1 /* 2 * Core of Xen paravirt_ops implementation. 3 * 4 * This file contains the xen_paravirt_ops structure itself, and the 5 * implementations for: 6 * - privileged instructions 7 * - interrupt flags 8 * - segment operations 9 * - booting and setup 10 * 11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 12 */ 13 14 #include <linux/cpu.h> 15 #include <linux/kernel.h> 16 #include <linux/init.h> 17 #include <linux/smp.h> 18 #include <linux/preempt.h> 19 #include <linux/hardirq.h> 20 #include <linux/percpu.h> 21 #include <linux/delay.h> 22 #include <linux/start_kernel.h> 23 #include <linux/sched.h> 24 #include <linux/kprobes.h> 25 #include <linux/bootmem.h> 26 #include <linux/export.h> 27 #include <linux/mm.h> 28 #include <linux/page-flags.h> 29 #include <linux/highmem.h> 30 #include <linux/console.h> 31 #include <linux/pci.h> 32 #include <linux/gfp.h> 33 #include <linux/memblock.h> 34 #include <linux/edd.h> 35 #include <linux/frame.h> 36 37 #include <linux/kexec.h> 38 39 #include <xen/xen.h> 40 #include <xen/events.h> 41 #include <xen/interface/xen.h> 42 #include <xen/interface/version.h> 43 #include <xen/interface/physdev.h> 44 #include <xen/interface/vcpu.h> 45 #include <xen/interface/memory.h> 46 #include <xen/interface/nmi.h> 47 #include <xen/interface/xen-mca.h> 48 #include <xen/interface/hvm/start_info.h> 49 #include <xen/features.h> 50 #include <xen/page.h> 51 #include <xen/hvm.h> 52 #include <xen/hvc-console.h> 53 #include <xen/acpi.h> 54 55 #include <asm/paravirt.h> 56 #include <asm/apic.h> 57 #include <asm/page.h> 58 #include <asm/xen/pci.h> 59 #include <asm/xen/hypercall.h> 60 #include <asm/xen/hypervisor.h> 61 #include <asm/xen/cpuid.h> 62 #include <asm/fixmap.h> 63 #include <asm/processor.h> 64 #include <asm/proto.h> 65 #include <asm/msr-index.h> 66 #include <asm/traps.h> 67 #include <asm/setup.h> 68 #include <asm/desc.h> 69 #include <asm/pgalloc.h> 70 #include <asm/pgtable.h> 71 #include <asm/tlbflush.h> 72 #include <asm/reboot.h> 73 #include <asm/stackprotector.h> 74 #include <asm/hypervisor.h> 75 #include <asm/mach_traps.h> 76 #include <asm/mwait.h> 77 #include <asm/pci_x86.h> 78 #include <asm/cpu.h> 79 #include <asm/e820/api.h> 80 81 #ifdef CONFIG_ACPI 82 #include <linux/acpi.h> 83 #include <asm/acpi.h> 84 #include <acpi/pdc_intel.h> 85 #include <acpi/processor.h> 86 #include <xen/interface/platform.h> 87 #endif 88 89 #include "xen-ops.h" 90 #include "mmu.h" 91 #include "smp.h" 92 #include "multicalls.h" 93 #include "pmu.h" 94 95 EXPORT_SYMBOL_GPL(hypercall_page); 96 97 /* 98 * Pointer to the xen_vcpu_info structure or 99 * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info 100 * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info 101 * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point 102 * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to 103 * acknowledge pending events. 104 * Also more subtly it is used by the patched version of irq enable/disable 105 * e.g. xen_irq_enable_direct and xen_iret in PV mode. 106 * 107 * The desire to be able to do those mask/unmask operations as a single 108 * instruction by using the per-cpu offset held in %gs is the real reason 109 * vcpu info is in a per-cpu pointer and the original reason for this 110 * hypercall. 111 * 112 */ 113 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu); 114 115 /* 116 * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info 117 * hypercall. This can be used both in PV and PVHVM mode. The structure 118 * overrides the default per_cpu(xen_vcpu, cpu) value. 119 */ 120 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info); 121 122 /* Linux <-> Xen vCPU id mapping */ 123 DEFINE_PER_CPU(uint32_t, xen_vcpu_id); 124 EXPORT_PER_CPU_SYMBOL(xen_vcpu_id); 125 126 enum xen_domain_type xen_domain_type = XEN_NATIVE; 127 EXPORT_SYMBOL_GPL(xen_domain_type); 128 129 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START; 130 EXPORT_SYMBOL(machine_to_phys_mapping); 131 unsigned long machine_to_phys_nr; 132 EXPORT_SYMBOL(machine_to_phys_nr); 133 134 struct start_info *xen_start_info; 135 EXPORT_SYMBOL_GPL(xen_start_info); 136 137 struct shared_info xen_dummy_shared_info; 138 139 void *xen_initial_gdt; 140 141 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE); 142 143 static int xen_cpu_up_prepare(unsigned int cpu); 144 static int xen_cpu_up_online(unsigned int cpu); 145 static int xen_cpu_dead(unsigned int cpu); 146 147 /* 148 * Point at some empty memory to start with. We map the real shared_info 149 * page as soon as fixmap is up and running. 150 */ 151 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info; 152 153 /* 154 * Flag to determine whether vcpu info placement is available on all 155 * VCPUs. We assume it is to start with, and then set it to zero on 156 * the first failure. This is because it can succeed on some VCPUs 157 * and not others, since it can involve hypervisor memory allocation, 158 * or because the guest failed to guarantee all the appropriate 159 * constraints on all VCPUs (ie buffer can't cross a page boundary). 160 * 161 * Note that any particular CPU may be using a placed vcpu structure, 162 * but we can only optimise if the all are. 163 * 164 * 0: not available, 1: available 165 */ 166 static int have_vcpu_info_placement = 1; 167 168 struct tls_descs { 169 struct desc_struct desc[3]; 170 }; 171 172 /* 173 * Updating the 3 TLS descriptors in the GDT on every task switch is 174 * surprisingly expensive so we avoid updating them if they haven't 175 * changed. Since Xen writes different descriptors than the one 176 * passed in the update_descriptor hypercall we keep shadow copies to 177 * compare against. 178 */ 179 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc); 180 181 #ifdef CONFIG_XEN_PVH 182 /* 183 * PVH variables. 184 * 185 * xen_pvh and pvh_bootparams need to live in data segment since they 186 * are used after startup_{32|64}, which clear .bss, are invoked. 187 */ 188 bool xen_pvh __attribute__((section(".data"))) = 0; 189 struct boot_params pvh_bootparams __attribute__((section(".data"))); 190 191 struct hvm_start_info pvh_start_info; 192 unsigned int pvh_start_info_sz = sizeof(pvh_start_info); 193 #endif 194 195 static void clamp_max_cpus(void) 196 { 197 #ifdef CONFIG_SMP 198 if (setup_max_cpus > MAX_VIRT_CPUS) 199 setup_max_cpus = MAX_VIRT_CPUS; 200 #endif 201 } 202 203 void xen_vcpu_setup(int cpu) 204 { 205 struct vcpu_register_vcpu_info info; 206 int err; 207 struct vcpu_info *vcpup; 208 209 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info); 210 211 /* 212 * This path is called twice on PVHVM - first during bootup via 213 * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being 214 * hotplugged: cpu_up -> xen_hvm_cpu_notify. 215 * As we can only do the VCPUOP_register_vcpu_info once lets 216 * not over-write its result. 217 * 218 * For PV it is called during restore (xen_vcpu_restore) and bootup 219 * (xen_setup_vcpu_info_placement). The hotplug mechanism does not 220 * use this function. 221 */ 222 if (xen_hvm_domain()) { 223 if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu)) 224 return; 225 } 226 if (xen_vcpu_nr(cpu) < MAX_VIRT_CPUS) 227 per_cpu(xen_vcpu, cpu) = 228 &HYPERVISOR_shared_info->vcpu_info[xen_vcpu_nr(cpu)]; 229 230 if (!have_vcpu_info_placement) { 231 if (cpu >= MAX_VIRT_CPUS) 232 clamp_max_cpus(); 233 return; 234 } 235 236 vcpup = &per_cpu(xen_vcpu_info, cpu); 237 info.mfn = arbitrary_virt_to_mfn(vcpup); 238 info.offset = offset_in_page(vcpup); 239 240 /* Check to see if the hypervisor will put the vcpu_info 241 structure where we want it, which allows direct access via 242 a percpu-variable. 243 N.B. This hypercall can _only_ be called once per CPU. Subsequent 244 calls will error out with -EINVAL. This is due to the fact that 245 hypervisor has no unregister variant and this hypercall does not 246 allow to over-write info.mfn and info.offset. 247 */ 248 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, xen_vcpu_nr(cpu), 249 &info); 250 251 if (err) { 252 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err); 253 have_vcpu_info_placement = 0; 254 clamp_max_cpus(); 255 } else { 256 /* This cpu is using the registered vcpu info, even if 257 later ones fail to. */ 258 per_cpu(xen_vcpu, cpu) = vcpup; 259 } 260 } 261 262 /* 263 * On restore, set the vcpu placement up again. 264 * If it fails, then we're in a bad state, since 265 * we can't back out from using it... 266 */ 267 void xen_vcpu_restore(void) 268 { 269 int cpu; 270 271 for_each_possible_cpu(cpu) { 272 bool other_cpu = (cpu != smp_processor_id()); 273 bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, xen_vcpu_nr(cpu), 274 NULL); 275 276 if (other_cpu && is_up && 277 HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(cpu), NULL)) 278 BUG(); 279 280 xen_setup_runstate_info(cpu); 281 282 if (have_vcpu_info_placement) 283 xen_vcpu_setup(cpu); 284 285 if (other_cpu && is_up && 286 HYPERVISOR_vcpu_op(VCPUOP_up, xen_vcpu_nr(cpu), NULL)) 287 BUG(); 288 } 289 } 290 291 static void __init xen_banner(void) 292 { 293 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL); 294 struct xen_extraversion extra; 295 HYPERVISOR_xen_version(XENVER_extraversion, &extra); 296 297 pr_info("Booting paravirtualized kernel %son %s\n", 298 xen_feature(XENFEAT_auto_translated_physmap) ? 299 "with PVH extensions " : "", pv_info.name); 300 printk(KERN_INFO "Xen version: %d.%d%s%s\n", 301 version >> 16, version & 0xffff, extra.extraversion, 302 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : ""); 303 } 304 /* Check if running on Xen version (major, minor) or later */ 305 bool 306 xen_running_on_version_or_later(unsigned int major, unsigned int minor) 307 { 308 unsigned int version; 309 310 if (!xen_domain()) 311 return false; 312 313 version = HYPERVISOR_xen_version(XENVER_version, NULL); 314 if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) || 315 ((version >> 16) > major)) 316 return true; 317 return false; 318 } 319 320 #define CPUID_THERM_POWER_LEAF 6 321 #define APERFMPERF_PRESENT 0 322 323 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0; 324 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0; 325 326 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask; 327 static __read_mostly unsigned int cpuid_leaf5_ecx_val; 328 static __read_mostly unsigned int cpuid_leaf5_edx_val; 329 330 static void xen_cpuid(unsigned int *ax, unsigned int *bx, 331 unsigned int *cx, unsigned int *dx) 332 { 333 unsigned maskebx = ~0; 334 unsigned maskecx = ~0; 335 unsigned maskedx = ~0; 336 unsigned setecx = 0; 337 /* 338 * Mask out inconvenient features, to try and disable as many 339 * unsupported kernel subsystems as possible. 340 */ 341 switch (*ax) { 342 case 1: 343 maskecx = cpuid_leaf1_ecx_mask; 344 setecx = cpuid_leaf1_ecx_set_mask; 345 maskedx = cpuid_leaf1_edx_mask; 346 break; 347 348 case CPUID_MWAIT_LEAF: 349 /* Synthesize the values.. */ 350 *ax = 0; 351 *bx = 0; 352 *cx = cpuid_leaf5_ecx_val; 353 *dx = cpuid_leaf5_edx_val; 354 return; 355 356 case CPUID_THERM_POWER_LEAF: 357 /* Disabling APERFMPERF for kernel usage */ 358 maskecx = ~(1 << APERFMPERF_PRESENT); 359 break; 360 361 case 0xb: 362 /* Suppress extended topology stuff */ 363 maskebx = 0; 364 break; 365 } 366 367 asm(XEN_EMULATE_PREFIX "cpuid" 368 : "=a" (*ax), 369 "=b" (*bx), 370 "=c" (*cx), 371 "=d" (*dx) 372 : "0" (*ax), "2" (*cx)); 373 374 *bx &= maskebx; 375 *cx &= maskecx; 376 *cx |= setecx; 377 *dx &= maskedx; 378 } 379 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */ 380 381 static bool __init xen_check_mwait(void) 382 { 383 #ifdef CONFIG_ACPI 384 struct xen_platform_op op = { 385 .cmd = XENPF_set_processor_pminfo, 386 .u.set_pminfo.id = -1, 387 .u.set_pminfo.type = XEN_PM_PDC, 388 }; 389 uint32_t buf[3]; 390 unsigned int ax, bx, cx, dx; 391 unsigned int mwait_mask; 392 393 /* We need to determine whether it is OK to expose the MWAIT 394 * capability to the kernel to harvest deeper than C3 states from ACPI 395 * _CST using the processor_harvest_xen.c module. For this to work, we 396 * need to gather the MWAIT_LEAF values (which the cstate.c code 397 * checks against). The hypervisor won't expose the MWAIT flag because 398 * it would break backwards compatibility; so we will find out directly 399 * from the hardware and hypercall. 400 */ 401 if (!xen_initial_domain()) 402 return false; 403 404 /* 405 * When running under platform earlier than Xen4.2, do not expose 406 * mwait, to avoid the risk of loading native acpi pad driver 407 */ 408 if (!xen_running_on_version_or_later(4, 2)) 409 return false; 410 411 ax = 1; 412 cx = 0; 413 414 native_cpuid(&ax, &bx, &cx, &dx); 415 416 mwait_mask = (1 << (X86_FEATURE_EST % 32)) | 417 (1 << (X86_FEATURE_MWAIT % 32)); 418 419 if ((cx & mwait_mask) != mwait_mask) 420 return false; 421 422 /* We need to emulate the MWAIT_LEAF and for that we need both 423 * ecx and edx. The hypercall provides only partial information. 424 */ 425 426 ax = CPUID_MWAIT_LEAF; 427 bx = 0; 428 cx = 0; 429 dx = 0; 430 431 native_cpuid(&ax, &bx, &cx, &dx); 432 433 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so, 434 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3. 435 */ 436 buf[0] = ACPI_PDC_REVISION_ID; 437 buf[1] = 1; 438 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP); 439 440 set_xen_guest_handle(op.u.set_pminfo.pdc, buf); 441 442 if ((HYPERVISOR_platform_op(&op) == 0) && 443 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) { 444 cpuid_leaf5_ecx_val = cx; 445 cpuid_leaf5_edx_val = dx; 446 } 447 return true; 448 #else 449 return false; 450 #endif 451 } 452 static void __init xen_init_cpuid_mask(void) 453 { 454 unsigned int ax, bx, cx, dx; 455 unsigned int xsave_mask; 456 457 cpuid_leaf1_edx_mask = 458 ~((1 << X86_FEATURE_MTRR) | /* disable MTRR */ 459 (1 << X86_FEATURE_ACC)); /* thermal monitoring */ 460 461 if (!xen_initial_domain()) 462 cpuid_leaf1_edx_mask &= 463 ~((1 << X86_FEATURE_ACPI)); /* disable ACPI */ 464 465 cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32)); 466 467 ax = 1; 468 cx = 0; 469 cpuid(1, &ax, &bx, &cx, &dx); 470 471 xsave_mask = 472 (1 << (X86_FEATURE_XSAVE % 32)) | 473 (1 << (X86_FEATURE_OSXSAVE % 32)); 474 475 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */ 476 if ((cx & xsave_mask) != xsave_mask) 477 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */ 478 if (xen_check_mwait()) 479 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32)); 480 } 481 482 static void xen_set_debugreg(int reg, unsigned long val) 483 { 484 HYPERVISOR_set_debugreg(reg, val); 485 } 486 487 static unsigned long xen_get_debugreg(int reg) 488 { 489 return HYPERVISOR_get_debugreg(reg); 490 } 491 492 static void xen_end_context_switch(struct task_struct *next) 493 { 494 xen_mc_flush(); 495 paravirt_end_context_switch(next); 496 } 497 498 static unsigned long xen_store_tr(void) 499 { 500 return 0; 501 } 502 503 /* 504 * Set the page permissions for a particular virtual address. If the 505 * address is a vmalloc mapping (or other non-linear mapping), then 506 * find the linear mapping of the page and also set its protections to 507 * match. 508 */ 509 static void set_aliased_prot(void *v, pgprot_t prot) 510 { 511 int level; 512 pte_t *ptep; 513 pte_t pte; 514 unsigned long pfn; 515 struct page *page; 516 unsigned char dummy; 517 518 ptep = lookup_address((unsigned long)v, &level); 519 BUG_ON(ptep == NULL); 520 521 pfn = pte_pfn(*ptep); 522 page = pfn_to_page(pfn); 523 524 pte = pfn_pte(pfn, prot); 525 526 /* 527 * Careful: update_va_mapping() will fail if the virtual address 528 * we're poking isn't populated in the page tables. We don't 529 * need to worry about the direct map (that's always in the page 530 * tables), but we need to be careful about vmap space. In 531 * particular, the top level page table can lazily propagate 532 * entries between processes, so if we've switched mms since we 533 * vmapped the target in the first place, we might not have the 534 * top-level page table entry populated. 535 * 536 * We disable preemption because we want the same mm active when 537 * we probe the target and when we issue the hypercall. We'll 538 * have the same nominal mm, but if we're a kernel thread, lazy 539 * mm dropping could change our pgd. 540 * 541 * Out of an abundance of caution, this uses __get_user() to fault 542 * in the target address just in case there's some obscure case 543 * in which the target address isn't readable. 544 */ 545 546 preempt_disable(); 547 548 probe_kernel_read(&dummy, v, 1); 549 550 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0)) 551 BUG(); 552 553 if (!PageHighMem(page)) { 554 void *av = __va(PFN_PHYS(pfn)); 555 556 if (av != v) 557 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0)) 558 BUG(); 559 } else 560 kmap_flush_unused(); 561 562 preempt_enable(); 563 } 564 565 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries) 566 { 567 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; 568 int i; 569 570 /* 571 * We need to mark the all aliases of the LDT pages RO. We 572 * don't need to call vm_flush_aliases(), though, since that's 573 * only responsible for flushing aliases out the TLBs, not the 574 * page tables, and Xen will flush the TLB for us if needed. 575 * 576 * To avoid confusing future readers: none of this is necessary 577 * to load the LDT. The hypervisor only checks this when the 578 * LDT is faulted in due to subsequent descriptor access. 579 */ 580 581 for(i = 0; i < entries; i += entries_per_page) 582 set_aliased_prot(ldt + i, PAGE_KERNEL_RO); 583 } 584 585 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries) 586 { 587 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; 588 int i; 589 590 for(i = 0; i < entries; i += entries_per_page) 591 set_aliased_prot(ldt + i, PAGE_KERNEL); 592 } 593 594 static void xen_set_ldt(const void *addr, unsigned entries) 595 { 596 struct mmuext_op *op; 597 struct multicall_space mcs = xen_mc_entry(sizeof(*op)); 598 599 trace_xen_cpu_set_ldt(addr, entries); 600 601 op = mcs.args; 602 op->cmd = MMUEXT_SET_LDT; 603 op->arg1.linear_addr = (unsigned long)addr; 604 op->arg2.nr_ents = entries; 605 606 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 607 608 xen_mc_issue(PARAVIRT_LAZY_CPU); 609 } 610 611 static void xen_load_gdt(const struct desc_ptr *dtr) 612 { 613 unsigned long va = dtr->address; 614 unsigned int size = dtr->size + 1; 615 unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE); 616 unsigned long frames[pages]; 617 int f; 618 619 /* 620 * A GDT can be up to 64k in size, which corresponds to 8192 621 * 8-byte entries, or 16 4k pages.. 622 */ 623 624 BUG_ON(size > 65536); 625 BUG_ON(va & ~PAGE_MASK); 626 627 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) { 628 int level; 629 pte_t *ptep; 630 unsigned long pfn, mfn; 631 void *virt; 632 633 /* 634 * The GDT is per-cpu and is in the percpu data area. 635 * That can be virtually mapped, so we need to do a 636 * page-walk to get the underlying MFN for the 637 * hypercall. The page can also be in the kernel's 638 * linear range, so we need to RO that mapping too. 639 */ 640 ptep = lookup_address(va, &level); 641 BUG_ON(ptep == NULL); 642 643 pfn = pte_pfn(*ptep); 644 mfn = pfn_to_mfn(pfn); 645 virt = __va(PFN_PHYS(pfn)); 646 647 frames[f] = mfn; 648 649 make_lowmem_page_readonly((void *)va); 650 make_lowmem_page_readonly(virt); 651 } 652 653 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct))) 654 BUG(); 655 } 656 657 /* 658 * load_gdt for early boot, when the gdt is only mapped once 659 */ 660 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr) 661 { 662 unsigned long va = dtr->address; 663 unsigned int size = dtr->size + 1; 664 unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE); 665 unsigned long frames[pages]; 666 int f; 667 668 /* 669 * A GDT can be up to 64k in size, which corresponds to 8192 670 * 8-byte entries, or 16 4k pages.. 671 */ 672 673 BUG_ON(size > 65536); 674 BUG_ON(va & ~PAGE_MASK); 675 676 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) { 677 pte_t pte; 678 unsigned long pfn, mfn; 679 680 pfn = virt_to_pfn(va); 681 mfn = pfn_to_mfn(pfn); 682 683 pte = pfn_pte(pfn, PAGE_KERNEL_RO); 684 685 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0)) 686 BUG(); 687 688 frames[f] = mfn; 689 } 690 691 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct))) 692 BUG(); 693 } 694 695 static inline bool desc_equal(const struct desc_struct *d1, 696 const struct desc_struct *d2) 697 { 698 return d1->a == d2->a && d1->b == d2->b; 699 } 700 701 static void load_TLS_descriptor(struct thread_struct *t, 702 unsigned int cpu, unsigned int i) 703 { 704 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i]; 705 struct desc_struct *gdt; 706 xmaddr_t maddr; 707 struct multicall_space mc; 708 709 if (desc_equal(shadow, &t->tls_array[i])) 710 return; 711 712 *shadow = t->tls_array[i]; 713 714 gdt = get_cpu_gdt_rw(cpu); 715 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]); 716 mc = __xen_mc_entry(0); 717 718 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]); 719 } 720 721 static void xen_load_tls(struct thread_struct *t, unsigned int cpu) 722 { 723 /* 724 * XXX sleazy hack: If we're being called in a lazy-cpu zone 725 * and lazy gs handling is enabled, it means we're in a 726 * context switch, and %gs has just been saved. This means we 727 * can zero it out to prevent faults on exit from the 728 * hypervisor if the next process has no %gs. Either way, it 729 * has been saved, and the new value will get loaded properly. 730 * This will go away as soon as Xen has been modified to not 731 * save/restore %gs for normal hypercalls. 732 * 733 * On x86_64, this hack is not used for %gs, because gs points 734 * to KERNEL_GS_BASE (and uses it for PDA references), so we 735 * must not zero %gs on x86_64 736 * 737 * For x86_64, we need to zero %fs, otherwise we may get an 738 * exception between the new %fs descriptor being loaded and 739 * %fs being effectively cleared at __switch_to(). 740 */ 741 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) { 742 #ifdef CONFIG_X86_32 743 lazy_load_gs(0); 744 #else 745 loadsegment(fs, 0); 746 #endif 747 } 748 749 xen_mc_batch(); 750 751 load_TLS_descriptor(t, cpu, 0); 752 load_TLS_descriptor(t, cpu, 1); 753 load_TLS_descriptor(t, cpu, 2); 754 755 xen_mc_issue(PARAVIRT_LAZY_CPU); 756 } 757 758 #ifdef CONFIG_X86_64 759 static void xen_load_gs_index(unsigned int idx) 760 { 761 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx)) 762 BUG(); 763 } 764 #endif 765 766 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum, 767 const void *ptr) 768 { 769 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]); 770 u64 entry = *(u64 *)ptr; 771 772 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry); 773 774 preempt_disable(); 775 776 xen_mc_flush(); 777 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry)) 778 BUG(); 779 780 preempt_enable(); 781 } 782 783 static int cvt_gate_to_trap(int vector, const gate_desc *val, 784 struct trap_info *info) 785 { 786 unsigned long addr; 787 788 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT) 789 return 0; 790 791 info->vector = vector; 792 793 addr = gate_offset(*val); 794 #ifdef CONFIG_X86_64 795 /* 796 * Look for known traps using IST, and substitute them 797 * appropriately. The debugger ones are the only ones we care 798 * about. Xen will handle faults like double_fault, 799 * so we should never see them. Warn if 800 * there's an unexpected IST-using fault handler. 801 */ 802 if (addr == (unsigned long)debug) 803 addr = (unsigned long)xen_debug; 804 else if (addr == (unsigned long)int3) 805 addr = (unsigned long)xen_int3; 806 else if (addr == (unsigned long)stack_segment) 807 addr = (unsigned long)xen_stack_segment; 808 else if (addr == (unsigned long)double_fault) { 809 /* Don't need to handle these */ 810 return 0; 811 #ifdef CONFIG_X86_MCE 812 } else if (addr == (unsigned long)machine_check) { 813 /* 814 * when xen hypervisor inject vMCE to guest, 815 * use native mce handler to handle it 816 */ 817 ; 818 #endif 819 } else if (addr == (unsigned long)nmi) 820 /* 821 * Use the native version as well. 822 */ 823 ; 824 else { 825 /* Some other trap using IST? */ 826 if (WARN_ON(val->ist != 0)) 827 return 0; 828 } 829 #endif /* CONFIG_X86_64 */ 830 info->address = addr; 831 832 info->cs = gate_segment(*val); 833 info->flags = val->dpl; 834 /* interrupt gates clear IF */ 835 if (val->type == GATE_INTERRUPT) 836 info->flags |= 1 << 2; 837 838 return 1; 839 } 840 841 /* Locations of each CPU's IDT */ 842 static DEFINE_PER_CPU(struct desc_ptr, idt_desc); 843 844 /* Set an IDT entry. If the entry is part of the current IDT, then 845 also update Xen. */ 846 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g) 847 { 848 unsigned long p = (unsigned long)&dt[entrynum]; 849 unsigned long start, end; 850 851 trace_xen_cpu_write_idt_entry(dt, entrynum, g); 852 853 preempt_disable(); 854 855 start = __this_cpu_read(idt_desc.address); 856 end = start + __this_cpu_read(idt_desc.size) + 1; 857 858 xen_mc_flush(); 859 860 native_write_idt_entry(dt, entrynum, g); 861 862 if (p >= start && (p + 8) <= end) { 863 struct trap_info info[2]; 864 865 info[1].address = 0; 866 867 if (cvt_gate_to_trap(entrynum, g, &info[0])) 868 if (HYPERVISOR_set_trap_table(info)) 869 BUG(); 870 } 871 872 preempt_enable(); 873 } 874 875 static void xen_convert_trap_info(const struct desc_ptr *desc, 876 struct trap_info *traps) 877 { 878 unsigned in, out, count; 879 880 count = (desc->size+1) / sizeof(gate_desc); 881 BUG_ON(count > 256); 882 883 for (in = out = 0; in < count; in++) { 884 gate_desc *entry = (gate_desc*)(desc->address) + in; 885 886 if (cvt_gate_to_trap(in, entry, &traps[out])) 887 out++; 888 } 889 traps[out].address = 0; 890 } 891 892 void xen_copy_trap_info(struct trap_info *traps) 893 { 894 const struct desc_ptr *desc = this_cpu_ptr(&idt_desc); 895 896 xen_convert_trap_info(desc, traps); 897 } 898 899 /* Load a new IDT into Xen. In principle this can be per-CPU, so we 900 hold a spinlock to protect the static traps[] array (static because 901 it avoids allocation, and saves stack space). */ 902 static void xen_load_idt(const struct desc_ptr *desc) 903 { 904 static DEFINE_SPINLOCK(lock); 905 static struct trap_info traps[257]; 906 907 trace_xen_cpu_load_idt(desc); 908 909 spin_lock(&lock); 910 911 memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc)); 912 913 xen_convert_trap_info(desc, traps); 914 915 xen_mc_flush(); 916 if (HYPERVISOR_set_trap_table(traps)) 917 BUG(); 918 919 spin_unlock(&lock); 920 } 921 922 /* Write a GDT descriptor entry. Ignore LDT descriptors, since 923 they're handled differently. */ 924 static void xen_write_gdt_entry(struct desc_struct *dt, int entry, 925 const void *desc, int type) 926 { 927 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type); 928 929 preempt_disable(); 930 931 switch (type) { 932 case DESC_LDT: 933 case DESC_TSS: 934 /* ignore */ 935 break; 936 937 default: { 938 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]); 939 940 xen_mc_flush(); 941 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) 942 BUG(); 943 } 944 945 } 946 947 preempt_enable(); 948 } 949 950 /* 951 * Version of write_gdt_entry for use at early boot-time needed to 952 * update an entry as simply as possible. 953 */ 954 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry, 955 const void *desc, int type) 956 { 957 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type); 958 959 switch (type) { 960 case DESC_LDT: 961 case DESC_TSS: 962 /* ignore */ 963 break; 964 965 default: { 966 xmaddr_t maddr = virt_to_machine(&dt[entry]); 967 968 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) 969 dt[entry] = *(struct desc_struct *)desc; 970 } 971 972 } 973 } 974 975 static void xen_load_sp0(struct tss_struct *tss, 976 struct thread_struct *thread) 977 { 978 struct multicall_space mcs; 979 980 mcs = xen_mc_entry(0); 981 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0); 982 xen_mc_issue(PARAVIRT_LAZY_CPU); 983 tss->x86_tss.sp0 = thread->sp0; 984 } 985 986 void xen_set_iopl_mask(unsigned mask) 987 { 988 struct physdev_set_iopl set_iopl; 989 990 /* Force the change at ring 0. */ 991 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3; 992 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); 993 } 994 995 static void xen_io_delay(void) 996 { 997 } 998 999 static DEFINE_PER_CPU(unsigned long, xen_cr0_value); 1000 1001 static unsigned long xen_read_cr0(void) 1002 { 1003 unsigned long cr0 = this_cpu_read(xen_cr0_value); 1004 1005 if (unlikely(cr0 == 0)) { 1006 cr0 = native_read_cr0(); 1007 this_cpu_write(xen_cr0_value, cr0); 1008 } 1009 1010 return cr0; 1011 } 1012 1013 static void xen_write_cr0(unsigned long cr0) 1014 { 1015 struct multicall_space mcs; 1016 1017 this_cpu_write(xen_cr0_value, cr0); 1018 1019 /* Only pay attention to cr0.TS; everything else is 1020 ignored. */ 1021 mcs = xen_mc_entry(0); 1022 1023 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0); 1024 1025 xen_mc_issue(PARAVIRT_LAZY_CPU); 1026 } 1027 1028 static void xen_write_cr4(unsigned long cr4) 1029 { 1030 cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE); 1031 1032 native_write_cr4(cr4); 1033 } 1034 #ifdef CONFIG_X86_64 1035 static inline unsigned long xen_read_cr8(void) 1036 { 1037 return 0; 1038 } 1039 static inline void xen_write_cr8(unsigned long val) 1040 { 1041 BUG_ON(val); 1042 } 1043 #endif 1044 1045 static u64 xen_read_msr_safe(unsigned int msr, int *err) 1046 { 1047 u64 val; 1048 1049 if (pmu_msr_read(msr, &val, err)) 1050 return val; 1051 1052 val = native_read_msr_safe(msr, err); 1053 switch (msr) { 1054 case MSR_IA32_APICBASE: 1055 #ifdef CONFIG_X86_X2APIC 1056 if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31)))) 1057 #endif 1058 val &= ~X2APIC_ENABLE; 1059 break; 1060 } 1061 return val; 1062 } 1063 1064 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high) 1065 { 1066 int ret; 1067 1068 ret = 0; 1069 1070 switch (msr) { 1071 #ifdef CONFIG_X86_64 1072 unsigned which; 1073 u64 base; 1074 1075 case MSR_FS_BASE: which = SEGBASE_FS; goto set; 1076 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set; 1077 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set; 1078 1079 set: 1080 base = ((u64)high << 32) | low; 1081 if (HYPERVISOR_set_segment_base(which, base) != 0) 1082 ret = -EIO; 1083 break; 1084 #endif 1085 1086 case MSR_STAR: 1087 case MSR_CSTAR: 1088 case MSR_LSTAR: 1089 case MSR_SYSCALL_MASK: 1090 case MSR_IA32_SYSENTER_CS: 1091 case MSR_IA32_SYSENTER_ESP: 1092 case MSR_IA32_SYSENTER_EIP: 1093 /* Fast syscall setup is all done in hypercalls, so 1094 these are all ignored. Stub them out here to stop 1095 Xen console noise. */ 1096 break; 1097 1098 default: 1099 if (!pmu_msr_write(msr, low, high, &ret)) 1100 ret = native_write_msr_safe(msr, low, high); 1101 } 1102 1103 return ret; 1104 } 1105 1106 static u64 xen_read_msr(unsigned int msr) 1107 { 1108 /* 1109 * This will silently swallow a #GP from RDMSR. It may be worth 1110 * changing that. 1111 */ 1112 int err; 1113 1114 return xen_read_msr_safe(msr, &err); 1115 } 1116 1117 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high) 1118 { 1119 /* 1120 * This will silently swallow a #GP from WRMSR. It may be worth 1121 * changing that. 1122 */ 1123 xen_write_msr_safe(msr, low, high); 1124 } 1125 1126 void xen_setup_shared_info(void) 1127 { 1128 if (!xen_feature(XENFEAT_auto_translated_physmap)) { 1129 set_fixmap(FIX_PARAVIRT_BOOTMAP, 1130 xen_start_info->shared_info); 1131 1132 HYPERVISOR_shared_info = 1133 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP); 1134 } else 1135 HYPERVISOR_shared_info = 1136 (struct shared_info *)__va(xen_start_info->shared_info); 1137 1138 #ifndef CONFIG_SMP 1139 /* In UP this is as good a place as any to set up shared info */ 1140 xen_setup_vcpu_info_placement(); 1141 #endif 1142 1143 xen_setup_mfn_list_list(); 1144 } 1145 1146 /* This is called once we have the cpu_possible_mask */ 1147 void xen_setup_vcpu_info_placement(void) 1148 { 1149 int cpu; 1150 1151 for_each_possible_cpu(cpu) { 1152 /* Set up direct vCPU id mapping for PV guests. */ 1153 per_cpu(xen_vcpu_id, cpu) = cpu; 1154 xen_vcpu_setup(cpu); 1155 } 1156 1157 /* 1158 * xen_vcpu_setup managed to place the vcpu_info within the 1159 * percpu area for all cpus, so make use of it. 1160 */ 1161 if (have_vcpu_info_placement) { 1162 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct); 1163 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct); 1164 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct); 1165 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct); 1166 pv_mmu_ops.read_cr2 = xen_read_cr2_direct; 1167 } 1168 } 1169 1170 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf, 1171 unsigned long addr, unsigned len) 1172 { 1173 char *start, *end, *reloc; 1174 unsigned ret; 1175 1176 start = end = reloc = NULL; 1177 1178 #define SITE(op, x) \ 1179 case PARAVIRT_PATCH(op.x): \ 1180 if (have_vcpu_info_placement) { \ 1181 start = (char *)xen_##x##_direct; \ 1182 end = xen_##x##_direct_end; \ 1183 reloc = xen_##x##_direct_reloc; \ 1184 } \ 1185 goto patch_site 1186 1187 switch (type) { 1188 SITE(pv_irq_ops, irq_enable); 1189 SITE(pv_irq_ops, irq_disable); 1190 SITE(pv_irq_ops, save_fl); 1191 SITE(pv_irq_ops, restore_fl); 1192 #undef SITE 1193 1194 patch_site: 1195 if (start == NULL || (end-start) > len) 1196 goto default_patch; 1197 1198 ret = paravirt_patch_insns(insnbuf, len, start, end); 1199 1200 /* Note: because reloc is assigned from something that 1201 appears to be an array, gcc assumes it's non-null, 1202 but doesn't know its relationship with start and 1203 end. */ 1204 if (reloc > start && reloc < end) { 1205 int reloc_off = reloc - start; 1206 long *relocp = (long *)(insnbuf + reloc_off); 1207 long delta = start - (char *)addr; 1208 1209 *relocp += delta; 1210 } 1211 break; 1212 1213 default_patch: 1214 default: 1215 ret = paravirt_patch_default(type, clobbers, insnbuf, 1216 addr, len); 1217 break; 1218 } 1219 1220 return ret; 1221 } 1222 1223 static const struct pv_info xen_info __initconst = { 1224 .shared_kernel_pmd = 0, 1225 1226 #ifdef CONFIG_X86_64 1227 .extra_user_64bit_cs = FLAT_USER_CS64, 1228 #endif 1229 .name = "Xen", 1230 }; 1231 1232 static const struct pv_init_ops xen_init_ops __initconst = { 1233 .patch = xen_patch, 1234 }; 1235 1236 static const struct pv_cpu_ops xen_cpu_ops __initconst = { 1237 .cpuid = xen_cpuid, 1238 1239 .set_debugreg = xen_set_debugreg, 1240 .get_debugreg = xen_get_debugreg, 1241 1242 .read_cr0 = xen_read_cr0, 1243 .write_cr0 = xen_write_cr0, 1244 1245 .read_cr4 = native_read_cr4, 1246 .write_cr4 = xen_write_cr4, 1247 1248 #ifdef CONFIG_X86_64 1249 .read_cr8 = xen_read_cr8, 1250 .write_cr8 = xen_write_cr8, 1251 #endif 1252 1253 .wbinvd = native_wbinvd, 1254 1255 .read_msr = xen_read_msr, 1256 .write_msr = xen_write_msr, 1257 1258 .read_msr_safe = xen_read_msr_safe, 1259 .write_msr_safe = xen_write_msr_safe, 1260 1261 .read_pmc = xen_read_pmc, 1262 1263 .iret = xen_iret, 1264 #ifdef CONFIG_X86_64 1265 .usergs_sysret64 = xen_sysret64, 1266 #endif 1267 1268 .load_tr_desc = paravirt_nop, 1269 .set_ldt = xen_set_ldt, 1270 .load_gdt = xen_load_gdt, 1271 .load_idt = xen_load_idt, 1272 .load_tls = xen_load_tls, 1273 #ifdef CONFIG_X86_64 1274 .load_gs_index = xen_load_gs_index, 1275 #endif 1276 1277 .alloc_ldt = xen_alloc_ldt, 1278 .free_ldt = xen_free_ldt, 1279 1280 .store_idt = native_store_idt, 1281 .store_tr = xen_store_tr, 1282 1283 .write_ldt_entry = xen_write_ldt_entry, 1284 .write_gdt_entry = xen_write_gdt_entry, 1285 .write_idt_entry = xen_write_idt_entry, 1286 .load_sp0 = xen_load_sp0, 1287 1288 .set_iopl_mask = xen_set_iopl_mask, 1289 .io_delay = xen_io_delay, 1290 1291 /* Xen takes care of %gs when switching to usermode for us */ 1292 .swapgs = paravirt_nop, 1293 1294 .start_context_switch = paravirt_start_context_switch, 1295 .end_context_switch = xen_end_context_switch, 1296 }; 1297 1298 static void xen_reboot(int reason) 1299 { 1300 struct sched_shutdown r = { .reason = reason }; 1301 int cpu; 1302 1303 for_each_online_cpu(cpu) 1304 xen_pmu_finish(cpu); 1305 1306 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r)) 1307 BUG(); 1308 } 1309 1310 static void xen_restart(char *msg) 1311 { 1312 xen_reboot(SHUTDOWN_reboot); 1313 } 1314 1315 static void xen_emergency_restart(void) 1316 { 1317 xen_reboot(SHUTDOWN_reboot); 1318 } 1319 1320 static void xen_machine_halt(void) 1321 { 1322 xen_reboot(SHUTDOWN_poweroff); 1323 } 1324 1325 static void xen_machine_power_off(void) 1326 { 1327 if (pm_power_off) 1328 pm_power_off(); 1329 xen_reboot(SHUTDOWN_poweroff); 1330 } 1331 1332 static void xen_crash_shutdown(struct pt_regs *regs) 1333 { 1334 xen_reboot(SHUTDOWN_crash); 1335 } 1336 1337 static int 1338 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr) 1339 { 1340 if (!kexec_crash_loaded()) 1341 xen_reboot(SHUTDOWN_crash); 1342 return NOTIFY_DONE; 1343 } 1344 1345 static struct notifier_block xen_panic_block = { 1346 .notifier_call= xen_panic_event, 1347 .priority = INT_MIN 1348 }; 1349 1350 int xen_panic_handler_init(void) 1351 { 1352 atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block); 1353 return 0; 1354 } 1355 1356 static const struct machine_ops xen_machine_ops __initconst = { 1357 .restart = xen_restart, 1358 .halt = xen_machine_halt, 1359 .power_off = xen_machine_power_off, 1360 .shutdown = xen_machine_halt, 1361 .crash_shutdown = xen_crash_shutdown, 1362 .emergency_restart = xen_emergency_restart, 1363 }; 1364 1365 static unsigned char xen_get_nmi_reason(void) 1366 { 1367 unsigned char reason = 0; 1368 1369 /* Construct a value which looks like it came from port 0x61. */ 1370 if (test_bit(_XEN_NMIREASON_io_error, 1371 &HYPERVISOR_shared_info->arch.nmi_reason)) 1372 reason |= NMI_REASON_IOCHK; 1373 if (test_bit(_XEN_NMIREASON_pci_serr, 1374 &HYPERVISOR_shared_info->arch.nmi_reason)) 1375 reason |= NMI_REASON_SERR; 1376 1377 return reason; 1378 } 1379 1380 static void __init xen_boot_params_init_edd(void) 1381 { 1382 #if IS_ENABLED(CONFIG_EDD) 1383 struct xen_platform_op op; 1384 struct edd_info *edd_info; 1385 u32 *mbr_signature; 1386 unsigned nr; 1387 int ret; 1388 1389 edd_info = boot_params.eddbuf; 1390 mbr_signature = boot_params.edd_mbr_sig_buffer; 1391 1392 op.cmd = XENPF_firmware_info; 1393 1394 op.u.firmware_info.type = XEN_FW_DISK_INFO; 1395 for (nr = 0; nr < EDDMAXNR; nr++) { 1396 struct edd_info *info = edd_info + nr; 1397 1398 op.u.firmware_info.index = nr; 1399 info->params.length = sizeof(info->params); 1400 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params, 1401 &info->params); 1402 ret = HYPERVISOR_platform_op(&op); 1403 if (ret) 1404 break; 1405 1406 #define C(x) info->x = op.u.firmware_info.u.disk_info.x 1407 C(device); 1408 C(version); 1409 C(interface_support); 1410 C(legacy_max_cylinder); 1411 C(legacy_max_head); 1412 C(legacy_sectors_per_track); 1413 #undef C 1414 } 1415 boot_params.eddbuf_entries = nr; 1416 1417 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE; 1418 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) { 1419 op.u.firmware_info.index = nr; 1420 ret = HYPERVISOR_platform_op(&op); 1421 if (ret) 1422 break; 1423 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature; 1424 } 1425 boot_params.edd_mbr_sig_buf_entries = nr; 1426 #endif 1427 } 1428 1429 /* 1430 * Set up the GDT and segment registers for -fstack-protector. Until 1431 * we do this, we have to be careful not to call any stack-protected 1432 * function, which is most of the kernel. 1433 */ 1434 static void xen_setup_gdt(int cpu) 1435 { 1436 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot; 1437 pv_cpu_ops.load_gdt = xen_load_gdt_boot; 1438 1439 setup_stack_canary_segment(0); 1440 switch_to_new_gdt(0); 1441 1442 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry; 1443 pv_cpu_ops.load_gdt = xen_load_gdt; 1444 } 1445 1446 static void __init xen_dom0_set_legacy_features(void) 1447 { 1448 x86_platform.legacy.rtc = 1; 1449 } 1450 1451 static int xen_cpuhp_setup(void) 1452 { 1453 int rc; 1454 1455 rc = cpuhp_setup_state_nocalls(CPUHP_XEN_PREPARE, 1456 "x86/xen/hvm_guest:prepare", 1457 xen_cpu_up_prepare, xen_cpu_dead); 1458 if (rc >= 0) { 1459 rc = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 1460 "x86/xen/hvm_guest:online", 1461 xen_cpu_up_online, NULL); 1462 if (rc < 0) 1463 cpuhp_remove_state_nocalls(CPUHP_XEN_PREPARE); 1464 } 1465 1466 return rc >= 0 ? 0 : rc; 1467 } 1468 1469 /* First C function to be called on Xen boot */ 1470 asmlinkage __visible void __init xen_start_kernel(void) 1471 { 1472 struct physdev_set_iopl set_iopl; 1473 unsigned long initrd_start = 0; 1474 int rc; 1475 1476 if (!xen_start_info) 1477 return; 1478 1479 xen_domain_type = XEN_PV_DOMAIN; 1480 1481 xen_setup_features(); 1482 1483 xen_setup_machphys_mapping(); 1484 1485 /* Install Xen paravirt ops */ 1486 pv_info = xen_info; 1487 pv_init_ops = xen_init_ops; 1488 pv_cpu_ops = xen_cpu_ops; 1489 1490 x86_platform.get_nmi_reason = xen_get_nmi_reason; 1491 1492 x86_init.resources.memory_setup = xen_memory_setup; 1493 x86_init.oem.arch_setup = xen_arch_setup; 1494 x86_init.oem.banner = xen_banner; 1495 1496 xen_init_time_ops(); 1497 1498 /* 1499 * Set up some pagetable state before starting to set any ptes. 1500 */ 1501 1502 xen_init_mmu_ops(); 1503 1504 /* Prevent unwanted bits from being set in PTEs. */ 1505 __supported_pte_mask &= ~_PAGE_GLOBAL; 1506 1507 /* 1508 * Prevent page tables from being allocated in highmem, even 1509 * if CONFIG_HIGHPTE is enabled. 1510 */ 1511 __userpte_alloc_gfp &= ~__GFP_HIGHMEM; 1512 1513 /* Work out if we support NX */ 1514 x86_configure_nx(); 1515 1516 /* Get mfn list */ 1517 xen_build_dynamic_phys_to_machine(); 1518 1519 /* 1520 * Set up kernel GDT and segment registers, mainly so that 1521 * -fstack-protector code can be executed. 1522 */ 1523 xen_setup_gdt(0); 1524 1525 xen_init_irq_ops(); 1526 xen_init_cpuid_mask(); 1527 1528 #ifdef CONFIG_X86_LOCAL_APIC 1529 /* 1530 * set up the basic apic ops. 1531 */ 1532 xen_init_apic(); 1533 #endif 1534 1535 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) { 1536 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start; 1537 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit; 1538 } 1539 1540 machine_ops = xen_machine_ops; 1541 1542 /* 1543 * The only reliable way to retain the initial address of the 1544 * percpu gdt_page is to remember it here, so we can go and 1545 * mark it RW later, when the initial percpu area is freed. 1546 */ 1547 xen_initial_gdt = &per_cpu(gdt_page, 0); 1548 1549 xen_smp_init(); 1550 1551 #ifdef CONFIG_ACPI_NUMA 1552 /* 1553 * The pages we from Xen are not related to machine pages, so 1554 * any NUMA information the kernel tries to get from ACPI will 1555 * be meaningless. Prevent it from trying. 1556 */ 1557 acpi_numa = -1; 1558 #endif 1559 /* Don't do the full vcpu_info placement stuff until we have a 1560 possible map and a non-dummy shared_info. */ 1561 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0]; 1562 1563 WARN_ON(xen_cpuhp_setup()); 1564 1565 local_irq_disable(); 1566 early_boot_irqs_disabled = true; 1567 1568 xen_raw_console_write("mapping kernel into physical memory\n"); 1569 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, 1570 xen_start_info->nr_pages); 1571 xen_reserve_special_pages(); 1572 1573 /* keep using Xen gdt for now; no urgent need to change it */ 1574 1575 #ifdef CONFIG_X86_32 1576 pv_info.kernel_rpl = 1; 1577 if (xen_feature(XENFEAT_supervisor_mode_kernel)) 1578 pv_info.kernel_rpl = 0; 1579 #else 1580 pv_info.kernel_rpl = 0; 1581 #endif 1582 /* set the limit of our address space */ 1583 xen_reserve_top(); 1584 1585 /* 1586 * We used to do this in xen_arch_setup, but that is too late 1587 * on AMD were early_cpu_init (run before ->arch_setup()) calls 1588 * early_amd_init which pokes 0xcf8 port. 1589 */ 1590 set_iopl.iopl = 1; 1591 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); 1592 if (rc != 0) 1593 xen_raw_printk("physdev_op failed %d\n", rc); 1594 1595 #ifdef CONFIG_X86_32 1596 /* set up basic CPUID stuff */ 1597 cpu_detect(&new_cpu_data); 1598 set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU); 1599 new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1); 1600 #endif 1601 1602 if (xen_start_info->mod_start) { 1603 if (xen_start_info->flags & SIF_MOD_START_PFN) 1604 initrd_start = PFN_PHYS(xen_start_info->mod_start); 1605 else 1606 initrd_start = __pa(xen_start_info->mod_start); 1607 } 1608 1609 /* Poke various useful things into boot_params */ 1610 boot_params.hdr.type_of_loader = (9 << 4) | 0; 1611 boot_params.hdr.ramdisk_image = initrd_start; 1612 boot_params.hdr.ramdisk_size = xen_start_info->mod_len; 1613 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line); 1614 boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN; 1615 1616 if (!xen_initial_domain()) { 1617 add_preferred_console("xenboot", 0, NULL); 1618 add_preferred_console("tty", 0, NULL); 1619 add_preferred_console("hvc", 0, NULL); 1620 if (pci_xen) 1621 x86_init.pci.arch_init = pci_xen_init; 1622 } else { 1623 const struct dom0_vga_console_info *info = 1624 (void *)((char *)xen_start_info + 1625 xen_start_info->console.dom0.info_off); 1626 struct xen_platform_op op = { 1627 .cmd = XENPF_firmware_info, 1628 .interface_version = XENPF_INTERFACE_VERSION, 1629 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS, 1630 }; 1631 1632 x86_platform.set_legacy_features = 1633 xen_dom0_set_legacy_features; 1634 xen_init_vga(info, xen_start_info->console.dom0.info_size); 1635 xen_start_info->console.domU.mfn = 0; 1636 xen_start_info->console.domU.evtchn = 0; 1637 1638 if (HYPERVISOR_platform_op(&op) == 0) 1639 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags; 1640 1641 /* Make sure ACS will be enabled */ 1642 pci_request_acs(); 1643 1644 xen_acpi_sleep_register(); 1645 1646 /* Avoid searching for BIOS MP tables */ 1647 x86_init.mpparse.find_smp_config = x86_init_noop; 1648 x86_init.mpparse.get_smp_config = x86_init_uint_noop; 1649 1650 xen_boot_params_init_edd(); 1651 } 1652 #ifdef CONFIG_PCI 1653 /* PCI BIOS service won't work from a PV guest. */ 1654 pci_probe &= ~PCI_PROBE_BIOS; 1655 #endif 1656 xen_raw_console_write("about to get started...\n"); 1657 1658 /* Let's presume PV guests always boot on vCPU with id 0. */ 1659 per_cpu(xen_vcpu_id, 0) = 0; 1660 1661 xen_setup_runstate_info(0); 1662 1663 xen_efi_init(); 1664 1665 /* Start the world */ 1666 #ifdef CONFIG_X86_32 1667 i386_start_kernel(); 1668 #else 1669 cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */ 1670 x86_64_start_reservations((char *)__pa_symbol(&boot_params)); 1671 #endif 1672 } 1673 1674 #ifdef CONFIG_XEN_PVH 1675 1676 static void xen_pvh_arch_setup(void) 1677 { 1678 #ifdef CONFIG_ACPI 1679 /* Make sure we don't fall back to (default) ACPI_IRQ_MODEL_PIC. */ 1680 if (nr_ioapics == 0) 1681 acpi_irq_model = ACPI_IRQ_MODEL_PLATFORM; 1682 #endif 1683 } 1684 1685 static void __init init_pvh_bootparams(void) 1686 { 1687 struct xen_memory_map memmap; 1688 unsigned int i; 1689 int rc; 1690 1691 memset(&pvh_bootparams, 0, sizeof(pvh_bootparams)); 1692 1693 memmap.nr_entries = ARRAY_SIZE(pvh_bootparams.e820_table); 1694 set_xen_guest_handle(memmap.buffer, pvh_bootparams.e820_table); 1695 rc = HYPERVISOR_memory_op(XENMEM_memory_map, &memmap); 1696 if (rc) { 1697 xen_raw_printk("XENMEM_memory_map failed (%d)\n", rc); 1698 BUG(); 1699 } 1700 1701 if (memmap.nr_entries < E820_MAX_ENTRIES_ZEROPAGE - 1) { 1702 pvh_bootparams.e820_table[memmap.nr_entries].addr = 1703 ISA_START_ADDRESS; 1704 pvh_bootparams.e820_table[memmap.nr_entries].size = 1705 ISA_END_ADDRESS - ISA_START_ADDRESS; 1706 pvh_bootparams.e820_table[memmap.nr_entries].type = 1707 E820_TYPE_RESERVED; 1708 memmap.nr_entries++; 1709 } else 1710 xen_raw_printk("Warning: Can fit ISA range into e820\n"); 1711 1712 pvh_bootparams.e820_entries = memmap.nr_entries; 1713 for (i = 0; i < pvh_bootparams.e820_entries; i++) 1714 e820__range_add(pvh_bootparams.e820_table[i].addr, 1715 pvh_bootparams.e820_table[i].size, 1716 pvh_bootparams.e820_table[i].type); 1717 1718 e820__update_table(e820_table); 1719 1720 pvh_bootparams.hdr.cmd_line_ptr = 1721 pvh_start_info.cmdline_paddr; 1722 1723 /* The first module is always ramdisk. */ 1724 if (pvh_start_info.nr_modules) { 1725 struct hvm_modlist_entry *modaddr = 1726 __va(pvh_start_info.modlist_paddr); 1727 pvh_bootparams.hdr.ramdisk_image = modaddr->paddr; 1728 pvh_bootparams.hdr.ramdisk_size = modaddr->size; 1729 } 1730 1731 /* 1732 * See Documentation/x86/boot.txt. 1733 * 1734 * Version 2.12 supports Xen entry point but we will use default x86/PC 1735 * environment (i.e. hardware_subarch 0). 1736 */ 1737 pvh_bootparams.hdr.version = 0x212; 1738 pvh_bootparams.hdr.type_of_loader = (9 << 4) | 0; /* Xen loader */ 1739 } 1740 1741 /* 1742 * This routine (and those that it might call) should not use 1743 * anything that lives in .bss since that segment will be cleared later. 1744 */ 1745 void __init xen_prepare_pvh(void) 1746 { 1747 u32 msr; 1748 u64 pfn; 1749 1750 if (pvh_start_info.magic != XEN_HVM_START_MAGIC_VALUE) { 1751 xen_raw_printk("Error: Unexpected magic value (0x%08x)\n", 1752 pvh_start_info.magic); 1753 BUG(); 1754 } 1755 1756 xen_pvh = 1; 1757 1758 msr = cpuid_ebx(xen_cpuid_base() + 2); 1759 pfn = __pa(hypercall_page); 1760 wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32)); 1761 1762 init_pvh_bootparams(); 1763 1764 x86_init.oem.arch_setup = xen_pvh_arch_setup; 1765 } 1766 #endif 1767 1768 void __ref xen_hvm_init_shared_info(void) 1769 { 1770 int cpu; 1771 struct xen_add_to_physmap xatp; 1772 static struct shared_info *shared_info_page = 0; 1773 1774 if (!shared_info_page) 1775 shared_info_page = (struct shared_info *) 1776 extend_brk(PAGE_SIZE, PAGE_SIZE); 1777 xatp.domid = DOMID_SELF; 1778 xatp.idx = 0; 1779 xatp.space = XENMAPSPACE_shared_info; 1780 xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT; 1781 if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp)) 1782 BUG(); 1783 1784 HYPERVISOR_shared_info = (struct shared_info *)shared_info_page; 1785 1786 /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info 1787 * page, we use it in the event channel upcall and in some pvclock 1788 * related functions. We don't need the vcpu_info placement 1789 * optimizations because we don't use any pv_mmu or pv_irq op on 1790 * HVM. 1791 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is 1792 * online but xen_hvm_init_shared_info is run at resume time too and 1793 * in that case multiple vcpus might be online. */ 1794 for_each_online_cpu(cpu) { 1795 /* Leave it to be NULL. */ 1796 if (xen_vcpu_nr(cpu) >= MAX_VIRT_CPUS) 1797 continue; 1798 per_cpu(xen_vcpu, cpu) = 1799 &HYPERVISOR_shared_info->vcpu_info[xen_vcpu_nr(cpu)]; 1800 } 1801 } 1802 1803 #ifdef CONFIG_XEN_PVHVM 1804 static void __init init_hvm_pv_info(void) 1805 { 1806 int major, minor; 1807 uint32_t eax, ebx, ecx, edx, base; 1808 1809 base = xen_cpuid_base(); 1810 eax = cpuid_eax(base + 1); 1811 1812 major = eax >> 16; 1813 minor = eax & 0xffff; 1814 printk(KERN_INFO "Xen version %d.%d.\n", major, minor); 1815 1816 xen_domain_type = XEN_HVM_DOMAIN; 1817 1818 /* PVH set up hypercall page in xen_prepare_pvh(). */ 1819 if (xen_pvh_domain()) 1820 pv_info.name = "Xen PVH"; 1821 else { 1822 u64 pfn; 1823 uint32_t msr; 1824 1825 pv_info.name = "Xen HVM"; 1826 msr = cpuid_ebx(base + 2); 1827 pfn = __pa(hypercall_page); 1828 wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32)); 1829 } 1830 1831 xen_setup_features(); 1832 1833 cpuid(base + 4, &eax, &ebx, &ecx, &edx); 1834 if (eax & XEN_HVM_CPUID_VCPU_ID_PRESENT) 1835 this_cpu_write(xen_vcpu_id, ebx); 1836 else 1837 this_cpu_write(xen_vcpu_id, smp_processor_id()); 1838 } 1839 #endif 1840 1841 static int xen_cpu_up_prepare(unsigned int cpu) 1842 { 1843 int rc; 1844 1845 if (xen_hvm_domain()) { 1846 /* 1847 * This can happen if CPU was offlined earlier and 1848 * offlining timed out in common_cpu_die(). 1849 */ 1850 if (cpu_report_state(cpu) == CPU_DEAD_FROZEN) { 1851 xen_smp_intr_free(cpu); 1852 xen_uninit_lock_cpu(cpu); 1853 } 1854 1855 if (cpu_acpi_id(cpu) != U32_MAX) 1856 per_cpu(xen_vcpu_id, cpu) = cpu_acpi_id(cpu); 1857 else 1858 per_cpu(xen_vcpu_id, cpu) = cpu; 1859 xen_vcpu_setup(cpu); 1860 } 1861 1862 if (xen_pv_domain() || xen_feature(XENFEAT_hvm_safe_pvclock)) 1863 xen_setup_timer(cpu); 1864 1865 rc = xen_smp_intr_init(cpu); 1866 if (rc) { 1867 WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n", 1868 cpu, rc); 1869 return rc; 1870 } 1871 return 0; 1872 } 1873 1874 static int xen_cpu_dead(unsigned int cpu) 1875 { 1876 xen_smp_intr_free(cpu); 1877 1878 if (xen_pv_domain() || xen_feature(XENFEAT_hvm_safe_pvclock)) 1879 xen_teardown_timer(cpu); 1880 1881 return 0; 1882 } 1883 1884 static int xen_cpu_up_online(unsigned int cpu) 1885 { 1886 xen_init_lock_cpu(cpu); 1887 return 0; 1888 } 1889 1890 #ifdef CONFIG_XEN_PVHVM 1891 #ifdef CONFIG_KEXEC_CORE 1892 static void xen_hvm_shutdown(void) 1893 { 1894 native_machine_shutdown(); 1895 if (kexec_in_progress) 1896 xen_reboot(SHUTDOWN_soft_reset); 1897 } 1898 1899 static void xen_hvm_crash_shutdown(struct pt_regs *regs) 1900 { 1901 native_machine_crash_shutdown(regs); 1902 xen_reboot(SHUTDOWN_soft_reset); 1903 } 1904 #endif 1905 1906 static void __init xen_hvm_guest_init(void) 1907 { 1908 if (xen_pv_domain()) 1909 return; 1910 1911 init_hvm_pv_info(); 1912 1913 xen_hvm_init_shared_info(); 1914 1915 xen_panic_handler_init(); 1916 1917 BUG_ON(!xen_feature(XENFEAT_hvm_callback_vector)); 1918 1919 xen_hvm_smp_init(); 1920 WARN_ON(xen_cpuhp_setup()); 1921 xen_unplug_emulated_devices(); 1922 x86_init.irqs.intr_init = xen_init_IRQ; 1923 xen_hvm_init_time_ops(); 1924 xen_hvm_init_mmu_ops(); 1925 1926 if (xen_pvh_domain()) 1927 machine_ops.emergency_restart = xen_emergency_restart; 1928 #ifdef CONFIG_KEXEC_CORE 1929 machine_ops.shutdown = xen_hvm_shutdown; 1930 machine_ops.crash_shutdown = xen_hvm_crash_shutdown; 1931 #endif 1932 } 1933 #endif 1934 1935 static bool xen_nopv = false; 1936 static __init int xen_parse_nopv(char *arg) 1937 { 1938 xen_nopv = true; 1939 return 0; 1940 } 1941 early_param("xen_nopv", xen_parse_nopv); 1942 1943 static uint32_t __init xen_platform(void) 1944 { 1945 if (xen_nopv) 1946 return 0; 1947 1948 return xen_cpuid_base(); 1949 } 1950 1951 bool xen_hvm_need_lapic(void) 1952 { 1953 if (xen_nopv) 1954 return false; 1955 if (xen_pv_domain()) 1956 return false; 1957 if (!xen_hvm_domain()) 1958 return false; 1959 if (xen_feature(XENFEAT_hvm_pirqs)) 1960 return false; 1961 return true; 1962 } 1963 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic); 1964 1965 static void xen_set_cpu_features(struct cpuinfo_x86 *c) 1966 { 1967 if (xen_pv_domain()) { 1968 clear_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS); 1969 set_cpu_cap(c, X86_FEATURE_XENPV); 1970 } 1971 } 1972 1973 static void xen_pin_vcpu(int cpu) 1974 { 1975 static bool disable_pinning; 1976 struct sched_pin_override pin_override; 1977 int ret; 1978 1979 if (disable_pinning) 1980 return; 1981 1982 pin_override.pcpu = cpu; 1983 ret = HYPERVISOR_sched_op(SCHEDOP_pin_override, &pin_override); 1984 1985 /* Ignore errors when removing override. */ 1986 if (cpu < 0) 1987 return; 1988 1989 switch (ret) { 1990 case -ENOSYS: 1991 pr_warn("Unable to pin on physical cpu %d. In case of problems consider vcpu pinning.\n", 1992 cpu); 1993 disable_pinning = true; 1994 break; 1995 case -EPERM: 1996 WARN(1, "Trying to pin vcpu without having privilege to do so\n"); 1997 disable_pinning = true; 1998 break; 1999 case -EINVAL: 2000 case -EBUSY: 2001 pr_warn("Physical cpu %d not available for pinning. Check Xen cpu configuration.\n", 2002 cpu); 2003 break; 2004 case 0: 2005 break; 2006 default: 2007 WARN(1, "rc %d while trying to pin vcpu\n", ret); 2008 disable_pinning = true; 2009 } 2010 } 2011 2012 const struct hypervisor_x86 x86_hyper_xen = { 2013 .name = "Xen", 2014 .detect = xen_platform, 2015 #ifdef CONFIG_XEN_PVHVM 2016 .init_platform = xen_hvm_guest_init, 2017 #endif 2018 .x2apic_available = xen_x2apic_para_available, 2019 .set_cpu_features = xen_set_cpu_features, 2020 .pin_vcpu = xen_pin_vcpu, 2021 }; 2022 EXPORT_SYMBOL(x86_hyper_xen); 2023 2024 #ifdef CONFIG_HOTPLUG_CPU 2025 void xen_arch_register_cpu(int num) 2026 { 2027 arch_register_cpu(num); 2028 } 2029 EXPORT_SYMBOL(xen_arch_register_cpu); 2030 2031 void xen_arch_unregister_cpu(int num) 2032 { 2033 arch_unregister_cpu(num); 2034 } 2035 EXPORT_SYMBOL(xen_arch_unregister_cpu); 2036 #endif 2037