xref: /openbmc/linux/arch/x86/xen/enlighten.c (revision 1c2dd16a)
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13 
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/export.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 #include <linux/edd.h>
35 #include <linux/frame.h>
36 
37 #include <linux/kexec.h>
38 
39 #include <xen/xen.h>
40 #include <xen/events.h>
41 #include <xen/interface/xen.h>
42 #include <xen/interface/version.h>
43 #include <xen/interface/physdev.h>
44 #include <xen/interface/vcpu.h>
45 #include <xen/interface/memory.h>
46 #include <xen/interface/nmi.h>
47 #include <xen/interface/xen-mca.h>
48 #include <xen/interface/hvm/start_info.h>
49 #include <xen/features.h>
50 #include <xen/page.h>
51 #include <xen/hvm.h>
52 #include <xen/hvc-console.h>
53 #include <xen/acpi.h>
54 
55 #include <asm/paravirt.h>
56 #include <asm/apic.h>
57 #include <asm/page.h>
58 #include <asm/xen/pci.h>
59 #include <asm/xen/hypercall.h>
60 #include <asm/xen/hypervisor.h>
61 #include <asm/xen/cpuid.h>
62 #include <asm/fixmap.h>
63 #include <asm/processor.h>
64 #include <asm/proto.h>
65 #include <asm/msr-index.h>
66 #include <asm/traps.h>
67 #include <asm/setup.h>
68 #include <asm/desc.h>
69 #include <asm/pgalloc.h>
70 #include <asm/pgtable.h>
71 #include <asm/tlbflush.h>
72 #include <asm/reboot.h>
73 #include <asm/stackprotector.h>
74 #include <asm/hypervisor.h>
75 #include <asm/mach_traps.h>
76 #include <asm/mwait.h>
77 #include <asm/pci_x86.h>
78 #include <asm/cpu.h>
79 #include <asm/e820/api.h>
80 
81 #ifdef CONFIG_ACPI
82 #include <linux/acpi.h>
83 #include <asm/acpi.h>
84 #include <acpi/pdc_intel.h>
85 #include <acpi/processor.h>
86 #include <xen/interface/platform.h>
87 #endif
88 
89 #include "xen-ops.h"
90 #include "mmu.h"
91 #include "smp.h"
92 #include "multicalls.h"
93 #include "pmu.h"
94 
95 EXPORT_SYMBOL_GPL(hypercall_page);
96 
97 /*
98  * Pointer to the xen_vcpu_info structure or
99  * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
100  * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
101  * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
102  * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
103  * acknowledge pending events.
104  * Also more subtly it is used by the patched version of irq enable/disable
105  * e.g. xen_irq_enable_direct and xen_iret in PV mode.
106  *
107  * The desire to be able to do those mask/unmask operations as a single
108  * instruction by using the per-cpu offset held in %gs is the real reason
109  * vcpu info is in a per-cpu pointer and the original reason for this
110  * hypercall.
111  *
112  */
113 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
114 
115 /*
116  * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
117  * hypercall. This can be used both in PV and PVHVM mode. The structure
118  * overrides the default per_cpu(xen_vcpu, cpu) value.
119  */
120 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
121 
122 /* Linux <-> Xen vCPU id mapping */
123 DEFINE_PER_CPU(uint32_t, xen_vcpu_id);
124 EXPORT_PER_CPU_SYMBOL(xen_vcpu_id);
125 
126 enum xen_domain_type xen_domain_type = XEN_NATIVE;
127 EXPORT_SYMBOL_GPL(xen_domain_type);
128 
129 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
130 EXPORT_SYMBOL(machine_to_phys_mapping);
131 unsigned long  machine_to_phys_nr;
132 EXPORT_SYMBOL(machine_to_phys_nr);
133 
134 struct start_info *xen_start_info;
135 EXPORT_SYMBOL_GPL(xen_start_info);
136 
137 struct shared_info xen_dummy_shared_info;
138 
139 void *xen_initial_gdt;
140 
141 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
142 
143 static int xen_cpu_up_prepare(unsigned int cpu);
144 static int xen_cpu_up_online(unsigned int cpu);
145 static int xen_cpu_dead(unsigned int cpu);
146 
147 /*
148  * Point at some empty memory to start with. We map the real shared_info
149  * page as soon as fixmap is up and running.
150  */
151 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
152 
153 /*
154  * Flag to determine whether vcpu info placement is available on all
155  * VCPUs.  We assume it is to start with, and then set it to zero on
156  * the first failure.  This is because it can succeed on some VCPUs
157  * and not others, since it can involve hypervisor memory allocation,
158  * or because the guest failed to guarantee all the appropriate
159  * constraints on all VCPUs (ie buffer can't cross a page boundary).
160  *
161  * Note that any particular CPU may be using a placed vcpu structure,
162  * but we can only optimise if the all are.
163  *
164  * 0: not available, 1: available
165  */
166 static int have_vcpu_info_placement = 1;
167 
168 struct tls_descs {
169 	struct desc_struct desc[3];
170 };
171 
172 /*
173  * Updating the 3 TLS descriptors in the GDT on every task switch is
174  * surprisingly expensive so we avoid updating them if they haven't
175  * changed.  Since Xen writes different descriptors than the one
176  * passed in the update_descriptor hypercall we keep shadow copies to
177  * compare against.
178  */
179 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
180 
181 #ifdef CONFIG_XEN_PVH
182 /*
183  * PVH variables.
184  *
185  * xen_pvh and pvh_bootparams need to live in data segment since they
186  * are used after startup_{32|64}, which clear .bss, are invoked.
187  */
188 bool xen_pvh __attribute__((section(".data"))) = 0;
189 struct boot_params pvh_bootparams __attribute__((section(".data")));
190 
191 struct hvm_start_info pvh_start_info;
192 unsigned int pvh_start_info_sz = sizeof(pvh_start_info);
193 #endif
194 
195 static void clamp_max_cpus(void)
196 {
197 #ifdef CONFIG_SMP
198 	if (setup_max_cpus > MAX_VIRT_CPUS)
199 		setup_max_cpus = MAX_VIRT_CPUS;
200 #endif
201 }
202 
203 void xen_vcpu_setup(int cpu)
204 {
205 	struct vcpu_register_vcpu_info info;
206 	int err;
207 	struct vcpu_info *vcpup;
208 
209 	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
210 
211 	/*
212 	 * This path is called twice on PVHVM - first during bootup via
213 	 * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
214 	 * hotplugged: cpu_up -> xen_hvm_cpu_notify.
215 	 * As we can only do the VCPUOP_register_vcpu_info once lets
216 	 * not over-write its result.
217 	 *
218 	 * For PV it is called during restore (xen_vcpu_restore) and bootup
219 	 * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
220 	 * use this function.
221 	 */
222 	if (xen_hvm_domain()) {
223 		if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
224 			return;
225 	}
226 	if (xen_vcpu_nr(cpu) < MAX_VIRT_CPUS)
227 		per_cpu(xen_vcpu, cpu) =
228 			&HYPERVISOR_shared_info->vcpu_info[xen_vcpu_nr(cpu)];
229 
230 	if (!have_vcpu_info_placement) {
231 		if (cpu >= MAX_VIRT_CPUS)
232 			clamp_max_cpus();
233 		return;
234 	}
235 
236 	vcpup = &per_cpu(xen_vcpu_info, cpu);
237 	info.mfn = arbitrary_virt_to_mfn(vcpup);
238 	info.offset = offset_in_page(vcpup);
239 
240 	/* Check to see if the hypervisor will put the vcpu_info
241 	   structure where we want it, which allows direct access via
242 	   a percpu-variable.
243 	   N.B. This hypercall can _only_ be called once per CPU. Subsequent
244 	   calls will error out with -EINVAL. This is due to the fact that
245 	   hypervisor has no unregister variant and this hypercall does not
246 	   allow to over-write info.mfn and info.offset.
247 	 */
248 	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, xen_vcpu_nr(cpu),
249 				 &info);
250 
251 	if (err) {
252 		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
253 		have_vcpu_info_placement = 0;
254 		clamp_max_cpus();
255 	} else {
256 		/* This cpu is using the registered vcpu info, even if
257 		   later ones fail to. */
258 		per_cpu(xen_vcpu, cpu) = vcpup;
259 	}
260 }
261 
262 /*
263  * On restore, set the vcpu placement up again.
264  * If it fails, then we're in a bad state, since
265  * we can't back out from using it...
266  */
267 void xen_vcpu_restore(void)
268 {
269 	int cpu;
270 
271 	for_each_possible_cpu(cpu) {
272 		bool other_cpu = (cpu != smp_processor_id());
273 		bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, xen_vcpu_nr(cpu),
274 						NULL);
275 
276 		if (other_cpu && is_up &&
277 		    HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(cpu), NULL))
278 			BUG();
279 
280 		xen_setup_runstate_info(cpu);
281 
282 		if (have_vcpu_info_placement)
283 			xen_vcpu_setup(cpu);
284 
285 		if (other_cpu && is_up &&
286 		    HYPERVISOR_vcpu_op(VCPUOP_up, xen_vcpu_nr(cpu), NULL))
287 			BUG();
288 	}
289 }
290 
291 static void __init xen_banner(void)
292 {
293 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
294 	struct xen_extraversion extra;
295 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
296 
297 	pr_info("Booting paravirtualized kernel %son %s\n",
298 		xen_feature(XENFEAT_auto_translated_physmap) ?
299 			"with PVH extensions " : "", pv_info.name);
300 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
301 	       version >> 16, version & 0xffff, extra.extraversion,
302 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
303 }
304 /* Check if running on Xen version (major, minor) or later */
305 bool
306 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
307 {
308 	unsigned int version;
309 
310 	if (!xen_domain())
311 		return false;
312 
313 	version = HYPERVISOR_xen_version(XENVER_version, NULL);
314 	if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
315 		((version >> 16) > major))
316 		return true;
317 	return false;
318 }
319 
320 #define CPUID_THERM_POWER_LEAF 6
321 #define APERFMPERF_PRESENT 0
322 
323 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
324 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
325 
326 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
327 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
328 static __read_mostly unsigned int cpuid_leaf5_edx_val;
329 
330 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
331 		      unsigned int *cx, unsigned int *dx)
332 {
333 	unsigned maskebx = ~0;
334 	unsigned maskecx = ~0;
335 	unsigned maskedx = ~0;
336 	unsigned setecx = 0;
337 	/*
338 	 * Mask out inconvenient features, to try and disable as many
339 	 * unsupported kernel subsystems as possible.
340 	 */
341 	switch (*ax) {
342 	case 1:
343 		maskecx = cpuid_leaf1_ecx_mask;
344 		setecx = cpuid_leaf1_ecx_set_mask;
345 		maskedx = cpuid_leaf1_edx_mask;
346 		break;
347 
348 	case CPUID_MWAIT_LEAF:
349 		/* Synthesize the values.. */
350 		*ax = 0;
351 		*bx = 0;
352 		*cx = cpuid_leaf5_ecx_val;
353 		*dx = cpuid_leaf5_edx_val;
354 		return;
355 
356 	case CPUID_THERM_POWER_LEAF:
357 		/* Disabling APERFMPERF for kernel usage */
358 		maskecx = ~(1 << APERFMPERF_PRESENT);
359 		break;
360 
361 	case 0xb:
362 		/* Suppress extended topology stuff */
363 		maskebx = 0;
364 		break;
365 	}
366 
367 	asm(XEN_EMULATE_PREFIX "cpuid"
368 		: "=a" (*ax),
369 		  "=b" (*bx),
370 		  "=c" (*cx),
371 		  "=d" (*dx)
372 		: "0" (*ax), "2" (*cx));
373 
374 	*bx &= maskebx;
375 	*cx &= maskecx;
376 	*cx |= setecx;
377 	*dx &= maskedx;
378 }
379 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
380 
381 static bool __init xen_check_mwait(void)
382 {
383 #ifdef CONFIG_ACPI
384 	struct xen_platform_op op = {
385 		.cmd			= XENPF_set_processor_pminfo,
386 		.u.set_pminfo.id	= -1,
387 		.u.set_pminfo.type	= XEN_PM_PDC,
388 	};
389 	uint32_t buf[3];
390 	unsigned int ax, bx, cx, dx;
391 	unsigned int mwait_mask;
392 
393 	/* We need to determine whether it is OK to expose the MWAIT
394 	 * capability to the kernel to harvest deeper than C3 states from ACPI
395 	 * _CST using the processor_harvest_xen.c module. For this to work, we
396 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
397 	 * checks against). The hypervisor won't expose the MWAIT flag because
398 	 * it would break backwards compatibility; so we will find out directly
399 	 * from the hardware and hypercall.
400 	 */
401 	if (!xen_initial_domain())
402 		return false;
403 
404 	/*
405 	 * When running under platform earlier than Xen4.2, do not expose
406 	 * mwait, to avoid the risk of loading native acpi pad driver
407 	 */
408 	if (!xen_running_on_version_or_later(4, 2))
409 		return false;
410 
411 	ax = 1;
412 	cx = 0;
413 
414 	native_cpuid(&ax, &bx, &cx, &dx);
415 
416 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
417 		     (1 << (X86_FEATURE_MWAIT % 32));
418 
419 	if ((cx & mwait_mask) != mwait_mask)
420 		return false;
421 
422 	/* We need to emulate the MWAIT_LEAF and for that we need both
423 	 * ecx and edx. The hypercall provides only partial information.
424 	 */
425 
426 	ax = CPUID_MWAIT_LEAF;
427 	bx = 0;
428 	cx = 0;
429 	dx = 0;
430 
431 	native_cpuid(&ax, &bx, &cx, &dx);
432 
433 	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
434 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
435 	 */
436 	buf[0] = ACPI_PDC_REVISION_ID;
437 	buf[1] = 1;
438 	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
439 
440 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
441 
442 	if ((HYPERVISOR_platform_op(&op) == 0) &&
443 	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
444 		cpuid_leaf5_ecx_val = cx;
445 		cpuid_leaf5_edx_val = dx;
446 	}
447 	return true;
448 #else
449 	return false;
450 #endif
451 }
452 static void __init xen_init_cpuid_mask(void)
453 {
454 	unsigned int ax, bx, cx, dx;
455 	unsigned int xsave_mask;
456 
457 	cpuid_leaf1_edx_mask =
458 		~((1 << X86_FEATURE_MTRR) |  /* disable MTRR */
459 		  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
460 
461 	if (!xen_initial_domain())
462 		cpuid_leaf1_edx_mask &=
463 			~((1 << X86_FEATURE_ACPI));  /* disable ACPI */
464 
465 	cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
466 
467 	ax = 1;
468 	cx = 0;
469 	cpuid(1, &ax, &bx, &cx, &dx);
470 
471 	xsave_mask =
472 		(1 << (X86_FEATURE_XSAVE % 32)) |
473 		(1 << (X86_FEATURE_OSXSAVE % 32));
474 
475 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
476 	if ((cx & xsave_mask) != xsave_mask)
477 		cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
478 	if (xen_check_mwait())
479 		cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
480 }
481 
482 static void xen_set_debugreg(int reg, unsigned long val)
483 {
484 	HYPERVISOR_set_debugreg(reg, val);
485 }
486 
487 static unsigned long xen_get_debugreg(int reg)
488 {
489 	return HYPERVISOR_get_debugreg(reg);
490 }
491 
492 static void xen_end_context_switch(struct task_struct *next)
493 {
494 	xen_mc_flush();
495 	paravirt_end_context_switch(next);
496 }
497 
498 static unsigned long xen_store_tr(void)
499 {
500 	return 0;
501 }
502 
503 /*
504  * Set the page permissions for a particular virtual address.  If the
505  * address is a vmalloc mapping (or other non-linear mapping), then
506  * find the linear mapping of the page and also set its protections to
507  * match.
508  */
509 static void set_aliased_prot(void *v, pgprot_t prot)
510 {
511 	int level;
512 	pte_t *ptep;
513 	pte_t pte;
514 	unsigned long pfn;
515 	struct page *page;
516 	unsigned char dummy;
517 
518 	ptep = lookup_address((unsigned long)v, &level);
519 	BUG_ON(ptep == NULL);
520 
521 	pfn = pte_pfn(*ptep);
522 	page = pfn_to_page(pfn);
523 
524 	pte = pfn_pte(pfn, prot);
525 
526 	/*
527 	 * Careful: update_va_mapping() will fail if the virtual address
528 	 * we're poking isn't populated in the page tables.  We don't
529 	 * need to worry about the direct map (that's always in the page
530 	 * tables), but we need to be careful about vmap space.  In
531 	 * particular, the top level page table can lazily propagate
532 	 * entries between processes, so if we've switched mms since we
533 	 * vmapped the target in the first place, we might not have the
534 	 * top-level page table entry populated.
535 	 *
536 	 * We disable preemption because we want the same mm active when
537 	 * we probe the target and when we issue the hypercall.  We'll
538 	 * have the same nominal mm, but if we're a kernel thread, lazy
539 	 * mm dropping could change our pgd.
540 	 *
541 	 * Out of an abundance of caution, this uses __get_user() to fault
542 	 * in the target address just in case there's some obscure case
543 	 * in which the target address isn't readable.
544 	 */
545 
546 	preempt_disable();
547 
548 	probe_kernel_read(&dummy, v, 1);
549 
550 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
551 		BUG();
552 
553 	if (!PageHighMem(page)) {
554 		void *av = __va(PFN_PHYS(pfn));
555 
556 		if (av != v)
557 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
558 				BUG();
559 	} else
560 		kmap_flush_unused();
561 
562 	preempt_enable();
563 }
564 
565 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
566 {
567 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
568 	int i;
569 
570 	/*
571 	 * We need to mark the all aliases of the LDT pages RO.  We
572 	 * don't need to call vm_flush_aliases(), though, since that's
573 	 * only responsible for flushing aliases out the TLBs, not the
574 	 * page tables, and Xen will flush the TLB for us if needed.
575 	 *
576 	 * To avoid confusing future readers: none of this is necessary
577 	 * to load the LDT.  The hypervisor only checks this when the
578 	 * LDT is faulted in due to subsequent descriptor access.
579 	 */
580 
581 	for(i = 0; i < entries; i += entries_per_page)
582 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
583 }
584 
585 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
586 {
587 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
588 	int i;
589 
590 	for(i = 0; i < entries; i += entries_per_page)
591 		set_aliased_prot(ldt + i, PAGE_KERNEL);
592 }
593 
594 static void xen_set_ldt(const void *addr, unsigned entries)
595 {
596 	struct mmuext_op *op;
597 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
598 
599 	trace_xen_cpu_set_ldt(addr, entries);
600 
601 	op = mcs.args;
602 	op->cmd = MMUEXT_SET_LDT;
603 	op->arg1.linear_addr = (unsigned long)addr;
604 	op->arg2.nr_ents = entries;
605 
606 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
607 
608 	xen_mc_issue(PARAVIRT_LAZY_CPU);
609 }
610 
611 static void xen_load_gdt(const struct desc_ptr *dtr)
612 {
613 	unsigned long va = dtr->address;
614 	unsigned int size = dtr->size + 1;
615 	unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
616 	unsigned long frames[pages];
617 	int f;
618 
619 	/*
620 	 * A GDT can be up to 64k in size, which corresponds to 8192
621 	 * 8-byte entries, or 16 4k pages..
622 	 */
623 
624 	BUG_ON(size > 65536);
625 	BUG_ON(va & ~PAGE_MASK);
626 
627 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
628 		int level;
629 		pte_t *ptep;
630 		unsigned long pfn, mfn;
631 		void *virt;
632 
633 		/*
634 		 * The GDT is per-cpu and is in the percpu data area.
635 		 * That can be virtually mapped, so we need to do a
636 		 * page-walk to get the underlying MFN for the
637 		 * hypercall.  The page can also be in the kernel's
638 		 * linear range, so we need to RO that mapping too.
639 		 */
640 		ptep = lookup_address(va, &level);
641 		BUG_ON(ptep == NULL);
642 
643 		pfn = pte_pfn(*ptep);
644 		mfn = pfn_to_mfn(pfn);
645 		virt = __va(PFN_PHYS(pfn));
646 
647 		frames[f] = mfn;
648 
649 		make_lowmem_page_readonly((void *)va);
650 		make_lowmem_page_readonly(virt);
651 	}
652 
653 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
654 		BUG();
655 }
656 
657 /*
658  * load_gdt for early boot, when the gdt is only mapped once
659  */
660 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
661 {
662 	unsigned long va = dtr->address;
663 	unsigned int size = dtr->size + 1;
664 	unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
665 	unsigned long frames[pages];
666 	int f;
667 
668 	/*
669 	 * A GDT can be up to 64k in size, which corresponds to 8192
670 	 * 8-byte entries, or 16 4k pages..
671 	 */
672 
673 	BUG_ON(size > 65536);
674 	BUG_ON(va & ~PAGE_MASK);
675 
676 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
677 		pte_t pte;
678 		unsigned long pfn, mfn;
679 
680 		pfn = virt_to_pfn(va);
681 		mfn = pfn_to_mfn(pfn);
682 
683 		pte = pfn_pte(pfn, PAGE_KERNEL_RO);
684 
685 		if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
686 			BUG();
687 
688 		frames[f] = mfn;
689 	}
690 
691 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
692 		BUG();
693 }
694 
695 static inline bool desc_equal(const struct desc_struct *d1,
696 			      const struct desc_struct *d2)
697 {
698 	return d1->a == d2->a && d1->b == d2->b;
699 }
700 
701 static void load_TLS_descriptor(struct thread_struct *t,
702 				unsigned int cpu, unsigned int i)
703 {
704 	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
705 	struct desc_struct *gdt;
706 	xmaddr_t maddr;
707 	struct multicall_space mc;
708 
709 	if (desc_equal(shadow, &t->tls_array[i]))
710 		return;
711 
712 	*shadow = t->tls_array[i];
713 
714 	gdt = get_cpu_gdt_rw(cpu);
715 	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
716 	mc = __xen_mc_entry(0);
717 
718 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
719 }
720 
721 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
722 {
723 	/*
724 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
725 	 * and lazy gs handling is enabled, it means we're in a
726 	 * context switch, and %gs has just been saved.  This means we
727 	 * can zero it out to prevent faults on exit from the
728 	 * hypervisor if the next process has no %gs.  Either way, it
729 	 * has been saved, and the new value will get loaded properly.
730 	 * This will go away as soon as Xen has been modified to not
731 	 * save/restore %gs for normal hypercalls.
732 	 *
733 	 * On x86_64, this hack is not used for %gs, because gs points
734 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
735 	 * must not zero %gs on x86_64
736 	 *
737 	 * For x86_64, we need to zero %fs, otherwise we may get an
738 	 * exception between the new %fs descriptor being loaded and
739 	 * %fs being effectively cleared at __switch_to().
740 	 */
741 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
742 #ifdef CONFIG_X86_32
743 		lazy_load_gs(0);
744 #else
745 		loadsegment(fs, 0);
746 #endif
747 	}
748 
749 	xen_mc_batch();
750 
751 	load_TLS_descriptor(t, cpu, 0);
752 	load_TLS_descriptor(t, cpu, 1);
753 	load_TLS_descriptor(t, cpu, 2);
754 
755 	xen_mc_issue(PARAVIRT_LAZY_CPU);
756 }
757 
758 #ifdef CONFIG_X86_64
759 static void xen_load_gs_index(unsigned int idx)
760 {
761 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
762 		BUG();
763 }
764 #endif
765 
766 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
767 				const void *ptr)
768 {
769 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
770 	u64 entry = *(u64 *)ptr;
771 
772 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
773 
774 	preempt_disable();
775 
776 	xen_mc_flush();
777 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
778 		BUG();
779 
780 	preempt_enable();
781 }
782 
783 static int cvt_gate_to_trap(int vector, const gate_desc *val,
784 			    struct trap_info *info)
785 {
786 	unsigned long addr;
787 
788 	if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
789 		return 0;
790 
791 	info->vector = vector;
792 
793 	addr = gate_offset(*val);
794 #ifdef CONFIG_X86_64
795 	/*
796 	 * Look for known traps using IST, and substitute them
797 	 * appropriately.  The debugger ones are the only ones we care
798 	 * about.  Xen will handle faults like double_fault,
799 	 * so we should never see them.  Warn if
800 	 * there's an unexpected IST-using fault handler.
801 	 */
802 	if (addr == (unsigned long)debug)
803 		addr = (unsigned long)xen_debug;
804 	else if (addr == (unsigned long)int3)
805 		addr = (unsigned long)xen_int3;
806 	else if (addr == (unsigned long)stack_segment)
807 		addr = (unsigned long)xen_stack_segment;
808 	else if (addr == (unsigned long)double_fault) {
809 		/* Don't need to handle these */
810 		return 0;
811 #ifdef CONFIG_X86_MCE
812 	} else if (addr == (unsigned long)machine_check) {
813 		/*
814 		 * when xen hypervisor inject vMCE to guest,
815 		 * use native mce handler to handle it
816 		 */
817 		;
818 #endif
819 	} else if (addr == (unsigned long)nmi)
820 		/*
821 		 * Use the native version as well.
822 		 */
823 		;
824 	else {
825 		/* Some other trap using IST? */
826 		if (WARN_ON(val->ist != 0))
827 			return 0;
828 	}
829 #endif	/* CONFIG_X86_64 */
830 	info->address = addr;
831 
832 	info->cs = gate_segment(*val);
833 	info->flags = val->dpl;
834 	/* interrupt gates clear IF */
835 	if (val->type == GATE_INTERRUPT)
836 		info->flags |= 1 << 2;
837 
838 	return 1;
839 }
840 
841 /* Locations of each CPU's IDT */
842 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
843 
844 /* Set an IDT entry.  If the entry is part of the current IDT, then
845    also update Xen. */
846 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
847 {
848 	unsigned long p = (unsigned long)&dt[entrynum];
849 	unsigned long start, end;
850 
851 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
852 
853 	preempt_disable();
854 
855 	start = __this_cpu_read(idt_desc.address);
856 	end = start + __this_cpu_read(idt_desc.size) + 1;
857 
858 	xen_mc_flush();
859 
860 	native_write_idt_entry(dt, entrynum, g);
861 
862 	if (p >= start && (p + 8) <= end) {
863 		struct trap_info info[2];
864 
865 		info[1].address = 0;
866 
867 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
868 			if (HYPERVISOR_set_trap_table(info))
869 				BUG();
870 	}
871 
872 	preempt_enable();
873 }
874 
875 static void xen_convert_trap_info(const struct desc_ptr *desc,
876 				  struct trap_info *traps)
877 {
878 	unsigned in, out, count;
879 
880 	count = (desc->size+1) / sizeof(gate_desc);
881 	BUG_ON(count > 256);
882 
883 	for (in = out = 0; in < count; in++) {
884 		gate_desc *entry = (gate_desc*)(desc->address) + in;
885 
886 		if (cvt_gate_to_trap(in, entry, &traps[out]))
887 			out++;
888 	}
889 	traps[out].address = 0;
890 }
891 
892 void xen_copy_trap_info(struct trap_info *traps)
893 {
894 	const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
895 
896 	xen_convert_trap_info(desc, traps);
897 }
898 
899 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
900    hold a spinlock to protect the static traps[] array (static because
901    it avoids allocation, and saves stack space). */
902 static void xen_load_idt(const struct desc_ptr *desc)
903 {
904 	static DEFINE_SPINLOCK(lock);
905 	static struct trap_info traps[257];
906 
907 	trace_xen_cpu_load_idt(desc);
908 
909 	spin_lock(&lock);
910 
911 	memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
912 
913 	xen_convert_trap_info(desc, traps);
914 
915 	xen_mc_flush();
916 	if (HYPERVISOR_set_trap_table(traps))
917 		BUG();
918 
919 	spin_unlock(&lock);
920 }
921 
922 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
923    they're handled differently. */
924 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
925 				const void *desc, int type)
926 {
927 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
928 
929 	preempt_disable();
930 
931 	switch (type) {
932 	case DESC_LDT:
933 	case DESC_TSS:
934 		/* ignore */
935 		break;
936 
937 	default: {
938 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
939 
940 		xen_mc_flush();
941 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
942 			BUG();
943 	}
944 
945 	}
946 
947 	preempt_enable();
948 }
949 
950 /*
951  * Version of write_gdt_entry for use at early boot-time needed to
952  * update an entry as simply as possible.
953  */
954 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
955 					    const void *desc, int type)
956 {
957 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
958 
959 	switch (type) {
960 	case DESC_LDT:
961 	case DESC_TSS:
962 		/* ignore */
963 		break;
964 
965 	default: {
966 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
967 
968 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
969 			dt[entry] = *(struct desc_struct *)desc;
970 	}
971 
972 	}
973 }
974 
975 static void xen_load_sp0(struct tss_struct *tss,
976 			 struct thread_struct *thread)
977 {
978 	struct multicall_space mcs;
979 
980 	mcs = xen_mc_entry(0);
981 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
982 	xen_mc_issue(PARAVIRT_LAZY_CPU);
983 	tss->x86_tss.sp0 = thread->sp0;
984 }
985 
986 void xen_set_iopl_mask(unsigned mask)
987 {
988 	struct physdev_set_iopl set_iopl;
989 
990 	/* Force the change at ring 0. */
991 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
992 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
993 }
994 
995 static void xen_io_delay(void)
996 {
997 }
998 
999 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
1000 
1001 static unsigned long xen_read_cr0(void)
1002 {
1003 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
1004 
1005 	if (unlikely(cr0 == 0)) {
1006 		cr0 = native_read_cr0();
1007 		this_cpu_write(xen_cr0_value, cr0);
1008 	}
1009 
1010 	return cr0;
1011 }
1012 
1013 static void xen_write_cr0(unsigned long cr0)
1014 {
1015 	struct multicall_space mcs;
1016 
1017 	this_cpu_write(xen_cr0_value, cr0);
1018 
1019 	/* Only pay attention to cr0.TS; everything else is
1020 	   ignored. */
1021 	mcs = xen_mc_entry(0);
1022 
1023 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1024 
1025 	xen_mc_issue(PARAVIRT_LAZY_CPU);
1026 }
1027 
1028 static void xen_write_cr4(unsigned long cr4)
1029 {
1030 	cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
1031 
1032 	native_write_cr4(cr4);
1033 }
1034 #ifdef CONFIG_X86_64
1035 static inline unsigned long xen_read_cr8(void)
1036 {
1037 	return 0;
1038 }
1039 static inline void xen_write_cr8(unsigned long val)
1040 {
1041 	BUG_ON(val);
1042 }
1043 #endif
1044 
1045 static u64 xen_read_msr_safe(unsigned int msr, int *err)
1046 {
1047 	u64 val;
1048 
1049 	if (pmu_msr_read(msr, &val, err))
1050 		return val;
1051 
1052 	val = native_read_msr_safe(msr, err);
1053 	switch (msr) {
1054 	case MSR_IA32_APICBASE:
1055 #ifdef CONFIG_X86_X2APIC
1056 		if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
1057 #endif
1058 			val &= ~X2APIC_ENABLE;
1059 		break;
1060 	}
1061 	return val;
1062 }
1063 
1064 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1065 {
1066 	int ret;
1067 
1068 	ret = 0;
1069 
1070 	switch (msr) {
1071 #ifdef CONFIG_X86_64
1072 		unsigned which;
1073 		u64 base;
1074 
1075 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
1076 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
1077 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
1078 
1079 	set:
1080 		base = ((u64)high << 32) | low;
1081 		if (HYPERVISOR_set_segment_base(which, base) != 0)
1082 			ret = -EIO;
1083 		break;
1084 #endif
1085 
1086 	case MSR_STAR:
1087 	case MSR_CSTAR:
1088 	case MSR_LSTAR:
1089 	case MSR_SYSCALL_MASK:
1090 	case MSR_IA32_SYSENTER_CS:
1091 	case MSR_IA32_SYSENTER_ESP:
1092 	case MSR_IA32_SYSENTER_EIP:
1093 		/* Fast syscall setup is all done in hypercalls, so
1094 		   these are all ignored.  Stub them out here to stop
1095 		   Xen console noise. */
1096 		break;
1097 
1098 	default:
1099 		if (!pmu_msr_write(msr, low, high, &ret))
1100 			ret = native_write_msr_safe(msr, low, high);
1101 	}
1102 
1103 	return ret;
1104 }
1105 
1106 static u64 xen_read_msr(unsigned int msr)
1107 {
1108 	/*
1109 	 * This will silently swallow a #GP from RDMSR.  It may be worth
1110 	 * changing that.
1111 	 */
1112 	int err;
1113 
1114 	return xen_read_msr_safe(msr, &err);
1115 }
1116 
1117 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
1118 {
1119 	/*
1120 	 * This will silently swallow a #GP from WRMSR.  It may be worth
1121 	 * changing that.
1122 	 */
1123 	xen_write_msr_safe(msr, low, high);
1124 }
1125 
1126 void xen_setup_shared_info(void)
1127 {
1128 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1129 		set_fixmap(FIX_PARAVIRT_BOOTMAP,
1130 			   xen_start_info->shared_info);
1131 
1132 		HYPERVISOR_shared_info =
1133 			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1134 	} else
1135 		HYPERVISOR_shared_info =
1136 			(struct shared_info *)__va(xen_start_info->shared_info);
1137 
1138 #ifndef CONFIG_SMP
1139 	/* In UP this is as good a place as any to set up shared info */
1140 	xen_setup_vcpu_info_placement();
1141 #endif
1142 
1143 	xen_setup_mfn_list_list();
1144 }
1145 
1146 /* This is called once we have the cpu_possible_mask */
1147 void xen_setup_vcpu_info_placement(void)
1148 {
1149 	int cpu;
1150 
1151 	for_each_possible_cpu(cpu) {
1152 		/* Set up direct vCPU id mapping for PV guests. */
1153 		per_cpu(xen_vcpu_id, cpu) = cpu;
1154 		xen_vcpu_setup(cpu);
1155 	}
1156 
1157 	/*
1158 	 * xen_vcpu_setup managed to place the vcpu_info within the
1159 	 * percpu area for all cpus, so make use of it.
1160 	 */
1161 	if (have_vcpu_info_placement) {
1162 		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1163 		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1164 		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1165 		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1166 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1167 	}
1168 }
1169 
1170 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1171 			  unsigned long addr, unsigned len)
1172 {
1173 	char *start, *end, *reloc;
1174 	unsigned ret;
1175 
1176 	start = end = reloc = NULL;
1177 
1178 #define SITE(op, x)							\
1179 	case PARAVIRT_PATCH(op.x):					\
1180 	if (have_vcpu_info_placement) {					\
1181 		start = (char *)xen_##x##_direct;			\
1182 		end = xen_##x##_direct_end;				\
1183 		reloc = xen_##x##_direct_reloc;				\
1184 	}								\
1185 	goto patch_site
1186 
1187 	switch (type) {
1188 		SITE(pv_irq_ops, irq_enable);
1189 		SITE(pv_irq_ops, irq_disable);
1190 		SITE(pv_irq_ops, save_fl);
1191 		SITE(pv_irq_ops, restore_fl);
1192 #undef SITE
1193 
1194 	patch_site:
1195 		if (start == NULL || (end-start) > len)
1196 			goto default_patch;
1197 
1198 		ret = paravirt_patch_insns(insnbuf, len, start, end);
1199 
1200 		/* Note: because reloc is assigned from something that
1201 		   appears to be an array, gcc assumes it's non-null,
1202 		   but doesn't know its relationship with start and
1203 		   end. */
1204 		if (reloc > start && reloc < end) {
1205 			int reloc_off = reloc - start;
1206 			long *relocp = (long *)(insnbuf + reloc_off);
1207 			long delta = start - (char *)addr;
1208 
1209 			*relocp += delta;
1210 		}
1211 		break;
1212 
1213 	default_patch:
1214 	default:
1215 		ret = paravirt_patch_default(type, clobbers, insnbuf,
1216 					     addr, len);
1217 		break;
1218 	}
1219 
1220 	return ret;
1221 }
1222 
1223 static const struct pv_info xen_info __initconst = {
1224 	.shared_kernel_pmd = 0,
1225 
1226 #ifdef CONFIG_X86_64
1227 	.extra_user_64bit_cs = FLAT_USER_CS64,
1228 #endif
1229 	.name = "Xen",
1230 };
1231 
1232 static const struct pv_init_ops xen_init_ops __initconst = {
1233 	.patch = xen_patch,
1234 };
1235 
1236 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1237 	.cpuid = xen_cpuid,
1238 
1239 	.set_debugreg = xen_set_debugreg,
1240 	.get_debugreg = xen_get_debugreg,
1241 
1242 	.read_cr0 = xen_read_cr0,
1243 	.write_cr0 = xen_write_cr0,
1244 
1245 	.read_cr4 = native_read_cr4,
1246 	.write_cr4 = xen_write_cr4,
1247 
1248 #ifdef CONFIG_X86_64
1249 	.read_cr8 = xen_read_cr8,
1250 	.write_cr8 = xen_write_cr8,
1251 #endif
1252 
1253 	.wbinvd = native_wbinvd,
1254 
1255 	.read_msr = xen_read_msr,
1256 	.write_msr = xen_write_msr,
1257 
1258 	.read_msr_safe = xen_read_msr_safe,
1259 	.write_msr_safe = xen_write_msr_safe,
1260 
1261 	.read_pmc = xen_read_pmc,
1262 
1263 	.iret = xen_iret,
1264 #ifdef CONFIG_X86_64
1265 	.usergs_sysret64 = xen_sysret64,
1266 #endif
1267 
1268 	.load_tr_desc = paravirt_nop,
1269 	.set_ldt = xen_set_ldt,
1270 	.load_gdt = xen_load_gdt,
1271 	.load_idt = xen_load_idt,
1272 	.load_tls = xen_load_tls,
1273 #ifdef CONFIG_X86_64
1274 	.load_gs_index = xen_load_gs_index,
1275 #endif
1276 
1277 	.alloc_ldt = xen_alloc_ldt,
1278 	.free_ldt = xen_free_ldt,
1279 
1280 	.store_idt = native_store_idt,
1281 	.store_tr = xen_store_tr,
1282 
1283 	.write_ldt_entry = xen_write_ldt_entry,
1284 	.write_gdt_entry = xen_write_gdt_entry,
1285 	.write_idt_entry = xen_write_idt_entry,
1286 	.load_sp0 = xen_load_sp0,
1287 
1288 	.set_iopl_mask = xen_set_iopl_mask,
1289 	.io_delay = xen_io_delay,
1290 
1291 	/* Xen takes care of %gs when switching to usermode for us */
1292 	.swapgs = paravirt_nop,
1293 
1294 	.start_context_switch = paravirt_start_context_switch,
1295 	.end_context_switch = xen_end_context_switch,
1296 };
1297 
1298 static void xen_reboot(int reason)
1299 {
1300 	struct sched_shutdown r = { .reason = reason };
1301 	int cpu;
1302 
1303 	for_each_online_cpu(cpu)
1304 		xen_pmu_finish(cpu);
1305 
1306 	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1307 		BUG();
1308 }
1309 
1310 static void xen_restart(char *msg)
1311 {
1312 	xen_reboot(SHUTDOWN_reboot);
1313 }
1314 
1315 static void xen_emergency_restart(void)
1316 {
1317 	xen_reboot(SHUTDOWN_reboot);
1318 }
1319 
1320 static void xen_machine_halt(void)
1321 {
1322 	xen_reboot(SHUTDOWN_poweroff);
1323 }
1324 
1325 static void xen_machine_power_off(void)
1326 {
1327 	if (pm_power_off)
1328 		pm_power_off();
1329 	xen_reboot(SHUTDOWN_poweroff);
1330 }
1331 
1332 static void xen_crash_shutdown(struct pt_regs *regs)
1333 {
1334 	xen_reboot(SHUTDOWN_crash);
1335 }
1336 
1337 static int
1338 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1339 {
1340 	if (!kexec_crash_loaded())
1341 		xen_reboot(SHUTDOWN_crash);
1342 	return NOTIFY_DONE;
1343 }
1344 
1345 static struct notifier_block xen_panic_block = {
1346 	.notifier_call= xen_panic_event,
1347 	.priority = INT_MIN
1348 };
1349 
1350 int xen_panic_handler_init(void)
1351 {
1352 	atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1353 	return 0;
1354 }
1355 
1356 static const struct machine_ops xen_machine_ops __initconst = {
1357 	.restart = xen_restart,
1358 	.halt = xen_machine_halt,
1359 	.power_off = xen_machine_power_off,
1360 	.shutdown = xen_machine_halt,
1361 	.crash_shutdown = xen_crash_shutdown,
1362 	.emergency_restart = xen_emergency_restart,
1363 };
1364 
1365 static unsigned char xen_get_nmi_reason(void)
1366 {
1367 	unsigned char reason = 0;
1368 
1369 	/* Construct a value which looks like it came from port 0x61. */
1370 	if (test_bit(_XEN_NMIREASON_io_error,
1371 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1372 		reason |= NMI_REASON_IOCHK;
1373 	if (test_bit(_XEN_NMIREASON_pci_serr,
1374 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1375 		reason |= NMI_REASON_SERR;
1376 
1377 	return reason;
1378 }
1379 
1380 static void __init xen_boot_params_init_edd(void)
1381 {
1382 #if IS_ENABLED(CONFIG_EDD)
1383 	struct xen_platform_op op;
1384 	struct edd_info *edd_info;
1385 	u32 *mbr_signature;
1386 	unsigned nr;
1387 	int ret;
1388 
1389 	edd_info = boot_params.eddbuf;
1390 	mbr_signature = boot_params.edd_mbr_sig_buffer;
1391 
1392 	op.cmd = XENPF_firmware_info;
1393 
1394 	op.u.firmware_info.type = XEN_FW_DISK_INFO;
1395 	for (nr = 0; nr < EDDMAXNR; nr++) {
1396 		struct edd_info *info = edd_info + nr;
1397 
1398 		op.u.firmware_info.index = nr;
1399 		info->params.length = sizeof(info->params);
1400 		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1401 				     &info->params);
1402 		ret = HYPERVISOR_platform_op(&op);
1403 		if (ret)
1404 			break;
1405 
1406 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1407 		C(device);
1408 		C(version);
1409 		C(interface_support);
1410 		C(legacy_max_cylinder);
1411 		C(legacy_max_head);
1412 		C(legacy_sectors_per_track);
1413 #undef C
1414 	}
1415 	boot_params.eddbuf_entries = nr;
1416 
1417 	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1418 	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1419 		op.u.firmware_info.index = nr;
1420 		ret = HYPERVISOR_platform_op(&op);
1421 		if (ret)
1422 			break;
1423 		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1424 	}
1425 	boot_params.edd_mbr_sig_buf_entries = nr;
1426 #endif
1427 }
1428 
1429 /*
1430  * Set up the GDT and segment registers for -fstack-protector.  Until
1431  * we do this, we have to be careful not to call any stack-protected
1432  * function, which is most of the kernel.
1433  */
1434 static void xen_setup_gdt(int cpu)
1435 {
1436 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1437 	pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1438 
1439 	setup_stack_canary_segment(0);
1440 	switch_to_new_gdt(0);
1441 
1442 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1443 	pv_cpu_ops.load_gdt = xen_load_gdt;
1444 }
1445 
1446 static void __init xen_dom0_set_legacy_features(void)
1447 {
1448 	x86_platform.legacy.rtc = 1;
1449 }
1450 
1451 static int xen_cpuhp_setup(void)
1452 {
1453 	int rc;
1454 
1455 	rc = cpuhp_setup_state_nocalls(CPUHP_XEN_PREPARE,
1456 				       "x86/xen/hvm_guest:prepare",
1457 				       xen_cpu_up_prepare, xen_cpu_dead);
1458 	if (rc >= 0) {
1459 		rc = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
1460 					       "x86/xen/hvm_guest:online",
1461 					       xen_cpu_up_online, NULL);
1462 		if (rc < 0)
1463 			cpuhp_remove_state_nocalls(CPUHP_XEN_PREPARE);
1464 	}
1465 
1466 	return rc >= 0 ? 0 : rc;
1467 }
1468 
1469 /* First C function to be called on Xen boot */
1470 asmlinkage __visible void __init xen_start_kernel(void)
1471 {
1472 	struct physdev_set_iopl set_iopl;
1473 	unsigned long initrd_start = 0;
1474 	int rc;
1475 
1476 	if (!xen_start_info)
1477 		return;
1478 
1479 	xen_domain_type = XEN_PV_DOMAIN;
1480 
1481 	xen_setup_features();
1482 
1483 	xen_setup_machphys_mapping();
1484 
1485 	/* Install Xen paravirt ops */
1486 	pv_info = xen_info;
1487 	pv_init_ops = xen_init_ops;
1488 	pv_cpu_ops = xen_cpu_ops;
1489 
1490 	x86_platform.get_nmi_reason = xen_get_nmi_reason;
1491 
1492 	x86_init.resources.memory_setup = xen_memory_setup;
1493 	x86_init.oem.arch_setup = xen_arch_setup;
1494 	x86_init.oem.banner = xen_banner;
1495 
1496 	xen_init_time_ops();
1497 
1498 	/*
1499 	 * Set up some pagetable state before starting to set any ptes.
1500 	 */
1501 
1502 	xen_init_mmu_ops();
1503 
1504 	/* Prevent unwanted bits from being set in PTEs. */
1505 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1506 
1507 	/*
1508 	 * Prevent page tables from being allocated in highmem, even
1509 	 * if CONFIG_HIGHPTE is enabled.
1510 	 */
1511 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1512 
1513 	/* Work out if we support NX */
1514 	x86_configure_nx();
1515 
1516 	/* Get mfn list */
1517 	xen_build_dynamic_phys_to_machine();
1518 
1519 	/*
1520 	 * Set up kernel GDT and segment registers, mainly so that
1521 	 * -fstack-protector code can be executed.
1522 	 */
1523 	xen_setup_gdt(0);
1524 
1525 	xen_init_irq_ops();
1526 	xen_init_cpuid_mask();
1527 
1528 #ifdef CONFIG_X86_LOCAL_APIC
1529 	/*
1530 	 * set up the basic apic ops.
1531 	 */
1532 	xen_init_apic();
1533 #endif
1534 
1535 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1536 		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1537 		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1538 	}
1539 
1540 	machine_ops = xen_machine_ops;
1541 
1542 	/*
1543 	 * The only reliable way to retain the initial address of the
1544 	 * percpu gdt_page is to remember it here, so we can go and
1545 	 * mark it RW later, when the initial percpu area is freed.
1546 	 */
1547 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1548 
1549 	xen_smp_init();
1550 
1551 #ifdef CONFIG_ACPI_NUMA
1552 	/*
1553 	 * The pages we from Xen are not related to machine pages, so
1554 	 * any NUMA information the kernel tries to get from ACPI will
1555 	 * be meaningless.  Prevent it from trying.
1556 	 */
1557 	acpi_numa = -1;
1558 #endif
1559 	/* Don't do the full vcpu_info placement stuff until we have a
1560 	   possible map and a non-dummy shared_info. */
1561 	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1562 
1563 	WARN_ON(xen_cpuhp_setup());
1564 
1565 	local_irq_disable();
1566 	early_boot_irqs_disabled = true;
1567 
1568 	xen_raw_console_write("mapping kernel into physical memory\n");
1569 	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1570 				   xen_start_info->nr_pages);
1571 	xen_reserve_special_pages();
1572 
1573 	/* keep using Xen gdt for now; no urgent need to change it */
1574 
1575 #ifdef CONFIG_X86_32
1576 	pv_info.kernel_rpl = 1;
1577 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1578 		pv_info.kernel_rpl = 0;
1579 #else
1580 	pv_info.kernel_rpl = 0;
1581 #endif
1582 	/* set the limit of our address space */
1583 	xen_reserve_top();
1584 
1585 	/*
1586 	 * We used to do this in xen_arch_setup, but that is too late
1587 	 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1588 	 * early_amd_init which pokes 0xcf8 port.
1589 	 */
1590 	set_iopl.iopl = 1;
1591 	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1592 	if (rc != 0)
1593 		xen_raw_printk("physdev_op failed %d\n", rc);
1594 
1595 #ifdef CONFIG_X86_32
1596 	/* set up basic CPUID stuff */
1597 	cpu_detect(&new_cpu_data);
1598 	set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1599 	new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1600 #endif
1601 
1602 	if (xen_start_info->mod_start) {
1603 	    if (xen_start_info->flags & SIF_MOD_START_PFN)
1604 		initrd_start = PFN_PHYS(xen_start_info->mod_start);
1605 	    else
1606 		initrd_start = __pa(xen_start_info->mod_start);
1607 	}
1608 
1609 	/* Poke various useful things into boot_params */
1610 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1611 	boot_params.hdr.ramdisk_image = initrd_start;
1612 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1613 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1614 	boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1615 
1616 	if (!xen_initial_domain()) {
1617 		add_preferred_console("xenboot", 0, NULL);
1618 		add_preferred_console("tty", 0, NULL);
1619 		add_preferred_console("hvc", 0, NULL);
1620 		if (pci_xen)
1621 			x86_init.pci.arch_init = pci_xen_init;
1622 	} else {
1623 		const struct dom0_vga_console_info *info =
1624 			(void *)((char *)xen_start_info +
1625 				 xen_start_info->console.dom0.info_off);
1626 		struct xen_platform_op op = {
1627 			.cmd = XENPF_firmware_info,
1628 			.interface_version = XENPF_INTERFACE_VERSION,
1629 			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1630 		};
1631 
1632 		x86_platform.set_legacy_features =
1633 				xen_dom0_set_legacy_features;
1634 		xen_init_vga(info, xen_start_info->console.dom0.info_size);
1635 		xen_start_info->console.domU.mfn = 0;
1636 		xen_start_info->console.domU.evtchn = 0;
1637 
1638 		if (HYPERVISOR_platform_op(&op) == 0)
1639 			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1640 
1641 		/* Make sure ACS will be enabled */
1642 		pci_request_acs();
1643 
1644 		xen_acpi_sleep_register();
1645 
1646 		/* Avoid searching for BIOS MP tables */
1647 		x86_init.mpparse.find_smp_config = x86_init_noop;
1648 		x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1649 
1650 		xen_boot_params_init_edd();
1651 	}
1652 #ifdef CONFIG_PCI
1653 	/* PCI BIOS service won't work from a PV guest. */
1654 	pci_probe &= ~PCI_PROBE_BIOS;
1655 #endif
1656 	xen_raw_console_write("about to get started...\n");
1657 
1658 	/* Let's presume PV guests always boot on vCPU with id 0. */
1659 	per_cpu(xen_vcpu_id, 0) = 0;
1660 
1661 	xen_setup_runstate_info(0);
1662 
1663 	xen_efi_init();
1664 
1665 	/* Start the world */
1666 #ifdef CONFIG_X86_32
1667 	i386_start_kernel();
1668 #else
1669 	cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1670 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1671 #endif
1672 }
1673 
1674 #ifdef CONFIG_XEN_PVH
1675 
1676 static void xen_pvh_arch_setup(void)
1677 {
1678 #ifdef CONFIG_ACPI
1679 	/* Make sure we don't fall back to (default) ACPI_IRQ_MODEL_PIC. */
1680 	if (nr_ioapics == 0)
1681 		acpi_irq_model = ACPI_IRQ_MODEL_PLATFORM;
1682 #endif
1683 }
1684 
1685 static void __init init_pvh_bootparams(void)
1686 {
1687 	struct xen_memory_map memmap;
1688 	unsigned int i;
1689 	int rc;
1690 
1691 	memset(&pvh_bootparams, 0, sizeof(pvh_bootparams));
1692 
1693 	memmap.nr_entries = ARRAY_SIZE(pvh_bootparams.e820_table);
1694 	set_xen_guest_handle(memmap.buffer, pvh_bootparams.e820_table);
1695 	rc = HYPERVISOR_memory_op(XENMEM_memory_map, &memmap);
1696 	if (rc) {
1697 		xen_raw_printk("XENMEM_memory_map failed (%d)\n", rc);
1698 		BUG();
1699 	}
1700 
1701 	if (memmap.nr_entries < E820_MAX_ENTRIES_ZEROPAGE - 1) {
1702 		pvh_bootparams.e820_table[memmap.nr_entries].addr =
1703 			ISA_START_ADDRESS;
1704 		pvh_bootparams.e820_table[memmap.nr_entries].size =
1705 			ISA_END_ADDRESS - ISA_START_ADDRESS;
1706 		pvh_bootparams.e820_table[memmap.nr_entries].type =
1707 			E820_TYPE_RESERVED;
1708 		memmap.nr_entries++;
1709 	} else
1710 		xen_raw_printk("Warning: Can fit ISA range into e820\n");
1711 
1712 	pvh_bootparams.e820_entries = memmap.nr_entries;
1713 	for (i = 0; i < pvh_bootparams.e820_entries; i++)
1714 		e820__range_add(pvh_bootparams.e820_table[i].addr,
1715 				pvh_bootparams.e820_table[i].size,
1716 				pvh_bootparams.e820_table[i].type);
1717 
1718 	e820__update_table(e820_table);
1719 
1720 	pvh_bootparams.hdr.cmd_line_ptr =
1721 		pvh_start_info.cmdline_paddr;
1722 
1723 	/* The first module is always ramdisk. */
1724 	if (pvh_start_info.nr_modules) {
1725 		struct hvm_modlist_entry *modaddr =
1726 			__va(pvh_start_info.modlist_paddr);
1727 		pvh_bootparams.hdr.ramdisk_image = modaddr->paddr;
1728 		pvh_bootparams.hdr.ramdisk_size = modaddr->size;
1729 	}
1730 
1731 	/*
1732 	 * See Documentation/x86/boot.txt.
1733 	 *
1734 	 * Version 2.12 supports Xen entry point but we will use default x86/PC
1735 	 * environment (i.e. hardware_subarch 0).
1736 	 */
1737 	pvh_bootparams.hdr.version = 0x212;
1738 	pvh_bootparams.hdr.type_of_loader = (9 << 4) | 0; /* Xen loader */
1739 }
1740 
1741 /*
1742  * This routine (and those that it might call) should not use
1743  * anything that lives in .bss since that segment will be cleared later.
1744  */
1745 void __init xen_prepare_pvh(void)
1746 {
1747 	u32 msr;
1748 	u64 pfn;
1749 
1750 	if (pvh_start_info.magic != XEN_HVM_START_MAGIC_VALUE) {
1751 		xen_raw_printk("Error: Unexpected magic value (0x%08x)\n",
1752 				pvh_start_info.magic);
1753 		BUG();
1754 	}
1755 
1756 	xen_pvh = 1;
1757 
1758 	msr = cpuid_ebx(xen_cpuid_base() + 2);
1759 	pfn = __pa(hypercall_page);
1760 	wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1761 
1762 	init_pvh_bootparams();
1763 
1764 	x86_init.oem.arch_setup = xen_pvh_arch_setup;
1765 }
1766 #endif
1767 
1768 void __ref xen_hvm_init_shared_info(void)
1769 {
1770 	int cpu;
1771 	struct xen_add_to_physmap xatp;
1772 	static struct shared_info *shared_info_page = 0;
1773 
1774 	if (!shared_info_page)
1775 		shared_info_page = (struct shared_info *)
1776 			extend_brk(PAGE_SIZE, PAGE_SIZE);
1777 	xatp.domid = DOMID_SELF;
1778 	xatp.idx = 0;
1779 	xatp.space = XENMAPSPACE_shared_info;
1780 	xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1781 	if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1782 		BUG();
1783 
1784 	HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1785 
1786 	/* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1787 	 * page, we use it in the event channel upcall and in some pvclock
1788 	 * related functions. We don't need the vcpu_info placement
1789 	 * optimizations because we don't use any pv_mmu or pv_irq op on
1790 	 * HVM.
1791 	 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1792 	 * online but xen_hvm_init_shared_info is run at resume time too and
1793 	 * in that case multiple vcpus might be online. */
1794 	for_each_online_cpu(cpu) {
1795 		/* Leave it to be NULL. */
1796 		if (xen_vcpu_nr(cpu) >= MAX_VIRT_CPUS)
1797 			continue;
1798 		per_cpu(xen_vcpu, cpu) =
1799 			&HYPERVISOR_shared_info->vcpu_info[xen_vcpu_nr(cpu)];
1800 	}
1801 }
1802 
1803 #ifdef CONFIG_XEN_PVHVM
1804 static void __init init_hvm_pv_info(void)
1805 {
1806 	int major, minor;
1807 	uint32_t eax, ebx, ecx, edx, base;
1808 
1809 	base = xen_cpuid_base();
1810 	eax = cpuid_eax(base + 1);
1811 
1812 	major = eax >> 16;
1813 	minor = eax & 0xffff;
1814 	printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1815 
1816 	xen_domain_type = XEN_HVM_DOMAIN;
1817 
1818 	/* PVH set up hypercall page in xen_prepare_pvh(). */
1819 	if (xen_pvh_domain())
1820 		pv_info.name = "Xen PVH";
1821 	else {
1822 		u64 pfn;
1823 		uint32_t msr;
1824 
1825 		pv_info.name = "Xen HVM";
1826 		msr = cpuid_ebx(base + 2);
1827 		pfn = __pa(hypercall_page);
1828 		wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1829 	}
1830 
1831 	xen_setup_features();
1832 
1833 	cpuid(base + 4, &eax, &ebx, &ecx, &edx);
1834 	if (eax & XEN_HVM_CPUID_VCPU_ID_PRESENT)
1835 		this_cpu_write(xen_vcpu_id, ebx);
1836 	else
1837 		this_cpu_write(xen_vcpu_id, smp_processor_id());
1838 }
1839 #endif
1840 
1841 static int xen_cpu_up_prepare(unsigned int cpu)
1842 {
1843 	int rc;
1844 
1845 	if (xen_hvm_domain()) {
1846 		/*
1847 		 * This can happen if CPU was offlined earlier and
1848 		 * offlining timed out in common_cpu_die().
1849 		 */
1850 		if (cpu_report_state(cpu) == CPU_DEAD_FROZEN) {
1851 			xen_smp_intr_free(cpu);
1852 			xen_uninit_lock_cpu(cpu);
1853 		}
1854 
1855 		if (cpu_acpi_id(cpu) != U32_MAX)
1856 			per_cpu(xen_vcpu_id, cpu) = cpu_acpi_id(cpu);
1857 		else
1858 			per_cpu(xen_vcpu_id, cpu) = cpu;
1859 		xen_vcpu_setup(cpu);
1860 	}
1861 
1862 	if (xen_pv_domain() || xen_feature(XENFEAT_hvm_safe_pvclock))
1863 		xen_setup_timer(cpu);
1864 
1865 	rc = xen_smp_intr_init(cpu);
1866 	if (rc) {
1867 		WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1868 		     cpu, rc);
1869 		return rc;
1870 	}
1871 	return 0;
1872 }
1873 
1874 static int xen_cpu_dead(unsigned int cpu)
1875 {
1876 	xen_smp_intr_free(cpu);
1877 
1878 	if (xen_pv_domain() || xen_feature(XENFEAT_hvm_safe_pvclock))
1879 		xen_teardown_timer(cpu);
1880 
1881 	return 0;
1882 }
1883 
1884 static int xen_cpu_up_online(unsigned int cpu)
1885 {
1886 	xen_init_lock_cpu(cpu);
1887 	return 0;
1888 }
1889 
1890 #ifdef CONFIG_XEN_PVHVM
1891 #ifdef CONFIG_KEXEC_CORE
1892 static void xen_hvm_shutdown(void)
1893 {
1894 	native_machine_shutdown();
1895 	if (kexec_in_progress)
1896 		xen_reboot(SHUTDOWN_soft_reset);
1897 }
1898 
1899 static void xen_hvm_crash_shutdown(struct pt_regs *regs)
1900 {
1901 	native_machine_crash_shutdown(regs);
1902 	xen_reboot(SHUTDOWN_soft_reset);
1903 }
1904 #endif
1905 
1906 static void __init xen_hvm_guest_init(void)
1907 {
1908 	if (xen_pv_domain())
1909 		return;
1910 
1911 	init_hvm_pv_info();
1912 
1913 	xen_hvm_init_shared_info();
1914 
1915 	xen_panic_handler_init();
1916 
1917 	BUG_ON(!xen_feature(XENFEAT_hvm_callback_vector));
1918 
1919 	xen_hvm_smp_init();
1920 	WARN_ON(xen_cpuhp_setup());
1921 	xen_unplug_emulated_devices();
1922 	x86_init.irqs.intr_init = xen_init_IRQ;
1923 	xen_hvm_init_time_ops();
1924 	xen_hvm_init_mmu_ops();
1925 
1926 	if (xen_pvh_domain())
1927 		machine_ops.emergency_restart = xen_emergency_restart;
1928 #ifdef CONFIG_KEXEC_CORE
1929 	machine_ops.shutdown = xen_hvm_shutdown;
1930 	machine_ops.crash_shutdown = xen_hvm_crash_shutdown;
1931 #endif
1932 }
1933 #endif
1934 
1935 static bool xen_nopv = false;
1936 static __init int xen_parse_nopv(char *arg)
1937 {
1938        xen_nopv = true;
1939        return 0;
1940 }
1941 early_param("xen_nopv", xen_parse_nopv);
1942 
1943 static uint32_t __init xen_platform(void)
1944 {
1945 	if (xen_nopv)
1946 		return 0;
1947 
1948 	return xen_cpuid_base();
1949 }
1950 
1951 bool xen_hvm_need_lapic(void)
1952 {
1953 	if (xen_nopv)
1954 		return false;
1955 	if (xen_pv_domain())
1956 		return false;
1957 	if (!xen_hvm_domain())
1958 		return false;
1959 	if (xen_feature(XENFEAT_hvm_pirqs))
1960 		return false;
1961 	return true;
1962 }
1963 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1964 
1965 static void xen_set_cpu_features(struct cpuinfo_x86 *c)
1966 {
1967 	if (xen_pv_domain()) {
1968 		clear_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS);
1969 		set_cpu_cap(c, X86_FEATURE_XENPV);
1970 	}
1971 }
1972 
1973 static void xen_pin_vcpu(int cpu)
1974 {
1975 	static bool disable_pinning;
1976 	struct sched_pin_override pin_override;
1977 	int ret;
1978 
1979 	if (disable_pinning)
1980 		return;
1981 
1982 	pin_override.pcpu = cpu;
1983 	ret = HYPERVISOR_sched_op(SCHEDOP_pin_override, &pin_override);
1984 
1985 	/* Ignore errors when removing override. */
1986 	if (cpu < 0)
1987 		return;
1988 
1989 	switch (ret) {
1990 	case -ENOSYS:
1991 		pr_warn("Unable to pin on physical cpu %d. In case of problems consider vcpu pinning.\n",
1992 			cpu);
1993 		disable_pinning = true;
1994 		break;
1995 	case -EPERM:
1996 		WARN(1, "Trying to pin vcpu without having privilege to do so\n");
1997 		disable_pinning = true;
1998 		break;
1999 	case -EINVAL:
2000 	case -EBUSY:
2001 		pr_warn("Physical cpu %d not available for pinning. Check Xen cpu configuration.\n",
2002 			cpu);
2003 		break;
2004 	case 0:
2005 		break;
2006 	default:
2007 		WARN(1, "rc %d while trying to pin vcpu\n", ret);
2008 		disable_pinning = true;
2009 	}
2010 }
2011 
2012 const struct hypervisor_x86 x86_hyper_xen = {
2013 	.name			= "Xen",
2014 	.detect			= xen_platform,
2015 #ifdef CONFIG_XEN_PVHVM
2016 	.init_platform		= xen_hvm_guest_init,
2017 #endif
2018 	.x2apic_available	= xen_x2apic_para_available,
2019 	.set_cpu_features       = xen_set_cpu_features,
2020 	.pin_vcpu               = xen_pin_vcpu,
2021 };
2022 EXPORT_SYMBOL(x86_hyper_xen);
2023 
2024 #ifdef CONFIG_HOTPLUG_CPU
2025 void xen_arch_register_cpu(int num)
2026 {
2027 	arch_register_cpu(num);
2028 }
2029 EXPORT_SYMBOL(xen_arch_register_cpu);
2030 
2031 void xen_arch_unregister_cpu(int num)
2032 {
2033 	arch_unregister_cpu(num);
2034 }
2035 EXPORT_SYMBOL(xen_arch_unregister_cpu);
2036 #endif
2037