1 /* This is included from relocs_32/64.c */ 2 3 #define ElfW(type) _ElfW(ELF_BITS, type) 4 #define _ElfW(bits, type) __ElfW(bits, type) 5 #define __ElfW(bits, type) Elf##bits##_##type 6 7 #define Elf_Addr ElfW(Addr) 8 #define Elf_Ehdr ElfW(Ehdr) 9 #define Elf_Phdr ElfW(Phdr) 10 #define Elf_Shdr ElfW(Shdr) 11 #define Elf_Sym ElfW(Sym) 12 13 static Elf_Ehdr ehdr; 14 15 struct relocs { 16 uint32_t *offset; 17 unsigned long count; 18 unsigned long size; 19 }; 20 21 static struct relocs relocs16; 22 static struct relocs relocs32; 23 static struct relocs relocs64; 24 25 struct section { 26 Elf_Shdr shdr; 27 struct section *link; 28 Elf_Sym *symtab; 29 Elf_Rel *reltab; 30 char *strtab; 31 }; 32 static struct section *secs; 33 34 static const char * const sym_regex_kernel[S_NSYMTYPES] = { 35 /* 36 * Following symbols have been audited. There values are constant and do 37 * not change if bzImage is loaded at a different physical address than 38 * the address for which it has been compiled. Don't warn user about 39 * absolute relocations present w.r.t these symbols. 40 */ 41 [S_ABS] = 42 "^(xen_irq_disable_direct_reloc$|" 43 "xen_save_fl_direct_reloc$|" 44 "VDSO|" 45 "__crc_)", 46 47 /* 48 * These symbols are known to be relative, even if the linker marks them 49 * as absolute (typically defined outside any section in the linker script.) 50 */ 51 [S_REL] = 52 "^(__init_(begin|end)|" 53 "__x86_cpu_dev_(start|end)|" 54 "(__parainstructions|__alt_instructions)(|_end)|" 55 "(__iommu_table|__apicdrivers|__smp_locks)(|_end)|" 56 "__(start|end)_pci_.*|" 57 "__(start|end)_builtin_fw|" 58 "__(start|stop)___ksymtab(|_gpl|_unused|_unused_gpl|_gpl_future)|" 59 "__(start|stop)___kcrctab(|_gpl|_unused|_unused_gpl|_gpl_future)|" 60 "__(start|stop)___param|" 61 "__(start|stop)___modver|" 62 "__(start|stop)___bug_table|" 63 "__tracedata_(start|end)|" 64 "__(start|stop)_notes|" 65 "__end_rodata|" 66 "__initramfs_start|" 67 "(jiffies|jiffies_64)|" 68 #if ELF_BITS == 64 69 "__per_cpu_load|" 70 "init_per_cpu__.*|" 71 "__end_rodata_hpage_align|" 72 "__vvar_page|" 73 #endif 74 "_end)$" 75 }; 76 77 78 static const char * const sym_regex_realmode[S_NSYMTYPES] = { 79 /* 80 * These symbols are known to be relative, even if the linker marks them 81 * as absolute (typically defined outside any section in the linker script.) 82 */ 83 [S_REL] = 84 "^pa_", 85 86 /* 87 * These are 16-bit segment symbols when compiling 16-bit code. 88 */ 89 [S_SEG] = 90 "^real_mode_seg$", 91 92 /* 93 * These are offsets belonging to segments, as opposed to linear addresses, 94 * when compiling 16-bit code. 95 */ 96 [S_LIN] = 97 "^pa_", 98 }; 99 100 static const char * const *sym_regex; 101 102 static regex_t sym_regex_c[S_NSYMTYPES]; 103 static int is_reloc(enum symtype type, const char *sym_name) 104 { 105 return sym_regex[type] && 106 !regexec(&sym_regex_c[type], sym_name, 0, NULL, 0); 107 } 108 109 static void regex_init(int use_real_mode) 110 { 111 char errbuf[128]; 112 int err; 113 int i; 114 115 if (use_real_mode) 116 sym_regex = sym_regex_realmode; 117 else 118 sym_regex = sym_regex_kernel; 119 120 for (i = 0; i < S_NSYMTYPES; i++) { 121 if (!sym_regex[i]) 122 continue; 123 124 err = regcomp(&sym_regex_c[i], sym_regex[i], 125 REG_EXTENDED|REG_NOSUB); 126 127 if (err) { 128 regerror(err, &sym_regex_c[i], errbuf, sizeof errbuf); 129 die("%s", errbuf); 130 } 131 } 132 } 133 134 static const char *sym_type(unsigned type) 135 { 136 static const char *type_name[] = { 137 #define SYM_TYPE(X) [X] = #X 138 SYM_TYPE(STT_NOTYPE), 139 SYM_TYPE(STT_OBJECT), 140 SYM_TYPE(STT_FUNC), 141 SYM_TYPE(STT_SECTION), 142 SYM_TYPE(STT_FILE), 143 SYM_TYPE(STT_COMMON), 144 SYM_TYPE(STT_TLS), 145 #undef SYM_TYPE 146 }; 147 const char *name = "unknown sym type name"; 148 if (type < ARRAY_SIZE(type_name)) { 149 name = type_name[type]; 150 } 151 return name; 152 } 153 154 static const char *sym_bind(unsigned bind) 155 { 156 static const char *bind_name[] = { 157 #define SYM_BIND(X) [X] = #X 158 SYM_BIND(STB_LOCAL), 159 SYM_BIND(STB_GLOBAL), 160 SYM_BIND(STB_WEAK), 161 #undef SYM_BIND 162 }; 163 const char *name = "unknown sym bind name"; 164 if (bind < ARRAY_SIZE(bind_name)) { 165 name = bind_name[bind]; 166 } 167 return name; 168 } 169 170 static const char *sym_visibility(unsigned visibility) 171 { 172 static const char *visibility_name[] = { 173 #define SYM_VISIBILITY(X) [X] = #X 174 SYM_VISIBILITY(STV_DEFAULT), 175 SYM_VISIBILITY(STV_INTERNAL), 176 SYM_VISIBILITY(STV_HIDDEN), 177 SYM_VISIBILITY(STV_PROTECTED), 178 #undef SYM_VISIBILITY 179 }; 180 const char *name = "unknown sym visibility name"; 181 if (visibility < ARRAY_SIZE(visibility_name)) { 182 name = visibility_name[visibility]; 183 } 184 return name; 185 } 186 187 static const char *rel_type(unsigned type) 188 { 189 static const char *type_name[] = { 190 #define REL_TYPE(X) [X] = #X 191 #if ELF_BITS == 64 192 REL_TYPE(R_X86_64_NONE), 193 REL_TYPE(R_X86_64_64), 194 REL_TYPE(R_X86_64_PC32), 195 REL_TYPE(R_X86_64_GOT32), 196 REL_TYPE(R_X86_64_PLT32), 197 REL_TYPE(R_X86_64_COPY), 198 REL_TYPE(R_X86_64_GLOB_DAT), 199 REL_TYPE(R_X86_64_JUMP_SLOT), 200 REL_TYPE(R_X86_64_RELATIVE), 201 REL_TYPE(R_X86_64_GOTPCREL), 202 REL_TYPE(R_X86_64_32), 203 REL_TYPE(R_X86_64_32S), 204 REL_TYPE(R_X86_64_16), 205 REL_TYPE(R_X86_64_PC16), 206 REL_TYPE(R_X86_64_8), 207 REL_TYPE(R_X86_64_PC8), 208 #else 209 REL_TYPE(R_386_NONE), 210 REL_TYPE(R_386_32), 211 REL_TYPE(R_386_PC32), 212 REL_TYPE(R_386_GOT32), 213 REL_TYPE(R_386_PLT32), 214 REL_TYPE(R_386_COPY), 215 REL_TYPE(R_386_GLOB_DAT), 216 REL_TYPE(R_386_JMP_SLOT), 217 REL_TYPE(R_386_RELATIVE), 218 REL_TYPE(R_386_GOTOFF), 219 REL_TYPE(R_386_GOTPC), 220 REL_TYPE(R_386_8), 221 REL_TYPE(R_386_PC8), 222 REL_TYPE(R_386_16), 223 REL_TYPE(R_386_PC16), 224 #endif 225 #undef REL_TYPE 226 }; 227 const char *name = "unknown type rel type name"; 228 if (type < ARRAY_SIZE(type_name) && type_name[type]) { 229 name = type_name[type]; 230 } 231 return name; 232 } 233 234 static const char *sec_name(unsigned shndx) 235 { 236 const char *sec_strtab; 237 const char *name; 238 sec_strtab = secs[ehdr.e_shstrndx].strtab; 239 name = "<noname>"; 240 if (shndx < ehdr.e_shnum) { 241 name = sec_strtab + secs[shndx].shdr.sh_name; 242 } 243 else if (shndx == SHN_ABS) { 244 name = "ABSOLUTE"; 245 } 246 else if (shndx == SHN_COMMON) { 247 name = "COMMON"; 248 } 249 return name; 250 } 251 252 static const char *sym_name(const char *sym_strtab, Elf_Sym *sym) 253 { 254 const char *name; 255 name = "<noname>"; 256 if (sym->st_name) { 257 name = sym_strtab + sym->st_name; 258 } 259 else { 260 name = sec_name(sym->st_shndx); 261 } 262 return name; 263 } 264 265 static Elf_Sym *sym_lookup(const char *symname) 266 { 267 int i; 268 for (i = 0; i < ehdr.e_shnum; i++) { 269 struct section *sec = &secs[i]; 270 long nsyms; 271 char *strtab; 272 Elf_Sym *symtab; 273 Elf_Sym *sym; 274 275 if (sec->shdr.sh_type != SHT_SYMTAB) 276 continue; 277 278 nsyms = sec->shdr.sh_size/sizeof(Elf_Sym); 279 symtab = sec->symtab; 280 strtab = sec->link->strtab; 281 282 for (sym = symtab; --nsyms >= 0; sym++) { 283 if (!sym->st_name) 284 continue; 285 if (strcmp(symname, strtab + sym->st_name) == 0) 286 return sym; 287 } 288 } 289 return 0; 290 } 291 292 #if BYTE_ORDER == LITTLE_ENDIAN 293 #define le16_to_cpu(val) (val) 294 #define le32_to_cpu(val) (val) 295 #define le64_to_cpu(val) (val) 296 #endif 297 #if BYTE_ORDER == BIG_ENDIAN 298 #define le16_to_cpu(val) bswap_16(val) 299 #define le32_to_cpu(val) bswap_32(val) 300 #define le64_to_cpu(val) bswap_64(val) 301 #endif 302 303 static uint16_t elf16_to_cpu(uint16_t val) 304 { 305 return le16_to_cpu(val); 306 } 307 308 static uint32_t elf32_to_cpu(uint32_t val) 309 { 310 return le32_to_cpu(val); 311 } 312 313 #define elf_half_to_cpu(x) elf16_to_cpu(x) 314 #define elf_word_to_cpu(x) elf32_to_cpu(x) 315 316 #if ELF_BITS == 64 317 static uint64_t elf64_to_cpu(uint64_t val) 318 { 319 return le64_to_cpu(val); 320 } 321 #define elf_addr_to_cpu(x) elf64_to_cpu(x) 322 #define elf_off_to_cpu(x) elf64_to_cpu(x) 323 #define elf_xword_to_cpu(x) elf64_to_cpu(x) 324 #else 325 #define elf_addr_to_cpu(x) elf32_to_cpu(x) 326 #define elf_off_to_cpu(x) elf32_to_cpu(x) 327 #define elf_xword_to_cpu(x) elf32_to_cpu(x) 328 #endif 329 330 static void read_ehdr(FILE *fp) 331 { 332 if (fread(&ehdr, sizeof(ehdr), 1, fp) != 1) { 333 die("Cannot read ELF header: %s\n", 334 strerror(errno)); 335 } 336 if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0) { 337 die("No ELF magic\n"); 338 } 339 if (ehdr.e_ident[EI_CLASS] != ELF_CLASS) { 340 die("Not a %d bit executable\n", ELF_BITS); 341 } 342 if (ehdr.e_ident[EI_DATA] != ELFDATA2LSB) { 343 die("Not a LSB ELF executable\n"); 344 } 345 if (ehdr.e_ident[EI_VERSION] != EV_CURRENT) { 346 die("Unknown ELF version\n"); 347 } 348 /* Convert the fields to native endian */ 349 ehdr.e_type = elf_half_to_cpu(ehdr.e_type); 350 ehdr.e_machine = elf_half_to_cpu(ehdr.e_machine); 351 ehdr.e_version = elf_word_to_cpu(ehdr.e_version); 352 ehdr.e_entry = elf_addr_to_cpu(ehdr.e_entry); 353 ehdr.e_phoff = elf_off_to_cpu(ehdr.e_phoff); 354 ehdr.e_shoff = elf_off_to_cpu(ehdr.e_shoff); 355 ehdr.e_flags = elf_word_to_cpu(ehdr.e_flags); 356 ehdr.e_ehsize = elf_half_to_cpu(ehdr.e_ehsize); 357 ehdr.e_phentsize = elf_half_to_cpu(ehdr.e_phentsize); 358 ehdr.e_phnum = elf_half_to_cpu(ehdr.e_phnum); 359 ehdr.e_shentsize = elf_half_to_cpu(ehdr.e_shentsize); 360 ehdr.e_shnum = elf_half_to_cpu(ehdr.e_shnum); 361 ehdr.e_shstrndx = elf_half_to_cpu(ehdr.e_shstrndx); 362 363 if ((ehdr.e_type != ET_EXEC) && (ehdr.e_type != ET_DYN)) { 364 die("Unsupported ELF header type\n"); 365 } 366 if (ehdr.e_machine != ELF_MACHINE) { 367 die("Not for %s\n", ELF_MACHINE_NAME); 368 } 369 if (ehdr.e_version != EV_CURRENT) { 370 die("Unknown ELF version\n"); 371 } 372 if (ehdr.e_ehsize != sizeof(Elf_Ehdr)) { 373 die("Bad Elf header size\n"); 374 } 375 if (ehdr.e_phentsize != sizeof(Elf_Phdr)) { 376 die("Bad program header entry\n"); 377 } 378 if (ehdr.e_shentsize != sizeof(Elf_Shdr)) { 379 die("Bad section header entry\n"); 380 } 381 if (ehdr.e_shstrndx >= ehdr.e_shnum) { 382 die("String table index out of bounds\n"); 383 } 384 } 385 386 static void read_shdrs(FILE *fp) 387 { 388 int i; 389 Elf_Shdr shdr; 390 391 secs = calloc(ehdr.e_shnum, sizeof(struct section)); 392 if (!secs) { 393 die("Unable to allocate %d section headers\n", 394 ehdr.e_shnum); 395 } 396 if (fseek(fp, ehdr.e_shoff, SEEK_SET) < 0) { 397 die("Seek to %d failed: %s\n", 398 ehdr.e_shoff, strerror(errno)); 399 } 400 for (i = 0; i < ehdr.e_shnum; i++) { 401 struct section *sec = &secs[i]; 402 if (fread(&shdr, sizeof shdr, 1, fp) != 1) 403 die("Cannot read ELF section headers %d/%d: %s\n", 404 i, ehdr.e_shnum, strerror(errno)); 405 sec->shdr.sh_name = elf_word_to_cpu(shdr.sh_name); 406 sec->shdr.sh_type = elf_word_to_cpu(shdr.sh_type); 407 sec->shdr.sh_flags = elf_xword_to_cpu(shdr.sh_flags); 408 sec->shdr.sh_addr = elf_addr_to_cpu(shdr.sh_addr); 409 sec->shdr.sh_offset = elf_off_to_cpu(shdr.sh_offset); 410 sec->shdr.sh_size = elf_xword_to_cpu(shdr.sh_size); 411 sec->shdr.sh_link = elf_word_to_cpu(shdr.sh_link); 412 sec->shdr.sh_info = elf_word_to_cpu(shdr.sh_info); 413 sec->shdr.sh_addralign = elf_xword_to_cpu(shdr.sh_addralign); 414 sec->shdr.sh_entsize = elf_xword_to_cpu(shdr.sh_entsize); 415 if (sec->shdr.sh_link < ehdr.e_shnum) 416 sec->link = &secs[sec->shdr.sh_link]; 417 } 418 419 } 420 421 static void read_strtabs(FILE *fp) 422 { 423 int i; 424 for (i = 0; i < ehdr.e_shnum; i++) { 425 struct section *sec = &secs[i]; 426 if (sec->shdr.sh_type != SHT_STRTAB) { 427 continue; 428 } 429 sec->strtab = malloc(sec->shdr.sh_size); 430 if (!sec->strtab) { 431 die("malloc of %d bytes for strtab failed\n", 432 sec->shdr.sh_size); 433 } 434 if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) { 435 die("Seek to %d failed: %s\n", 436 sec->shdr.sh_offset, strerror(errno)); 437 } 438 if (fread(sec->strtab, 1, sec->shdr.sh_size, fp) 439 != sec->shdr.sh_size) { 440 die("Cannot read symbol table: %s\n", 441 strerror(errno)); 442 } 443 } 444 } 445 446 static void read_symtabs(FILE *fp) 447 { 448 int i,j; 449 for (i = 0; i < ehdr.e_shnum; i++) { 450 struct section *sec = &secs[i]; 451 if (sec->shdr.sh_type != SHT_SYMTAB) { 452 continue; 453 } 454 sec->symtab = malloc(sec->shdr.sh_size); 455 if (!sec->symtab) { 456 die("malloc of %d bytes for symtab failed\n", 457 sec->shdr.sh_size); 458 } 459 if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) { 460 die("Seek to %d failed: %s\n", 461 sec->shdr.sh_offset, strerror(errno)); 462 } 463 if (fread(sec->symtab, 1, sec->shdr.sh_size, fp) 464 != sec->shdr.sh_size) { 465 die("Cannot read symbol table: %s\n", 466 strerror(errno)); 467 } 468 for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Sym); j++) { 469 Elf_Sym *sym = &sec->symtab[j]; 470 sym->st_name = elf_word_to_cpu(sym->st_name); 471 sym->st_value = elf_addr_to_cpu(sym->st_value); 472 sym->st_size = elf_xword_to_cpu(sym->st_size); 473 sym->st_shndx = elf_half_to_cpu(sym->st_shndx); 474 } 475 } 476 } 477 478 479 static void read_relocs(FILE *fp) 480 { 481 int i,j; 482 for (i = 0; i < ehdr.e_shnum; i++) { 483 struct section *sec = &secs[i]; 484 if (sec->shdr.sh_type != SHT_REL_TYPE) { 485 continue; 486 } 487 sec->reltab = malloc(sec->shdr.sh_size); 488 if (!sec->reltab) { 489 die("malloc of %d bytes for relocs failed\n", 490 sec->shdr.sh_size); 491 } 492 if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) { 493 die("Seek to %d failed: %s\n", 494 sec->shdr.sh_offset, strerror(errno)); 495 } 496 if (fread(sec->reltab, 1, sec->shdr.sh_size, fp) 497 != sec->shdr.sh_size) { 498 die("Cannot read symbol table: %s\n", 499 strerror(errno)); 500 } 501 for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) { 502 Elf_Rel *rel = &sec->reltab[j]; 503 rel->r_offset = elf_addr_to_cpu(rel->r_offset); 504 rel->r_info = elf_xword_to_cpu(rel->r_info); 505 #if (SHT_REL_TYPE == SHT_RELA) 506 rel->r_addend = elf_xword_to_cpu(rel->r_addend); 507 #endif 508 } 509 } 510 } 511 512 513 static void print_absolute_symbols(void) 514 { 515 int i; 516 const char *format; 517 518 if (ELF_BITS == 64) 519 format = "%5d %016"PRIx64" %5"PRId64" %10s %10s %12s %s\n"; 520 else 521 format = "%5d %08"PRIx32" %5"PRId32" %10s %10s %12s %s\n"; 522 523 printf("Absolute symbols\n"); 524 printf(" Num: Value Size Type Bind Visibility Name\n"); 525 for (i = 0; i < ehdr.e_shnum; i++) { 526 struct section *sec = &secs[i]; 527 char *sym_strtab; 528 int j; 529 530 if (sec->shdr.sh_type != SHT_SYMTAB) { 531 continue; 532 } 533 sym_strtab = sec->link->strtab; 534 for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Sym); j++) { 535 Elf_Sym *sym; 536 const char *name; 537 sym = &sec->symtab[j]; 538 name = sym_name(sym_strtab, sym); 539 if (sym->st_shndx != SHN_ABS) { 540 continue; 541 } 542 printf(format, 543 j, sym->st_value, sym->st_size, 544 sym_type(ELF_ST_TYPE(sym->st_info)), 545 sym_bind(ELF_ST_BIND(sym->st_info)), 546 sym_visibility(ELF_ST_VISIBILITY(sym->st_other)), 547 name); 548 } 549 } 550 printf("\n"); 551 } 552 553 static void print_absolute_relocs(void) 554 { 555 int i, printed = 0; 556 const char *format; 557 558 if (ELF_BITS == 64) 559 format = "%016"PRIx64" %016"PRIx64" %10s %016"PRIx64" %s\n"; 560 else 561 format = "%08"PRIx32" %08"PRIx32" %10s %08"PRIx32" %s\n"; 562 563 for (i = 0; i < ehdr.e_shnum; i++) { 564 struct section *sec = &secs[i]; 565 struct section *sec_applies, *sec_symtab; 566 char *sym_strtab; 567 Elf_Sym *sh_symtab; 568 int j; 569 if (sec->shdr.sh_type != SHT_REL_TYPE) { 570 continue; 571 } 572 sec_symtab = sec->link; 573 sec_applies = &secs[sec->shdr.sh_info]; 574 if (!(sec_applies->shdr.sh_flags & SHF_ALLOC)) { 575 continue; 576 } 577 sh_symtab = sec_symtab->symtab; 578 sym_strtab = sec_symtab->link->strtab; 579 for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) { 580 Elf_Rel *rel; 581 Elf_Sym *sym; 582 const char *name; 583 rel = &sec->reltab[j]; 584 sym = &sh_symtab[ELF_R_SYM(rel->r_info)]; 585 name = sym_name(sym_strtab, sym); 586 if (sym->st_shndx != SHN_ABS) { 587 continue; 588 } 589 590 /* Absolute symbols are not relocated if bzImage is 591 * loaded at a non-compiled address. Display a warning 592 * to user at compile time about the absolute 593 * relocations present. 594 * 595 * User need to audit the code to make sure 596 * some symbols which should have been section 597 * relative have not become absolute because of some 598 * linker optimization or wrong programming usage. 599 * 600 * Before warning check if this absolute symbol 601 * relocation is harmless. 602 */ 603 if (is_reloc(S_ABS, name) || is_reloc(S_REL, name)) 604 continue; 605 606 if (!printed) { 607 printf("WARNING: Absolute relocations" 608 " present\n"); 609 printf("Offset Info Type Sym.Value " 610 "Sym.Name\n"); 611 printed = 1; 612 } 613 614 printf(format, 615 rel->r_offset, 616 rel->r_info, 617 rel_type(ELF_R_TYPE(rel->r_info)), 618 sym->st_value, 619 name); 620 } 621 } 622 623 if (printed) 624 printf("\n"); 625 } 626 627 static void add_reloc(struct relocs *r, uint32_t offset) 628 { 629 if (r->count == r->size) { 630 unsigned long newsize = r->size + 50000; 631 void *mem = realloc(r->offset, newsize * sizeof(r->offset[0])); 632 633 if (!mem) 634 die("realloc of %ld entries for relocs failed\n", 635 newsize); 636 r->offset = mem; 637 r->size = newsize; 638 } 639 r->offset[r->count++] = offset; 640 } 641 642 static void walk_relocs(int (*process)(struct section *sec, Elf_Rel *rel, 643 Elf_Sym *sym, const char *symname)) 644 { 645 int i; 646 /* Walk through the relocations */ 647 for (i = 0; i < ehdr.e_shnum; i++) { 648 char *sym_strtab; 649 Elf_Sym *sh_symtab; 650 struct section *sec_applies, *sec_symtab; 651 int j; 652 struct section *sec = &secs[i]; 653 654 if (sec->shdr.sh_type != SHT_REL_TYPE) { 655 continue; 656 } 657 sec_symtab = sec->link; 658 sec_applies = &secs[sec->shdr.sh_info]; 659 if (!(sec_applies->shdr.sh_flags & SHF_ALLOC)) { 660 continue; 661 } 662 sh_symtab = sec_symtab->symtab; 663 sym_strtab = sec_symtab->link->strtab; 664 for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) { 665 Elf_Rel *rel = &sec->reltab[j]; 666 Elf_Sym *sym = &sh_symtab[ELF_R_SYM(rel->r_info)]; 667 const char *symname = sym_name(sym_strtab, sym); 668 669 process(sec, rel, sym, symname); 670 } 671 } 672 } 673 674 /* 675 * The .data..percpu section is a special case for x86_64 SMP kernels. 676 * It is used to initialize the actual per_cpu areas and to provide 677 * definitions for the per_cpu variables that correspond to their offsets 678 * within the percpu area. Since the values of all of the symbols need 679 * to be offsets from the start of the per_cpu area the virtual address 680 * (sh_addr) of .data..percpu is 0 in SMP kernels. 681 * 682 * This means that: 683 * 684 * Relocations that reference symbols in the per_cpu area do not 685 * need further relocation (since the value is an offset relative 686 * to the start of the per_cpu area that does not change). 687 * 688 * Relocations that apply to the per_cpu area need to have their 689 * offset adjusted by by the value of __per_cpu_load to make them 690 * point to the correct place in the loaded image (because the 691 * virtual address of .data..percpu is 0). 692 * 693 * For non SMP kernels .data..percpu is linked as part of the normal 694 * kernel data and does not require special treatment. 695 * 696 */ 697 static int per_cpu_shndx = -1; 698 Elf_Addr per_cpu_load_addr; 699 700 static void percpu_init(void) 701 { 702 int i; 703 for (i = 0; i < ehdr.e_shnum; i++) { 704 ElfW(Sym) *sym; 705 if (strcmp(sec_name(i), ".data..percpu")) 706 continue; 707 708 if (secs[i].shdr.sh_addr != 0) /* non SMP kernel */ 709 return; 710 711 sym = sym_lookup("__per_cpu_load"); 712 if (!sym) 713 die("can't find __per_cpu_load\n"); 714 715 per_cpu_shndx = i; 716 per_cpu_load_addr = sym->st_value; 717 return; 718 } 719 } 720 721 #if ELF_BITS == 64 722 723 /* 724 * Check to see if a symbol lies in the .data..percpu section. 725 * For some as yet not understood reason the "__init_begin" 726 * symbol which immediately preceeds the .data..percpu section 727 * also shows up as it it were part of it so we do an explict 728 * check for that symbol name and ignore it. 729 */ 730 static int is_percpu_sym(ElfW(Sym) *sym, const char *symname) 731 { 732 return (sym->st_shndx == per_cpu_shndx) && 733 strcmp(symname, "__init_begin"); 734 } 735 736 737 static int do_reloc64(struct section *sec, Elf_Rel *rel, ElfW(Sym) *sym, 738 const char *symname) 739 { 740 unsigned r_type = ELF64_R_TYPE(rel->r_info); 741 ElfW(Addr) offset = rel->r_offset; 742 int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname); 743 744 if (sym->st_shndx == SHN_UNDEF) 745 return 0; 746 747 /* 748 * Adjust the offset if this reloc applies to the percpu section. 749 */ 750 if (sec->shdr.sh_info == per_cpu_shndx) 751 offset += per_cpu_load_addr; 752 753 switch (r_type) { 754 case R_X86_64_NONE: 755 case R_X86_64_PC32: 756 /* 757 * NONE can be ignored and PC relative relocations don't 758 * need to be adjusted. 759 */ 760 break; 761 762 case R_X86_64_32: 763 case R_X86_64_32S: 764 case R_X86_64_64: 765 /* 766 * References to the percpu area don't need to be adjusted. 767 */ 768 if (is_percpu_sym(sym, symname)) 769 break; 770 771 if (shn_abs) { 772 /* 773 * Whitelisted absolute symbols do not require 774 * relocation. 775 */ 776 if (is_reloc(S_ABS, symname)) 777 break; 778 779 die("Invalid absolute %s relocation: %s\n", 780 rel_type(r_type), symname); 781 break; 782 } 783 784 /* 785 * Relocation offsets for 64 bit kernels are output 786 * as 32 bits and sign extended back to 64 bits when 787 * the relocations are processed. 788 * Make sure that the offset will fit. 789 */ 790 if ((int32_t)offset != (int64_t)offset) 791 die("Relocation offset doesn't fit in 32 bits\n"); 792 793 if (r_type == R_X86_64_64) 794 add_reloc(&relocs64, offset); 795 else 796 add_reloc(&relocs32, offset); 797 break; 798 799 default: 800 die("Unsupported relocation type: %s (%d)\n", 801 rel_type(r_type), r_type); 802 break; 803 } 804 805 return 0; 806 } 807 808 #else 809 810 static int do_reloc32(struct section *sec, Elf_Rel *rel, Elf_Sym *sym, 811 const char *symname) 812 { 813 unsigned r_type = ELF32_R_TYPE(rel->r_info); 814 int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname); 815 816 switch (r_type) { 817 case R_386_NONE: 818 case R_386_PC32: 819 case R_386_PC16: 820 case R_386_PC8: 821 /* 822 * NONE can be ignored and PC relative relocations don't 823 * need to be adjusted. 824 */ 825 break; 826 827 case R_386_32: 828 if (shn_abs) { 829 /* 830 * Whitelisted absolute symbols do not require 831 * relocation. 832 */ 833 if (is_reloc(S_ABS, symname)) 834 break; 835 836 die("Invalid absolute %s relocation: %s\n", 837 rel_type(r_type), symname); 838 break; 839 } 840 841 add_reloc(&relocs32, rel->r_offset); 842 break; 843 844 default: 845 die("Unsupported relocation type: %s (%d)\n", 846 rel_type(r_type), r_type); 847 break; 848 } 849 850 return 0; 851 } 852 853 static int do_reloc_real(struct section *sec, Elf_Rel *rel, Elf_Sym *sym, 854 const char *symname) 855 { 856 unsigned r_type = ELF32_R_TYPE(rel->r_info); 857 int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname); 858 859 switch (r_type) { 860 case R_386_NONE: 861 case R_386_PC32: 862 case R_386_PC16: 863 case R_386_PC8: 864 /* 865 * NONE can be ignored and PC relative relocations don't 866 * need to be adjusted. 867 */ 868 break; 869 870 case R_386_16: 871 if (shn_abs) { 872 /* 873 * Whitelisted absolute symbols do not require 874 * relocation. 875 */ 876 if (is_reloc(S_ABS, symname)) 877 break; 878 879 if (is_reloc(S_SEG, symname)) { 880 add_reloc(&relocs16, rel->r_offset); 881 break; 882 } 883 } else { 884 if (!is_reloc(S_LIN, symname)) 885 break; 886 } 887 die("Invalid %s %s relocation: %s\n", 888 shn_abs ? "absolute" : "relative", 889 rel_type(r_type), symname); 890 break; 891 892 case R_386_32: 893 if (shn_abs) { 894 /* 895 * Whitelisted absolute symbols do not require 896 * relocation. 897 */ 898 if (is_reloc(S_ABS, symname)) 899 break; 900 901 if (is_reloc(S_REL, symname)) { 902 add_reloc(&relocs32, rel->r_offset); 903 break; 904 } 905 } else { 906 if (is_reloc(S_LIN, symname)) 907 add_reloc(&relocs32, rel->r_offset); 908 break; 909 } 910 die("Invalid %s %s relocation: %s\n", 911 shn_abs ? "absolute" : "relative", 912 rel_type(r_type), symname); 913 break; 914 915 default: 916 die("Unsupported relocation type: %s (%d)\n", 917 rel_type(r_type), r_type); 918 break; 919 } 920 921 return 0; 922 } 923 924 #endif 925 926 static int cmp_relocs(const void *va, const void *vb) 927 { 928 const uint32_t *a, *b; 929 a = va; b = vb; 930 return (*a == *b)? 0 : (*a > *b)? 1 : -1; 931 } 932 933 static void sort_relocs(struct relocs *r) 934 { 935 qsort(r->offset, r->count, sizeof(r->offset[0]), cmp_relocs); 936 } 937 938 static int write32(uint32_t v, FILE *f) 939 { 940 unsigned char buf[4]; 941 942 put_unaligned_le32(v, buf); 943 return fwrite(buf, 1, 4, f) == 4 ? 0 : -1; 944 } 945 946 static int write32_as_text(uint32_t v, FILE *f) 947 { 948 return fprintf(f, "\t.long 0x%08"PRIx32"\n", v) > 0 ? 0 : -1; 949 } 950 951 static void emit_relocs(int as_text, int use_real_mode) 952 { 953 int i; 954 int (*write_reloc)(uint32_t, FILE *) = write32; 955 int (*do_reloc)(struct section *sec, Elf_Rel *rel, Elf_Sym *sym, 956 const char *symname); 957 958 #if ELF_BITS == 64 959 if (!use_real_mode) 960 do_reloc = do_reloc64; 961 else 962 die("--realmode not valid for a 64-bit ELF file"); 963 #else 964 if (!use_real_mode) 965 do_reloc = do_reloc32; 966 else 967 do_reloc = do_reloc_real; 968 #endif 969 970 /* Collect up the relocations */ 971 walk_relocs(do_reloc); 972 973 if (relocs16.count && !use_real_mode) 974 die("Segment relocations found but --realmode not specified\n"); 975 976 /* Order the relocations for more efficient processing */ 977 sort_relocs(&relocs16); 978 sort_relocs(&relocs32); 979 sort_relocs(&relocs64); 980 981 /* Print the relocations */ 982 if (as_text) { 983 /* Print the relocations in a form suitable that 984 * gas will like. 985 */ 986 printf(".section \".data.reloc\",\"a\"\n"); 987 printf(".balign 4\n"); 988 write_reloc = write32_as_text; 989 } 990 991 if (use_real_mode) { 992 write_reloc(relocs16.count, stdout); 993 for (i = 0; i < relocs16.count; i++) 994 write_reloc(relocs16.offset[i], stdout); 995 996 write_reloc(relocs32.count, stdout); 997 for (i = 0; i < relocs32.count; i++) 998 write_reloc(relocs32.offset[i], stdout); 999 } else { 1000 if (ELF_BITS == 64) { 1001 /* Print a stop */ 1002 write_reloc(0, stdout); 1003 1004 /* Now print each relocation */ 1005 for (i = 0; i < relocs64.count; i++) 1006 write_reloc(relocs64.offset[i], stdout); 1007 } 1008 1009 /* Print a stop */ 1010 write_reloc(0, stdout); 1011 1012 /* Now print each relocation */ 1013 for (i = 0; i < relocs32.count; i++) 1014 write_reloc(relocs32.offset[i], stdout); 1015 } 1016 } 1017 1018 #if ELF_BITS == 64 1019 # define process process_64 1020 #else 1021 # define process process_32 1022 #endif 1023 1024 void process(FILE *fp, int use_real_mode, int as_text, 1025 int show_absolute_syms, int show_absolute_relocs) 1026 { 1027 regex_init(use_real_mode); 1028 read_ehdr(fp); 1029 read_shdrs(fp); 1030 read_strtabs(fp); 1031 read_symtabs(fp); 1032 read_relocs(fp); 1033 if (ELF_BITS == 64) 1034 percpu_init(); 1035 if (show_absolute_syms) { 1036 print_absolute_symbols(); 1037 return; 1038 } 1039 if (show_absolute_relocs) { 1040 print_absolute_relocs(); 1041 return; 1042 } 1043 emit_relocs(as_text, use_real_mode); 1044 } 1045