	struct xen_extraversion extra;
219 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
220 
221 	printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
222 	       pv_info.name);
223 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
224 	       version >> 16, version & 0xffff, extra.extraversion,
225 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
226 }
227 /* Check if running on Xen version (major, minor) or later */
228 bool
229 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
230 {
231 	unsigned int version;
232 
233 	if (!xen_domain())
234 		return false;
235 
236 	version = HYPERVISOR_xen_version(XENVER_version, NULL);
237 	if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
238 		((version >> 16) > major))
239 		return true;
240 	return false;
241 }
242 
243 #define CPUID_THERM_POWER_LEAF 6
244 #define APERFMPERF_PRESENT 0
245 
246 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
247 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
248 
249 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
250 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
251 static __read_mostly unsigned int cpuid_leaf5_edx_val;
252 
253 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
254 		      unsigned int *cx, unsigned int *dx)
255 {
256 	unsigned maskebx = ~0;
257 	unsigned maskecx = ~0;
258 	unsigned maskedx = ~0;
259 	unsigned setecx = 0;
260 	/*
261 	 * Mask out inconvenient features, to try and disable as many
262 	 * unsupported kernel subsystems as possible.
263 	 */
264 	switch (*ax) {
265 	case 1:
266 		maskecx = cpuid_leaf1_ecx_mask;
267 		setecx = cpuid_leaf1_ecx_set_mask;
268 		maskedx = cpuid_leaf1_edx_mask;
269 		break;
270 
271 	case CPUID_MWAIT_LEAF:
272 		/* Synthesize the values.. */
273 		*ax = 0;
274 		*bx = 0;
275 		*cx = cpuid_leaf5_ecx_val;
276 		*dx = cpuid_leaf5_edx_val;
277 		return;
278 
279 	case CPUID_THERM_POWER_LEAF:
280 		/* Disabling APERFMPERF for kernel usage */
281 		maskecx = ~(1 << APERFMPERF_PRESENT);
282 		break;
283 
284 	case 0xb:
285 		/* Suppress extended topology stuff */
286 		maskebx = 0;
287 		break;
288 	}
289 
290 	asm(XEN_EMULATE_PREFIX "cpuid"
291 		: "=a" (*ax),
292 		  "=b" (*bx),
293 		  "=c" (*cx),
294 		  "=d" (*dx)
295 		: "0" (*ax), "2" (*cx));
296 
297 	*bx &= maskebx;
298 	*cx &= maskecx;
299 	*cx |= setecx;
300 	*dx &= maskedx;
301 
302 }
303 
304 static bool __init xen_check_mwait(void)
305 {
306 #ifdef CONFIG_ACPI
307 	struct xen_platform_op op = {
308 		.cmd			= XENPF_set_processor_pminfo,
309 		.u.set_pminfo.id	= -1,
310 		.u.set_pminfo.type	= XEN_PM_PDC,
311 	};
312 	uint32_t buf[3];
313 	unsigned int ax, bx, cx, dx;
314 	unsigned int mwait_mask;
315 
316 	/* We need to determine whether it is OK to expose the MWAIT
317 	 * capability to the kernel to harvest deeper than C3 states from ACPI
318 	 * _CST using the processor_harvest_xen.c module. For this to work, we
319 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
320 	 * checks against). The hypervisor won't expose the MWAIT flag because
321 	 * it would break backwards compatibility; so we will find out directly
322 	 * from the hardware and hypercall.
323 	 */
324 	if (!xen_initial_domain())
325 		return false;
326 
327 	/*
328 	 * When running under platform earlier than Xen4.2, do not expose
329 	 * mwait, to avoid the risk of loading native acpi pad driver
330 	 */
331 	if (!xen_running_on_version_or_later(4, 2))
332 		return false;
333 
334 	ax = 1;
335 	cx = 0;
336 
337 	native_cpuid(&ax, &bx, &cx, &dx);
338 
339 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
340 		     (1 << (X86_FEATURE_MWAIT % 32));
341 
342 	if ((cx & mwait_mask) != mwait_mask)
343 		return false;
344 
345 	/* We need to emulate the MWAIT_LEAF and for that we need both
346 	 * ecx and edx. The hypercall provides only partial information.
347 	 */
348 
349 	ax = CPUID_MWAIT_LEAF;
350 	bx = 0;
351 	cx = 0;
352 	dx = 0;
353 
354 	native_cpuid(&ax, &bx, &cx, &dx);
355 
356 	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
357 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
358 	 */
359 	buf[0] = ACPI_PDC_REVISION_ID;
360 	buf[1] = 1;
361 	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
362 
363 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
364 
365 	if ((HYPERVISOR_dom0_op(&op) == 0) &&
366 	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
367 		cpuid_leaf5_ecx_val = cx;
368 		cpuid_leaf5_edx_val = dx;
369 	}
370 	return true;
371 #else
372 	return false;
373 #endif
374 }
375 static void __init xen_init_cpuid_mask(void)
376 {
377 	unsigned int ax, bx, cx, dx;
378 	unsigned int xsave_mask;
379 
380 	cpuid_leaf1_edx_mask =
381 		~((1 << X86_FEATURE_MTRR) |  /* disable MTRR */
382 		  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
383 
384 	if (!xen_initial_domain())
385 		cpuid_leaf1_edx_mask &=
386 			~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
387 			  (1 << X86_FEATURE_ACPI));  /* disable ACPI */
388 	ax = 1;
389 	cx = 0;
390 	xen_cpuid(&ax, &bx, &cx, &dx);
391 
392 	xsave_mask =
393 		(1 << (X86_FEATURE_XSAVE % 32)) |
394 		(1 << (X86_FEATURE_OSXSAVE % 32));
395 
396 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
397 	if ((cx & xsave_mask) != xsave_mask)
398 		cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
399 	if (xen_check_mwait())
400 		cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
401 }
402 
403 static void xen_set_debugreg(int reg, unsigned long val)
404 {
405 	HYPERVISOR_set_debugreg(reg, val);
406 }
407 
408 static unsigned long xen_get_debugreg(int reg)
409 {
410 	return HYPERVISOR_get_debugreg(reg);
411 }
412 
413 static void xen_end_context_switch(struct task_struct *next)
414 {
415 	xen_mc_flush();
416 	paravirt_end_context_switch(next);
417 }
418 
419 static unsigned long xen_store_tr(void)
420 {
421 	return 0;
422 }
423 
424 /*
425  * Set the page permissions for a particular virtual address.  If the
426  * address is a vmalloc mapping (or other non-linear mapping), then
427  * find the linear mapping of the page and also set its protections to
428  * match.
429  */
430 static void set_aliased_prot(void *v, pgprot_t prot)
431 {
432 	int level;
433 	pte_t *ptep;
434 	pte_t pte;
435 	unsigned long pfn;
436 	struct page *page;
437 
438 	ptep = lookup_address((unsigned long)v, &level);
439 	BUG_ON(ptep == NULL);
440 
441 	pfn = pte_pfn(*ptep);
442 	page = pfn_to_page(pfn);
443 
444 	pte = pfn_pte(pfn, prot);
445 
446 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
447 		BUG();
448 
449 	if (!PageHighMem(page)) {
450 		void *av = __va(PFN_PHYS(pfn));
451 
452 		if (av != v)
453 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
454 				BUG();
455 	} else
456 		kmap_flush_unused();
457 }
458 
459 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
460 {
461 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
462 	int i;
463 
464 	for(i = 0; i < entries; i += entries_per_page)
465 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
466 }
467 
468 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
469 {
470 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
471 	int i;
472 
473 	for(i = 0; i < entries; i += entries_per_page)
474 		set_aliased_prot(ldt + i, PAGE_KERNEL);
475 }
476 
477 static void xen_set_ldt(const void *addr, unsigned entries)
478 {
479 	struct mmuext_op *op;
480 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
481 
482 	trace_xen_cpu_set_ldt(addr, entries);
483 
484 	op = mcs.args;
485 	op->cmd = MMUEXT_SET_LDT;
486 	op->arg1.linear_addr = (unsigned long)addr;
487 	op->arg2.nr_ents = entries;
488 
489 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
490 
491 	xen_mc_issue(PARAVIRT_LAZY_CPU);
492 }
493 
494 static void xen_load_gdt(const struct desc_ptr *dtr)
495 {
496 	unsigned long va = dtr->address;
497 	unsigned int size = dtr->size + 1;
498 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
499 	unsigned long frames[pages];
500 	int f;
501 
502 	/*
503 	 * A GDT can be up to 64k in size, which corresponds to 8192
504 	 * 8-byte entries, or 16 4k pages..
505 	 */
506 
507 	BUG_ON(size > 65536);
508 	BUG_ON(va & ~PAGE_MASK);
509 
510 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
511 		int level;
512 		pte_t *ptep;
513 		unsigned long pfn, mfn;
514 		void *virt;
515 
516 		/*
517 		 * The GDT is per-cpu and is in the percpu data area.
518 		 * That can be virtually mapped, so we need to do a
519 		 * page-walk to get the underlying MFN for the
520 		 * hypercall.  The page can also be in the kernel's
521 		 * linear range, so we need to RO that mapping too.
522 		 */
523 		ptep = lookup_address(va, &level);
524 		BUG_ON(ptep == NULL);
525 
526 		pfn = pte_pfn(*ptep);
527 		mfn = pfn_to_mfn(pfn);
528 		virt = __va(PFN_PHYS(pfn));
529 
530 		frames[f] = mfn;
531 
532 		make_lowmem_page_readonly((void *)va);
533 		make_lowmem_page_readonly(virt);
534 	}
535 
536 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
537 		BUG();
538 }
539 
540 /*
541  * load_gdt for early boot, when the gdt is only mapped once
542  */
543 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
544 {
545 	unsigned long va = dtr->address;
546 	unsigned int size = dtr->size + 1;
547 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
548 	unsigned long frames[pages];
549 	int f;
550 
551 	/*
552 	 * A GDT can be up to 64k in size, which corresponds to 8192
553 	 * 8-byte entries, or 16 4k pages..
554 	 */
555 
556 	BUG_ON(size > 65536);
557 	BUG_ON(va & ~PAGE_MASK);
558 
559 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
560 		pte_t pte;
561 		unsigned long pfn, mfn;
562 
563 		pfn = virt_to_pfn(va);
564 		mfn = pfn_to_mfn(pfn);
565 
566 		pte = pfn_pte(pfn, PAGE_KERNEL_RO);
567 
568 		if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
569 			BUG();
570 
571 		frames[f] = mfn;
572 	}
573 
574 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
575 		BUG();
576 }
577 
578 static inline bool desc_equal(const struct desc_struct *d1,
579 			      const struct desc_struct *d2)
580 {
581 	return d1->a == d2->a && d1->b == d2->b;
582 }
583 
584 static void load_TLS_descriptor(struct thread_struct *t,
585 				unsigned int cpu, unsigned int i)
586 {
587 	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
588 	struct desc_struct *gdt;
589 	xmaddr_t maddr;
590 	struct multicall_space mc;
591 
592 	if (desc_equal(shadow, &t->tls_array[i]))
593 		return;
594 
595 	*shadow = t->tls_array[i];
596 
597 	gdt = get_cpu_gdt_table(cpu);
598 	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
599 	mc = __xen_mc_entry(0);
600 
601 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
602 }
603 
604 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
605 {
606 	/*
607 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
608 	 * and lazy gs handling is enabled, it means we're in a
609 	 * context switch, and %gs has just been saved.  This means we
610 	 * can zero it out to prevent faults on exit from the
611 	 * hypervisor if the next process has no %gs.  Either way, it
612 	 * has been saved, and the new value will get loaded properly.
613 	 * This will go away as soon as Xen has been modified to not
614 	 * save/restore %gs for normal hypercalls.
615 	 *
616 	 * On x86_64, this hack is not used for %gs, because gs points
617 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
618 	 * must not zero %gs on x86_64
619 	 *
620 	 * For x86_64, we need to zero %fs, otherwise we may get an
621 	 * exception between the new %fs descriptor being loaded and
622 	 * %fs being effectively cleared at __switch_to().
623 	 */
624 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
625 #ifdef CONFIG_X86_32
626 		lazy_load_gs(0);
627 #else
628 		loadsegment(fs, 0);
629 #endif
630 	}
631 
632 	xen_mc_batch();
633 
634 	load_TLS_descriptor(t, cpu, 0);
635 	load_TLS_descriptor(t, cpu, 1);
636 	load_TLS_descriptor(t, cpu, 2);
637 
638 	xen_mc_issue(PARAVIRT_LAZY_CPU);
639 }
640 
641 #ifdef CONFIG_X86_64
642 static void xen_load_gs_index(unsigned int idx)
643 {
644 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
645 		BUG();
646 }
647 #endif
648 
649 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
650 				const void *ptr)
651 {
652 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
653 	u64 entry = *(u64 *)ptr;
654 
655 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
656 
657 	preempt_disable();
658 
659 	xen_mc_flush();
660 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
661 		BUG();
662 
663 	preempt_enable();
664 }
665 
666 static int cvt_gate_to_trap(int vector, const gate_desc *val,
667 			    struct trap_info *info)
668 {
669 	unsigned long addr;
670 
671 	if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
672 		return 0;
673 
674 	info->vector = vector;
675 
676 	addr = gate_offset(*val);
677 #ifdef CONFIG_X86_64
678 	/*
679 	 * Look for known traps using IST, and substitute them
680 	 * appropriately.  The debugger ones are the only ones we care
681 	 * about.  Xen will handle faults like double_fault,
682 	 * so we should never see them.  Warn if
683 	 * there's an unexpected IST-using fault handler.
684 	 */
685 	if (addr == (unsigned long)debug)
686 		addr = (unsigned long)xen_debug;
687 	else if (addr == (unsigned long)int3)
688 		addr = (unsigned long)xen_int3;
689 	else if (addr == (unsigned long)stack_segment)
690 		addr = (unsigned long)xen_stack_segment;
691 	else if (addr == (unsigned long)double_fault ||
692 		 addr == (unsigned long)nmi) {
693 		/* Don't need to handle these */
694 		return 0;
695 #ifdef CONFIG_X86_MCE
696 	} else if (addr == (unsigned long)machine_check) {
697 		/*
698 		 * when xen hypervisor inject vMCE to guest,
699 		 * use native mce handler to handle it
700 		 */
701 		;
702 #endif
703 	} else {
704 		/* Some other trap using IST? */
705 		if (WARN_ON(val->ist != 0))
706 			return 0;
707 	}
708 #endif	/* CONFIG_X86_64 */
709 	info->address = addr;
710 
711 	info->cs = gate_segment(*val);
712 	info->flags = val->dpl;
713 	/* interrupt gates clear IF */
714 	if (val->type == GATE_INTERRUPT)
715 		info->flags |= 1 << 2;
716 
717 	return 1;
718 }
719 
720 /* Locations of each CPU's IDT */
721 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
722 
723 /* Set an IDT entry.  If the entry is part of the current IDT, then
724    also update Xen. */
725 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
726 {
727 	unsigned long p = (unsigned long)&dt[entrynum];
728 	unsigned long start, end;
729 
730 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
731 
732 	preempt_disable();
733 
734 	start = __this_cpu_read(idt_desc.address);
735 	end = start + __this_cpu_read(idt_desc.size) + 1;
736 
737 	xen_mc_flush();
738 
739 	native_write_idt_entry(dt, entrynum, g);
740 
741 	if (p >= start && (p + 8) <= end) {
742 		struct trap_info info[2];
743 
744 		info[1].address = 0;
745 
746 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
747 			if (HYPERVISOR_set_trap_table(info))
748 				BUG();
749 	}
750 
751 	preempt_enable();
752 }
753 
754 static void xen_convert_trap_info(const struct desc_ptr *desc,
755 				  struct trap_info *traps)
756 {
757 	unsigned in, out, count;
758 
759 	count = (desc->size+1) / sizeof(gate_desc);
760 	BUG_ON(count > 256);
761 
762 	for (in = out = 0; in < count; in++) {
763 		gate_desc *entry = (gate_desc*)(desc->address) + in;
764 
765 		if (cvt_gate_to_trap(in, entry, &traps[out]))
766 			out++;
767 	}
768 	traps[out].address = 0;
769 }
770 
771 void xen_copy_trap_info(struct trap_info *traps)
772 {
773 	const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
774 
775 	xen_convert_trap_info(desc, traps);
776 }
777 
778 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
779    hold a spinlock to protect the static traps[] array (static because
780    it avoids allocation, and saves stack space). */
781 static void xen_load_idt(const struct desc_ptr *desc)
782 {
783 	static DEFINE_SPINLOCK(lock);
784 	static struct trap_info traps[257];
785 
786 	trace_xen_cpu_load_idt(desc);
787 
788 	spin_lock(&lock);
789 
790 	__get_cpu_var(idt_desc) = *desc;
791 
792 	xen_convert_trap_info(desc, traps);
793 
794 	xen_mc_flush();
795 	if (HYPERVISOR_set_trap_table(traps))
796 		BUG();
797 
798 	spin_unlock(&lock);
799 }
800 
801 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
802    they're handled differently. */
803 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
804 				const void *desc, int type)
805 {
806 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
807 
808 	preempt_disable();
809 
810 	switch (type) {
811 	case DESC_LDT:
812 	case DESC_TSS:
813 		/* ignore */
814 		break;
815 
816 	default: {
817 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
818 
819 		xen_mc_flush();
820 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
821 			BUG();
822 	}
823 
824 	}
825 
826 	preempt_enable();
827 }
828 
829 /*
830  * Version of write_gdt_entry for use at early boot-time needed to
831  * update an entry as simply as possible.
832  */
833 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
834 					    const void *desc, int type)
835 {
836 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
837 
838 	switch (type) {
839 	case DESC_LDT:
840 	case DESC_TSS:
841 		/* ignore */
842 		break;
843 
844 	default: {
845 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
846 
847 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
848 			dt[entry] = *(struct desc_struct *)desc;
849 	}
850 
851 	}
852 }
853 
854 static void xen_load_sp0(struct tss_struct *tss,
855 			 struct thread_struct *thread)
856 {
857 	struct multicall_space mcs;
858 
859 	mcs = xen_mc_entry(0);
860 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
861 	xen_mc_issue(PARAVIRT_LAZY_CPU);
862 }
863 
864 static void xen_set_iopl_mask(unsigned mask)
865 {
866 	struct physdev_set_iopl set_iopl;
867 
868 	/* Force the change at ring 0. */
869 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
870 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
871 }
872 
873 static void xen_io_delay(void)
874 {
875 }
876 
877 #ifdef CONFIG_X86_LOCAL_APIC
878 static unsigned long xen_set_apic_id(unsigned int x)
879 {
880 	WARN_ON(1);
881 	return x;
882 }
883 static unsigned int xen_get_apic_id(unsigned long x)
884 {
885 	return ((x)>>24) & 0xFFu;
886 }
887 static u32 xen_apic_read(u32 reg)
888 {
889 	struct xen_platform_op op = {
890 		.cmd = XENPF_get_cpuinfo,
891 		.interface_version = XENPF_INTERFACE_VERSION,
892 		.u.pcpu_info.xen_cpuid = 0,
893 	};
894 	int ret = 0;
895 
896 	/* Shouldn't need this as APIC is turned off for PV, and we only
897 	 * get called on the bootup processor. But just in case. */
898 	if (!xen_initial_domain() || smp_processor_id())
899 		return 0;
900 
901 	if (reg == APIC_LVR)
902 		return 0x10;
903 
904 	if (reg != APIC_ID)
905 		return 0;
906 
907 	ret = HYPERVISOR_dom0_op(&op);
908 	if (ret)
909 		return 0;
910 
911 	return op.u.pcpu_info.apic_id << 24;
912 }
913 
914 static void xen_apic_write(u32 reg, u32 val)
915 {
916 	/* Warn to see if there's any stray references */
917 	WARN_ON(1);
918 }
919 
920 static u64 xen_apic_icr_read(void)
921 {
922 	return 0;
923 }
924 
925 static void xen_apic_icr_write(u32 low, u32 id)
926 {
927 	/* Warn to see if there's any stray references */
928 	WARN_ON(1);
929 }
930 
931 static void xen_apic_wait_icr_idle(void)
932 {
933         return;
934 }
935 
936 static u32 xen_safe_apic_wait_icr_idle(void)
937 {
938         return 0;
939 }
940 
941 static void set_xen_basic_apic_ops(void)
942 {
943 	apic->read = xen_apic_read;
944 	apic->write = xen_apic_write;
945 	apic->icr_read = xen_apic_icr_read;
946 	apic->icr_write = xen_apic_icr_write;
947 	apic->wait_icr_idle = xen_apic_wait_icr_idle;
948 	apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
949 	apic->set_apic_id = xen_set_apic_id;
950 	apic->get_apic_id = xen_get_apic_id;
951 
952 #ifdef CONFIG_SMP
953 	apic->send_IPI_allbutself = xen_send_IPI_allbutself;
954 	apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself;
955 	apic->send_IPI_mask = xen_send_IPI_mask;
956 	apic->send_IPI_all = xen_send_IPI_all;
957 	apic->send_IPI_self = xen_send_IPI_self;
958 #endif
959 }
960 
961 #endif
962 
963 static void xen_clts(void)
964 {
965 	struct multicall_space mcs;
966 
967 	mcs = xen_mc_entry(0);
968 
969 	MULTI_fpu_taskswitch(mcs.mc, 0);
970 
971 	xen_mc_issue(PARAVIRT_LAZY_CPU);
972 }
973 
974 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
975 
976 static unsigned long xen_read_cr0(void)
977 {
978 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
979 
980 	if (unlikely(cr0 == 0)) {
981 		cr0 = native_read_cr0();
982 		this_cpu_write(xen_cr0_value, cr0);
983 	}
984 
985 	return cr0;
986 }
987 
988 static void xen_write_cr0(unsigned long cr0)
989 {
990 	struct multicall_space mcs;
991 
992 	this_cpu_write(xen_cr0_value, cr0);
993 
994 	/* Only pay attention to cr0.TS; everything else is
995 	   ignored. */
996 	mcs = xen_mc_entry(0);
997 
998 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
999 
1000 	xen_mc_issue(PARAVIRT_LAZY_CPU);
1001 }
1002 
1003 static void xen_write_cr4(unsigned long cr4)
1004 {
1005 	cr4 &= ~X86_CR4_PGE;
1006 	cr4 &= ~X86_CR4_PSE;
1007 
1008 	native_write_cr4(cr4);
1009 }
1010 #ifdef CONFIG_X86_64
1011 static inline unsigned long xen_read_cr8(void)
1012 {
1013 	return 0;
1014 }
1015 static inline void xen_write_cr8(unsigned long val)
1016 {
1017 	BUG_ON(val);
1018 }
1019 #endif
1020 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1021 {
1022 	int ret;
1023 
1024 	ret = 0;
1025 
1026 	switch (msr) {
1027 #ifdef CONFIG_X86_64
1028 		unsigned which;
1029 		u64 base;
1030 
1031 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
1032 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
1033 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
1034 
1035 	set:
1036 		base = ((u64)high << 32) | low;
1037 		if (HYPERVISOR_set_segment_base(which, base) != 0)
1038 			ret = -EIO;
1039 		break;
1040 #endif
1041 
1042 	case MSR_STAR:
1043 	case MSR_CSTAR:
1044 	case MSR_LSTAR:
1045 	case MSR_SYSCALL_MASK:
1046 	case MSR_IA32_SYSENTER_CS:
1047 	case MSR_IA32_SYSENTER_ESP:
1048 	case MSR_IA32_SYSENTER_EIP:
1049 		/* Fast syscall setup is all done in hypercalls, so
1050 		   these are all ignored.  Stub them out here to stop
1051 		   Xen console noise. */
1052 		break;
1053 
1054 	case MSR_IA32_CR_PAT:
1055 		if (smp_processor_id() == 0)
1056 			xen_set_pat(((u64)high << 32) | low);
1057 		break;
1058 
1059 	default:
1060 		ret = native_write_msr_safe(msr, low, high);
1061 	}
1062 
1063 	return ret;
1064 }
1065 
1066 void xen_setup_shared_info(void)
1067 {
1068 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1069 		set_fixmap(FIX_PARAVIRT_BOOTMAP,
1070 			   xen_start_info->shared_info);
1071 
1072 		HYPERVISOR_shared_info =
1073 			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1074 	} else
1075 		HYPERVISOR_shared_info =
1076 			(struct shared_info *)__va(xen_start_info->shared_info);
1077 
1078 #ifndef CONFIG_SMP
1079 	/* In UP this is as good a place as any to set up shared info */
1080 	xen_setup_vcpu_info_placement();
1081 #endif
1082 
1083 	xen_setup_mfn_list_list();
1084 }
1085 
1086 /* This is called once we have the cpu_possible_mask */
1087 void xen_setup_vcpu_info_placement(void)
1088 {
1089 	int cpu;
1090 
1091 	for_each_possible_cpu(cpu)
1092 		xen_vcpu_setup(cpu);
1093 
1094 	/* xen_vcpu_setup managed to place the vcpu_info within the
1095 	   percpu area for all cpus, so make use of it */
1096 	if (have_vcpu_info_placement) {
1097 		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1098 		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1099 		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1100 		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1101 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1102 	}
1103 }
1104 
1105 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1106 			  unsigned long addr, unsigned len)
1107 {
1108 	char *start, *end, *reloc;
1109 	unsigned ret;
1110 
1111 	start = end = reloc = NULL;
1112 
1113 #define SITE(op, x)							\
1114 	case PARAVIRT_PATCH(op.x):					\
1115 	if (have_vcpu_info_placement) {					\
1116 		start = (char *)xen_##x##_direct;			\
1117 		end = xen_##x##_direct_end;				\
1118 		reloc = xen_##x##_direct_reloc;				\
1119 	}								\
1120 	goto patch_site
1121 
1122 	switch (type) {
1123 		SITE(pv_irq_ops, irq_enable);
1124 		SITE(pv_irq_ops, irq_disable);
1125 		SITE(pv_irq_ops, save_fl);
1126 		SITE(pv_irq_ops, restore_fl);
1127 #undef SITE
1128 
1129 	patch_site:
1130 		if (start == NULL || (end-start) > len)
1131 			goto default_patch;
1132 
1133 		ret = paravirt_patch_insns(insnbuf, len, start, end);
1134 
1135 		/* Note: because reloc is assigned from something that
1136 		   appears to be an array, gcc assumes it's non-null,
1137 		   but doesn't know its relationship with start and
1138 		   end. */
1139 		if (reloc > start && reloc < end) {
1140 			int reloc_off = reloc - start;
1141 			long *relocp = (long *)(insnbuf + reloc_off);
1142 			long delta = start - (char *)addr;
1143 
1144 			*relocp += delta;
1145 		}
1146 		break;
1147 
1148 	default_patch:
1149 	default:
1150 		ret = paravirt_patch_default(type, clobbers, insnbuf,
1151 					     addr, len);
1152 		break;
1153 	}
1154 
1155 	return ret;
1156 }
1157 
1158 static const struct pv_info xen_info __initconst = {
1159 	.paravirt_enabled = 1,
1160 	.shared_kernel_pmd = 0,
1161 
1162 #ifdef CONFIG_X86_64
1163 	.extra_user_64bit_cs = FLAT_USER_CS64,
1164 #endif
1165 
1166 	.name = "Xen",
1167 };
1168 
1169 static const struct pv_init_ops xen_init_ops __initconst = {
1170 	.patch = xen_patch,
1171 };
1172 
1173 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1174 	.cpuid = xen_cpuid,
1175 
1176 	.set_debugreg = xen_set_debugreg,
1177 	.get_debugreg = xen_get_debugreg,
1178 
1179 	.clts = xen_clts,
1180 
1181 	.read_cr0 = xen_read_cr0,
1182 	.write_cr0 = xen_write_cr0,
1183 
1184 	.read_cr4 = native_read_cr4,
1185 	.read_cr4_safe = native_read_cr4_safe,
1186 	.write_cr4 = xen_write_cr4,
1187 
1188 #ifdef CONFIG_X86_64
1189 	.read_cr8 = xen_read_cr8,
1190 	.write_cr8 = xen_write_cr8,
1191 #endif
1192 
1193 	.wbinvd = native_wbinvd,
1194 
1195 	.read_msr = native_read_msr_safe,
1196 	.write_msr = xen_write_msr_safe,
1197 
1198 	.read_tsc = native_read_tsc,
1199 	.read_pmc = native_read_pmc,
1200 
1201 	.read_tscp = native_read_tscp,
1202 
1203 	.iret = xen_iret,
1204 	.irq_enable_sysexit = xen_sysexit,
1205 #ifdef CONFIG_X86_64
1206 	.usergs_sysret32 = xen_sysret32,
1207 	.usergs_sysret64 = xen_sysret64,
1208 #endif
1209 
1210 	.load_tr_desc = paravirt_nop,
1211 	.set_ldt = xen_set_ldt,
1212 	.load_gdt = xen_load_gdt,
1213 	.load_idt = xen_load_idt,
1214 	.load_tls = xen_load_tls,
1215 #ifdef CONFIG_X86_64
1216 	.load_gs_index = xen_load_gs_index,
1217 #endif
1218 
1219 	.alloc_ldt = xen_alloc_ldt,
1220 	.free_ldt = xen_free_ldt,
1221 
1222 	.store_gdt = native_store_gdt,
1223 	.store_idt = native_store_idt,
1224 	.store_tr = xen_store_tr,
1225 
1226 	.write_ldt_entry = xen_write_ldt_entry,
1227 	.write_gdt_entry = xen_write_gdt_entry,
1228 	.write_idt_entry = xen_write_idt_entry,
1229 	.load_sp0 = xen_load_sp0,
1230 
1231 	.set_iopl_mask = xen_set_iopl_mask,
1232 	.io_delay = xen_io_delay,
1233 
1234 	/* Xen takes care of %gs when switching to usermode for us */
1235 	.swapgs = paravirt_nop,
1236 
1237 	.start_context_switch = paravirt_start_context_switch,
1238 	.end_context_switch = xen_end_context_switch,
1239 };
1240 
1241 static const struct pv_apic_ops xen_apic_ops __initconst = {
1242 #ifdef CONFIG_X86_LOCAL_APIC
1243 	.startup_ipi_hook = paravirt_nop,
1244 #endif
1245 };
1246 
1247 static void xen_reboot(int reason)
1248 {
1249 	struct sched_shutdown r = { .reason = reason };
1250 
1251 	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1252 		BUG();
1253 }
1254 
1255 static void xen_restart(char *msg)
1256 {
1257 	xen_reboot(SHUTDOWN_reboot);
1258 }
1259 
1260 static void xen_emergency_restart(void)
1261 {
1262 	xen_reboot(SHUTDOWN_reboot);
1263 }
1264 
1265 static void xen_machine_halt(void)
1266 {
1267 	xen_reboot(SHUTDOWN_poweroff);
1268 }
1269 
1270 static void xen_machine_power_off(void)
1271 {
1272 	if (pm_power_off)
1273 		pm_power_off();
1274 	xen_reboot(SHUTDOWN_poweroff);
1275 }
1276 
1277 static void xen_crash_shutdown(struct pt_regs *regs)
1278 {
1279 	xen_reboot(SHUTDOWN_crash);
1280 }
1281 
1282 static int
1283 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1284 {
1285 	xen_reboot(SHUTDOWN_crash);
1286 	return NOTIFY_DONE;
1287 }
1288 
1289 static struct notifier_block xen_panic_block = {
1290 	.notifier_call= xen_panic_event,
1291 };
1292 
1293 int xen_panic_handler_init(void)
1294 {
1295 	atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1296 	return 0;
1297 }
1298 
1299 static const struct machine_ops xen_machine_ops __initconst = {
1300 	.restart = xen_restart,
1301 	.halt = xen_machine_halt,
1302 	.power_off = xen_machine_power_off,
1303 	.shutdown = xen_machine_halt,
1304 	.crash_shutdown = xen_crash_shutdown,
1305 	.emergency_restart = xen_emergency_restart,
1306 };
1307 
1308 /*
1309  * Set up the GDT and segment registers for -fstack-protector.  Until
1310  * we do this, we have to be careful not to call any stack-protected
1311  * function, which is most of the kernel.
1312  */
1313 static void __init xen_setup_stackprotector(void)
1314 {
1315 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1316 	pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1317 
1318 	setup_stack_canary_segment(0);
1319 	switch_to_new_gdt(0);
1320 
1321 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1322 	pv_cpu_ops.load_gdt = xen_load_gdt;
1323 }
1324 
1325 /* First C function to be called on Xen boot */
1326 asmlinkage void __init xen_start_kernel(void)
1327 {
1328 	struct physdev_set_iopl set_iopl;
1329 	int rc;
1330 
1331 	if (!xen_start_info)
1332 		return;
1333 
1334 	xen_domain_type = XEN_PV_DOMAIN;
1335 
1336 	xen_setup_machphys_mapping();
1337 
1338 	/* Install Xen paravirt ops */
1339 	pv_info = xen_info;
1340 	pv_init_ops = xen_init_ops;
1341 	pv_cpu_ops = xen_cpu_ops;
1342 	pv_apic_ops = xen_apic_ops;
1343 
1344 	x86_init.resources.memory_setup = xen_memory_setup;
1345 	x86_init.oem.arch_setup = xen_arch_setup;
1346 	x86_init.oem.banner = xen_banner;
1347 
1348 	xen_init_time_ops();
1349 
1350 	/*
1351 	 * Set up some pagetable state before starting to set any ptes.
1352 	 */
1353 
1354 	xen_init_mmu_ops();
1355 
1356 	/* Prevent unwanted bits from being set in PTEs. */
1357 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1358 #if 0
1359 	if (!xen_initial_domain())
1360 #endif
1361 		__supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1362 
1363 	__supported_pte_mask |= _PAGE_IOMAP;
1364 
1365 	/*
1366 	 * Prevent page tables from being allocated in highmem, even
1367 	 * if CONFIG_HIGHPTE is enabled.
1368 	 */
1369 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1370 
1371 	/* Work out if we support NX */
1372 	x86_configure_nx();
1373 
1374 	xen_setup_features();
1375 
1376 	/* Get mfn list */
1377 	if (!xen_feature(XENFEAT_auto_translated_physmap))
1378 		xen_build_dynamic_phys_to_machine();
1379 
1380 	/*
1381 	 * Set up kernel GDT and segment registers, mainly so that
1382 	 * -fstack-protector code can be executed.
1383 	 */
1384 	xen_setup_stackprotector();
1385 
1386 	xen_init_irq_ops();
1387 	xen_init_cpuid_mask();
1388 
1389 #ifdef CONFIG_X86_LOCAL_APIC
1390 	/*
1391 	 * set up the basic apic ops.
1392 	 */
1393 	set_xen_basic_apic_ops();
1394 #endif
1395 
1396 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1397 		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1398 		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1399 	}
1400 
1401 	machine_ops = xen_machine_ops;
1402 
1403 	/*
1404 	 * The only reliable way to retain the initial address of the
1405 	 * percpu gdt_page is to remember it here, so we can go and
1406 	 * mark it RW later, when the initial percpu area is freed.
1407 	 */
1408 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1409 
1410 	xen_smp_init();
1411 
1412 #ifdef CONFIG_ACPI_NUMA
1413 	/*
1414 	 * The pages we from Xen are not related to machine pages, so
1415 	 * any NUMA information the kernel tries to get from ACPI will
1416 	 * be meaningless.  Prevent it from trying.
1417 	 */
1418 	acpi_numa = -1;
1419 #endif
1420 
1421 	/* Don't do the full vcpu_info placement stuff until we have a
1422 	   possible map and a non-dummy shared_info. */
1423 	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1424 
1425 	local_irq_disable();
1426 	early_boot_irqs_disabled = true;
1427 
1428 	xen_raw_console_write("mapping kernel into physical memory\n");
1429 	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, xen_start_info->nr_pages);
1430 
1431 	/* Allocate and initialize top and mid mfn levels for p2m structure */
1432 	xen_build_mfn_list_list();
1433 
1434 	/* keep using Xen gdt for now; no urgent need to change it */
1435 
1436 #ifdef CONFIG_X86_32
1437 	pv_info.kernel_rpl = 1;
1438 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1439 		pv_info.kernel_rpl = 0;
1440 #else
1441 	pv_info.kernel_rpl = 0;
1442 #endif
1443 	/* set the limit of our address space */
1444 	xen_reserve_top();
1445 
1446 	/* We used to do this in xen_arch_setup, but that is too late on AMD
1447 	 * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1448 	 * which pokes 0xcf8 port.
1449 	 */
1450 	set_iopl.iopl = 1;
1451 	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1452 	if (rc != 0)
1453 		xen_raw_printk("physdev_op failed %d\n", rc);
1454 
1455 #ifdef CONFIG_X86_32
1456 	/* set up basic CPUID stuff */
1457 	cpu_detect(&new_cpu_data);
1458 	new_cpu_data.hard_math = 1;
1459 	new_cpu_data.wp_works_ok = 1;
1460 	new_cpu_data.x86_capability[0] = cpuid_edx(1);
1461 #endif
1462 
1463 	/* Poke various useful things into boot_params */
1464 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1465 	boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1466 		? __pa(xen_start_info->mod_start) : 0;
1467 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1468 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1469 
1470 	if (!xen_initial_domain()) {
1471 		add_preferred_console("xenboot", 0, NULL);
1472 		add_preferred_console("tty", 0, NULL);
1473 		add_preferred_console("hvc", 0, NULL);
1474 		if (pci_xen)
1475 			x86_init.pci.arch_init = pci_xen_init;
1476 	} else {
1477 		const struct dom0_vga_console_info *info =
1478 			(void *)((char *)xen_start_info +
1479 				 xen_start_info->console.dom0.info_off);
1480 		struct xen_platform_op op = {
1481 			.cmd = XENPF_firmware_info,
1482 			.interface_version = XENPF_INTERFACE_VERSION,
1483 			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1484 		};
1485 
1486 		xen_init_vga(info, xen_start_info->console.dom0.info_size);
1487 		xen_start_info->console.domU.mfn = 0;
1488 		xen_start_info->console.domU.evtchn = 0;
1489 
1490 		if (HYPERVISOR_dom0_op(&op) == 0)
1491 			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1492 
1493 		xen_init_apic();
1494 
1495 		/* Make sure ACS will be enabled */
1496 		pci_request_acs();
1497 
1498 		xen_acpi_sleep_register();
1499 
1500 		/* Avoid searching for BIOS MP tables */
1501 		x86_init.mpparse.find_smp_config = x86_init_noop;
1502 		x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1503 	}
1504 #ifdef CONFIG_PCI
1505 	/* PCI BIOS service won't work from a PV guest. */
1506 	pci_probe &= ~PCI_PROBE_BIOS;
1507 #endif
1508 	xen_raw_console_write("about to get started...\n");
1509 
1510 	xen_setup_runstate_info(0);
1511 
1512 	/* Start the world */
1513 #ifdef CONFIG_X86_32
1514 	i386_start_kernel();
1515 #else
1516 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1517 #endif
1518 }
1519 
1520 void __ref xen_hvm_init_shared_info(void)
1521 {
1522 	int cpu;
1523 	struct xen_add_to_physmap xatp;
1524 	static struct shared_info *shared_info_page = 0;
1525 
1526 	if (!shared_info_page)
1527 		shared_info_page = (struct shared_info *)
1528 			extend_brk(PAGE_SIZE, PAGE_SIZE);
1529 	xatp.domid = DOMID_SELF;
1530 	xatp.idx = 0;
1531 	xatp.space = XENMAPSPACE_shared_info;
1532 	xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1533 	if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1534 		BUG();
1535 
1536 	HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1537 
1538 	/* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1539 	 * page, we use it in the event channel upcall and in some pvclock
1540 	 * related functions. We don't need the vcpu_info placement
1541 	 * optimizations because we don't use any pv_mmu or pv_irq op on
1542 	 * HVM.
1543 	 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1544 	 * online but xen_hvm_init_shared_info is run at resume time too and
1545 	 * in that case multiple vcpus might be online. */
1546 	for_each_online_cpu(cpu) {
1547 		per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1548 	}
1549 }
1550 
1551 #ifdef CONFIG_XEN_PVHVM
1552 static void __init init_hvm_pv_info(void)
1553 {
1554 	int major, minor;
1555 	uint32_t eax, ebx, ecx, edx, pages, msr, base;
1556 	u64 pfn;
1557 
1558 	base = xen_cpuid_base();
1559 	cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1560 
1561 	major = eax >> 16;
1562 	minor = eax & 0xffff;
1563 	printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1564 
1565 	cpuid(base + 2, &pages, &msr, &ecx, &edx);
1566 
1567 	pfn = __pa(hypercall_page);
1568 	wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1569 
1570 	xen_setup_features();
1571 
1572 	pv_info.name = "Xen HVM";
1573 
1574 	xen_domain_type = XEN_HVM_DOMAIN;
1575 }
1576 
1577 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1578 				    unsigned long action, void *hcpu)
1579 {
1580 	int cpu = (long)hcpu;
1581 	switch (action) {
1582 	case CPU_UP_PREPARE:
1583 		xen_vcpu_setup(cpu);
1584 		if (xen_have_vector_callback)
1585 			xen_init_lock_cpu(cpu);
1586 		break;
1587 	default:
1588 		break;
1589 	}
1590 	return NOTIFY_OK;
1591 }
1592 
1593 static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
1594 	.notifier_call	= xen_hvm_cpu_notify,
1595 };
1596 
1597 static void __init xen_hvm_guest_init(void)
1598 {
1599 	init_hvm_pv_info();
1600 
1601 	xen_hvm_init_shared_info();
1602 
1603 	if (xen_feature(XENFEAT_hvm_callback_vector))
1604 		xen_have_vector_callback = 1;
1605 	xen_hvm_smp_init();
1606 	register_cpu_notifier(&xen_hvm_cpu_notifier);
1607 	xen_unplug_emulated_devices();
1608 	x86_init.irqs.intr_init = xen_init_IRQ;
1609 	xen_hvm_init_time_ops();
1610 	xen_hvm_init_mmu_ops();
1611 }
1612 
1613 static bool __init xen_hvm_platform(void)
1614 {
1615 	if (xen_pv_domain())
1616 		return false;
1617 
1618 	if (!xen_cpuid_base())
1619 		return false;
1620 
1621 	return true;
1622 }
1623 
1624 bool xen_hvm_need_lapic(void)
1625 {
1626 	if (xen_pv_domain())
1627 		return false;
1628 	if (!xen_hvm_domain())
1629 		return false;
1630 	if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1631 		return false;
1632 	return true;
1633 }
1634 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1635 
1636 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1637 	.name			= "Xen HVM",
1638 	.detect			= xen_hvm_platform,
1639 	.init_platform		= xen_hvm_guest_init,
1640 	.x2apic_available	= xen_x2apic_para_available,
1641 };
1642 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1643 #endif
1644