xref: /openbmc/linux/arch/x86/xen/enlighten.c (revision 9b9c2cd4)
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13 
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 #include <linux/edd.h>
35 
36 #ifdef CONFIG_KEXEC_CORE
37 #include <linux/kexec.h>
38 #endif
39 
40 #include <xen/xen.h>
41 #include <xen/events.h>
42 #include <xen/interface/xen.h>
43 #include <xen/interface/version.h>
44 #include <xen/interface/physdev.h>
45 #include <xen/interface/vcpu.h>
46 #include <xen/interface/memory.h>
47 #include <xen/interface/nmi.h>
48 #include <xen/interface/xen-mca.h>
49 #include <xen/features.h>
50 #include <xen/page.h>
51 #include <xen/hvm.h>
52 #include <xen/hvc-console.h>
53 #include <xen/acpi.h>
54 
55 #include <asm/paravirt.h>
56 #include <asm/apic.h>
57 #include <asm/page.h>
58 #include <asm/xen/pci.h>
59 #include <asm/xen/hypercall.h>
60 #include <asm/xen/hypervisor.h>
61 #include <asm/fixmap.h>
62 #include <asm/processor.h>
63 #include <asm/proto.h>
64 #include <asm/msr-index.h>
65 #include <asm/traps.h>
66 #include <asm/setup.h>
67 #include <asm/desc.h>
68 #include <asm/pgalloc.h>
69 #include <asm/pgtable.h>
70 #include <asm/tlbflush.h>
71 #include <asm/reboot.h>
72 #include <asm/stackprotector.h>
73 #include <asm/hypervisor.h>
74 #include <asm/mach_traps.h>
75 #include <asm/mwait.h>
76 #include <asm/pci_x86.h>
77 #include <asm/pat.h>
78 #include <asm/cpu.h>
79 
80 #ifdef CONFIG_ACPI
81 #include <linux/acpi.h>
82 #include <asm/acpi.h>
83 #include <acpi/pdc_intel.h>
84 #include <acpi/processor.h>
85 #include <xen/interface/platform.h>
86 #endif
87 
88 #include "xen-ops.h"
89 #include "mmu.h"
90 #include "smp.h"
91 #include "multicalls.h"
92 #include "pmu.h"
93 
94 EXPORT_SYMBOL_GPL(hypercall_page);
95 
96 /*
97  * Pointer to the xen_vcpu_info structure or
98  * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
99  * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
100  * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
101  * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
102  * acknowledge pending events.
103  * Also more subtly it is used by the patched version of irq enable/disable
104  * e.g. xen_irq_enable_direct and xen_iret in PV mode.
105  *
106  * The desire to be able to do those mask/unmask operations as a single
107  * instruction by using the per-cpu offset held in %gs is the real reason
108  * vcpu info is in a per-cpu pointer and the original reason for this
109  * hypercall.
110  *
111  */
112 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
113 
114 /*
115  * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
116  * hypercall. This can be used both in PV and PVHVM mode. The structure
117  * overrides the default per_cpu(xen_vcpu, cpu) value.
118  */
119 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
120 
121 enum xen_domain_type xen_domain_type = XEN_NATIVE;
122 EXPORT_SYMBOL_GPL(xen_domain_type);
123 
124 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
125 EXPORT_SYMBOL(machine_to_phys_mapping);
126 unsigned long  machine_to_phys_nr;
127 EXPORT_SYMBOL(machine_to_phys_nr);
128 
129 struct start_info *xen_start_info;
130 EXPORT_SYMBOL_GPL(xen_start_info);
131 
132 struct shared_info xen_dummy_shared_info;
133 
134 void *xen_initial_gdt;
135 
136 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
137 __read_mostly int xen_have_vector_callback;
138 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
139 
140 /*
141  * Point at some empty memory to start with. We map the real shared_info
142  * page as soon as fixmap is up and running.
143  */
144 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
145 
146 /*
147  * Flag to determine whether vcpu info placement is available on all
148  * VCPUs.  We assume it is to start with, and then set it to zero on
149  * the first failure.  This is because it can succeed on some VCPUs
150  * and not others, since it can involve hypervisor memory allocation,
151  * or because the guest failed to guarantee all the appropriate
152  * constraints on all VCPUs (ie buffer can't cross a page boundary).
153  *
154  * Note that any particular CPU may be using a placed vcpu structure,
155  * but we can only optimise if the all are.
156  *
157  * 0: not available, 1: available
158  */
159 static int have_vcpu_info_placement = 1;
160 
161 struct tls_descs {
162 	struct desc_struct desc[3];
163 };
164 
165 /*
166  * Updating the 3 TLS descriptors in the GDT on every task switch is
167  * surprisingly expensive so we avoid updating them if they haven't
168  * changed.  Since Xen writes different descriptors than the one
169  * passed in the update_descriptor hypercall we keep shadow copies to
170  * compare against.
171  */
172 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
173 
174 static void clamp_max_cpus(void)
175 {
176 #ifdef CONFIG_SMP
177 	if (setup_max_cpus > MAX_VIRT_CPUS)
178 		setup_max_cpus = MAX_VIRT_CPUS;
179 #endif
180 }
181 
182 static void xen_vcpu_setup(int cpu)
183 {
184 	struct vcpu_register_vcpu_info info;
185 	int err;
186 	struct vcpu_info *vcpup;
187 
188 	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
189 
190 	/*
191 	 * This path is called twice on PVHVM - first during bootup via
192 	 * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
193 	 * hotplugged: cpu_up -> xen_hvm_cpu_notify.
194 	 * As we can only do the VCPUOP_register_vcpu_info once lets
195 	 * not over-write its result.
196 	 *
197 	 * For PV it is called during restore (xen_vcpu_restore) and bootup
198 	 * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
199 	 * use this function.
200 	 */
201 	if (xen_hvm_domain()) {
202 		if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
203 			return;
204 	}
205 	if (cpu < MAX_VIRT_CPUS)
206 		per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
207 
208 	if (!have_vcpu_info_placement) {
209 		if (cpu >= MAX_VIRT_CPUS)
210 			clamp_max_cpus();
211 		return;
212 	}
213 
214 	vcpup = &per_cpu(xen_vcpu_info, cpu);
215 	info.mfn = arbitrary_virt_to_mfn(vcpup);
216 	info.offset = offset_in_page(vcpup);
217 
218 	/* Check to see if the hypervisor will put the vcpu_info
219 	   structure where we want it, which allows direct access via
220 	   a percpu-variable.
221 	   N.B. This hypercall can _only_ be called once per CPU. Subsequent
222 	   calls will error out with -EINVAL. This is due to the fact that
223 	   hypervisor has no unregister variant and this hypercall does not
224 	   allow to over-write info.mfn and info.offset.
225 	 */
226 	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
227 
228 	if (err) {
229 		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
230 		have_vcpu_info_placement = 0;
231 		clamp_max_cpus();
232 	} else {
233 		/* This cpu is using the registered vcpu info, even if
234 		   later ones fail to. */
235 		per_cpu(xen_vcpu, cpu) = vcpup;
236 	}
237 }
238 
239 /*
240  * On restore, set the vcpu placement up again.
241  * If it fails, then we're in a bad state, since
242  * we can't back out from using it...
243  */
244 void xen_vcpu_restore(void)
245 {
246 	int cpu;
247 
248 	for_each_possible_cpu(cpu) {
249 		bool other_cpu = (cpu != smp_processor_id());
250 		bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL);
251 
252 		if (other_cpu && is_up &&
253 		    HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
254 			BUG();
255 
256 		xen_setup_runstate_info(cpu);
257 
258 		if (have_vcpu_info_placement)
259 			xen_vcpu_setup(cpu);
260 
261 		if (other_cpu && is_up &&
262 		    HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
263 			BUG();
264 	}
265 }
266 
267 static void __init xen_banner(void)
268 {
269 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
270 	struct xen_extraversion extra;
271 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
272 
273 	pr_info("Booting paravirtualized kernel %son %s\n",
274 		xen_feature(XENFEAT_auto_translated_physmap) ?
275 			"with PVH extensions " : "", pv_info.name);
276 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
277 	       version >> 16, version & 0xffff, extra.extraversion,
278 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
279 }
280 /* Check if running on Xen version (major, minor) or later */
281 bool
282 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
283 {
284 	unsigned int version;
285 
286 	if (!xen_domain())
287 		return false;
288 
289 	version = HYPERVISOR_xen_version(XENVER_version, NULL);
290 	if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
291 		((version >> 16) > major))
292 		return true;
293 	return false;
294 }
295 
296 #define CPUID_THERM_POWER_LEAF 6
297 #define APERFMPERF_PRESENT 0
298 
299 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
300 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
301 
302 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
303 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
304 static __read_mostly unsigned int cpuid_leaf5_edx_val;
305 
306 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
307 		      unsigned int *cx, unsigned int *dx)
308 {
309 	unsigned maskebx = ~0;
310 	unsigned maskecx = ~0;
311 	unsigned maskedx = ~0;
312 	unsigned setecx = 0;
313 	/*
314 	 * Mask out inconvenient features, to try and disable as many
315 	 * unsupported kernel subsystems as possible.
316 	 */
317 	switch (*ax) {
318 	case 1:
319 		maskecx = cpuid_leaf1_ecx_mask;
320 		setecx = cpuid_leaf1_ecx_set_mask;
321 		maskedx = cpuid_leaf1_edx_mask;
322 		break;
323 
324 	case CPUID_MWAIT_LEAF:
325 		/* Synthesize the values.. */
326 		*ax = 0;
327 		*bx = 0;
328 		*cx = cpuid_leaf5_ecx_val;
329 		*dx = cpuid_leaf5_edx_val;
330 		return;
331 
332 	case CPUID_THERM_POWER_LEAF:
333 		/* Disabling APERFMPERF for kernel usage */
334 		maskecx = ~(1 << APERFMPERF_PRESENT);
335 		break;
336 
337 	case 0xb:
338 		/* Suppress extended topology stuff */
339 		maskebx = 0;
340 		break;
341 	}
342 
343 	asm(XEN_EMULATE_PREFIX "cpuid"
344 		: "=a" (*ax),
345 		  "=b" (*bx),
346 		  "=c" (*cx),
347 		  "=d" (*dx)
348 		: "0" (*ax), "2" (*cx));
349 
350 	*bx &= maskebx;
351 	*cx &= maskecx;
352 	*cx |= setecx;
353 	*dx &= maskedx;
354 
355 }
356 
357 static bool __init xen_check_mwait(void)
358 {
359 #ifdef CONFIG_ACPI
360 	struct xen_platform_op op = {
361 		.cmd			= XENPF_set_processor_pminfo,
362 		.u.set_pminfo.id	= -1,
363 		.u.set_pminfo.type	= XEN_PM_PDC,
364 	};
365 	uint32_t buf[3];
366 	unsigned int ax, bx, cx, dx;
367 	unsigned int mwait_mask;
368 
369 	/* We need to determine whether it is OK to expose the MWAIT
370 	 * capability to the kernel to harvest deeper than C3 states from ACPI
371 	 * _CST using the processor_harvest_xen.c module. For this to work, we
372 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
373 	 * checks against). The hypervisor won't expose the MWAIT flag because
374 	 * it would break backwards compatibility; so we will find out directly
375 	 * from the hardware and hypercall.
376 	 */
377 	if (!xen_initial_domain())
378 		return false;
379 
380 	/*
381 	 * When running under platform earlier than Xen4.2, do not expose
382 	 * mwait, to avoid the risk of loading native acpi pad driver
383 	 */
384 	if (!xen_running_on_version_or_later(4, 2))
385 		return false;
386 
387 	ax = 1;
388 	cx = 0;
389 
390 	native_cpuid(&ax, &bx, &cx, &dx);
391 
392 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
393 		     (1 << (X86_FEATURE_MWAIT % 32));
394 
395 	if ((cx & mwait_mask) != mwait_mask)
396 		return false;
397 
398 	/* We need to emulate the MWAIT_LEAF and for that we need both
399 	 * ecx and edx. The hypercall provides only partial information.
400 	 */
401 
402 	ax = CPUID_MWAIT_LEAF;
403 	bx = 0;
404 	cx = 0;
405 	dx = 0;
406 
407 	native_cpuid(&ax, &bx, &cx, &dx);
408 
409 	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
410 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
411 	 */
412 	buf[0] = ACPI_PDC_REVISION_ID;
413 	buf[1] = 1;
414 	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
415 
416 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
417 
418 	if ((HYPERVISOR_dom0_op(&op) == 0) &&
419 	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
420 		cpuid_leaf5_ecx_val = cx;
421 		cpuid_leaf5_edx_val = dx;
422 	}
423 	return true;
424 #else
425 	return false;
426 #endif
427 }
428 static void __init xen_init_cpuid_mask(void)
429 {
430 	unsigned int ax, bx, cx, dx;
431 	unsigned int xsave_mask;
432 
433 	cpuid_leaf1_edx_mask =
434 		~((1 << X86_FEATURE_MTRR) |  /* disable MTRR */
435 		  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
436 
437 	if (!xen_initial_domain())
438 		cpuid_leaf1_edx_mask &=
439 			~((1 << X86_FEATURE_ACPI));  /* disable ACPI */
440 
441 	cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
442 
443 	ax = 1;
444 	cx = 0;
445 	cpuid(1, &ax, &bx, &cx, &dx);
446 
447 	xsave_mask =
448 		(1 << (X86_FEATURE_XSAVE % 32)) |
449 		(1 << (X86_FEATURE_OSXSAVE % 32));
450 
451 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
452 	if ((cx & xsave_mask) != xsave_mask)
453 		cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
454 	if (xen_check_mwait())
455 		cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
456 }
457 
458 static void xen_set_debugreg(int reg, unsigned long val)
459 {
460 	HYPERVISOR_set_debugreg(reg, val);
461 }
462 
463 static unsigned long xen_get_debugreg(int reg)
464 {
465 	return HYPERVISOR_get_debugreg(reg);
466 }
467 
468 static void xen_end_context_switch(struct task_struct *next)
469 {
470 	xen_mc_flush();
471 	paravirt_end_context_switch(next);
472 }
473 
474 static unsigned long xen_store_tr(void)
475 {
476 	return 0;
477 }
478 
479 /*
480  * Set the page permissions for a particular virtual address.  If the
481  * address is a vmalloc mapping (or other non-linear mapping), then
482  * find the linear mapping of the page and also set its protections to
483  * match.
484  */
485 static void set_aliased_prot(void *v, pgprot_t prot)
486 {
487 	int level;
488 	pte_t *ptep;
489 	pte_t pte;
490 	unsigned long pfn;
491 	struct page *page;
492 	unsigned char dummy;
493 
494 	ptep = lookup_address((unsigned long)v, &level);
495 	BUG_ON(ptep == NULL);
496 
497 	pfn = pte_pfn(*ptep);
498 	page = pfn_to_page(pfn);
499 
500 	pte = pfn_pte(pfn, prot);
501 
502 	/*
503 	 * Careful: update_va_mapping() will fail if the virtual address
504 	 * we're poking isn't populated in the page tables.  We don't
505 	 * need to worry about the direct map (that's always in the page
506 	 * tables), but we need to be careful about vmap space.  In
507 	 * particular, the top level page table can lazily propagate
508 	 * entries between processes, so if we've switched mms since we
509 	 * vmapped the target in the first place, we might not have the
510 	 * top-level page table entry populated.
511 	 *
512 	 * We disable preemption because we want the same mm active when
513 	 * we probe the target and when we issue the hypercall.  We'll
514 	 * have the same nominal mm, but if we're a kernel thread, lazy
515 	 * mm dropping could change our pgd.
516 	 *
517 	 * Out of an abundance of caution, this uses __get_user() to fault
518 	 * in the target address just in case there's some obscure case
519 	 * in which the target address isn't readable.
520 	 */
521 
522 	preempt_disable();
523 
524 	pagefault_disable();	/* Avoid warnings due to being atomic. */
525 	__get_user(dummy, (unsigned char __user __force *)v);
526 	pagefault_enable();
527 
528 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
529 		BUG();
530 
531 	if (!PageHighMem(page)) {
532 		void *av = __va(PFN_PHYS(pfn));
533 
534 		if (av != v)
535 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
536 				BUG();
537 	} else
538 		kmap_flush_unused();
539 
540 	preempt_enable();
541 }
542 
543 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
544 {
545 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
546 	int i;
547 
548 	/*
549 	 * We need to mark the all aliases of the LDT pages RO.  We
550 	 * don't need to call vm_flush_aliases(), though, since that's
551 	 * only responsible for flushing aliases out the TLBs, not the
552 	 * page tables, and Xen will flush the TLB for us if needed.
553 	 *
554 	 * To avoid confusing future readers: none of this is necessary
555 	 * to load the LDT.  The hypervisor only checks this when the
556 	 * LDT is faulted in due to subsequent descriptor access.
557 	 */
558 
559 	for(i = 0; i < entries; i += entries_per_page)
560 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
561 }
562 
563 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
564 {
565 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
566 	int i;
567 
568 	for(i = 0; i < entries; i += entries_per_page)
569 		set_aliased_prot(ldt + i, PAGE_KERNEL);
570 }
571 
572 static void xen_set_ldt(const void *addr, unsigned entries)
573 {
574 	struct mmuext_op *op;
575 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
576 
577 	trace_xen_cpu_set_ldt(addr, entries);
578 
579 	op = mcs.args;
580 	op->cmd = MMUEXT_SET_LDT;
581 	op->arg1.linear_addr = (unsigned long)addr;
582 	op->arg2.nr_ents = entries;
583 
584 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
585 
586 	xen_mc_issue(PARAVIRT_LAZY_CPU);
587 }
588 
589 static void xen_load_gdt(const struct desc_ptr *dtr)
590 {
591 	unsigned long va = dtr->address;
592 	unsigned int size = dtr->size + 1;
593 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
594 	unsigned long frames[pages];
595 	int f;
596 
597 	/*
598 	 * A GDT can be up to 64k in size, which corresponds to 8192
599 	 * 8-byte entries, or 16 4k pages..
600 	 */
601 
602 	BUG_ON(size > 65536);
603 	BUG_ON(va & ~PAGE_MASK);
604 
605 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
606 		int level;
607 		pte_t *ptep;
608 		unsigned long pfn, mfn;
609 		void *virt;
610 
611 		/*
612 		 * The GDT is per-cpu and is in the percpu data area.
613 		 * That can be virtually mapped, so we need to do a
614 		 * page-walk to get the underlying MFN for the
615 		 * hypercall.  The page can also be in the kernel's
616 		 * linear range, so we need to RO that mapping too.
617 		 */
618 		ptep = lookup_address(va, &level);
619 		BUG_ON(ptep == NULL);
620 
621 		pfn = pte_pfn(*ptep);
622 		mfn = pfn_to_mfn(pfn);
623 		virt = __va(PFN_PHYS(pfn));
624 
625 		frames[f] = mfn;
626 
627 		make_lowmem_page_readonly((void *)va);
628 		make_lowmem_page_readonly(virt);
629 	}
630 
631 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
632 		BUG();
633 }
634 
635 /*
636  * load_gdt for early boot, when the gdt is only mapped once
637  */
638 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
639 {
640 	unsigned long va = dtr->address;
641 	unsigned int size = dtr->size + 1;
642 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
643 	unsigned long frames[pages];
644 	int f;
645 
646 	/*
647 	 * A GDT can be up to 64k in size, which corresponds to 8192
648 	 * 8-byte entries, or 16 4k pages..
649 	 */
650 
651 	BUG_ON(size > 65536);
652 	BUG_ON(va & ~PAGE_MASK);
653 
654 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
655 		pte_t pte;
656 		unsigned long pfn, mfn;
657 
658 		pfn = virt_to_pfn(va);
659 		mfn = pfn_to_mfn(pfn);
660 
661 		pte = pfn_pte(pfn, PAGE_KERNEL_RO);
662 
663 		if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
664 			BUG();
665 
666 		frames[f] = mfn;
667 	}
668 
669 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
670 		BUG();
671 }
672 
673 static inline bool desc_equal(const struct desc_struct *d1,
674 			      const struct desc_struct *d2)
675 {
676 	return d1->a == d2->a && d1->b == d2->b;
677 }
678 
679 static void load_TLS_descriptor(struct thread_struct *t,
680 				unsigned int cpu, unsigned int i)
681 {
682 	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
683 	struct desc_struct *gdt;
684 	xmaddr_t maddr;
685 	struct multicall_space mc;
686 
687 	if (desc_equal(shadow, &t->tls_array[i]))
688 		return;
689 
690 	*shadow = t->tls_array[i];
691 
692 	gdt = get_cpu_gdt_table(cpu);
693 	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
694 	mc = __xen_mc_entry(0);
695 
696 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
697 }
698 
699 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
700 {
701 	/*
702 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
703 	 * and lazy gs handling is enabled, it means we're in a
704 	 * context switch, and %gs has just been saved.  This means we
705 	 * can zero it out to prevent faults on exit from the
706 	 * hypervisor if the next process has no %gs.  Either way, it
707 	 * has been saved, and the new value will get loaded properly.
708 	 * This will go away as soon as Xen has been modified to not
709 	 * save/restore %gs for normal hypercalls.
710 	 *
711 	 * On x86_64, this hack is not used for %gs, because gs points
712 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
713 	 * must not zero %gs on x86_64
714 	 *
715 	 * For x86_64, we need to zero %fs, otherwise we may get an
716 	 * exception between the new %fs descriptor being loaded and
717 	 * %fs being effectively cleared at __switch_to().
718 	 */
719 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
720 #ifdef CONFIG_X86_32
721 		lazy_load_gs(0);
722 #else
723 		loadsegment(fs, 0);
724 #endif
725 	}
726 
727 	xen_mc_batch();
728 
729 	load_TLS_descriptor(t, cpu, 0);
730 	load_TLS_descriptor(t, cpu, 1);
731 	load_TLS_descriptor(t, cpu, 2);
732 
733 	xen_mc_issue(PARAVIRT_LAZY_CPU);
734 }
735 
736 #ifdef CONFIG_X86_64
737 static void xen_load_gs_index(unsigned int idx)
738 {
739 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
740 		BUG();
741 }
742 #endif
743 
744 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
745 				const void *ptr)
746 {
747 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
748 	u64 entry = *(u64 *)ptr;
749 
750 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
751 
752 	preempt_disable();
753 
754 	xen_mc_flush();
755 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
756 		BUG();
757 
758 	preempt_enable();
759 }
760 
761 static int cvt_gate_to_trap(int vector, const gate_desc *val,
762 			    struct trap_info *info)
763 {
764 	unsigned long addr;
765 
766 	if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
767 		return 0;
768 
769 	info->vector = vector;
770 
771 	addr = gate_offset(*val);
772 #ifdef CONFIG_X86_64
773 	/*
774 	 * Look for known traps using IST, and substitute them
775 	 * appropriately.  The debugger ones are the only ones we care
776 	 * about.  Xen will handle faults like double_fault,
777 	 * so we should never see them.  Warn if
778 	 * there's an unexpected IST-using fault handler.
779 	 */
780 	if (addr == (unsigned long)debug)
781 		addr = (unsigned long)xen_debug;
782 	else if (addr == (unsigned long)int3)
783 		addr = (unsigned long)xen_int3;
784 	else if (addr == (unsigned long)stack_segment)
785 		addr = (unsigned long)xen_stack_segment;
786 	else if (addr == (unsigned long)double_fault) {
787 		/* Don't need to handle these */
788 		return 0;
789 #ifdef CONFIG_X86_MCE
790 	} else if (addr == (unsigned long)machine_check) {
791 		/*
792 		 * when xen hypervisor inject vMCE to guest,
793 		 * use native mce handler to handle it
794 		 */
795 		;
796 #endif
797 	} else if (addr == (unsigned long)nmi)
798 		/*
799 		 * Use the native version as well.
800 		 */
801 		;
802 	else {
803 		/* Some other trap using IST? */
804 		if (WARN_ON(val->ist != 0))
805 			return 0;
806 	}
807 #endif	/* CONFIG_X86_64 */
808 	info->address = addr;
809 
810 	info->cs = gate_segment(*val);
811 	info->flags = val->dpl;
812 	/* interrupt gates clear IF */
813 	if (val->type == GATE_INTERRUPT)
814 		info->flags |= 1 << 2;
815 
816 	return 1;
817 }
818 
819 /* Locations of each CPU's IDT */
820 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
821 
822 /* Set an IDT entry.  If the entry is part of the current IDT, then
823    also update Xen. */
824 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
825 {
826 	unsigned long p = (unsigned long)&dt[entrynum];
827 	unsigned long start, end;
828 
829 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
830 
831 	preempt_disable();
832 
833 	start = __this_cpu_read(idt_desc.address);
834 	end = start + __this_cpu_read(idt_desc.size) + 1;
835 
836 	xen_mc_flush();
837 
838 	native_write_idt_entry(dt, entrynum, g);
839 
840 	if (p >= start && (p + 8) <= end) {
841 		struct trap_info info[2];
842 
843 		info[1].address = 0;
844 
845 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
846 			if (HYPERVISOR_set_trap_table(info))
847 				BUG();
848 	}
849 
850 	preempt_enable();
851 }
852 
853 static void xen_convert_trap_info(const struct desc_ptr *desc,
854 				  struct trap_info *traps)
855 {
856 	unsigned in, out, count;
857 
858 	count = (desc->size+1) / sizeof(gate_desc);
859 	BUG_ON(count > 256);
860 
861 	for (in = out = 0; in < count; in++) {
862 		gate_desc *entry = (gate_desc*)(desc->address) + in;
863 
864 		if (cvt_gate_to_trap(in, entry, &traps[out]))
865 			out++;
866 	}
867 	traps[out].address = 0;
868 }
869 
870 void xen_copy_trap_info(struct trap_info *traps)
871 {
872 	const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
873 
874 	xen_convert_trap_info(desc, traps);
875 }
876 
877 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
878    hold a spinlock to protect the static traps[] array (static because
879    it avoids allocation, and saves stack space). */
880 static void xen_load_idt(const struct desc_ptr *desc)
881 {
882 	static DEFINE_SPINLOCK(lock);
883 	static struct trap_info traps[257];
884 
885 	trace_xen_cpu_load_idt(desc);
886 
887 	spin_lock(&lock);
888 
889 	memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
890 
891 	xen_convert_trap_info(desc, traps);
892 
893 	xen_mc_flush();
894 	if (HYPERVISOR_set_trap_table(traps))
895 		BUG();
896 
897 	spin_unlock(&lock);
898 }
899 
900 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
901    they're handled differently. */
902 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
903 				const void *desc, int type)
904 {
905 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
906 
907 	preempt_disable();
908 
909 	switch (type) {
910 	case DESC_LDT:
911 	case DESC_TSS:
912 		/* ignore */
913 		break;
914 
915 	default: {
916 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
917 
918 		xen_mc_flush();
919 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
920 			BUG();
921 	}
922 
923 	}
924 
925 	preempt_enable();
926 }
927 
928 /*
929  * Version of write_gdt_entry for use at early boot-time needed to
930  * update an entry as simply as possible.
931  */
932 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
933 					    const void *desc, int type)
934 {
935 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
936 
937 	switch (type) {
938 	case DESC_LDT:
939 	case DESC_TSS:
940 		/* ignore */
941 		break;
942 
943 	default: {
944 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
945 
946 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
947 			dt[entry] = *(struct desc_struct *)desc;
948 	}
949 
950 	}
951 }
952 
953 static void xen_load_sp0(struct tss_struct *tss,
954 			 struct thread_struct *thread)
955 {
956 	struct multicall_space mcs;
957 
958 	mcs = xen_mc_entry(0);
959 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
960 	xen_mc_issue(PARAVIRT_LAZY_CPU);
961 	tss->x86_tss.sp0 = thread->sp0;
962 }
963 
964 static void xen_set_iopl_mask(unsigned mask)
965 {
966 	struct physdev_set_iopl set_iopl;
967 
968 	/* Force the change at ring 0. */
969 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
970 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
971 }
972 
973 static void xen_io_delay(void)
974 {
975 }
976 
977 static void xen_clts(void)
978 {
979 	struct multicall_space mcs;
980 
981 	mcs = xen_mc_entry(0);
982 
983 	MULTI_fpu_taskswitch(mcs.mc, 0);
984 
985 	xen_mc_issue(PARAVIRT_LAZY_CPU);
986 }
987 
988 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
989 
990 static unsigned long xen_read_cr0(void)
991 {
992 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
993 
994 	if (unlikely(cr0 == 0)) {
995 		cr0 = native_read_cr0();
996 		this_cpu_write(xen_cr0_value, cr0);
997 	}
998 
999 	return cr0;
1000 }
1001 
1002 static void xen_write_cr0(unsigned long cr0)
1003 {
1004 	struct multicall_space mcs;
1005 
1006 	this_cpu_write(xen_cr0_value, cr0);
1007 
1008 	/* Only pay attention to cr0.TS; everything else is
1009 	   ignored. */
1010 	mcs = xen_mc_entry(0);
1011 
1012 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1013 
1014 	xen_mc_issue(PARAVIRT_LAZY_CPU);
1015 }
1016 
1017 static void xen_write_cr4(unsigned long cr4)
1018 {
1019 	cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
1020 
1021 	native_write_cr4(cr4);
1022 }
1023 #ifdef CONFIG_X86_64
1024 static inline unsigned long xen_read_cr8(void)
1025 {
1026 	return 0;
1027 }
1028 static inline void xen_write_cr8(unsigned long val)
1029 {
1030 	BUG_ON(val);
1031 }
1032 #endif
1033 
1034 static u64 xen_read_msr_safe(unsigned int msr, int *err)
1035 {
1036 	u64 val;
1037 
1038 	if (pmu_msr_read(msr, &val, err))
1039 		return val;
1040 
1041 	val = native_read_msr_safe(msr, err);
1042 	switch (msr) {
1043 	case MSR_IA32_APICBASE:
1044 #ifdef CONFIG_X86_X2APIC
1045 		if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
1046 #endif
1047 			val &= ~X2APIC_ENABLE;
1048 		break;
1049 	}
1050 	return val;
1051 }
1052 
1053 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1054 {
1055 	int ret;
1056 
1057 	ret = 0;
1058 
1059 	switch (msr) {
1060 #ifdef CONFIG_X86_64
1061 		unsigned which;
1062 		u64 base;
1063 
1064 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
1065 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
1066 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
1067 
1068 	set:
1069 		base = ((u64)high << 32) | low;
1070 		if (HYPERVISOR_set_segment_base(which, base) != 0)
1071 			ret = -EIO;
1072 		break;
1073 #endif
1074 
1075 	case MSR_STAR:
1076 	case MSR_CSTAR:
1077 	case MSR_LSTAR:
1078 	case MSR_SYSCALL_MASK:
1079 	case MSR_IA32_SYSENTER_CS:
1080 	case MSR_IA32_SYSENTER_ESP:
1081 	case MSR_IA32_SYSENTER_EIP:
1082 		/* Fast syscall setup is all done in hypercalls, so
1083 		   these are all ignored.  Stub them out here to stop
1084 		   Xen console noise. */
1085 		break;
1086 
1087 	default:
1088 		if (!pmu_msr_write(msr, low, high, &ret))
1089 			ret = native_write_msr_safe(msr, low, high);
1090 	}
1091 
1092 	return ret;
1093 }
1094 
1095 void xen_setup_shared_info(void)
1096 {
1097 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1098 		set_fixmap(FIX_PARAVIRT_BOOTMAP,
1099 			   xen_start_info->shared_info);
1100 
1101 		HYPERVISOR_shared_info =
1102 			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1103 	} else
1104 		HYPERVISOR_shared_info =
1105 			(struct shared_info *)__va(xen_start_info->shared_info);
1106 
1107 #ifndef CONFIG_SMP
1108 	/* In UP this is as good a place as any to set up shared info */
1109 	xen_setup_vcpu_info_placement();
1110 #endif
1111 
1112 	xen_setup_mfn_list_list();
1113 }
1114 
1115 /* This is called once we have the cpu_possible_mask */
1116 void xen_setup_vcpu_info_placement(void)
1117 {
1118 	int cpu;
1119 
1120 	for_each_possible_cpu(cpu)
1121 		xen_vcpu_setup(cpu);
1122 
1123 	/* xen_vcpu_setup managed to place the vcpu_info within the
1124 	 * percpu area for all cpus, so make use of it. Note that for
1125 	 * PVH we want to use native IRQ mechanism. */
1126 	if (have_vcpu_info_placement && !xen_pvh_domain()) {
1127 		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1128 		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1129 		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1130 		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1131 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1132 	}
1133 }
1134 
1135 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1136 			  unsigned long addr, unsigned len)
1137 {
1138 	char *start, *end, *reloc;
1139 	unsigned ret;
1140 
1141 	start = end = reloc = NULL;
1142 
1143 #define SITE(op, x)							\
1144 	case PARAVIRT_PATCH(op.x):					\
1145 	if (have_vcpu_info_placement) {					\
1146 		start = (char *)xen_##x##_direct;			\
1147 		end = xen_##x##_direct_end;				\
1148 		reloc = xen_##x##_direct_reloc;				\
1149 	}								\
1150 	goto patch_site
1151 
1152 	switch (type) {
1153 		SITE(pv_irq_ops, irq_enable);
1154 		SITE(pv_irq_ops, irq_disable);
1155 		SITE(pv_irq_ops, save_fl);
1156 		SITE(pv_irq_ops, restore_fl);
1157 #undef SITE
1158 
1159 	patch_site:
1160 		if (start == NULL || (end-start) > len)
1161 			goto default_patch;
1162 
1163 		ret = paravirt_patch_insns(insnbuf, len, start, end);
1164 
1165 		/* Note: because reloc is assigned from something that
1166 		   appears to be an array, gcc assumes it's non-null,
1167 		   but doesn't know its relationship with start and
1168 		   end. */
1169 		if (reloc > start && reloc < end) {
1170 			int reloc_off = reloc - start;
1171 			long *relocp = (long *)(insnbuf + reloc_off);
1172 			long delta = start - (char *)addr;
1173 
1174 			*relocp += delta;
1175 		}
1176 		break;
1177 
1178 	default_patch:
1179 	default:
1180 		ret = paravirt_patch_default(type, clobbers, insnbuf,
1181 					     addr, len);
1182 		break;
1183 	}
1184 
1185 	return ret;
1186 }
1187 
1188 static const struct pv_info xen_info __initconst = {
1189 	.paravirt_enabled = 1,
1190 	.shared_kernel_pmd = 0,
1191 
1192 #ifdef CONFIG_X86_64
1193 	.extra_user_64bit_cs = FLAT_USER_CS64,
1194 #endif
1195 
1196 	.name = "Xen",
1197 };
1198 
1199 static const struct pv_init_ops xen_init_ops __initconst = {
1200 	.patch = xen_patch,
1201 };
1202 
1203 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1204 	.cpuid = xen_cpuid,
1205 
1206 	.set_debugreg = xen_set_debugreg,
1207 	.get_debugreg = xen_get_debugreg,
1208 
1209 	.clts = xen_clts,
1210 
1211 	.read_cr0 = xen_read_cr0,
1212 	.write_cr0 = xen_write_cr0,
1213 
1214 	.read_cr4 = native_read_cr4,
1215 	.read_cr4_safe = native_read_cr4_safe,
1216 	.write_cr4 = xen_write_cr4,
1217 
1218 #ifdef CONFIG_X86_64
1219 	.read_cr8 = xen_read_cr8,
1220 	.write_cr8 = xen_write_cr8,
1221 #endif
1222 
1223 	.wbinvd = native_wbinvd,
1224 
1225 	.read_msr = xen_read_msr_safe,
1226 	.write_msr = xen_write_msr_safe,
1227 
1228 	.read_pmc = xen_read_pmc,
1229 
1230 	.iret = xen_iret,
1231 #ifdef CONFIG_X86_64
1232 	.usergs_sysret32 = xen_sysret32,
1233 	.usergs_sysret64 = xen_sysret64,
1234 #else
1235 	.irq_enable_sysexit = xen_sysexit,
1236 #endif
1237 
1238 	.load_tr_desc = paravirt_nop,
1239 	.set_ldt = xen_set_ldt,
1240 	.load_gdt = xen_load_gdt,
1241 	.load_idt = xen_load_idt,
1242 	.load_tls = xen_load_tls,
1243 #ifdef CONFIG_X86_64
1244 	.load_gs_index = xen_load_gs_index,
1245 #endif
1246 
1247 	.alloc_ldt = xen_alloc_ldt,
1248 	.free_ldt = xen_free_ldt,
1249 
1250 	.store_idt = native_store_idt,
1251 	.store_tr = xen_store_tr,
1252 
1253 	.write_ldt_entry = xen_write_ldt_entry,
1254 	.write_gdt_entry = xen_write_gdt_entry,
1255 	.write_idt_entry = xen_write_idt_entry,
1256 	.load_sp0 = xen_load_sp0,
1257 
1258 	.set_iopl_mask = xen_set_iopl_mask,
1259 	.io_delay = xen_io_delay,
1260 
1261 	/* Xen takes care of %gs when switching to usermode for us */
1262 	.swapgs = paravirt_nop,
1263 
1264 	.start_context_switch = paravirt_start_context_switch,
1265 	.end_context_switch = xen_end_context_switch,
1266 };
1267 
1268 static const struct pv_apic_ops xen_apic_ops __initconst = {
1269 #ifdef CONFIG_X86_LOCAL_APIC
1270 	.startup_ipi_hook = paravirt_nop,
1271 #endif
1272 };
1273 
1274 static void xen_reboot(int reason)
1275 {
1276 	struct sched_shutdown r = { .reason = reason };
1277 	int cpu;
1278 
1279 	for_each_online_cpu(cpu)
1280 		xen_pmu_finish(cpu);
1281 
1282 	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1283 		BUG();
1284 }
1285 
1286 static void xen_restart(char *msg)
1287 {
1288 	xen_reboot(SHUTDOWN_reboot);
1289 }
1290 
1291 static void xen_emergency_restart(void)
1292 {
1293 	xen_reboot(SHUTDOWN_reboot);
1294 }
1295 
1296 static void xen_machine_halt(void)
1297 {
1298 	xen_reboot(SHUTDOWN_poweroff);
1299 }
1300 
1301 static void xen_machine_power_off(void)
1302 {
1303 	if (pm_power_off)
1304 		pm_power_off();
1305 	xen_reboot(SHUTDOWN_poweroff);
1306 }
1307 
1308 static void xen_crash_shutdown(struct pt_regs *regs)
1309 {
1310 	xen_reboot(SHUTDOWN_crash);
1311 }
1312 
1313 static int
1314 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1315 {
1316 	xen_reboot(SHUTDOWN_crash);
1317 	return NOTIFY_DONE;
1318 }
1319 
1320 static struct notifier_block xen_panic_block = {
1321 	.notifier_call= xen_panic_event,
1322 	.priority = INT_MIN
1323 };
1324 
1325 int xen_panic_handler_init(void)
1326 {
1327 	atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1328 	return 0;
1329 }
1330 
1331 static const struct machine_ops xen_machine_ops __initconst = {
1332 	.restart = xen_restart,
1333 	.halt = xen_machine_halt,
1334 	.power_off = xen_machine_power_off,
1335 	.shutdown = xen_machine_halt,
1336 	.crash_shutdown = xen_crash_shutdown,
1337 	.emergency_restart = xen_emergency_restart,
1338 };
1339 
1340 static unsigned char xen_get_nmi_reason(void)
1341 {
1342 	unsigned char reason = 0;
1343 
1344 	/* Construct a value which looks like it came from port 0x61. */
1345 	if (test_bit(_XEN_NMIREASON_io_error,
1346 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1347 		reason |= NMI_REASON_IOCHK;
1348 	if (test_bit(_XEN_NMIREASON_pci_serr,
1349 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1350 		reason |= NMI_REASON_SERR;
1351 
1352 	return reason;
1353 }
1354 
1355 static void __init xen_boot_params_init_edd(void)
1356 {
1357 #if IS_ENABLED(CONFIG_EDD)
1358 	struct xen_platform_op op;
1359 	struct edd_info *edd_info;
1360 	u32 *mbr_signature;
1361 	unsigned nr;
1362 	int ret;
1363 
1364 	edd_info = boot_params.eddbuf;
1365 	mbr_signature = boot_params.edd_mbr_sig_buffer;
1366 
1367 	op.cmd = XENPF_firmware_info;
1368 
1369 	op.u.firmware_info.type = XEN_FW_DISK_INFO;
1370 	for (nr = 0; nr < EDDMAXNR; nr++) {
1371 		struct edd_info *info = edd_info + nr;
1372 
1373 		op.u.firmware_info.index = nr;
1374 		info->params.length = sizeof(info->params);
1375 		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1376 				     &info->params);
1377 		ret = HYPERVISOR_dom0_op(&op);
1378 		if (ret)
1379 			break;
1380 
1381 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1382 		C(device);
1383 		C(version);
1384 		C(interface_support);
1385 		C(legacy_max_cylinder);
1386 		C(legacy_max_head);
1387 		C(legacy_sectors_per_track);
1388 #undef C
1389 	}
1390 	boot_params.eddbuf_entries = nr;
1391 
1392 	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1393 	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1394 		op.u.firmware_info.index = nr;
1395 		ret = HYPERVISOR_dom0_op(&op);
1396 		if (ret)
1397 			break;
1398 		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1399 	}
1400 	boot_params.edd_mbr_sig_buf_entries = nr;
1401 #endif
1402 }
1403 
1404 /*
1405  * Set up the GDT and segment registers for -fstack-protector.  Until
1406  * we do this, we have to be careful not to call any stack-protected
1407  * function, which is most of the kernel.
1408  *
1409  * Note, that it is __ref because the only caller of this after init
1410  * is PVH which is not going to use xen_load_gdt_boot or other
1411  * __init functions.
1412  */
1413 static void __ref xen_setup_gdt(int cpu)
1414 {
1415 	if (xen_feature(XENFEAT_auto_translated_physmap)) {
1416 #ifdef CONFIG_X86_64
1417 		unsigned long dummy;
1418 
1419 		load_percpu_segment(cpu); /* We need to access per-cpu area */
1420 		switch_to_new_gdt(cpu); /* GDT and GS set */
1421 
1422 		/* We are switching of the Xen provided GDT to our HVM mode
1423 		 * GDT. The new GDT has  __KERNEL_CS with CS.L = 1
1424 		 * and we are jumping to reload it.
1425 		 */
1426 		asm volatile ("pushq %0\n"
1427 			      "leaq 1f(%%rip),%0\n"
1428 			      "pushq %0\n"
1429 			      "lretq\n"
1430 			      "1:\n"
1431 			      : "=&r" (dummy) : "0" (__KERNEL_CS));
1432 
1433 		/*
1434 		 * While not needed, we also set the %es, %ds, and %fs
1435 		 * to zero. We don't care about %ss as it is NULL.
1436 		 * Strictly speaking this is not needed as Xen zeros those
1437 		 * out (and also MSR_FS_BASE, MSR_GS_BASE, MSR_KERNEL_GS_BASE)
1438 		 *
1439 		 * Linux zeros them in cpu_init() and in secondary_startup_64
1440 		 * (for BSP).
1441 		 */
1442 		loadsegment(es, 0);
1443 		loadsegment(ds, 0);
1444 		loadsegment(fs, 0);
1445 #else
1446 		/* PVH: TODO Implement. */
1447 		BUG();
1448 #endif
1449 		return; /* PVH does not need any PV GDT ops. */
1450 	}
1451 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1452 	pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1453 
1454 	setup_stack_canary_segment(0);
1455 	switch_to_new_gdt(0);
1456 
1457 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1458 	pv_cpu_ops.load_gdt = xen_load_gdt;
1459 }
1460 
1461 #ifdef CONFIG_XEN_PVH
1462 /*
1463  * A PV guest starts with default flags that are not set for PVH, set them
1464  * here asap.
1465  */
1466 static void xen_pvh_set_cr_flags(int cpu)
1467 {
1468 
1469 	/* Some of these are setup in 'secondary_startup_64'. The others:
1470 	 * X86_CR0_TS, X86_CR0_PE, X86_CR0_ET are set by Xen for HVM guests
1471 	 * (which PVH shared codepaths), while X86_CR0_PG is for PVH. */
1472 	write_cr0(read_cr0() | X86_CR0_MP | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM);
1473 
1474 	if (!cpu)
1475 		return;
1476 	/*
1477 	 * For BSP, PSE PGE are set in probe_page_size_mask(), for APs
1478 	 * set them here. For all, OSFXSR OSXMMEXCPT are set in fpu__init_cpu().
1479 	*/
1480 	if (cpu_has_pse)
1481 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
1482 
1483 	if (cpu_has_pge)
1484 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
1485 }
1486 
1487 /*
1488  * Note, that it is ref - because the only caller of this after init
1489  * is PVH which is not going to use xen_load_gdt_boot or other
1490  * __init functions.
1491  */
1492 void __ref xen_pvh_secondary_vcpu_init(int cpu)
1493 {
1494 	xen_setup_gdt(cpu);
1495 	xen_pvh_set_cr_flags(cpu);
1496 }
1497 
1498 static void __init xen_pvh_early_guest_init(void)
1499 {
1500 	if (!xen_feature(XENFEAT_auto_translated_physmap))
1501 		return;
1502 
1503 	if (!xen_feature(XENFEAT_hvm_callback_vector))
1504 		return;
1505 
1506 	xen_have_vector_callback = 1;
1507 
1508 	xen_pvh_early_cpu_init(0, false);
1509 	xen_pvh_set_cr_flags(0);
1510 
1511 #ifdef CONFIG_X86_32
1512 	BUG(); /* PVH: Implement proper support. */
1513 #endif
1514 }
1515 #endif    /* CONFIG_XEN_PVH */
1516 
1517 /* First C function to be called on Xen boot */
1518 asmlinkage __visible void __init xen_start_kernel(void)
1519 {
1520 	struct physdev_set_iopl set_iopl;
1521 	unsigned long initrd_start = 0;
1522 	u64 pat;
1523 	int rc;
1524 
1525 	if (!xen_start_info)
1526 		return;
1527 
1528 	xen_domain_type = XEN_PV_DOMAIN;
1529 
1530 	xen_setup_features();
1531 #ifdef CONFIG_XEN_PVH
1532 	xen_pvh_early_guest_init();
1533 #endif
1534 	xen_setup_machphys_mapping();
1535 
1536 	/* Install Xen paravirt ops */
1537 	pv_info = xen_info;
1538 	pv_init_ops = xen_init_ops;
1539 	pv_apic_ops = xen_apic_ops;
1540 	if (!xen_pvh_domain()) {
1541 		pv_cpu_ops = xen_cpu_ops;
1542 
1543 		x86_platform.get_nmi_reason = xen_get_nmi_reason;
1544 	}
1545 
1546 	if (xen_feature(XENFEAT_auto_translated_physmap))
1547 		x86_init.resources.memory_setup = xen_auto_xlated_memory_setup;
1548 	else
1549 		x86_init.resources.memory_setup = xen_memory_setup;
1550 	x86_init.oem.arch_setup = xen_arch_setup;
1551 	x86_init.oem.banner = xen_banner;
1552 
1553 	xen_init_time_ops();
1554 
1555 	/*
1556 	 * Set up some pagetable state before starting to set any ptes.
1557 	 */
1558 
1559 	xen_init_mmu_ops();
1560 
1561 	/* Prevent unwanted bits from being set in PTEs. */
1562 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1563 
1564 	/*
1565 	 * Prevent page tables from being allocated in highmem, even
1566 	 * if CONFIG_HIGHPTE is enabled.
1567 	 */
1568 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1569 
1570 	/* Work out if we support NX */
1571 	x86_configure_nx();
1572 
1573 	/* Get mfn list */
1574 	xen_build_dynamic_phys_to_machine();
1575 
1576 	/*
1577 	 * Set up kernel GDT and segment registers, mainly so that
1578 	 * -fstack-protector code can be executed.
1579 	 */
1580 	xen_setup_gdt(0);
1581 
1582 	xen_init_irq_ops();
1583 	xen_init_cpuid_mask();
1584 
1585 #ifdef CONFIG_X86_LOCAL_APIC
1586 	/*
1587 	 * set up the basic apic ops.
1588 	 */
1589 	xen_init_apic();
1590 #endif
1591 
1592 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1593 		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1594 		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1595 	}
1596 
1597 	machine_ops = xen_machine_ops;
1598 
1599 	/*
1600 	 * The only reliable way to retain the initial address of the
1601 	 * percpu gdt_page is to remember it here, so we can go and
1602 	 * mark it RW later, when the initial percpu area is freed.
1603 	 */
1604 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1605 
1606 	xen_smp_init();
1607 
1608 #ifdef CONFIG_ACPI_NUMA
1609 	/*
1610 	 * The pages we from Xen are not related to machine pages, so
1611 	 * any NUMA information the kernel tries to get from ACPI will
1612 	 * be meaningless.  Prevent it from trying.
1613 	 */
1614 	acpi_numa = -1;
1615 #endif
1616 	/* Don't do the full vcpu_info placement stuff until we have a
1617 	   possible map and a non-dummy shared_info. */
1618 	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1619 
1620 	local_irq_disable();
1621 	early_boot_irqs_disabled = true;
1622 
1623 	xen_raw_console_write("mapping kernel into physical memory\n");
1624 	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1625 				   xen_start_info->nr_pages);
1626 	xen_reserve_special_pages();
1627 
1628 	/*
1629 	 * Modify the cache mode translation tables to match Xen's PAT
1630 	 * configuration.
1631 	 */
1632 	rdmsrl(MSR_IA32_CR_PAT, pat);
1633 	pat_init_cache_modes(pat);
1634 
1635 	/* keep using Xen gdt for now; no urgent need to change it */
1636 
1637 #ifdef CONFIG_X86_32
1638 	pv_info.kernel_rpl = 1;
1639 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1640 		pv_info.kernel_rpl = 0;
1641 #else
1642 	pv_info.kernel_rpl = 0;
1643 #endif
1644 	/* set the limit of our address space */
1645 	xen_reserve_top();
1646 
1647 	/* PVH: runs at default kernel iopl of 0 */
1648 	if (!xen_pvh_domain()) {
1649 		/*
1650 		 * We used to do this in xen_arch_setup, but that is too late
1651 		 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1652 		 * early_amd_init which pokes 0xcf8 port.
1653 		 */
1654 		set_iopl.iopl = 1;
1655 		rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1656 		if (rc != 0)
1657 			xen_raw_printk("physdev_op failed %d\n", rc);
1658 	}
1659 
1660 #ifdef CONFIG_X86_32
1661 	/* set up basic CPUID stuff */
1662 	cpu_detect(&new_cpu_data);
1663 	set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1664 	new_cpu_data.wp_works_ok = 1;
1665 	new_cpu_data.x86_capability[0] = cpuid_edx(1);
1666 #endif
1667 
1668 	if (xen_start_info->mod_start) {
1669 	    if (xen_start_info->flags & SIF_MOD_START_PFN)
1670 		initrd_start = PFN_PHYS(xen_start_info->mod_start);
1671 	    else
1672 		initrd_start = __pa(xen_start_info->mod_start);
1673 	}
1674 
1675 	/* Poke various useful things into boot_params */
1676 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1677 	boot_params.hdr.ramdisk_image = initrd_start;
1678 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1679 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1680 
1681 	if (!xen_initial_domain()) {
1682 		add_preferred_console("xenboot", 0, NULL);
1683 		add_preferred_console("tty", 0, NULL);
1684 		add_preferred_console("hvc", 0, NULL);
1685 		if (pci_xen)
1686 			x86_init.pci.arch_init = pci_xen_init;
1687 	} else {
1688 		const struct dom0_vga_console_info *info =
1689 			(void *)((char *)xen_start_info +
1690 				 xen_start_info->console.dom0.info_off);
1691 		struct xen_platform_op op = {
1692 			.cmd = XENPF_firmware_info,
1693 			.interface_version = XENPF_INTERFACE_VERSION,
1694 			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1695 		};
1696 
1697 		xen_init_vga(info, xen_start_info->console.dom0.info_size);
1698 		xen_start_info->console.domU.mfn = 0;
1699 		xen_start_info->console.domU.evtchn = 0;
1700 
1701 		if (HYPERVISOR_dom0_op(&op) == 0)
1702 			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1703 
1704 		/* Make sure ACS will be enabled */
1705 		pci_request_acs();
1706 
1707 		xen_acpi_sleep_register();
1708 
1709 		/* Avoid searching for BIOS MP tables */
1710 		x86_init.mpparse.find_smp_config = x86_init_noop;
1711 		x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1712 
1713 		xen_boot_params_init_edd();
1714 	}
1715 #ifdef CONFIG_PCI
1716 	/* PCI BIOS service won't work from a PV guest. */
1717 	pci_probe &= ~PCI_PROBE_BIOS;
1718 #endif
1719 	xen_raw_console_write("about to get started...\n");
1720 
1721 	xen_setup_runstate_info(0);
1722 
1723 	xen_efi_init();
1724 
1725 	/* Start the world */
1726 #ifdef CONFIG_X86_32
1727 	i386_start_kernel();
1728 #else
1729 	cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1730 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1731 #endif
1732 }
1733 
1734 void __ref xen_hvm_init_shared_info(void)
1735 {
1736 	int cpu;
1737 	struct xen_add_to_physmap xatp;
1738 	static struct shared_info *shared_info_page = 0;
1739 
1740 	if (!shared_info_page)
1741 		shared_info_page = (struct shared_info *)
1742 			extend_brk(PAGE_SIZE, PAGE_SIZE);
1743 	xatp.domid = DOMID_SELF;
1744 	xatp.idx = 0;
1745 	xatp.space = XENMAPSPACE_shared_info;
1746 	xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1747 	if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1748 		BUG();
1749 
1750 	HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1751 
1752 	/* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1753 	 * page, we use it in the event channel upcall and in some pvclock
1754 	 * related functions. We don't need the vcpu_info placement
1755 	 * optimizations because we don't use any pv_mmu or pv_irq op on
1756 	 * HVM.
1757 	 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1758 	 * online but xen_hvm_init_shared_info is run at resume time too and
1759 	 * in that case multiple vcpus might be online. */
1760 	for_each_online_cpu(cpu) {
1761 		/* Leave it to be NULL. */
1762 		if (cpu >= MAX_VIRT_CPUS)
1763 			continue;
1764 		per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1765 	}
1766 }
1767 
1768 #ifdef CONFIG_XEN_PVHVM
1769 static void __init init_hvm_pv_info(void)
1770 {
1771 	int major, minor;
1772 	uint32_t eax, ebx, ecx, edx, pages, msr, base;
1773 	u64 pfn;
1774 
1775 	base = xen_cpuid_base();
1776 	cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1777 
1778 	major = eax >> 16;
1779 	minor = eax & 0xffff;
1780 	printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1781 
1782 	cpuid(base + 2, &pages, &msr, &ecx, &edx);
1783 
1784 	pfn = __pa(hypercall_page);
1785 	wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1786 
1787 	xen_setup_features();
1788 
1789 	pv_info.name = "Xen HVM";
1790 
1791 	xen_domain_type = XEN_HVM_DOMAIN;
1792 }
1793 
1794 static int xen_hvm_cpu_notify(struct notifier_block *self, unsigned long action,
1795 			      void *hcpu)
1796 {
1797 	int cpu = (long)hcpu;
1798 	switch (action) {
1799 	case CPU_UP_PREPARE:
1800 		xen_vcpu_setup(cpu);
1801 		if (xen_have_vector_callback) {
1802 			if (xen_feature(XENFEAT_hvm_safe_pvclock))
1803 				xen_setup_timer(cpu);
1804 		}
1805 		break;
1806 	default:
1807 		break;
1808 	}
1809 	return NOTIFY_OK;
1810 }
1811 
1812 static struct notifier_block xen_hvm_cpu_notifier = {
1813 	.notifier_call	= xen_hvm_cpu_notify,
1814 };
1815 
1816 #ifdef CONFIG_KEXEC_CORE
1817 static void xen_hvm_shutdown(void)
1818 {
1819 	native_machine_shutdown();
1820 	if (kexec_in_progress)
1821 		xen_reboot(SHUTDOWN_soft_reset);
1822 }
1823 
1824 static void xen_hvm_crash_shutdown(struct pt_regs *regs)
1825 {
1826 	native_machine_crash_shutdown(regs);
1827 	xen_reboot(SHUTDOWN_soft_reset);
1828 }
1829 #endif
1830 
1831 static void __init xen_hvm_guest_init(void)
1832 {
1833 	if (xen_pv_domain())
1834 		return;
1835 
1836 	init_hvm_pv_info();
1837 
1838 	xen_hvm_init_shared_info();
1839 
1840 	xen_panic_handler_init();
1841 
1842 	if (xen_feature(XENFEAT_hvm_callback_vector))
1843 		xen_have_vector_callback = 1;
1844 	xen_hvm_smp_init();
1845 	register_cpu_notifier(&xen_hvm_cpu_notifier);
1846 	xen_unplug_emulated_devices();
1847 	x86_init.irqs.intr_init = xen_init_IRQ;
1848 	xen_hvm_init_time_ops();
1849 	xen_hvm_init_mmu_ops();
1850 #ifdef CONFIG_KEXEC_CORE
1851 	machine_ops.shutdown = xen_hvm_shutdown;
1852 	machine_ops.crash_shutdown = xen_hvm_crash_shutdown;
1853 #endif
1854 }
1855 #endif
1856 
1857 static bool xen_nopv = false;
1858 static __init int xen_parse_nopv(char *arg)
1859 {
1860        xen_nopv = true;
1861        return 0;
1862 }
1863 early_param("xen_nopv", xen_parse_nopv);
1864 
1865 static uint32_t __init xen_platform(void)
1866 {
1867 	if (xen_nopv)
1868 		return 0;
1869 
1870 	return xen_cpuid_base();
1871 }
1872 
1873 bool xen_hvm_need_lapic(void)
1874 {
1875 	if (xen_nopv)
1876 		return false;
1877 	if (xen_pv_domain())
1878 		return false;
1879 	if (!xen_hvm_domain())
1880 		return false;
1881 	if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1882 		return false;
1883 	return true;
1884 }
1885 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1886 
1887 static void xen_set_cpu_features(struct cpuinfo_x86 *c)
1888 {
1889 	if (xen_pv_domain())
1890 		clear_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS);
1891 }
1892 
1893 const struct hypervisor_x86 x86_hyper_xen = {
1894 	.name			= "Xen",
1895 	.detect			= xen_platform,
1896 #ifdef CONFIG_XEN_PVHVM
1897 	.init_platform		= xen_hvm_guest_init,
1898 #endif
1899 	.x2apic_available	= xen_x2apic_para_available,
1900 	.set_cpu_features       = xen_set_cpu_features,
1901 };
1902 EXPORT_SYMBOL(x86_hyper_xen);
1903 
1904 #ifdef CONFIG_HOTPLUG_CPU
1905 void xen_arch_register_cpu(int num)
1906 {
1907 	arch_register_cpu(num);
1908 }
1909 EXPORT_SYMBOL(xen_arch_register_cpu);
1910 
1911 void xen_arch_unregister_cpu(int num)
1912 {
1913 	arch_unregister_cpu(num);
1914 }
1915 EXPORT_SYMBOL(xen_arch_unregister_cpu);
1916 #endif
1917