xref: /openbmc/linux/arch/x86/xen/enlighten.c (revision 22246614)
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
29 
30 #include <xen/interface/xen.h>
31 #include <xen/interface/physdev.h>
32 #include <xen/interface/vcpu.h>
33 #include <xen/interface/sched.h>
34 #include <xen/features.h>
35 #include <xen/page.h>
36 
37 #include <asm/paravirt.h>
38 #include <asm/page.h>
39 #include <asm/xen/hypercall.h>
40 #include <asm/xen/hypervisor.h>
41 #include <asm/fixmap.h>
42 #include <asm/processor.h>
43 #include <asm/setup.h>
44 #include <asm/desc.h>
45 #include <asm/pgtable.h>
46 #include <asm/tlbflush.h>
47 #include <asm/reboot.h>
48 
49 #include "xen-ops.h"
50 #include "mmu.h"
51 #include "multicalls.h"
52 
53 EXPORT_SYMBOL_GPL(hypercall_page);
54 
55 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
56 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
57 
58 /*
59  * Note about cr3 (pagetable base) values:
60  *
61  * xen_cr3 contains the current logical cr3 value; it contains the
62  * last set cr3.  This may not be the current effective cr3, because
63  * its update may be being lazily deferred.  However, a vcpu looking
64  * at its own cr3 can use this value knowing that it everything will
65  * be self-consistent.
66  *
67  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
68  * hypercall to set the vcpu cr3 is complete (so it may be a little
69  * out of date, but it will never be set early).  If one vcpu is
70  * looking at another vcpu's cr3 value, it should use this variable.
71  */
72 DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
73 DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
74 
75 struct start_info *xen_start_info;
76 EXPORT_SYMBOL_GPL(xen_start_info);
77 
78 static /* __initdata */ struct shared_info dummy_shared_info;
79 
80 /*
81  * Point at some empty memory to start with. We map the real shared_info
82  * page as soon as fixmap is up and running.
83  */
84 struct shared_info *HYPERVISOR_shared_info = (void *)&dummy_shared_info;
85 
86 /*
87  * Flag to determine whether vcpu info placement is available on all
88  * VCPUs.  We assume it is to start with, and then set it to zero on
89  * the first failure.  This is because it can succeed on some VCPUs
90  * and not others, since it can involve hypervisor memory allocation,
91  * or because the guest failed to guarantee all the appropriate
92  * constraints on all VCPUs (ie buffer can't cross a page boundary).
93  *
94  * Note that any particular CPU may be using a placed vcpu structure,
95  * but we can only optimise if the all are.
96  *
97  * 0: not available, 1: available
98  */
99 static int have_vcpu_info_placement = 1;
100 
101 static void __init xen_vcpu_setup(int cpu)
102 {
103 	struct vcpu_register_vcpu_info info;
104 	int err;
105 	struct vcpu_info *vcpup;
106 
107 	BUG_ON(HYPERVISOR_shared_info == &dummy_shared_info);
108 	per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
109 
110 	if (!have_vcpu_info_placement)
111 		return;		/* already tested, not available */
112 
113 	vcpup = &per_cpu(xen_vcpu_info, cpu);
114 
115 	info.mfn = virt_to_mfn(vcpup);
116 	info.offset = offset_in_page(vcpup);
117 
118 	printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
119 	       cpu, vcpup, info.mfn, info.offset);
120 
121 	/* Check to see if the hypervisor will put the vcpu_info
122 	   structure where we want it, which allows direct access via
123 	   a percpu-variable. */
124 	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
125 
126 	if (err) {
127 		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
128 		have_vcpu_info_placement = 0;
129 	} else {
130 		/* This cpu is using the registered vcpu info, even if
131 		   later ones fail to. */
132 		per_cpu(xen_vcpu, cpu) = vcpup;
133 
134 		printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
135 		       cpu, vcpup);
136 	}
137 }
138 
139 static void __init xen_banner(void)
140 {
141 	printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
142 	       pv_info.name);
143 	printk(KERN_INFO "Hypervisor signature: %s\n", xen_start_info->magic);
144 }
145 
146 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
147 		      unsigned int *cx, unsigned int *dx)
148 {
149 	unsigned maskedx = ~0;
150 
151 	/*
152 	 * Mask out inconvenient features, to try and disable as many
153 	 * unsupported kernel subsystems as possible.
154 	 */
155 	if (*ax == 1)
156 		maskedx = ~((1 << X86_FEATURE_APIC) |  /* disable APIC */
157 			    (1 << X86_FEATURE_ACPI) |  /* disable ACPI */
158 			    (1 << X86_FEATURE_MCE)  |  /* disable MCE */
159 			    (1 << X86_FEATURE_MCA)  |  /* disable MCA */
160 			    (1 << X86_FEATURE_ACC));   /* thermal monitoring */
161 
162 	asm(XEN_EMULATE_PREFIX "cpuid"
163 		: "=a" (*ax),
164 		  "=b" (*bx),
165 		  "=c" (*cx),
166 		  "=d" (*dx)
167 		: "0" (*ax), "2" (*cx));
168 	*dx &= maskedx;
169 }
170 
171 static void xen_set_debugreg(int reg, unsigned long val)
172 {
173 	HYPERVISOR_set_debugreg(reg, val);
174 }
175 
176 static unsigned long xen_get_debugreg(int reg)
177 {
178 	return HYPERVISOR_get_debugreg(reg);
179 }
180 
181 static unsigned long xen_save_fl(void)
182 {
183 	struct vcpu_info *vcpu;
184 	unsigned long flags;
185 
186 	vcpu = x86_read_percpu(xen_vcpu);
187 
188 	/* flag has opposite sense of mask */
189 	flags = !vcpu->evtchn_upcall_mask;
190 
191 	/* convert to IF type flag
192 	   -0 -> 0x00000000
193 	   -1 -> 0xffffffff
194 	*/
195 	return (-flags) & X86_EFLAGS_IF;
196 }
197 
198 static void xen_restore_fl(unsigned long flags)
199 {
200 	struct vcpu_info *vcpu;
201 
202 	/* convert from IF type flag */
203 	flags = !(flags & X86_EFLAGS_IF);
204 
205 	/* There's a one instruction preempt window here.  We need to
206 	   make sure we're don't switch CPUs between getting the vcpu
207 	   pointer and updating the mask. */
208 	preempt_disable();
209 	vcpu = x86_read_percpu(xen_vcpu);
210 	vcpu->evtchn_upcall_mask = flags;
211 	preempt_enable_no_resched();
212 
213 	/* Doesn't matter if we get preempted here, because any
214 	   pending event will get dealt with anyway. */
215 
216 	if (flags == 0) {
217 		preempt_check_resched();
218 		barrier(); /* unmask then check (avoid races) */
219 		if (unlikely(vcpu->evtchn_upcall_pending))
220 			force_evtchn_callback();
221 	}
222 }
223 
224 static void xen_irq_disable(void)
225 {
226 	/* There's a one instruction preempt window here.  We need to
227 	   make sure we're don't switch CPUs between getting the vcpu
228 	   pointer and updating the mask. */
229 	preempt_disable();
230 	x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
231 	preempt_enable_no_resched();
232 }
233 
234 static void xen_irq_enable(void)
235 {
236 	struct vcpu_info *vcpu;
237 
238 	/* There's a one instruction preempt window here.  We need to
239 	   make sure we're don't switch CPUs between getting the vcpu
240 	   pointer and updating the mask. */
241 	preempt_disable();
242 	vcpu = x86_read_percpu(xen_vcpu);
243 	vcpu->evtchn_upcall_mask = 0;
244 	preempt_enable_no_resched();
245 
246 	/* Doesn't matter if we get preempted here, because any
247 	   pending event will get dealt with anyway. */
248 
249 	barrier(); /* unmask then check (avoid races) */
250 	if (unlikely(vcpu->evtchn_upcall_pending))
251 		force_evtchn_callback();
252 }
253 
254 static void xen_safe_halt(void)
255 {
256 	/* Blocking includes an implicit local_irq_enable(). */
257 	if (HYPERVISOR_sched_op(SCHEDOP_block, 0) != 0)
258 		BUG();
259 }
260 
261 static void xen_halt(void)
262 {
263 	if (irqs_disabled())
264 		HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
265 	else
266 		xen_safe_halt();
267 }
268 
269 static void xen_leave_lazy(void)
270 {
271 	paravirt_leave_lazy(paravirt_get_lazy_mode());
272 	xen_mc_flush();
273 }
274 
275 static unsigned long xen_store_tr(void)
276 {
277 	return 0;
278 }
279 
280 static void xen_set_ldt(const void *addr, unsigned entries)
281 {
282 	struct mmuext_op *op;
283 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
284 
285 	op = mcs.args;
286 	op->cmd = MMUEXT_SET_LDT;
287 	op->arg1.linear_addr = (unsigned long)addr;
288 	op->arg2.nr_ents = entries;
289 
290 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
291 
292 	xen_mc_issue(PARAVIRT_LAZY_CPU);
293 }
294 
295 static void xen_load_gdt(const struct desc_ptr *dtr)
296 {
297 	unsigned long *frames;
298 	unsigned long va = dtr->address;
299 	unsigned int size = dtr->size + 1;
300 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
301 	int f;
302 	struct multicall_space mcs;
303 
304 	/* A GDT can be up to 64k in size, which corresponds to 8192
305 	   8-byte entries, or 16 4k pages.. */
306 
307 	BUG_ON(size > 65536);
308 	BUG_ON(va & ~PAGE_MASK);
309 
310 	mcs = xen_mc_entry(sizeof(*frames) * pages);
311 	frames = mcs.args;
312 
313 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
314 		frames[f] = virt_to_mfn(va);
315 		make_lowmem_page_readonly((void *)va);
316 	}
317 
318 	MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
319 
320 	xen_mc_issue(PARAVIRT_LAZY_CPU);
321 }
322 
323 static void load_TLS_descriptor(struct thread_struct *t,
324 				unsigned int cpu, unsigned int i)
325 {
326 	struct desc_struct *gdt = get_cpu_gdt_table(cpu);
327 	xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
328 	struct multicall_space mc = __xen_mc_entry(0);
329 
330 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
331 }
332 
333 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
334 {
335 	xen_mc_batch();
336 
337 	load_TLS_descriptor(t, cpu, 0);
338 	load_TLS_descriptor(t, cpu, 1);
339 	load_TLS_descriptor(t, cpu, 2);
340 
341 	xen_mc_issue(PARAVIRT_LAZY_CPU);
342 
343 	/*
344 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
345 	 * it means we're in a context switch, and %gs has just been
346 	 * saved.  This means we can zero it out to prevent faults on
347 	 * exit from the hypervisor if the next process has no %gs.
348 	 * Either way, it has been saved, and the new value will get
349 	 * loaded properly.  This will go away as soon as Xen has been
350 	 * modified to not save/restore %gs for normal hypercalls.
351 	 */
352 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
353 		loadsegment(gs, 0);
354 }
355 
356 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
357 				const void *ptr)
358 {
359 	unsigned long lp = (unsigned long)&dt[entrynum];
360 	xmaddr_t mach_lp = virt_to_machine(lp);
361 	u64 entry = *(u64 *)ptr;
362 
363 	preempt_disable();
364 
365 	xen_mc_flush();
366 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
367 		BUG();
368 
369 	preempt_enable();
370 }
371 
372 static int cvt_gate_to_trap(int vector, u32 low, u32 high,
373 			    struct trap_info *info)
374 {
375 	u8 type, dpl;
376 
377 	type = (high >> 8) & 0x1f;
378 	dpl = (high >> 13) & 3;
379 
380 	if (type != 0xf && type != 0xe)
381 		return 0;
382 
383 	info->vector = vector;
384 	info->address = (high & 0xffff0000) | (low & 0x0000ffff);
385 	info->cs = low >> 16;
386 	info->flags = dpl;
387 	/* interrupt gates clear IF */
388 	if (type == 0xe)
389 		info->flags |= 4;
390 
391 	return 1;
392 }
393 
394 /* Locations of each CPU's IDT */
395 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
396 
397 /* Set an IDT entry.  If the entry is part of the current IDT, then
398    also update Xen. */
399 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
400 {
401 	unsigned long p = (unsigned long)&dt[entrynum];
402 	unsigned long start, end;
403 
404 	preempt_disable();
405 
406 	start = __get_cpu_var(idt_desc).address;
407 	end = start + __get_cpu_var(idt_desc).size + 1;
408 
409 	xen_mc_flush();
410 
411 	native_write_idt_entry(dt, entrynum, g);
412 
413 	if (p >= start && (p + 8) <= end) {
414 		struct trap_info info[2];
415 		u32 *desc = (u32 *)g;
416 
417 		info[1].address = 0;
418 
419 		if (cvt_gate_to_trap(entrynum, desc[0], desc[1], &info[0]))
420 			if (HYPERVISOR_set_trap_table(info))
421 				BUG();
422 	}
423 
424 	preempt_enable();
425 }
426 
427 static void xen_convert_trap_info(const struct desc_ptr *desc,
428 				  struct trap_info *traps)
429 {
430 	unsigned in, out, count;
431 
432 	count = (desc->size+1) / 8;
433 	BUG_ON(count > 256);
434 
435 	for (in = out = 0; in < count; in++) {
436 		const u32 *entry = (u32 *)(desc->address + in * 8);
437 
438 		if (cvt_gate_to_trap(in, entry[0], entry[1], &traps[out]))
439 			out++;
440 	}
441 	traps[out].address = 0;
442 }
443 
444 void xen_copy_trap_info(struct trap_info *traps)
445 {
446 	const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
447 
448 	xen_convert_trap_info(desc, traps);
449 }
450 
451 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
452    hold a spinlock to protect the static traps[] array (static because
453    it avoids allocation, and saves stack space). */
454 static void xen_load_idt(const struct desc_ptr *desc)
455 {
456 	static DEFINE_SPINLOCK(lock);
457 	static struct trap_info traps[257];
458 
459 	spin_lock(&lock);
460 
461 	__get_cpu_var(idt_desc) = *desc;
462 
463 	xen_convert_trap_info(desc, traps);
464 
465 	xen_mc_flush();
466 	if (HYPERVISOR_set_trap_table(traps))
467 		BUG();
468 
469 	spin_unlock(&lock);
470 }
471 
472 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
473    they're handled differently. */
474 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
475 				const void *desc, int type)
476 {
477 	preempt_disable();
478 
479 	switch (type) {
480 	case DESC_LDT:
481 	case DESC_TSS:
482 		/* ignore */
483 		break;
484 
485 	default: {
486 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
487 
488 		xen_mc_flush();
489 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
490 			BUG();
491 	}
492 
493 	}
494 
495 	preempt_enable();
496 }
497 
498 static void xen_load_sp0(struct tss_struct *tss,
499 			  struct thread_struct *thread)
500 {
501 	struct multicall_space mcs = xen_mc_entry(0);
502 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
503 	xen_mc_issue(PARAVIRT_LAZY_CPU);
504 }
505 
506 static void xen_set_iopl_mask(unsigned mask)
507 {
508 	struct physdev_set_iopl set_iopl;
509 
510 	/* Force the change at ring 0. */
511 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
512 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
513 }
514 
515 static void xen_io_delay(void)
516 {
517 }
518 
519 #ifdef CONFIG_X86_LOCAL_APIC
520 static u32 xen_apic_read(unsigned long reg)
521 {
522 	return 0;
523 }
524 
525 static void xen_apic_write(unsigned long reg, u32 val)
526 {
527 	/* Warn to see if there's any stray references */
528 	WARN_ON(1);
529 }
530 #endif
531 
532 static void xen_flush_tlb(void)
533 {
534 	struct mmuext_op *op;
535 	struct multicall_space mcs;
536 
537 	preempt_disable();
538 
539 	mcs = xen_mc_entry(sizeof(*op));
540 
541 	op = mcs.args;
542 	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
543 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
544 
545 	xen_mc_issue(PARAVIRT_LAZY_MMU);
546 
547 	preempt_enable();
548 }
549 
550 static void xen_flush_tlb_single(unsigned long addr)
551 {
552 	struct mmuext_op *op;
553 	struct multicall_space mcs;
554 
555 	preempt_disable();
556 
557 	mcs = xen_mc_entry(sizeof(*op));
558 	op = mcs.args;
559 	op->cmd = MMUEXT_INVLPG_LOCAL;
560 	op->arg1.linear_addr = addr & PAGE_MASK;
561 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
562 
563 	xen_mc_issue(PARAVIRT_LAZY_MMU);
564 
565 	preempt_enable();
566 }
567 
568 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
569 				 unsigned long va)
570 {
571 	struct {
572 		struct mmuext_op op;
573 		cpumask_t mask;
574 	} *args;
575 	cpumask_t cpumask = *cpus;
576 	struct multicall_space mcs;
577 
578 	/*
579 	 * A couple of (to be removed) sanity checks:
580 	 *
581 	 * - current CPU must not be in mask
582 	 * - mask must exist :)
583 	 */
584 	BUG_ON(cpus_empty(cpumask));
585 	BUG_ON(cpu_isset(smp_processor_id(), cpumask));
586 	BUG_ON(!mm);
587 
588 	/* If a CPU which we ran on has gone down, OK. */
589 	cpus_and(cpumask, cpumask, cpu_online_map);
590 	if (cpus_empty(cpumask))
591 		return;
592 
593 	mcs = xen_mc_entry(sizeof(*args));
594 	args = mcs.args;
595 	args->mask = cpumask;
596 	args->op.arg2.vcpumask = &args->mask;
597 
598 	if (va == TLB_FLUSH_ALL) {
599 		args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
600 	} else {
601 		args->op.cmd = MMUEXT_INVLPG_MULTI;
602 		args->op.arg1.linear_addr = va;
603 	}
604 
605 	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
606 
607 	xen_mc_issue(PARAVIRT_LAZY_MMU);
608 }
609 
610 static void xen_write_cr2(unsigned long cr2)
611 {
612 	x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
613 }
614 
615 static unsigned long xen_read_cr2(void)
616 {
617 	return x86_read_percpu(xen_vcpu)->arch.cr2;
618 }
619 
620 static unsigned long xen_read_cr2_direct(void)
621 {
622 	return x86_read_percpu(xen_vcpu_info.arch.cr2);
623 }
624 
625 static void xen_write_cr4(unsigned long cr4)
626 {
627 	/* Just ignore cr4 changes; Xen doesn't allow us to do
628 	   anything anyway. */
629 }
630 
631 static unsigned long xen_read_cr3(void)
632 {
633 	return x86_read_percpu(xen_cr3);
634 }
635 
636 static void set_current_cr3(void *v)
637 {
638 	x86_write_percpu(xen_current_cr3, (unsigned long)v);
639 }
640 
641 static void xen_write_cr3(unsigned long cr3)
642 {
643 	struct mmuext_op *op;
644 	struct multicall_space mcs;
645 	unsigned long mfn = pfn_to_mfn(PFN_DOWN(cr3));
646 
647 	BUG_ON(preemptible());
648 
649 	mcs = xen_mc_entry(sizeof(*op));  /* disables interrupts */
650 
651 	/* Update while interrupts are disabled, so its atomic with
652 	   respect to ipis */
653 	x86_write_percpu(xen_cr3, cr3);
654 
655 	op = mcs.args;
656 	op->cmd = MMUEXT_NEW_BASEPTR;
657 	op->arg1.mfn = mfn;
658 
659 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
660 
661 	/* Update xen_update_cr3 once the batch has actually
662 	   been submitted. */
663 	xen_mc_callback(set_current_cr3, (void *)cr3);
664 
665 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
666 }
667 
668 /* Early in boot, while setting up the initial pagetable, assume
669    everything is pinned. */
670 static __init void xen_alloc_pte_init(struct mm_struct *mm, u32 pfn)
671 {
672 #ifdef CONFIG_FLATMEM
673 	BUG_ON(mem_map);	/* should only be used early */
674 #endif
675 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
676 }
677 
678 /* Early release_pte assumes that all pts are pinned, since there's
679    only init_mm and anything attached to that is pinned. */
680 static void xen_release_pte_init(u32 pfn)
681 {
682 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
683 }
684 
685 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
686 {
687 	struct mmuext_op op;
688 	op.cmd = cmd;
689 	op.arg1.mfn = pfn_to_mfn(pfn);
690 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
691 		BUG();
692 }
693 
694 /* This needs to make sure the new pte page is pinned iff its being
695    attached to a pinned pagetable. */
696 static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
697 {
698 	struct page *page = pfn_to_page(pfn);
699 
700 	if (PagePinned(virt_to_page(mm->pgd))) {
701 		SetPagePinned(page);
702 
703 		if (!PageHighMem(page)) {
704 			make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
705 			if (level == PT_PTE)
706 				pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
707 		} else
708 			/* make sure there are no stray mappings of
709 			   this page */
710 			kmap_flush_unused();
711 	}
712 }
713 
714 static void xen_alloc_pte(struct mm_struct *mm, u32 pfn)
715 {
716 	xen_alloc_ptpage(mm, pfn, PT_PTE);
717 }
718 
719 static void xen_alloc_pmd(struct mm_struct *mm, u32 pfn)
720 {
721 	xen_alloc_ptpage(mm, pfn, PT_PMD);
722 }
723 
724 /* This should never happen until we're OK to use struct page */
725 static void xen_release_ptpage(u32 pfn, unsigned level)
726 {
727 	struct page *page = pfn_to_page(pfn);
728 
729 	if (PagePinned(page)) {
730 		if (!PageHighMem(page)) {
731 			if (level == PT_PTE)
732 				pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
733 			make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
734 		}
735 		ClearPagePinned(page);
736 	}
737 }
738 
739 static void xen_release_pte(u32 pfn)
740 {
741 	xen_release_ptpage(pfn, PT_PTE);
742 }
743 
744 static void xen_release_pmd(u32 pfn)
745 {
746 	xen_release_ptpage(pfn, PT_PMD);
747 }
748 
749 #ifdef CONFIG_HIGHPTE
750 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
751 {
752 	pgprot_t prot = PAGE_KERNEL;
753 
754 	if (PagePinned(page))
755 		prot = PAGE_KERNEL_RO;
756 
757 	if (0 && PageHighMem(page))
758 		printk("mapping highpte %lx type %d prot %s\n",
759 		       page_to_pfn(page), type,
760 		       (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
761 
762 	return kmap_atomic_prot(page, type, prot);
763 }
764 #endif
765 
766 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
767 {
768 	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
769 	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
770 		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
771 			       pte_val_ma(pte));
772 
773 	return pte;
774 }
775 
776 /* Init-time set_pte while constructing initial pagetables, which
777    doesn't allow RO pagetable pages to be remapped RW */
778 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
779 {
780 	pte = mask_rw_pte(ptep, pte);
781 
782 	xen_set_pte(ptep, pte);
783 }
784 
785 static __init void xen_pagetable_setup_start(pgd_t *base)
786 {
787 	pgd_t *xen_pgd = (pgd_t *)xen_start_info->pt_base;
788 
789 	/* special set_pte for pagetable initialization */
790 	pv_mmu_ops.set_pte = xen_set_pte_init;
791 
792 	init_mm.pgd = base;
793 	/*
794 	 * copy top-level of Xen-supplied pagetable into place.	 For
795 	 * !PAE we can use this as-is, but for PAE it is a stand-in
796 	 * while we copy the pmd pages.
797 	 */
798 	memcpy(base, xen_pgd, PTRS_PER_PGD * sizeof(pgd_t));
799 
800 	if (PTRS_PER_PMD > 1) {
801 		int i;
802 		/*
803 		 * For PAE, need to allocate new pmds, rather than
804 		 * share Xen's, since Xen doesn't like pmd's being
805 		 * shared between address spaces.
806 		 */
807 		for (i = 0; i < PTRS_PER_PGD; i++) {
808 			if (pgd_val_ma(xen_pgd[i]) & _PAGE_PRESENT) {
809 				pmd_t *pmd = (pmd_t *)alloc_bootmem_low_pages(PAGE_SIZE);
810 
811 				memcpy(pmd, (void *)pgd_page_vaddr(xen_pgd[i]),
812 				       PAGE_SIZE);
813 
814 				make_lowmem_page_readonly(pmd);
815 
816 				set_pgd(&base[i], __pgd(1 + __pa(pmd)));
817 			} else
818 				pgd_clear(&base[i]);
819 		}
820 	}
821 
822 	/* make sure zero_page is mapped RO so we can use it in pagetables */
823 	make_lowmem_page_readonly(empty_zero_page);
824 	make_lowmem_page_readonly(base);
825 	/*
826 	 * Switch to new pagetable.  This is done before
827 	 * pagetable_init has done anything so that the new pages
828 	 * added to the table can be prepared properly for Xen.
829 	 */
830 	xen_write_cr3(__pa(base));
831 
832 	/* Unpin initial Xen pagetable */
833 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
834 			  PFN_DOWN(__pa(xen_start_info->pt_base)));
835 }
836 
837 static __init void setup_shared_info(void)
838 {
839 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
840 		unsigned long addr = fix_to_virt(FIX_PARAVIRT_BOOTMAP);
841 
842 		/*
843 		 * Create a mapping for the shared info page.
844 		 * Should be set_fixmap(), but shared_info is a machine
845 		 * address with no corresponding pseudo-phys address.
846 		 */
847 		set_pte_mfn(addr,
848 			    PFN_DOWN(xen_start_info->shared_info),
849 			    PAGE_KERNEL);
850 
851 		HYPERVISOR_shared_info = (struct shared_info *)addr;
852 	} else
853 		HYPERVISOR_shared_info =
854 			(struct shared_info *)__va(xen_start_info->shared_info);
855 
856 #ifndef CONFIG_SMP
857 	/* In UP this is as good a place as any to set up shared info */
858 	xen_setup_vcpu_info_placement();
859 #endif
860 }
861 
862 static __init void xen_pagetable_setup_done(pgd_t *base)
863 {
864 	/* This will work as long as patching hasn't happened yet
865 	   (which it hasn't) */
866 	pv_mmu_ops.alloc_pte = xen_alloc_pte;
867 	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
868 	pv_mmu_ops.release_pte = xen_release_pte;
869 	pv_mmu_ops.release_pmd = xen_release_pmd;
870 	pv_mmu_ops.set_pte = xen_set_pte;
871 
872 	setup_shared_info();
873 
874 	/* Actually pin the pagetable down, but we can't set PG_pinned
875 	   yet because the page structures don't exist yet. */
876 	{
877 		unsigned level;
878 
879 #ifdef CONFIG_X86_PAE
880 		level = MMUEXT_PIN_L3_TABLE;
881 #else
882 		level = MMUEXT_PIN_L2_TABLE;
883 #endif
884 
885 		pin_pagetable_pfn(level, PFN_DOWN(__pa(base)));
886 	}
887 }
888 
889 /* This is called once we have the cpu_possible_map */
890 void __init xen_setup_vcpu_info_placement(void)
891 {
892 	int cpu;
893 
894 	for_each_possible_cpu(cpu)
895 		xen_vcpu_setup(cpu);
896 
897 	/* xen_vcpu_setup managed to place the vcpu_info within the
898 	   percpu area for all cpus, so make use of it */
899 	if (have_vcpu_info_placement) {
900 		printk(KERN_INFO "Xen: using vcpu_info placement\n");
901 
902 		pv_irq_ops.save_fl = xen_save_fl_direct;
903 		pv_irq_ops.restore_fl = xen_restore_fl_direct;
904 		pv_irq_ops.irq_disable = xen_irq_disable_direct;
905 		pv_irq_ops.irq_enable = xen_irq_enable_direct;
906 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
907 	}
908 }
909 
910 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
911 			  unsigned long addr, unsigned len)
912 {
913 	char *start, *end, *reloc;
914 	unsigned ret;
915 
916 	start = end = reloc = NULL;
917 
918 #define SITE(op, x)							\
919 	case PARAVIRT_PATCH(op.x):					\
920 	if (have_vcpu_info_placement) {					\
921 		start = (char *)xen_##x##_direct;			\
922 		end = xen_##x##_direct_end;				\
923 		reloc = xen_##x##_direct_reloc;				\
924 	}								\
925 	goto patch_site
926 
927 	switch (type) {
928 		SITE(pv_irq_ops, irq_enable);
929 		SITE(pv_irq_ops, irq_disable);
930 		SITE(pv_irq_ops, save_fl);
931 		SITE(pv_irq_ops, restore_fl);
932 #undef SITE
933 
934 	patch_site:
935 		if (start == NULL || (end-start) > len)
936 			goto default_patch;
937 
938 		ret = paravirt_patch_insns(insnbuf, len, start, end);
939 
940 		/* Note: because reloc is assigned from something that
941 		   appears to be an array, gcc assumes it's non-null,
942 		   but doesn't know its relationship with start and
943 		   end. */
944 		if (reloc > start && reloc < end) {
945 			int reloc_off = reloc - start;
946 			long *relocp = (long *)(insnbuf + reloc_off);
947 			long delta = start - (char *)addr;
948 
949 			*relocp += delta;
950 		}
951 		break;
952 
953 	default_patch:
954 	default:
955 		ret = paravirt_patch_default(type, clobbers, insnbuf,
956 					     addr, len);
957 		break;
958 	}
959 
960 	return ret;
961 }
962 
963 static const struct pv_info xen_info __initdata = {
964 	.paravirt_enabled = 1,
965 	.shared_kernel_pmd = 0,
966 
967 	.name = "Xen",
968 };
969 
970 static const struct pv_init_ops xen_init_ops __initdata = {
971 	.patch = xen_patch,
972 
973 	.banner = xen_banner,
974 	.memory_setup = xen_memory_setup,
975 	.arch_setup = xen_arch_setup,
976 	.post_allocator_init = xen_mark_init_mm_pinned,
977 };
978 
979 static const struct pv_time_ops xen_time_ops __initdata = {
980 	.time_init = xen_time_init,
981 
982 	.set_wallclock = xen_set_wallclock,
983 	.get_wallclock = xen_get_wallclock,
984 	.get_cpu_khz = xen_cpu_khz,
985 	.sched_clock = xen_sched_clock,
986 };
987 
988 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
989 	.cpuid = xen_cpuid,
990 
991 	.set_debugreg = xen_set_debugreg,
992 	.get_debugreg = xen_get_debugreg,
993 
994 	.clts = native_clts,
995 
996 	.read_cr0 = native_read_cr0,
997 	.write_cr0 = native_write_cr0,
998 
999 	.read_cr4 = native_read_cr4,
1000 	.read_cr4_safe = native_read_cr4_safe,
1001 	.write_cr4 = xen_write_cr4,
1002 
1003 	.wbinvd = native_wbinvd,
1004 
1005 	.read_msr = native_read_msr_safe,
1006 	.write_msr = native_write_msr_safe,
1007 	.read_tsc = native_read_tsc,
1008 	.read_pmc = native_read_pmc,
1009 
1010 	.iret = xen_iret,
1011 	.irq_enable_syscall_ret = xen_sysexit,
1012 
1013 	.load_tr_desc = paravirt_nop,
1014 	.set_ldt = xen_set_ldt,
1015 	.load_gdt = xen_load_gdt,
1016 	.load_idt = xen_load_idt,
1017 	.load_tls = xen_load_tls,
1018 
1019 	.store_gdt = native_store_gdt,
1020 	.store_idt = native_store_idt,
1021 	.store_tr = xen_store_tr,
1022 
1023 	.write_ldt_entry = xen_write_ldt_entry,
1024 	.write_gdt_entry = xen_write_gdt_entry,
1025 	.write_idt_entry = xen_write_idt_entry,
1026 	.load_sp0 = xen_load_sp0,
1027 
1028 	.set_iopl_mask = xen_set_iopl_mask,
1029 	.io_delay = xen_io_delay,
1030 
1031 	.lazy_mode = {
1032 		.enter = paravirt_enter_lazy_cpu,
1033 		.leave = xen_leave_lazy,
1034 	},
1035 };
1036 
1037 static const struct pv_irq_ops xen_irq_ops __initdata = {
1038 	.init_IRQ = xen_init_IRQ,
1039 	.save_fl = xen_save_fl,
1040 	.restore_fl = xen_restore_fl,
1041 	.irq_disable = xen_irq_disable,
1042 	.irq_enable = xen_irq_enable,
1043 	.safe_halt = xen_safe_halt,
1044 	.halt = xen_halt,
1045 };
1046 
1047 static const struct pv_apic_ops xen_apic_ops __initdata = {
1048 #ifdef CONFIG_X86_LOCAL_APIC
1049 	.apic_write = xen_apic_write,
1050 	.apic_write_atomic = xen_apic_write,
1051 	.apic_read = xen_apic_read,
1052 	.setup_boot_clock = paravirt_nop,
1053 	.setup_secondary_clock = paravirt_nop,
1054 	.startup_ipi_hook = paravirt_nop,
1055 #endif
1056 };
1057 
1058 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1059 	.pagetable_setup_start = xen_pagetable_setup_start,
1060 	.pagetable_setup_done = xen_pagetable_setup_done,
1061 
1062 	.read_cr2 = xen_read_cr2,
1063 	.write_cr2 = xen_write_cr2,
1064 
1065 	.read_cr3 = xen_read_cr3,
1066 	.write_cr3 = xen_write_cr3,
1067 
1068 	.flush_tlb_user = xen_flush_tlb,
1069 	.flush_tlb_kernel = xen_flush_tlb,
1070 	.flush_tlb_single = xen_flush_tlb_single,
1071 	.flush_tlb_others = xen_flush_tlb_others,
1072 
1073 	.pte_update = paravirt_nop,
1074 	.pte_update_defer = paravirt_nop,
1075 
1076 	.alloc_pte = xen_alloc_pte_init,
1077 	.release_pte = xen_release_pte_init,
1078 	.alloc_pmd = xen_alloc_pte_init,
1079 	.alloc_pmd_clone = paravirt_nop,
1080 	.release_pmd = xen_release_pte_init,
1081 
1082 #ifdef CONFIG_HIGHPTE
1083 	.kmap_atomic_pte = xen_kmap_atomic_pte,
1084 #endif
1085 
1086 	.set_pte = NULL,	/* see xen_pagetable_setup_* */
1087 	.set_pte_at = xen_set_pte_at,
1088 	.set_pmd = xen_set_pmd,
1089 
1090 	.pte_val = xen_pte_val,
1091 	.pgd_val = xen_pgd_val,
1092 
1093 	.make_pte = xen_make_pte,
1094 	.make_pgd = xen_make_pgd,
1095 
1096 #ifdef CONFIG_X86_PAE
1097 	.set_pte_atomic = xen_set_pte_atomic,
1098 	.set_pte_present = xen_set_pte_at,
1099 	.set_pud = xen_set_pud,
1100 	.pte_clear = xen_pte_clear,
1101 	.pmd_clear = xen_pmd_clear,
1102 
1103 	.make_pmd = xen_make_pmd,
1104 	.pmd_val = xen_pmd_val,
1105 #endif	/* PAE */
1106 
1107 	.activate_mm = xen_activate_mm,
1108 	.dup_mmap = xen_dup_mmap,
1109 	.exit_mmap = xen_exit_mmap,
1110 
1111 	.lazy_mode = {
1112 		.enter = paravirt_enter_lazy_mmu,
1113 		.leave = xen_leave_lazy,
1114 	},
1115 };
1116 
1117 #ifdef CONFIG_SMP
1118 static const struct smp_ops xen_smp_ops __initdata = {
1119 	.smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
1120 	.smp_prepare_cpus = xen_smp_prepare_cpus,
1121 	.cpu_up = xen_cpu_up,
1122 	.smp_cpus_done = xen_smp_cpus_done,
1123 
1124 	.smp_send_stop = xen_smp_send_stop,
1125 	.smp_send_reschedule = xen_smp_send_reschedule,
1126 	.smp_call_function_mask = xen_smp_call_function_mask,
1127 };
1128 #endif	/* CONFIG_SMP */
1129 
1130 static void xen_reboot(int reason)
1131 {
1132 #ifdef CONFIG_SMP
1133 	smp_send_stop();
1134 #endif
1135 
1136 	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, reason))
1137 		BUG();
1138 }
1139 
1140 static void xen_restart(char *msg)
1141 {
1142 	xen_reboot(SHUTDOWN_reboot);
1143 }
1144 
1145 static void xen_emergency_restart(void)
1146 {
1147 	xen_reboot(SHUTDOWN_reboot);
1148 }
1149 
1150 static void xen_machine_halt(void)
1151 {
1152 	xen_reboot(SHUTDOWN_poweroff);
1153 }
1154 
1155 static void xen_crash_shutdown(struct pt_regs *regs)
1156 {
1157 	xen_reboot(SHUTDOWN_crash);
1158 }
1159 
1160 static const struct machine_ops __initdata xen_machine_ops = {
1161 	.restart = xen_restart,
1162 	.halt = xen_machine_halt,
1163 	.power_off = xen_machine_halt,
1164 	.shutdown = xen_machine_halt,
1165 	.crash_shutdown = xen_crash_shutdown,
1166 	.emergency_restart = xen_emergency_restart,
1167 };
1168 
1169 
1170 static void __init xen_reserve_top(void)
1171 {
1172 	unsigned long top = HYPERVISOR_VIRT_START;
1173 	struct xen_platform_parameters pp;
1174 
1175 	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1176 		top = pp.virt_start;
1177 
1178 	reserve_top_address(-top + 2 * PAGE_SIZE);
1179 }
1180 
1181 /* First C function to be called on Xen boot */
1182 asmlinkage void __init xen_start_kernel(void)
1183 {
1184 	pgd_t *pgd;
1185 
1186 	if (!xen_start_info)
1187 		return;
1188 
1189 	BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1190 
1191 	/* Install Xen paravirt ops */
1192 	pv_info = xen_info;
1193 	pv_init_ops = xen_init_ops;
1194 	pv_time_ops = xen_time_ops;
1195 	pv_cpu_ops = xen_cpu_ops;
1196 	pv_irq_ops = xen_irq_ops;
1197 	pv_apic_ops = xen_apic_ops;
1198 	pv_mmu_ops = xen_mmu_ops;
1199 
1200 	machine_ops = xen_machine_ops;
1201 
1202 #ifdef CONFIG_SMP
1203 	smp_ops = xen_smp_ops;
1204 #endif
1205 
1206 	xen_setup_features();
1207 
1208 	/* Get mfn list */
1209 	if (!xen_feature(XENFEAT_auto_translated_physmap))
1210 		phys_to_machine_mapping = (unsigned long *)xen_start_info->mfn_list;
1211 
1212 	pgd = (pgd_t *)xen_start_info->pt_base;
1213 
1214 	init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1215 
1216 	init_mm.pgd = pgd; /* use the Xen pagetables to start */
1217 
1218 	/* keep using Xen gdt for now; no urgent need to change it */
1219 
1220 	x86_write_percpu(xen_cr3, __pa(pgd));
1221 	x86_write_percpu(xen_current_cr3, __pa(pgd));
1222 
1223 	/* Don't do the full vcpu_info placement stuff until we have a
1224 	   possible map and a non-dummy shared_info. */
1225 	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1226 
1227 	pv_info.kernel_rpl = 1;
1228 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1229 		pv_info.kernel_rpl = 0;
1230 
1231 	/* set the limit of our address space */
1232 	xen_reserve_top();
1233 
1234 	/* set up basic CPUID stuff */
1235 	cpu_detect(&new_cpu_data);
1236 	new_cpu_data.hard_math = 1;
1237 	new_cpu_data.x86_capability[0] = cpuid_edx(1);
1238 
1239 	/* Poke various useful things into boot_params */
1240 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1241 	boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1242 		? __pa(xen_start_info->mod_start) : 0;
1243 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1244 
1245 	if (!is_initial_xendomain())
1246 		add_preferred_console("hvc", 0, NULL);
1247 
1248 	/* Start the world */
1249 	start_kernel();
1250 }
1251