xref: /openbmc/linux/arch/x86/tools/relocs.c (revision 0c9df3df)
1 // SPDX-License-Identifier: GPL-2.0
2 /* This is included from relocs_32/64.c */
3 
4 #define ElfW(type)		_ElfW(ELF_BITS, type)
5 #define _ElfW(bits, type)	__ElfW(bits, type)
6 #define __ElfW(bits, type)	Elf##bits##_##type
7 
8 #define Elf_Addr		ElfW(Addr)
9 #define Elf_Ehdr		ElfW(Ehdr)
10 #define Elf_Phdr		ElfW(Phdr)
11 #define Elf_Shdr		ElfW(Shdr)
12 #define Elf_Sym			ElfW(Sym)
13 
14 static Elf_Ehdr		ehdr;
15 static unsigned long	shnum;
16 static unsigned int	shstrndx;
17 static unsigned int	shsymtabndx;
18 static unsigned int	shxsymtabndx;
19 
20 static int sym_index(Elf_Sym *sym);
21 
22 struct relocs {
23 	uint32_t	*offset;
24 	unsigned long	count;
25 	unsigned long	size;
26 };
27 
28 static struct relocs relocs16;
29 static struct relocs relocs32;
30 #if ELF_BITS == 64
31 static struct relocs relocs32neg;
32 static struct relocs relocs64;
33 #define FMT PRIu64
34 #else
35 #define FMT PRIu32
36 #endif
37 
38 struct section {
39 	Elf_Shdr       shdr;
40 	struct section *link;
41 	Elf_Sym        *symtab;
42 	Elf32_Word     *xsymtab;
43 	Elf_Rel        *reltab;
44 	char           *strtab;
45 };
46 static struct section *secs;
47 
48 static const char * const sym_regex_kernel[S_NSYMTYPES] = {
49 /*
50  * Following symbols have been audited. There values are constant and do
51  * not change if bzImage is loaded at a different physical address than
52  * the address for which it has been compiled. Don't warn user about
53  * absolute relocations present w.r.t these symbols.
54  */
55 	[S_ABS] =
56 	"^(xen_irq_disable_direct_reloc$|"
57 	"xen_save_fl_direct_reloc$|"
58 	"VDSO|"
59 	"__kcfi_typeid_|"
60 	"__crc_)",
61 
62 /*
63  * These symbols are known to be relative, even if the linker marks them
64  * as absolute (typically defined outside any section in the linker script.)
65  */
66 	[S_REL] =
67 	"^(__init_(begin|end)|"
68 	"__x86_cpu_dev_(start|end)|"
69 	"(__parainstructions|__alt_instructions)(_end)?|"
70 	"(__iommu_table|__apicdrivers|__smp_locks)(_end)?|"
71 	"__(start|end)_pci_.*|"
72 #if CONFIG_FW_LOADER
73 	"__(start|end)_builtin_fw|"
74 #endif
75 	"__(start|stop)___ksymtab(_gpl)?|"
76 	"__(start|stop)___kcrctab(_gpl)?|"
77 	"__(start|stop)___param|"
78 	"__(start|stop)___modver|"
79 	"__(start|stop)___bug_table|"
80 	"__tracedata_(start|end)|"
81 	"__(start|stop)_notes|"
82 	"__end_rodata|"
83 	"__end_rodata_aligned|"
84 	"__initramfs_start|"
85 	"(jiffies|jiffies_64)|"
86 #if ELF_BITS == 64
87 	"__per_cpu_load|"
88 	"init_per_cpu__.*|"
89 	"__end_rodata_hpage_align|"
90 #endif
91 	"__vvar_page|"
92 	"_end)$"
93 };
94 
95 
96 static const char * const sym_regex_realmode[S_NSYMTYPES] = {
97 /*
98  * These symbols are known to be relative, even if the linker marks them
99  * as absolute (typically defined outside any section in the linker script.)
100  */
101 	[S_REL] =
102 	"^pa_",
103 
104 /*
105  * These are 16-bit segment symbols when compiling 16-bit code.
106  */
107 	[S_SEG] =
108 	"^real_mode_seg$",
109 
110 /*
111  * These are offsets belonging to segments, as opposed to linear addresses,
112  * when compiling 16-bit code.
113  */
114 	[S_LIN] =
115 	"^pa_",
116 };
117 
118 static const char * const *sym_regex;
119 
120 static regex_t sym_regex_c[S_NSYMTYPES];
121 static int is_reloc(enum symtype type, const char *sym_name)
122 {
123 	return sym_regex[type] &&
124 		!regexec(&sym_regex_c[type], sym_name, 0, NULL, 0);
125 }
126 
127 static void regex_init(int use_real_mode)
128 {
129         char errbuf[128];
130         int err;
131 	int i;
132 
133 	if (use_real_mode)
134 		sym_regex = sym_regex_realmode;
135 	else
136 		sym_regex = sym_regex_kernel;
137 
138 	for (i = 0; i < S_NSYMTYPES; i++) {
139 		if (!sym_regex[i])
140 			continue;
141 
142 		err = regcomp(&sym_regex_c[i], sym_regex[i],
143 			      REG_EXTENDED|REG_NOSUB);
144 
145 		if (err) {
146 			regerror(err, &sym_regex_c[i], errbuf, sizeof(errbuf));
147 			die("%s", errbuf);
148 		}
149         }
150 }
151 
152 static const char *sym_type(unsigned type)
153 {
154 	static const char *type_name[] = {
155 #define SYM_TYPE(X) [X] = #X
156 		SYM_TYPE(STT_NOTYPE),
157 		SYM_TYPE(STT_OBJECT),
158 		SYM_TYPE(STT_FUNC),
159 		SYM_TYPE(STT_SECTION),
160 		SYM_TYPE(STT_FILE),
161 		SYM_TYPE(STT_COMMON),
162 		SYM_TYPE(STT_TLS),
163 #undef SYM_TYPE
164 	};
165 	const char *name = "unknown sym type name";
166 	if (type < ARRAY_SIZE(type_name)) {
167 		name = type_name[type];
168 	}
169 	return name;
170 }
171 
172 static const char *sym_bind(unsigned bind)
173 {
174 	static const char *bind_name[] = {
175 #define SYM_BIND(X) [X] = #X
176 		SYM_BIND(STB_LOCAL),
177 		SYM_BIND(STB_GLOBAL),
178 		SYM_BIND(STB_WEAK),
179 #undef SYM_BIND
180 	};
181 	const char *name = "unknown sym bind name";
182 	if (bind < ARRAY_SIZE(bind_name)) {
183 		name = bind_name[bind];
184 	}
185 	return name;
186 }
187 
188 static const char *sym_visibility(unsigned visibility)
189 {
190 	static const char *visibility_name[] = {
191 #define SYM_VISIBILITY(X) [X] = #X
192 		SYM_VISIBILITY(STV_DEFAULT),
193 		SYM_VISIBILITY(STV_INTERNAL),
194 		SYM_VISIBILITY(STV_HIDDEN),
195 		SYM_VISIBILITY(STV_PROTECTED),
196 #undef SYM_VISIBILITY
197 	};
198 	const char *name = "unknown sym visibility name";
199 	if (visibility < ARRAY_SIZE(visibility_name)) {
200 		name = visibility_name[visibility];
201 	}
202 	return name;
203 }
204 
205 static const char *rel_type(unsigned type)
206 {
207 	static const char *type_name[] = {
208 #define REL_TYPE(X) [X] = #X
209 #if ELF_BITS == 64
210 		REL_TYPE(R_X86_64_NONE),
211 		REL_TYPE(R_X86_64_64),
212 		REL_TYPE(R_X86_64_PC64),
213 		REL_TYPE(R_X86_64_PC32),
214 		REL_TYPE(R_X86_64_GOT32),
215 		REL_TYPE(R_X86_64_PLT32),
216 		REL_TYPE(R_X86_64_COPY),
217 		REL_TYPE(R_X86_64_GLOB_DAT),
218 		REL_TYPE(R_X86_64_JUMP_SLOT),
219 		REL_TYPE(R_X86_64_RELATIVE),
220 		REL_TYPE(R_X86_64_GOTPCREL),
221 		REL_TYPE(R_X86_64_32),
222 		REL_TYPE(R_X86_64_32S),
223 		REL_TYPE(R_X86_64_16),
224 		REL_TYPE(R_X86_64_PC16),
225 		REL_TYPE(R_X86_64_8),
226 		REL_TYPE(R_X86_64_PC8),
227 #else
228 		REL_TYPE(R_386_NONE),
229 		REL_TYPE(R_386_32),
230 		REL_TYPE(R_386_PC32),
231 		REL_TYPE(R_386_GOT32),
232 		REL_TYPE(R_386_PLT32),
233 		REL_TYPE(R_386_COPY),
234 		REL_TYPE(R_386_GLOB_DAT),
235 		REL_TYPE(R_386_JMP_SLOT),
236 		REL_TYPE(R_386_RELATIVE),
237 		REL_TYPE(R_386_GOTOFF),
238 		REL_TYPE(R_386_GOTPC),
239 		REL_TYPE(R_386_8),
240 		REL_TYPE(R_386_PC8),
241 		REL_TYPE(R_386_16),
242 		REL_TYPE(R_386_PC16),
243 #endif
244 #undef REL_TYPE
245 	};
246 	const char *name = "unknown type rel type name";
247 	if (type < ARRAY_SIZE(type_name) && type_name[type]) {
248 		name = type_name[type];
249 	}
250 	return name;
251 }
252 
253 static const char *sec_name(unsigned shndx)
254 {
255 	const char *sec_strtab;
256 	const char *name;
257 	sec_strtab = secs[shstrndx].strtab;
258 	name = "<noname>";
259 	if (shndx < shnum) {
260 		name = sec_strtab + secs[shndx].shdr.sh_name;
261 	}
262 	else if (shndx == SHN_ABS) {
263 		name = "ABSOLUTE";
264 	}
265 	else if (shndx == SHN_COMMON) {
266 		name = "COMMON";
267 	}
268 	return name;
269 }
270 
271 static const char *sym_name(const char *sym_strtab, Elf_Sym *sym)
272 {
273 	const char *name;
274 	name = "<noname>";
275 	if (sym->st_name) {
276 		name = sym_strtab + sym->st_name;
277 	}
278 	else {
279 		name = sec_name(sym_index(sym));
280 	}
281 	return name;
282 }
283 
284 static Elf_Sym *sym_lookup(const char *symname)
285 {
286 	int i;
287 	for (i = 0; i < shnum; i++) {
288 		struct section *sec = &secs[i];
289 		long nsyms;
290 		char *strtab;
291 		Elf_Sym *symtab;
292 		Elf_Sym *sym;
293 
294 		if (sec->shdr.sh_type != SHT_SYMTAB)
295 			continue;
296 
297 		nsyms = sec->shdr.sh_size/sizeof(Elf_Sym);
298 		symtab = sec->symtab;
299 		strtab = sec->link->strtab;
300 
301 		for (sym = symtab; --nsyms >= 0; sym++) {
302 			if (!sym->st_name)
303 				continue;
304 			if (strcmp(symname, strtab + sym->st_name) == 0)
305 				return sym;
306 		}
307 	}
308 	return 0;
309 }
310 
311 #if BYTE_ORDER == LITTLE_ENDIAN
312 #define le16_to_cpu(val) (val)
313 #define le32_to_cpu(val) (val)
314 #define le64_to_cpu(val) (val)
315 #endif
316 #if BYTE_ORDER == BIG_ENDIAN
317 #define le16_to_cpu(val) bswap_16(val)
318 #define le32_to_cpu(val) bswap_32(val)
319 #define le64_to_cpu(val) bswap_64(val)
320 #endif
321 
322 static uint16_t elf16_to_cpu(uint16_t val)
323 {
324 	return le16_to_cpu(val);
325 }
326 
327 static uint32_t elf32_to_cpu(uint32_t val)
328 {
329 	return le32_to_cpu(val);
330 }
331 
332 #define elf_half_to_cpu(x)	elf16_to_cpu(x)
333 #define elf_word_to_cpu(x)	elf32_to_cpu(x)
334 
335 #if ELF_BITS == 64
336 static uint64_t elf64_to_cpu(uint64_t val)
337 {
338         return le64_to_cpu(val);
339 }
340 #define elf_addr_to_cpu(x)	elf64_to_cpu(x)
341 #define elf_off_to_cpu(x)	elf64_to_cpu(x)
342 #define elf_xword_to_cpu(x)	elf64_to_cpu(x)
343 #else
344 #define elf_addr_to_cpu(x)	elf32_to_cpu(x)
345 #define elf_off_to_cpu(x)	elf32_to_cpu(x)
346 #define elf_xword_to_cpu(x)	elf32_to_cpu(x)
347 #endif
348 
349 static int sym_index(Elf_Sym *sym)
350 {
351 	Elf_Sym *symtab = secs[shsymtabndx].symtab;
352 	Elf32_Word *xsymtab = secs[shxsymtabndx].xsymtab;
353 	unsigned long offset;
354 	int index;
355 
356 	if (sym->st_shndx != SHN_XINDEX)
357 		return sym->st_shndx;
358 
359 	/* calculate offset of sym from head of table. */
360 	offset = (unsigned long)sym - (unsigned long)symtab;
361 	index = offset / sizeof(*sym);
362 
363 	return elf32_to_cpu(xsymtab[index]);
364 }
365 
366 static void read_ehdr(FILE *fp)
367 {
368 	if (fread(&ehdr, sizeof(ehdr), 1, fp) != 1) {
369 		die("Cannot read ELF header: %s\n",
370 			strerror(errno));
371 	}
372 	if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0) {
373 		die("No ELF magic\n");
374 	}
375 	if (ehdr.e_ident[EI_CLASS] != ELF_CLASS) {
376 		die("Not a %d bit executable\n", ELF_BITS);
377 	}
378 	if (ehdr.e_ident[EI_DATA] != ELFDATA2LSB) {
379 		die("Not a LSB ELF executable\n");
380 	}
381 	if (ehdr.e_ident[EI_VERSION] != EV_CURRENT) {
382 		die("Unknown ELF version\n");
383 	}
384 	/* Convert the fields to native endian */
385 	ehdr.e_type      = elf_half_to_cpu(ehdr.e_type);
386 	ehdr.e_machine   = elf_half_to_cpu(ehdr.e_machine);
387 	ehdr.e_version   = elf_word_to_cpu(ehdr.e_version);
388 	ehdr.e_entry     = elf_addr_to_cpu(ehdr.e_entry);
389 	ehdr.e_phoff     = elf_off_to_cpu(ehdr.e_phoff);
390 	ehdr.e_shoff     = elf_off_to_cpu(ehdr.e_shoff);
391 	ehdr.e_flags     = elf_word_to_cpu(ehdr.e_flags);
392 	ehdr.e_ehsize    = elf_half_to_cpu(ehdr.e_ehsize);
393 	ehdr.e_phentsize = elf_half_to_cpu(ehdr.e_phentsize);
394 	ehdr.e_phnum     = elf_half_to_cpu(ehdr.e_phnum);
395 	ehdr.e_shentsize = elf_half_to_cpu(ehdr.e_shentsize);
396 	ehdr.e_shnum     = elf_half_to_cpu(ehdr.e_shnum);
397 	ehdr.e_shstrndx  = elf_half_to_cpu(ehdr.e_shstrndx);
398 
399 	shnum = ehdr.e_shnum;
400 	shstrndx = ehdr.e_shstrndx;
401 
402 	if ((ehdr.e_type != ET_EXEC) && (ehdr.e_type != ET_DYN))
403 		die("Unsupported ELF header type\n");
404 	if (ehdr.e_machine != ELF_MACHINE)
405 		die("Not for %s\n", ELF_MACHINE_NAME);
406 	if (ehdr.e_version != EV_CURRENT)
407 		die("Unknown ELF version\n");
408 	if (ehdr.e_ehsize != sizeof(Elf_Ehdr))
409 		die("Bad ELF header size\n");
410 	if (ehdr.e_phentsize != sizeof(Elf_Phdr))
411 		die("Bad program header entry\n");
412 	if (ehdr.e_shentsize != sizeof(Elf_Shdr))
413 		die("Bad section header entry\n");
414 
415 
416 	if (shnum == SHN_UNDEF || shstrndx == SHN_XINDEX) {
417 		Elf_Shdr shdr;
418 
419 		if (fseek(fp, ehdr.e_shoff, SEEK_SET) < 0)
420 			die("Seek to %" FMT " failed: %s\n", ehdr.e_shoff, strerror(errno));
421 
422 		if (fread(&shdr, sizeof(shdr), 1, fp) != 1)
423 			die("Cannot read initial ELF section header: %s\n", strerror(errno));
424 
425 		if (shnum == SHN_UNDEF)
426 			shnum = elf_xword_to_cpu(shdr.sh_size);
427 
428 		if (shstrndx == SHN_XINDEX)
429 			shstrndx = elf_word_to_cpu(shdr.sh_link);
430 	}
431 
432 	if (shstrndx >= shnum)
433 		die("String table index out of bounds\n");
434 }
435 
436 static void read_shdrs(FILE *fp)
437 {
438 	int i;
439 	Elf_Shdr shdr;
440 
441 	secs = calloc(shnum, sizeof(struct section));
442 	if (!secs) {
443 		die("Unable to allocate %ld section headers\n",
444 		    shnum);
445 	}
446 	if (fseek(fp, ehdr.e_shoff, SEEK_SET) < 0) {
447 		die("Seek to %" FMT " failed: %s\n",
448 		    ehdr.e_shoff, strerror(errno));
449 	}
450 	for (i = 0; i < shnum; i++) {
451 		struct section *sec = &secs[i];
452 		if (fread(&shdr, sizeof(shdr), 1, fp) != 1)
453 			die("Cannot read ELF section headers %d/%ld: %s\n",
454 			    i, shnum, strerror(errno));
455 		sec->shdr.sh_name      = elf_word_to_cpu(shdr.sh_name);
456 		sec->shdr.sh_type      = elf_word_to_cpu(shdr.sh_type);
457 		sec->shdr.sh_flags     = elf_xword_to_cpu(shdr.sh_flags);
458 		sec->shdr.sh_addr      = elf_addr_to_cpu(shdr.sh_addr);
459 		sec->shdr.sh_offset    = elf_off_to_cpu(shdr.sh_offset);
460 		sec->shdr.sh_size      = elf_xword_to_cpu(shdr.sh_size);
461 		sec->shdr.sh_link      = elf_word_to_cpu(shdr.sh_link);
462 		sec->shdr.sh_info      = elf_word_to_cpu(shdr.sh_info);
463 		sec->shdr.sh_addralign = elf_xword_to_cpu(shdr.sh_addralign);
464 		sec->shdr.sh_entsize   = elf_xword_to_cpu(shdr.sh_entsize);
465 		if (sec->shdr.sh_link < shnum)
466 			sec->link = &secs[sec->shdr.sh_link];
467 	}
468 
469 }
470 
471 static void read_strtabs(FILE *fp)
472 {
473 	int i;
474 	for (i = 0; i < shnum; i++) {
475 		struct section *sec = &secs[i];
476 		if (sec->shdr.sh_type != SHT_STRTAB) {
477 			continue;
478 		}
479 		sec->strtab = malloc(sec->shdr.sh_size);
480 		if (!sec->strtab) {
481 			die("malloc of %" FMT " bytes for strtab failed\n",
482 			    sec->shdr.sh_size);
483 		}
484 		if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) {
485 			die("Seek to %" FMT " failed: %s\n",
486 			    sec->shdr.sh_offset, strerror(errno));
487 		}
488 		if (fread(sec->strtab, 1, sec->shdr.sh_size, fp)
489 		    != sec->shdr.sh_size) {
490 			die("Cannot read symbol table: %s\n",
491 				strerror(errno));
492 		}
493 	}
494 }
495 
496 static void read_symtabs(FILE *fp)
497 {
498 	int i,j;
499 
500 	for (i = 0; i < shnum; i++) {
501 		struct section *sec = &secs[i];
502 		int num_syms;
503 
504 		switch (sec->shdr.sh_type) {
505 		case SHT_SYMTAB_SHNDX:
506 			sec->xsymtab = malloc(sec->shdr.sh_size);
507 			if (!sec->xsymtab) {
508 				die("malloc of %" FMT " bytes for xsymtab failed\n",
509 				    sec->shdr.sh_size);
510 			}
511 			if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) {
512 				die("Seek to %" FMT " failed: %s\n",
513 				    sec->shdr.sh_offset, strerror(errno));
514 			}
515 			if (fread(sec->xsymtab, 1, sec->shdr.sh_size, fp)
516 			    != sec->shdr.sh_size) {
517 				die("Cannot read extended symbol table: %s\n",
518 				    strerror(errno));
519 			}
520 			shxsymtabndx = i;
521 			continue;
522 
523 		case SHT_SYMTAB:
524 			num_syms = sec->shdr.sh_size / sizeof(Elf_Sym);
525 
526 			sec->symtab = malloc(sec->shdr.sh_size);
527 			if (!sec->symtab) {
528 				die("malloc of %" FMT " bytes for symtab failed\n",
529 				    sec->shdr.sh_size);
530 			}
531 			if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) {
532 				die("Seek to %" FMT " failed: %s\n",
533 				    sec->shdr.sh_offset, strerror(errno));
534 			}
535 			if (fread(sec->symtab, 1, sec->shdr.sh_size, fp)
536 			    != sec->shdr.sh_size) {
537 				die("Cannot read symbol table: %s\n",
538 				    strerror(errno));
539 			}
540 			for (j = 0; j < num_syms; j++) {
541 				Elf_Sym *sym = &sec->symtab[j];
542 
543 				sym->st_name  = elf_word_to_cpu(sym->st_name);
544 				sym->st_value = elf_addr_to_cpu(sym->st_value);
545 				sym->st_size  = elf_xword_to_cpu(sym->st_size);
546 				sym->st_shndx = elf_half_to_cpu(sym->st_shndx);
547 			}
548 			shsymtabndx = i;
549 			continue;
550 
551 		default:
552 			continue;
553 		}
554 	}
555 }
556 
557 
558 static void read_relocs(FILE *fp)
559 {
560 	int i,j;
561 	for (i = 0; i < shnum; i++) {
562 		struct section *sec = &secs[i];
563 		if (sec->shdr.sh_type != SHT_REL_TYPE) {
564 			continue;
565 		}
566 		sec->reltab = malloc(sec->shdr.sh_size);
567 		if (!sec->reltab) {
568 			die("malloc of %" FMT " bytes for relocs failed\n",
569 			    sec->shdr.sh_size);
570 		}
571 		if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) {
572 			die("Seek to %" FMT " failed: %s\n",
573 			    sec->shdr.sh_offset, strerror(errno));
574 		}
575 		if (fread(sec->reltab, 1, sec->shdr.sh_size, fp)
576 		    != sec->shdr.sh_size) {
577 			die("Cannot read symbol table: %s\n",
578 				strerror(errno));
579 		}
580 		for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) {
581 			Elf_Rel *rel = &sec->reltab[j];
582 			rel->r_offset = elf_addr_to_cpu(rel->r_offset);
583 			rel->r_info   = elf_xword_to_cpu(rel->r_info);
584 #if (SHT_REL_TYPE == SHT_RELA)
585 			rel->r_addend = elf_xword_to_cpu(rel->r_addend);
586 #endif
587 		}
588 	}
589 }
590 
591 
592 static void print_absolute_symbols(void)
593 {
594 	int i;
595 	const char *format;
596 
597 	if (ELF_BITS == 64)
598 		format = "%5d %016"PRIx64" %5"PRId64" %10s %10s %12s %s\n";
599 	else
600 		format = "%5d %08"PRIx32"  %5"PRId32" %10s %10s %12s %s\n";
601 
602 	printf("Absolute symbols\n");
603 	printf(" Num:    Value Size  Type       Bind        Visibility  Name\n");
604 	for (i = 0; i < shnum; i++) {
605 		struct section *sec = &secs[i];
606 		char *sym_strtab;
607 		int j;
608 
609 		if (sec->shdr.sh_type != SHT_SYMTAB) {
610 			continue;
611 		}
612 		sym_strtab = sec->link->strtab;
613 		for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Sym); j++) {
614 			Elf_Sym *sym;
615 			const char *name;
616 			sym = &sec->symtab[j];
617 			name = sym_name(sym_strtab, sym);
618 			if (sym->st_shndx != SHN_ABS) {
619 				continue;
620 			}
621 			printf(format,
622 				j, sym->st_value, sym->st_size,
623 				sym_type(ELF_ST_TYPE(sym->st_info)),
624 				sym_bind(ELF_ST_BIND(sym->st_info)),
625 				sym_visibility(ELF_ST_VISIBILITY(sym->st_other)),
626 				name);
627 		}
628 	}
629 	printf("\n");
630 }
631 
632 static void print_absolute_relocs(void)
633 {
634 	int i, printed = 0;
635 	const char *format;
636 
637 	if (ELF_BITS == 64)
638 		format = "%016"PRIx64" %016"PRIx64" %10s %016"PRIx64"  %s\n";
639 	else
640 		format = "%08"PRIx32" %08"PRIx32" %10s %08"PRIx32"  %s\n";
641 
642 	for (i = 0; i < shnum; i++) {
643 		struct section *sec = &secs[i];
644 		struct section *sec_applies, *sec_symtab;
645 		char *sym_strtab;
646 		Elf_Sym *sh_symtab;
647 		int j;
648 		if (sec->shdr.sh_type != SHT_REL_TYPE) {
649 			continue;
650 		}
651 		sec_symtab  = sec->link;
652 		sec_applies = &secs[sec->shdr.sh_info];
653 		if (!(sec_applies->shdr.sh_flags & SHF_ALLOC)) {
654 			continue;
655 		}
656 		/*
657 		 * Do not perform relocations in .notes section; any
658 		 * values there are meant for pre-boot consumption (e.g.
659 		 * startup_xen).
660 		 */
661 		if (sec_applies->shdr.sh_type == SHT_NOTE) {
662 			continue;
663 		}
664 		sh_symtab  = sec_symtab->symtab;
665 		sym_strtab = sec_symtab->link->strtab;
666 		for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) {
667 			Elf_Rel *rel;
668 			Elf_Sym *sym;
669 			const char *name;
670 			rel = &sec->reltab[j];
671 			sym = &sh_symtab[ELF_R_SYM(rel->r_info)];
672 			name = sym_name(sym_strtab, sym);
673 			if (sym->st_shndx != SHN_ABS) {
674 				continue;
675 			}
676 
677 			/* Absolute symbols are not relocated if bzImage is
678 			 * loaded at a non-compiled address. Display a warning
679 			 * to user at compile time about the absolute
680 			 * relocations present.
681 			 *
682 			 * User need to audit the code to make sure
683 			 * some symbols which should have been section
684 			 * relative have not become absolute because of some
685 			 * linker optimization or wrong programming usage.
686 			 *
687 			 * Before warning check if this absolute symbol
688 			 * relocation is harmless.
689 			 */
690 			if (is_reloc(S_ABS, name) || is_reloc(S_REL, name))
691 				continue;
692 
693 			if (!printed) {
694 				printf("WARNING: Absolute relocations"
695 					" present\n");
696 				printf("Offset     Info     Type     Sym.Value "
697 					"Sym.Name\n");
698 				printed = 1;
699 			}
700 
701 			printf(format,
702 				rel->r_offset,
703 				rel->r_info,
704 				rel_type(ELF_R_TYPE(rel->r_info)),
705 				sym->st_value,
706 				name);
707 		}
708 	}
709 
710 	if (printed)
711 		printf("\n");
712 }
713 
714 static void add_reloc(struct relocs *r, uint32_t offset)
715 {
716 	if (r->count == r->size) {
717 		unsigned long newsize = r->size + 50000;
718 		void *mem = realloc(r->offset, newsize * sizeof(r->offset[0]));
719 
720 		if (!mem)
721 			die("realloc of %ld entries for relocs failed\n",
722                                 newsize);
723 		r->offset = mem;
724 		r->size = newsize;
725 	}
726 	r->offset[r->count++] = offset;
727 }
728 
729 static void walk_relocs(int (*process)(struct section *sec, Elf_Rel *rel,
730 			Elf_Sym *sym, const char *symname))
731 {
732 	int i;
733 	/* Walk through the relocations */
734 	for (i = 0; i < shnum; i++) {
735 		char *sym_strtab;
736 		Elf_Sym *sh_symtab;
737 		struct section *sec_applies, *sec_symtab;
738 		int j;
739 		struct section *sec = &secs[i];
740 
741 		if (sec->shdr.sh_type != SHT_REL_TYPE) {
742 			continue;
743 		}
744 		sec_symtab  = sec->link;
745 		sec_applies = &secs[sec->shdr.sh_info];
746 		if (!(sec_applies->shdr.sh_flags & SHF_ALLOC)) {
747 			continue;
748 		}
749 
750 		/*
751 		 * Do not perform relocations in .notes sections; any
752 		 * values there are meant for pre-boot consumption (e.g.
753 		 * startup_xen).
754 		 */
755 		if (sec_applies->shdr.sh_type == SHT_NOTE)
756 			continue;
757 
758 		sh_symtab = sec_symtab->symtab;
759 		sym_strtab = sec_symtab->link->strtab;
760 		for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) {
761 			Elf_Rel *rel = &sec->reltab[j];
762 			Elf_Sym *sym = &sh_symtab[ELF_R_SYM(rel->r_info)];
763 			const char *symname = sym_name(sym_strtab, sym);
764 
765 			process(sec, rel, sym, symname);
766 		}
767 	}
768 }
769 
770 /*
771  * The .data..percpu section is a special case for x86_64 SMP kernels.
772  * It is used to initialize the actual per_cpu areas and to provide
773  * definitions for the per_cpu variables that correspond to their offsets
774  * within the percpu area. Since the values of all of the symbols need
775  * to be offsets from the start of the per_cpu area the virtual address
776  * (sh_addr) of .data..percpu is 0 in SMP kernels.
777  *
778  * This means that:
779  *
780  *	Relocations that reference symbols in the per_cpu area do not
781  *	need further relocation (since the value is an offset relative
782  *	to the start of the per_cpu area that does not change).
783  *
784  *	Relocations that apply to the per_cpu area need to have their
785  *	offset adjusted by by the value of __per_cpu_load to make them
786  *	point to the correct place in the loaded image (because the
787  *	virtual address of .data..percpu is 0).
788  *
789  * For non SMP kernels .data..percpu is linked as part of the normal
790  * kernel data and does not require special treatment.
791  *
792  */
793 static int per_cpu_shndx	= -1;
794 static Elf_Addr per_cpu_load_addr;
795 
796 static void percpu_init(void)
797 {
798 	int i;
799 	for (i = 0; i < shnum; i++) {
800 		ElfW(Sym) *sym;
801 		if (strcmp(sec_name(i), ".data..percpu"))
802 			continue;
803 
804 		if (secs[i].shdr.sh_addr != 0)	/* non SMP kernel */
805 			return;
806 
807 		sym = sym_lookup("__per_cpu_load");
808 		if (!sym)
809 			die("can't find __per_cpu_load\n");
810 
811 		per_cpu_shndx = i;
812 		per_cpu_load_addr = sym->st_value;
813 		return;
814 	}
815 }
816 
817 #if ELF_BITS == 64
818 
819 /*
820  * Check to see if a symbol lies in the .data..percpu section.
821  *
822  * The linker incorrectly associates some symbols with the
823  * .data..percpu section so we also need to check the symbol
824  * name to make sure that we classify the symbol correctly.
825  *
826  * The GNU linker incorrectly associates:
827  *	__init_begin
828  *	__per_cpu_load
829  *
830  * The "gold" linker incorrectly associates:
831  *	init_per_cpu__fixed_percpu_data
832  *	init_per_cpu__gdt_page
833  */
834 static int is_percpu_sym(ElfW(Sym) *sym, const char *symname)
835 {
836 	int shndx = sym_index(sym);
837 
838 	return (shndx == per_cpu_shndx) &&
839 		strcmp(symname, "__init_begin") &&
840 		strcmp(symname, "__per_cpu_load") &&
841 		strncmp(symname, "init_per_cpu_", 13);
842 }
843 
844 
845 static int do_reloc64(struct section *sec, Elf_Rel *rel, ElfW(Sym) *sym,
846 		      const char *symname)
847 {
848 	unsigned r_type = ELF64_R_TYPE(rel->r_info);
849 	ElfW(Addr) offset = rel->r_offset;
850 	int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname);
851 
852 	if (sym->st_shndx == SHN_UNDEF)
853 		return 0;
854 
855 	/*
856 	 * Adjust the offset if this reloc applies to the percpu section.
857 	 */
858 	if (sec->shdr.sh_info == per_cpu_shndx)
859 		offset += per_cpu_load_addr;
860 
861 	switch (r_type) {
862 	case R_X86_64_NONE:
863 		/* NONE can be ignored. */
864 		break;
865 
866 	case R_X86_64_PC32:
867 	case R_X86_64_PLT32:
868 		/*
869 		 * PC relative relocations don't need to be adjusted unless
870 		 * referencing a percpu symbol.
871 		 *
872 		 * NB: R_X86_64_PLT32 can be treated as R_X86_64_PC32.
873 		 */
874 		if (is_percpu_sym(sym, symname))
875 			add_reloc(&relocs32neg, offset);
876 		break;
877 
878 	case R_X86_64_PC64:
879 		/*
880 		 * Only used by jump labels
881 		 */
882 		if (is_percpu_sym(sym, symname))
883 			die("Invalid R_X86_64_PC64 relocation against per-CPU symbol %s\n",
884 			    symname);
885 		break;
886 
887 	case R_X86_64_32:
888 	case R_X86_64_32S:
889 	case R_X86_64_64:
890 		/*
891 		 * References to the percpu area don't need to be adjusted.
892 		 */
893 		if (is_percpu_sym(sym, symname))
894 			break;
895 
896 		if (shn_abs) {
897 			/*
898 			 * Whitelisted absolute symbols do not require
899 			 * relocation.
900 			 */
901 			if (is_reloc(S_ABS, symname))
902 				break;
903 
904 			die("Invalid absolute %s relocation: %s\n",
905 			    rel_type(r_type), symname);
906 			break;
907 		}
908 
909 		/*
910 		 * Relocation offsets for 64 bit kernels are output
911 		 * as 32 bits and sign extended back to 64 bits when
912 		 * the relocations are processed.
913 		 * Make sure that the offset will fit.
914 		 */
915 		if ((int32_t)offset != (int64_t)offset)
916 			die("Relocation offset doesn't fit in 32 bits\n");
917 
918 		if (r_type == R_X86_64_64)
919 			add_reloc(&relocs64, offset);
920 		else
921 			add_reloc(&relocs32, offset);
922 		break;
923 
924 	default:
925 		die("Unsupported relocation type: %s (%d)\n",
926 		    rel_type(r_type), r_type);
927 		break;
928 	}
929 
930 	return 0;
931 }
932 
933 #else
934 
935 static int do_reloc32(struct section *sec, Elf_Rel *rel, Elf_Sym *sym,
936 		      const char *symname)
937 {
938 	unsigned r_type = ELF32_R_TYPE(rel->r_info);
939 	int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname);
940 
941 	switch (r_type) {
942 	case R_386_NONE:
943 	case R_386_PC32:
944 	case R_386_PC16:
945 	case R_386_PC8:
946 	case R_386_PLT32:
947 		/*
948 		 * NONE can be ignored and PC relative relocations don't need
949 		 * to be adjusted. Because sym must be defined, R_386_PLT32 can
950 		 * be treated the same way as R_386_PC32.
951 		 */
952 		break;
953 
954 	case R_386_32:
955 		if (shn_abs) {
956 			/*
957 			 * Whitelisted absolute symbols do not require
958 			 * relocation.
959 			 */
960 			if (is_reloc(S_ABS, symname))
961 				break;
962 
963 			die("Invalid absolute %s relocation: %s\n",
964 			    rel_type(r_type), symname);
965 			break;
966 		}
967 
968 		add_reloc(&relocs32, rel->r_offset);
969 		break;
970 
971 	default:
972 		die("Unsupported relocation type: %s (%d)\n",
973 		    rel_type(r_type), r_type);
974 		break;
975 	}
976 
977 	return 0;
978 }
979 
980 static int do_reloc_real(struct section *sec, Elf_Rel *rel, Elf_Sym *sym,
981 			 const char *symname)
982 {
983 	unsigned r_type = ELF32_R_TYPE(rel->r_info);
984 	int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname);
985 
986 	switch (r_type) {
987 	case R_386_NONE:
988 	case R_386_PC32:
989 	case R_386_PC16:
990 	case R_386_PC8:
991 	case R_386_PLT32:
992 		/*
993 		 * NONE can be ignored and PC relative relocations don't need
994 		 * to be adjusted. Because sym must be defined, R_386_PLT32 can
995 		 * be treated the same way as R_386_PC32.
996 		 */
997 		break;
998 
999 	case R_386_16:
1000 		if (shn_abs) {
1001 			/*
1002 			 * Whitelisted absolute symbols do not require
1003 			 * relocation.
1004 			 */
1005 			if (is_reloc(S_ABS, symname))
1006 				break;
1007 
1008 			if (is_reloc(S_SEG, symname)) {
1009 				add_reloc(&relocs16, rel->r_offset);
1010 				break;
1011 			}
1012 		} else {
1013 			if (!is_reloc(S_LIN, symname))
1014 				break;
1015 		}
1016 		die("Invalid %s %s relocation: %s\n",
1017 		    shn_abs ? "absolute" : "relative",
1018 		    rel_type(r_type), symname);
1019 		break;
1020 
1021 	case R_386_32:
1022 		if (shn_abs) {
1023 			/*
1024 			 * Whitelisted absolute symbols do not require
1025 			 * relocation.
1026 			 */
1027 			if (is_reloc(S_ABS, symname))
1028 				break;
1029 
1030 			if (is_reloc(S_REL, symname)) {
1031 				add_reloc(&relocs32, rel->r_offset);
1032 				break;
1033 			}
1034 		} else {
1035 			if (is_reloc(S_LIN, symname))
1036 				add_reloc(&relocs32, rel->r_offset);
1037 			break;
1038 		}
1039 		die("Invalid %s %s relocation: %s\n",
1040 		    shn_abs ? "absolute" : "relative",
1041 		    rel_type(r_type), symname);
1042 		break;
1043 
1044 	default:
1045 		die("Unsupported relocation type: %s (%d)\n",
1046 		    rel_type(r_type), r_type);
1047 		break;
1048 	}
1049 
1050 	return 0;
1051 }
1052 
1053 #endif
1054 
1055 static int cmp_relocs(const void *va, const void *vb)
1056 {
1057 	const uint32_t *a, *b;
1058 	a = va; b = vb;
1059 	return (*a == *b)? 0 : (*a > *b)? 1 : -1;
1060 }
1061 
1062 static void sort_relocs(struct relocs *r)
1063 {
1064 	qsort(r->offset, r->count, sizeof(r->offset[0]), cmp_relocs);
1065 }
1066 
1067 static int write32(uint32_t v, FILE *f)
1068 {
1069 	unsigned char buf[4];
1070 
1071 	put_unaligned_le32(v, buf);
1072 	return fwrite(buf, 1, 4, f) == 4 ? 0 : -1;
1073 }
1074 
1075 static int write32_as_text(uint32_t v, FILE *f)
1076 {
1077 	return fprintf(f, "\t.long 0x%08"PRIx32"\n", v) > 0 ? 0 : -1;
1078 }
1079 
1080 static void emit_relocs(int as_text, int use_real_mode)
1081 {
1082 	int i;
1083 	int (*write_reloc)(uint32_t, FILE *) = write32;
1084 	int (*do_reloc)(struct section *sec, Elf_Rel *rel, Elf_Sym *sym,
1085 			const char *symname);
1086 
1087 #if ELF_BITS == 64
1088 	if (!use_real_mode)
1089 		do_reloc = do_reloc64;
1090 	else
1091 		die("--realmode not valid for a 64-bit ELF file");
1092 #else
1093 	if (!use_real_mode)
1094 		do_reloc = do_reloc32;
1095 	else
1096 		do_reloc = do_reloc_real;
1097 #endif
1098 
1099 	/* Collect up the relocations */
1100 	walk_relocs(do_reloc);
1101 
1102 	if (relocs16.count && !use_real_mode)
1103 		die("Segment relocations found but --realmode not specified\n");
1104 
1105 	/* Order the relocations for more efficient processing */
1106 	sort_relocs(&relocs32);
1107 #if ELF_BITS == 64
1108 	sort_relocs(&relocs32neg);
1109 	sort_relocs(&relocs64);
1110 #else
1111 	sort_relocs(&relocs16);
1112 #endif
1113 
1114 	/* Print the relocations */
1115 	if (as_text) {
1116 		/* Print the relocations in a form suitable that
1117 		 * gas will like.
1118 		 */
1119 		printf(".section \".data.reloc\",\"a\"\n");
1120 		printf(".balign 4\n");
1121 		write_reloc = write32_as_text;
1122 	}
1123 
1124 	if (use_real_mode) {
1125 		write_reloc(relocs16.count, stdout);
1126 		for (i = 0; i < relocs16.count; i++)
1127 			write_reloc(relocs16.offset[i], stdout);
1128 
1129 		write_reloc(relocs32.count, stdout);
1130 		for (i = 0; i < relocs32.count; i++)
1131 			write_reloc(relocs32.offset[i], stdout);
1132 	} else {
1133 #if ELF_BITS == 64
1134 		/* Print a stop */
1135 		write_reloc(0, stdout);
1136 
1137 		/* Now print each relocation */
1138 		for (i = 0; i < relocs64.count; i++)
1139 			write_reloc(relocs64.offset[i], stdout);
1140 
1141 		/* Print a stop */
1142 		write_reloc(0, stdout);
1143 
1144 		/* Now print each inverse 32-bit relocation */
1145 		for (i = 0; i < relocs32neg.count; i++)
1146 			write_reloc(relocs32neg.offset[i], stdout);
1147 #endif
1148 
1149 		/* Print a stop */
1150 		write_reloc(0, stdout);
1151 
1152 		/* Now print each relocation */
1153 		for (i = 0; i < relocs32.count; i++)
1154 			write_reloc(relocs32.offset[i], stdout);
1155 	}
1156 }
1157 
1158 /*
1159  * As an aid to debugging problems with different linkers
1160  * print summary information about the relocs.
1161  * Since different linkers tend to emit the sections in
1162  * different orders we use the section names in the output.
1163  */
1164 static int do_reloc_info(struct section *sec, Elf_Rel *rel, ElfW(Sym) *sym,
1165 				const char *symname)
1166 {
1167 	printf("%s\t%s\t%s\t%s\n",
1168 		sec_name(sec->shdr.sh_info),
1169 		rel_type(ELF_R_TYPE(rel->r_info)),
1170 		symname,
1171 		sec_name(sym_index(sym)));
1172 	return 0;
1173 }
1174 
1175 static void print_reloc_info(void)
1176 {
1177 	printf("reloc section\treloc type\tsymbol\tsymbol section\n");
1178 	walk_relocs(do_reloc_info);
1179 }
1180 
1181 #if ELF_BITS == 64
1182 # define process process_64
1183 #else
1184 # define process process_32
1185 #endif
1186 
1187 void process(FILE *fp, int use_real_mode, int as_text,
1188 	     int show_absolute_syms, int show_absolute_relocs,
1189 	     int show_reloc_info)
1190 {
1191 	regex_init(use_real_mode);
1192 	read_ehdr(fp);
1193 	read_shdrs(fp);
1194 	read_strtabs(fp);
1195 	read_symtabs(fp);
1196 	read_relocs(fp);
1197 	if (ELF_BITS == 64)
1198 		percpu_init();
1199 	if (show_absolute_syms) {
1200 		print_absolute_symbols();
1201 		return;
1202 	}
1203 	if (show_absolute_relocs) {
1204 		print_absolute_relocs();
1205 		return;
1206 	}
1207 	if (show_reloc_info) {
1208 		print_reloc_info();
1209 		return;
1210 	}
1211 	emit_relocs(as_text, use_real_mode);
1212 }
1213