1 // SPDX-License-Identifier: GPL-2.0 2 /* This is included from relocs_32/64.c */ 3 4 #define ElfW(type) _ElfW(ELF_BITS, type) 5 #define _ElfW(bits, type) __ElfW(bits, type) 6 #define __ElfW(bits, type) Elf##bits##_##type 7 8 #define Elf_Addr ElfW(Addr) 9 #define Elf_Ehdr ElfW(Ehdr) 10 #define Elf_Phdr ElfW(Phdr) 11 #define Elf_Shdr ElfW(Shdr) 12 #define Elf_Sym ElfW(Sym) 13 14 static Elf_Ehdr ehdr; 15 static unsigned long shnum; 16 static unsigned int shstrndx; 17 18 struct relocs { 19 uint32_t *offset; 20 unsigned long count; 21 unsigned long size; 22 }; 23 24 static struct relocs relocs16; 25 static struct relocs relocs32; 26 #if ELF_BITS == 64 27 static struct relocs relocs32neg; 28 static struct relocs relocs64; 29 #endif 30 31 struct section { 32 Elf_Shdr shdr; 33 struct section *link; 34 Elf_Sym *symtab; 35 Elf_Rel *reltab; 36 char *strtab; 37 }; 38 static struct section *secs; 39 40 static const char * const sym_regex_kernel[S_NSYMTYPES] = { 41 /* 42 * Following symbols have been audited. There values are constant and do 43 * not change if bzImage is loaded at a different physical address than 44 * the address for which it has been compiled. Don't warn user about 45 * absolute relocations present w.r.t these symbols. 46 */ 47 [S_ABS] = 48 "^(xen_irq_disable_direct_reloc$|" 49 "xen_save_fl_direct_reloc$|" 50 "VDSO|" 51 "__crc_)", 52 53 /* 54 * These symbols are known to be relative, even if the linker marks them 55 * as absolute (typically defined outside any section in the linker script.) 56 */ 57 [S_REL] = 58 "^(__init_(begin|end)|" 59 "__x86_cpu_dev_(start|end)|" 60 "(__parainstructions|__alt_instructions)(|_end)|" 61 "(__iommu_table|__apicdrivers|__smp_locks)(|_end)|" 62 "__(start|end)_pci_.*|" 63 "__(start|end)_builtin_fw|" 64 "__(start|stop)___ksymtab(|_gpl)|" 65 "__(start|stop)___kcrctab(|_gpl)|" 66 "__(start|stop)___param|" 67 "__(start|stop)___modver|" 68 "__(start|stop)___bug_table|" 69 "__tracedata_(start|end)|" 70 "__(start|stop)_notes|" 71 "__end_rodata|" 72 "__end_rodata_aligned|" 73 "__initramfs_start|" 74 "(jiffies|jiffies_64)|" 75 #if ELF_BITS == 64 76 "__per_cpu_load|" 77 "init_per_cpu__.*|" 78 "__end_rodata_hpage_align|" 79 #endif 80 "__vvar_page|" 81 "_end)$" 82 }; 83 84 85 static const char * const sym_regex_realmode[S_NSYMTYPES] = { 86 /* 87 * These symbols are known to be relative, even if the linker marks them 88 * as absolute (typically defined outside any section in the linker script.) 89 */ 90 [S_REL] = 91 "^pa_", 92 93 /* 94 * These are 16-bit segment symbols when compiling 16-bit code. 95 */ 96 [S_SEG] = 97 "^real_mode_seg$", 98 99 /* 100 * These are offsets belonging to segments, as opposed to linear addresses, 101 * when compiling 16-bit code. 102 */ 103 [S_LIN] = 104 "^pa_", 105 }; 106 107 static const char * const *sym_regex; 108 109 static regex_t sym_regex_c[S_NSYMTYPES]; 110 static int is_reloc(enum symtype type, const char *sym_name) 111 { 112 return sym_regex[type] && 113 !regexec(&sym_regex_c[type], sym_name, 0, NULL, 0); 114 } 115 116 static void regex_init(int use_real_mode) 117 { 118 char errbuf[128]; 119 int err; 120 int i; 121 122 if (use_real_mode) 123 sym_regex = sym_regex_realmode; 124 else 125 sym_regex = sym_regex_kernel; 126 127 for (i = 0; i < S_NSYMTYPES; i++) { 128 if (!sym_regex[i]) 129 continue; 130 131 err = regcomp(&sym_regex_c[i], sym_regex[i], 132 REG_EXTENDED|REG_NOSUB); 133 134 if (err) { 135 regerror(err, &sym_regex_c[i], errbuf, sizeof(errbuf)); 136 die("%s", errbuf); 137 } 138 } 139 } 140 141 static const char *sym_type(unsigned type) 142 { 143 static const char *type_name[] = { 144 #define SYM_TYPE(X) [X] = #X 145 SYM_TYPE(STT_NOTYPE), 146 SYM_TYPE(STT_OBJECT), 147 SYM_TYPE(STT_FUNC), 148 SYM_TYPE(STT_SECTION), 149 SYM_TYPE(STT_FILE), 150 SYM_TYPE(STT_COMMON), 151 SYM_TYPE(STT_TLS), 152 #undef SYM_TYPE 153 }; 154 const char *name = "unknown sym type name"; 155 if (type < ARRAY_SIZE(type_name)) { 156 name = type_name[type]; 157 } 158 return name; 159 } 160 161 static const char *sym_bind(unsigned bind) 162 { 163 static const char *bind_name[] = { 164 #define SYM_BIND(X) [X] = #X 165 SYM_BIND(STB_LOCAL), 166 SYM_BIND(STB_GLOBAL), 167 SYM_BIND(STB_WEAK), 168 #undef SYM_BIND 169 }; 170 const char *name = "unknown sym bind name"; 171 if (bind < ARRAY_SIZE(bind_name)) { 172 name = bind_name[bind]; 173 } 174 return name; 175 } 176 177 static const char *sym_visibility(unsigned visibility) 178 { 179 static const char *visibility_name[] = { 180 #define SYM_VISIBILITY(X) [X] = #X 181 SYM_VISIBILITY(STV_DEFAULT), 182 SYM_VISIBILITY(STV_INTERNAL), 183 SYM_VISIBILITY(STV_HIDDEN), 184 SYM_VISIBILITY(STV_PROTECTED), 185 #undef SYM_VISIBILITY 186 }; 187 const char *name = "unknown sym visibility name"; 188 if (visibility < ARRAY_SIZE(visibility_name)) { 189 name = visibility_name[visibility]; 190 } 191 return name; 192 } 193 194 static const char *rel_type(unsigned type) 195 { 196 static const char *type_name[] = { 197 #define REL_TYPE(X) [X] = #X 198 #if ELF_BITS == 64 199 REL_TYPE(R_X86_64_NONE), 200 REL_TYPE(R_X86_64_64), 201 REL_TYPE(R_X86_64_PC64), 202 REL_TYPE(R_X86_64_PC32), 203 REL_TYPE(R_X86_64_GOT32), 204 REL_TYPE(R_X86_64_PLT32), 205 REL_TYPE(R_X86_64_COPY), 206 REL_TYPE(R_X86_64_GLOB_DAT), 207 REL_TYPE(R_X86_64_JUMP_SLOT), 208 REL_TYPE(R_X86_64_RELATIVE), 209 REL_TYPE(R_X86_64_GOTPCREL), 210 REL_TYPE(R_X86_64_32), 211 REL_TYPE(R_X86_64_32S), 212 REL_TYPE(R_X86_64_16), 213 REL_TYPE(R_X86_64_PC16), 214 REL_TYPE(R_X86_64_8), 215 REL_TYPE(R_X86_64_PC8), 216 #else 217 REL_TYPE(R_386_NONE), 218 REL_TYPE(R_386_32), 219 REL_TYPE(R_386_PC32), 220 REL_TYPE(R_386_GOT32), 221 REL_TYPE(R_386_PLT32), 222 REL_TYPE(R_386_COPY), 223 REL_TYPE(R_386_GLOB_DAT), 224 REL_TYPE(R_386_JMP_SLOT), 225 REL_TYPE(R_386_RELATIVE), 226 REL_TYPE(R_386_GOTOFF), 227 REL_TYPE(R_386_GOTPC), 228 REL_TYPE(R_386_8), 229 REL_TYPE(R_386_PC8), 230 REL_TYPE(R_386_16), 231 REL_TYPE(R_386_PC16), 232 #endif 233 #undef REL_TYPE 234 }; 235 const char *name = "unknown type rel type name"; 236 if (type < ARRAY_SIZE(type_name) && type_name[type]) { 237 name = type_name[type]; 238 } 239 return name; 240 } 241 242 static const char *sec_name(unsigned shndx) 243 { 244 const char *sec_strtab; 245 const char *name; 246 sec_strtab = secs[shstrndx].strtab; 247 name = "<noname>"; 248 if (shndx < shnum) { 249 name = sec_strtab + secs[shndx].shdr.sh_name; 250 } 251 else if (shndx == SHN_ABS) { 252 name = "ABSOLUTE"; 253 } 254 else if (shndx == SHN_COMMON) { 255 name = "COMMON"; 256 } 257 return name; 258 } 259 260 static const char *sym_name(const char *sym_strtab, Elf_Sym *sym) 261 { 262 const char *name; 263 name = "<noname>"; 264 if (sym->st_name) { 265 name = sym_strtab + sym->st_name; 266 } 267 else { 268 name = sec_name(sym->st_shndx); 269 } 270 return name; 271 } 272 273 static Elf_Sym *sym_lookup(const char *symname) 274 { 275 int i; 276 for (i = 0; i < shnum; i++) { 277 struct section *sec = &secs[i]; 278 long nsyms; 279 char *strtab; 280 Elf_Sym *symtab; 281 Elf_Sym *sym; 282 283 if (sec->shdr.sh_type != SHT_SYMTAB) 284 continue; 285 286 nsyms = sec->shdr.sh_size/sizeof(Elf_Sym); 287 symtab = sec->symtab; 288 strtab = sec->link->strtab; 289 290 for (sym = symtab; --nsyms >= 0; sym++) { 291 if (!sym->st_name) 292 continue; 293 if (strcmp(symname, strtab + sym->st_name) == 0) 294 return sym; 295 } 296 } 297 return 0; 298 } 299 300 #if BYTE_ORDER == LITTLE_ENDIAN 301 #define le16_to_cpu(val) (val) 302 #define le32_to_cpu(val) (val) 303 #define le64_to_cpu(val) (val) 304 #endif 305 #if BYTE_ORDER == BIG_ENDIAN 306 #define le16_to_cpu(val) bswap_16(val) 307 #define le32_to_cpu(val) bswap_32(val) 308 #define le64_to_cpu(val) bswap_64(val) 309 #endif 310 311 static uint16_t elf16_to_cpu(uint16_t val) 312 { 313 return le16_to_cpu(val); 314 } 315 316 static uint32_t elf32_to_cpu(uint32_t val) 317 { 318 return le32_to_cpu(val); 319 } 320 321 #define elf_half_to_cpu(x) elf16_to_cpu(x) 322 #define elf_word_to_cpu(x) elf32_to_cpu(x) 323 324 #if ELF_BITS == 64 325 static uint64_t elf64_to_cpu(uint64_t val) 326 { 327 return le64_to_cpu(val); 328 } 329 #define elf_addr_to_cpu(x) elf64_to_cpu(x) 330 #define elf_off_to_cpu(x) elf64_to_cpu(x) 331 #define elf_xword_to_cpu(x) elf64_to_cpu(x) 332 #else 333 #define elf_addr_to_cpu(x) elf32_to_cpu(x) 334 #define elf_off_to_cpu(x) elf32_to_cpu(x) 335 #define elf_xword_to_cpu(x) elf32_to_cpu(x) 336 #endif 337 338 static void read_ehdr(FILE *fp) 339 { 340 if (fread(&ehdr, sizeof(ehdr), 1, fp) != 1) { 341 die("Cannot read ELF header: %s\n", 342 strerror(errno)); 343 } 344 if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0) { 345 die("No ELF magic\n"); 346 } 347 if (ehdr.e_ident[EI_CLASS] != ELF_CLASS) { 348 die("Not a %d bit executable\n", ELF_BITS); 349 } 350 if (ehdr.e_ident[EI_DATA] != ELFDATA2LSB) { 351 die("Not a LSB ELF executable\n"); 352 } 353 if (ehdr.e_ident[EI_VERSION] != EV_CURRENT) { 354 die("Unknown ELF version\n"); 355 } 356 /* Convert the fields to native endian */ 357 ehdr.e_type = elf_half_to_cpu(ehdr.e_type); 358 ehdr.e_machine = elf_half_to_cpu(ehdr.e_machine); 359 ehdr.e_version = elf_word_to_cpu(ehdr.e_version); 360 ehdr.e_entry = elf_addr_to_cpu(ehdr.e_entry); 361 ehdr.e_phoff = elf_off_to_cpu(ehdr.e_phoff); 362 ehdr.e_shoff = elf_off_to_cpu(ehdr.e_shoff); 363 ehdr.e_flags = elf_word_to_cpu(ehdr.e_flags); 364 ehdr.e_ehsize = elf_half_to_cpu(ehdr.e_ehsize); 365 ehdr.e_phentsize = elf_half_to_cpu(ehdr.e_phentsize); 366 ehdr.e_phnum = elf_half_to_cpu(ehdr.e_phnum); 367 ehdr.e_shentsize = elf_half_to_cpu(ehdr.e_shentsize); 368 ehdr.e_shnum = elf_half_to_cpu(ehdr.e_shnum); 369 ehdr.e_shstrndx = elf_half_to_cpu(ehdr.e_shstrndx); 370 371 shnum = ehdr.e_shnum; 372 shstrndx = ehdr.e_shstrndx; 373 374 if ((ehdr.e_type != ET_EXEC) && (ehdr.e_type != ET_DYN)) 375 die("Unsupported ELF header type\n"); 376 if (ehdr.e_machine != ELF_MACHINE) 377 die("Not for %s\n", ELF_MACHINE_NAME); 378 if (ehdr.e_version != EV_CURRENT) 379 die("Unknown ELF version\n"); 380 if (ehdr.e_ehsize != sizeof(Elf_Ehdr)) 381 die("Bad Elf header size\n"); 382 if (ehdr.e_phentsize != sizeof(Elf_Phdr)) 383 die("Bad program header entry\n"); 384 if (ehdr.e_shentsize != sizeof(Elf_Shdr)) 385 die("Bad section header entry\n"); 386 387 388 if (shnum == SHN_UNDEF || shstrndx == SHN_XINDEX) { 389 Elf_Shdr shdr; 390 391 if (fseek(fp, ehdr.e_shoff, SEEK_SET) < 0) 392 die("Seek to %d failed: %s\n", ehdr.e_shoff, strerror(errno)); 393 394 if (fread(&shdr, sizeof(shdr), 1, fp) != 1) 395 die("Cannot read initial ELF section header: %s\n", strerror(errno)); 396 397 if (shnum == SHN_UNDEF) 398 shnum = elf_xword_to_cpu(shdr.sh_size); 399 400 if (shstrndx == SHN_XINDEX) 401 shstrndx = elf_word_to_cpu(shdr.sh_link); 402 } 403 404 if (shstrndx >= shnum) 405 die("String table index out of bounds\n"); 406 } 407 408 static void read_shdrs(FILE *fp) 409 { 410 int i; 411 Elf_Shdr shdr; 412 413 secs = calloc(shnum, sizeof(struct section)); 414 if (!secs) { 415 die("Unable to allocate %d section headers\n", 416 shnum); 417 } 418 if (fseek(fp, ehdr.e_shoff, SEEK_SET) < 0) { 419 die("Seek to %d failed: %s\n", 420 ehdr.e_shoff, strerror(errno)); 421 } 422 for (i = 0; i < shnum; i++) { 423 struct section *sec = &secs[i]; 424 if (fread(&shdr, sizeof(shdr), 1, fp) != 1) 425 die("Cannot read ELF section headers %d/%d: %s\n", 426 i, shnum, strerror(errno)); 427 sec->shdr.sh_name = elf_word_to_cpu(shdr.sh_name); 428 sec->shdr.sh_type = elf_word_to_cpu(shdr.sh_type); 429 sec->shdr.sh_flags = elf_xword_to_cpu(shdr.sh_flags); 430 sec->shdr.sh_addr = elf_addr_to_cpu(shdr.sh_addr); 431 sec->shdr.sh_offset = elf_off_to_cpu(shdr.sh_offset); 432 sec->shdr.sh_size = elf_xword_to_cpu(shdr.sh_size); 433 sec->shdr.sh_link = elf_word_to_cpu(shdr.sh_link); 434 sec->shdr.sh_info = elf_word_to_cpu(shdr.sh_info); 435 sec->shdr.sh_addralign = elf_xword_to_cpu(shdr.sh_addralign); 436 sec->shdr.sh_entsize = elf_xword_to_cpu(shdr.sh_entsize); 437 if (sec->shdr.sh_link < shnum) 438 sec->link = &secs[sec->shdr.sh_link]; 439 } 440 441 } 442 443 static void read_strtabs(FILE *fp) 444 { 445 int i; 446 for (i = 0; i < shnum; i++) { 447 struct section *sec = &secs[i]; 448 if (sec->shdr.sh_type != SHT_STRTAB) { 449 continue; 450 } 451 sec->strtab = malloc(sec->shdr.sh_size); 452 if (!sec->strtab) { 453 die("malloc of %d bytes for strtab failed\n", 454 sec->shdr.sh_size); 455 } 456 if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) { 457 die("Seek to %d failed: %s\n", 458 sec->shdr.sh_offset, strerror(errno)); 459 } 460 if (fread(sec->strtab, 1, sec->shdr.sh_size, fp) 461 != sec->shdr.sh_size) { 462 die("Cannot read symbol table: %s\n", 463 strerror(errno)); 464 } 465 } 466 } 467 468 static void read_symtabs(FILE *fp) 469 { 470 int i,j; 471 for (i = 0; i < shnum; i++) { 472 struct section *sec = &secs[i]; 473 if (sec->shdr.sh_type != SHT_SYMTAB) { 474 continue; 475 } 476 sec->symtab = malloc(sec->shdr.sh_size); 477 if (!sec->symtab) { 478 die("malloc of %d bytes for symtab failed\n", 479 sec->shdr.sh_size); 480 } 481 if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) { 482 die("Seek to %d failed: %s\n", 483 sec->shdr.sh_offset, strerror(errno)); 484 } 485 if (fread(sec->symtab, 1, sec->shdr.sh_size, fp) 486 != sec->shdr.sh_size) { 487 die("Cannot read symbol table: %s\n", 488 strerror(errno)); 489 } 490 for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Sym); j++) { 491 Elf_Sym *sym = &sec->symtab[j]; 492 sym->st_name = elf_word_to_cpu(sym->st_name); 493 sym->st_value = elf_addr_to_cpu(sym->st_value); 494 sym->st_size = elf_xword_to_cpu(sym->st_size); 495 sym->st_shndx = elf_half_to_cpu(sym->st_shndx); 496 } 497 } 498 } 499 500 501 static void read_relocs(FILE *fp) 502 { 503 int i,j; 504 for (i = 0; i < shnum; i++) { 505 struct section *sec = &secs[i]; 506 if (sec->shdr.sh_type != SHT_REL_TYPE) { 507 continue; 508 } 509 sec->reltab = malloc(sec->shdr.sh_size); 510 if (!sec->reltab) { 511 die("malloc of %d bytes for relocs failed\n", 512 sec->shdr.sh_size); 513 } 514 if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) { 515 die("Seek to %d failed: %s\n", 516 sec->shdr.sh_offset, strerror(errno)); 517 } 518 if (fread(sec->reltab, 1, sec->shdr.sh_size, fp) 519 != sec->shdr.sh_size) { 520 die("Cannot read symbol table: %s\n", 521 strerror(errno)); 522 } 523 for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) { 524 Elf_Rel *rel = &sec->reltab[j]; 525 rel->r_offset = elf_addr_to_cpu(rel->r_offset); 526 rel->r_info = elf_xword_to_cpu(rel->r_info); 527 #if (SHT_REL_TYPE == SHT_RELA) 528 rel->r_addend = elf_xword_to_cpu(rel->r_addend); 529 #endif 530 } 531 } 532 } 533 534 535 static void print_absolute_symbols(void) 536 { 537 int i; 538 const char *format; 539 540 if (ELF_BITS == 64) 541 format = "%5d %016"PRIx64" %5"PRId64" %10s %10s %12s %s\n"; 542 else 543 format = "%5d %08"PRIx32" %5"PRId32" %10s %10s %12s %s\n"; 544 545 printf("Absolute symbols\n"); 546 printf(" Num: Value Size Type Bind Visibility Name\n"); 547 for (i = 0; i < shnum; i++) { 548 struct section *sec = &secs[i]; 549 char *sym_strtab; 550 int j; 551 552 if (sec->shdr.sh_type != SHT_SYMTAB) { 553 continue; 554 } 555 sym_strtab = sec->link->strtab; 556 for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Sym); j++) { 557 Elf_Sym *sym; 558 const char *name; 559 sym = &sec->symtab[j]; 560 name = sym_name(sym_strtab, sym); 561 if (sym->st_shndx != SHN_ABS) { 562 continue; 563 } 564 printf(format, 565 j, sym->st_value, sym->st_size, 566 sym_type(ELF_ST_TYPE(sym->st_info)), 567 sym_bind(ELF_ST_BIND(sym->st_info)), 568 sym_visibility(ELF_ST_VISIBILITY(sym->st_other)), 569 name); 570 } 571 } 572 printf("\n"); 573 } 574 575 static void print_absolute_relocs(void) 576 { 577 int i, printed = 0; 578 const char *format; 579 580 if (ELF_BITS == 64) 581 format = "%016"PRIx64" %016"PRIx64" %10s %016"PRIx64" %s\n"; 582 else 583 format = "%08"PRIx32" %08"PRIx32" %10s %08"PRIx32" %s\n"; 584 585 for (i = 0; i < shnum; i++) { 586 struct section *sec = &secs[i]; 587 struct section *sec_applies, *sec_symtab; 588 char *sym_strtab; 589 Elf_Sym *sh_symtab; 590 int j; 591 if (sec->shdr.sh_type != SHT_REL_TYPE) { 592 continue; 593 } 594 sec_symtab = sec->link; 595 sec_applies = &secs[sec->shdr.sh_info]; 596 if (!(sec_applies->shdr.sh_flags & SHF_ALLOC)) { 597 continue; 598 } 599 sh_symtab = sec_symtab->symtab; 600 sym_strtab = sec_symtab->link->strtab; 601 for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) { 602 Elf_Rel *rel; 603 Elf_Sym *sym; 604 const char *name; 605 rel = &sec->reltab[j]; 606 sym = &sh_symtab[ELF_R_SYM(rel->r_info)]; 607 name = sym_name(sym_strtab, sym); 608 if (sym->st_shndx != SHN_ABS) { 609 continue; 610 } 611 612 /* Absolute symbols are not relocated if bzImage is 613 * loaded at a non-compiled address. Display a warning 614 * to user at compile time about the absolute 615 * relocations present. 616 * 617 * User need to audit the code to make sure 618 * some symbols which should have been section 619 * relative have not become absolute because of some 620 * linker optimization or wrong programming usage. 621 * 622 * Before warning check if this absolute symbol 623 * relocation is harmless. 624 */ 625 if (is_reloc(S_ABS, name) || is_reloc(S_REL, name)) 626 continue; 627 628 if (!printed) { 629 printf("WARNING: Absolute relocations" 630 " present\n"); 631 printf("Offset Info Type Sym.Value " 632 "Sym.Name\n"); 633 printed = 1; 634 } 635 636 printf(format, 637 rel->r_offset, 638 rel->r_info, 639 rel_type(ELF_R_TYPE(rel->r_info)), 640 sym->st_value, 641 name); 642 } 643 } 644 645 if (printed) 646 printf("\n"); 647 } 648 649 static void add_reloc(struct relocs *r, uint32_t offset) 650 { 651 if (r->count == r->size) { 652 unsigned long newsize = r->size + 50000; 653 void *mem = realloc(r->offset, newsize * sizeof(r->offset[0])); 654 655 if (!mem) 656 die("realloc of %ld entries for relocs failed\n", 657 newsize); 658 r->offset = mem; 659 r->size = newsize; 660 } 661 r->offset[r->count++] = offset; 662 } 663 664 static void walk_relocs(int (*process)(struct section *sec, Elf_Rel *rel, 665 Elf_Sym *sym, const char *symname)) 666 { 667 int i; 668 /* Walk through the relocations */ 669 for (i = 0; i < shnum; i++) { 670 char *sym_strtab; 671 Elf_Sym *sh_symtab; 672 struct section *sec_applies, *sec_symtab; 673 int j; 674 struct section *sec = &secs[i]; 675 676 if (sec->shdr.sh_type != SHT_REL_TYPE) { 677 continue; 678 } 679 sec_symtab = sec->link; 680 sec_applies = &secs[sec->shdr.sh_info]; 681 if (!(sec_applies->shdr.sh_flags & SHF_ALLOC)) { 682 continue; 683 } 684 sh_symtab = sec_symtab->symtab; 685 sym_strtab = sec_symtab->link->strtab; 686 for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) { 687 Elf_Rel *rel = &sec->reltab[j]; 688 Elf_Sym *sym = &sh_symtab[ELF_R_SYM(rel->r_info)]; 689 const char *symname = sym_name(sym_strtab, sym); 690 691 process(sec, rel, sym, symname); 692 } 693 } 694 } 695 696 /* 697 * The .data..percpu section is a special case for x86_64 SMP kernels. 698 * It is used to initialize the actual per_cpu areas and to provide 699 * definitions for the per_cpu variables that correspond to their offsets 700 * within the percpu area. Since the values of all of the symbols need 701 * to be offsets from the start of the per_cpu area the virtual address 702 * (sh_addr) of .data..percpu is 0 in SMP kernels. 703 * 704 * This means that: 705 * 706 * Relocations that reference symbols in the per_cpu area do not 707 * need further relocation (since the value is an offset relative 708 * to the start of the per_cpu area that does not change). 709 * 710 * Relocations that apply to the per_cpu area need to have their 711 * offset adjusted by by the value of __per_cpu_load to make them 712 * point to the correct place in the loaded image (because the 713 * virtual address of .data..percpu is 0). 714 * 715 * For non SMP kernels .data..percpu is linked as part of the normal 716 * kernel data and does not require special treatment. 717 * 718 */ 719 static int per_cpu_shndx = -1; 720 static Elf_Addr per_cpu_load_addr; 721 722 static void percpu_init(void) 723 { 724 int i; 725 for (i = 0; i < shnum; i++) { 726 ElfW(Sym) *sym; 727 if (strcmp(sec_name(i), ".data..percpu")) 728 continue; 729 730 if (secs[i].shdr.sh_addr != 0) /* non SMP kernel */ 731 return; 732 733 sym = sym_lookup("__per_cpu_load"); 734 if (!sym) 735 die("can't find __per_cpu_load\n"); 736 737 per_cpu_shndx = i; 738 per_cpu_load_addr = sym->st_value; 739 return; 740 } 741 } 742 743 #if ELF_BITS == 64 744 745 /* 746 * Check to see if a symbol lies in the .data..percpu section. 747 * 748 * The linker incorrectly associates some symbols with the 749 * .data..percpu section so we also need to check the symbol 750 * name to make sure that we classify the symbol correctly. 751 * 752 * The GNU linker incorrectly associates: 753 * __init_begin 754 * __per_cpu_load 755 * 756 * The "gold" linker incorrectly associates: 757 * init_per_cpu__fixed_percpu_data 758 * init_per_cpu__gdt_page 759 */ 760 static int is_percpu_sym(ElfW(Sym) *sym, const char *symname) 761 { 762 return (sym->st_shndx == per_cpu_shndx) && 763 strcmp(symname, "__init_begin") && 764 strcmp(symname, "__per_cpu_load") && 765 strncmp(symname, "init_per_cpu_", 13); 766 } 767 768 769 static int do_reloc64(struct section *sec, Elf_Rel *rel, ElfW(Sym) *sym, 770 const char *symname) 771 { 772 unsigned r_type = ELF64_R_TYPE(rel->r_info); 773 ElfW(Addr) offset = rel->r_offset; 774 int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname); 775 776 if (sym->st_shndx == SHN_UNDEF) 777 return 0; 778 779 /* 780 * Adjust the offset if this reloc applies to the percpu section. 781 */ 782 if (sec->shdr.sh_info == per_cpu_shndx) 783 offset += per_cpu_load_addr; 784 785 switch (r_type) { 786 case R_X86_64_NONE: 787 /* NONE can be ignored. */ 788 break; 789 790 case R_X86_64_PC32: 791 case R_X86_64_PLT32: 792 /* 793 * PC relative relocations don't need to be adjusted unless 794 * referencing a percpu symbol. 795 * 796 * NB: R_X86_64_PLT32 can be treated as R_X86_64_PC32. 797 */ 798 if (is_percpu_sym(sym, symname)) 799 add_reloc(&relocs32neg, offset); 800 break; 801 802 case R_X86_64_PC64: 803 /* 804 * Only used by jump labels 805 */ 806 if (is_percpu_sym(sym, symname)) 807 die("Invalid R_X86_64_PC64 relocation against per-CPU symbol %s\n", 808 symname); 809 break; 810 811 case R_X86_64_32: 812 case R_X86_64_32S: 813 case R_X86_64_64: 814 /* 815 * References to the percpu area don't need to be adjusted. 816 */ 817 if (is_percpu_sym(sym, symname)) 818 break; 819 820 if (shn_abs) { 821 /* 822 * Whitelisted absolute symbols do not require 823 * relocation. 824 */ 825 if (is_reloc(S_ABS, symname)) 826 break; 827 828 die("Invalid absolute %s relocation: %s\n", 829 rel_type(r_type), symname); 830 break; 831 } 832 833 /* 834 * Relocation offsets for 64 bit kernels are output 835 * as 32 bits and sign extended back to 64 bits when 836 * the relocations are processed. 837 * Make sure that the offset will fit. 838 */ 839 if ((int32_t)offset != (int64_t)offset) 840 die("Relocation offset doesn't fit in 32 bits\n"); 841 842 if (r_type == R_X86_64_64) 843 add_reloc(&relocs64, offset); 844 else 845 add_reloc(&relocs32, offset); 846 break; 847 848 default: 849 die("Unsupported relocation type: %s (%d)\n", 850 rel_type(r_type), r_type); 851 break; 852 } 853 854 return 0; 855 } 856 857 #else 858 859 static int do_reloc32(struct section *sec, Elf_Rel *rel, Elf_Sym *sym, 860 const char *symname) 861 { 862 unsigned r_type = ELF32_R_TYPE(rel->r_info); 863 int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname); 864 865 switch (r_type) { 866 case R_386_NONE: 867 case R_386_PC32: 868 case R_386_PC16: 869 case R_386_PC8: 870 case R_386_PLT32: 871 /* 872 * NONE can be ignored and PC relative relocations don't need 873 * to be adjusted. Because sym must be defined, R_386_PLT32 can 874 * be treated the same way as R_386_PC32. 875 */ 876 break; 877 878 case R_386_32: 879 if (shn_abs) { 880 /* 881 * Whitelisted absolute symbols do not require 882 * relocation. 883 */ 884 if (is_reloc(S_ABS, symname)) 885 break; 886 887 die("Invalid absolute %s relocation: %s\n", 888 rel_type(r_type), symname); 889 break; 890 } 891 892 add_reloc(&relocs32, rel->r_offset); 893 break; 894 895 default: 896 die("Unsupported relocation type: %s (%d)\n", 897 rel_type(r_type), r_type); 898 break; 899 } 900 901 return 0; 902 } 903 904 static int do_reloc_real(struct section *sec, Elf_Rel *rel, Elf_Sym *sym, 905 const char *symname) 906 { 907 unsigned r_type = ELF32_R_TYPE(rel->r_info); 908 int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname); 909 910 switch (r_type) { 911 case R_386_NONE: 912 case R_386_PC32: 913 case R_386_PC16: 914 case R_386_PC8: 915 case R_386_PLT32: 916 /* 917 * NONE can be ignored and PC relative relocations don't need 918 * to be adjusted. Because sym must be defined, R_386_PLT32 can 919 * be treated the same way as R_386_PC32. 920 */ 921 break; 922 923 case R_386_16: 924 if (shn_abs) { 925 /* 926 * Whitelisted absolute symbols do not require 927 * relocation. 928 */ 929 if (is_reloc(S_ABS, symname)) 930 break; 931 932 if (is_reloc(S_SEG, symname)) { 933 add_reloc(&relocs16, rel->r_offset); 934 break; 935 } 936 } else { 937 if (!is_reloc(S_LIN, symname)) 938 break; 939 } 940 die("Invalid %s %s relocation: %s\n", 941 shn_abs ? "absolute" : "relative", 942 rel_type(r_type), symname); 943 break; 944 945 case R_386_32: 946 if (shn_abs) { 947 /* 948 * Whitelisted absolute symbols do not require 949 * relocation. 950 */ 951 if (is_reloc(S_ABS, symname)) 952 break; 953 954 if (is_reloc(S_REL, symname)) { 955 add_reloc(&relocs32, rel->r_offset); 956 break; 957 } 958 } else { 959 if (is_reloc(S_LIN, symname)) 960 add_reloc(&relocs32, rel->r_offset); 961 break; 962 } 963 die("Invalid %s %s relocation: %s\n", 964 shn_abs ? "absolute" : "relative", 965 rel_type(r_type), symname); 966 break; 967 968 default: 969 die("Unsupported relocation type: %s (%d)\n", 970 rel_type(r_type), r_type); 971 break; 972 } 973 974 return 0; 975 } 976 977 #endif 978 979 static int cmp_relocs(const void *va, const void *vb) 980 { 981 const uint32_t *a, *b; 982 a = va; b = vb; 983 return (*a == *b)? 0 : (*a > *b)? 1 : -1; 984 } 985 986 static void sort_relocs(struct relocs *r) 987 { 988 qsort(r->offset, r->count, sizeof(r->offset[0]), cmp_relocs); 989 } 990 991 static int write32(uint32_t v, FILE *f) 992 { 993 unsigned char buf[4]; 994 995 put_unaligned_le32(v, buf); 996 return fwrite(buf, 1, 4, f) == 4 ? 0 : -1; 997 } 998 999 static int write32_as_text(uint32_t v, FILE *f) 1000 { 1001 return fprintf(f, "\t.long 0x%08"PRIx32"\n", v) > 0 ? 0 : -1; 1002 } 1003 1004 static void emit_relocs(int as_text, int use_real_mode) 1005 { 1006 int i; 1007 int (*write_reloc)(uint32_t, FILE *) = write32; 1008 int (*do_reloc)(struct section *sec, Elf_Rel *rel, Elf_Sym *sym, 1009 const char *symname); 1010 1011 #if ELF_BITS == 64 1012 if (!use_real_mode) 1013 do_reloc = do_reloc64; 1014 else 1015 die("--realmode not valid for a 64-bit ELF file"); 1016 #else 1017 if (!use_real_mode) 1018 do_reloc = do_reloc32; 1019 else 1020 do_reloc = do_reloc_real; 1021 #endif 1022 1023 /* Collect up the relocations */ 1024 walk_relocs(do_reloc); 1025 1026 if (relocs16.count && !use_real_mode) 1027 die("Segment relocations found but --realmode not specified\n"); 1028 1029 /* Order the relocations for more efficient processing */ 1030 sort_relocs(&relocs32); 1031 #if ELF_BITS == 64 1032 sort_relocs(&relocs32neg); 1033 sort_relocs(&relocs64); 1034 #else 1035 sort_relocs(&relocs16); 1036 #endif 1037 1038 /* Print the relocations */ 1039 if (as_text) { 1040 /* Print the relocations in a form suitable that 1041 * gas will like. 1042 */ 1043 printf(".section \".data.reloc\",\"a\"\n"); 1044 printf(".balign 4\n"); 1045 write_reloc = write32_as_text; 1046 } 1047 1048 if (use_real_mode) { 1049 write_reloc(relocs16.count, stdout); 1050 for (i = 0; i < relocs16.count; i++) 1051 write_reloc(relocs16.offset[i], stdout); 1052 1053 write_reloc(relocs32.count, stdout); 1054 for (i = 0; i < relocs32.count; i++) 1055 write_reloc(relocs32.offset[i], stdout); 1056 } else { 1057 #if ELF_BITS == 64 1058 /* Print a stop */ 1059 write_reloc(0, stdout); 1060 1061 /* Now print each relocation */ 1062 for (i = 0; i < relocs64.count; i++) 1063 write_reloc(relocs64.offset[i], stdout); 1064 1065 /* Print a stop */ 1066 write_reloc(0, stdout); 1067 1068 /* Now print each inverse 32-bit relocation */ 1069 for (i = 0; i < relocs32neg.count; i++) 1070 write_reloc(relocs32neg.offset[i], stdout); 1071 #endif 1072 1073 /* Print a stop */ 1074 write_reloc(0, stdout); 1075 1076 /* Now print each relocation */ 1077 for (i = 0; i < relocs32.count; i++) 1078 write_reloc(relocs32.offset[i], stdout); 1079 } 1080 } 1081 1082 /* 1083 * As an aid to debugging problems with different linkers 1084 * print summary information about the relocs. 1085 * Since different linkers tend to emit the sections in 1086 * different orders we use the section names in the output. 1087 */ 1088 static int do_reloc_info(struct section *sec, Elf_Rel *rel, ElfW(Sym) *sym, 1089 const char *symname) 1090 { 1091 printf("%s\t%s\t%s\t%s\n", 1092 sec_name(sec->shdr.sh_info), 1093 rel_type(ELF_R_TYPE(rel->r_info)), 1094 symname, 1095 sec_name(sym->st_shndx)); 1096 return 0; 1097 } 1098 1099 static void print_reloc_info(void) 1100 { 1101 printf("reloc section\treloc type\tsymbol\tsymbol section\n"); 1102 walk_relocs(do_reloc_info); 1103 } 1104 1105 #if ELF_BITS == 64 1106 # define process process_64 1107 #else 1108 # define process process_32 1109 #endif 1110 1111 void process(FILE *fp, int use_real_mode, int as_text, 1112 int show_absolute_syms, int show_absolute_relocs, 1113 int show_reloc_info) 1114 { 1115 regex_init(use_real_mode); 1116 read_ehdr(fp); 1117 read_shdrs(fp); 1118 read_strtabs(fp); 1119 read_symtabs(fp); 1120 read_relocs(fp); 1121 if (ELF_BITS == 64) 1122 percpu_init(); 1123 if (show_absolute_syms) { 1124 print_absolute_symbols(); 1125 return; 1126 } 1127 if (show_absolute_relocs) { 1128 print_absolute_relocs(); 1129 return; 1130 } 1131 if (show_reloc_info) { 1132 print_reloc_info(); 1133 return; 1134 } 1135 emit_relocs(as_text, use_real_mode); 1136 } 1137