xref: /openbmc/linux/arch/x86/power/cpu.c (revision eed183ab)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Suspend support specific for i386/x86-64.
4  *
5  * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
6  * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
7  * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
8  */
9 
10 #include <linux/suspend.h>
11 #include <linux/export.h>
12 #include <linux/smp.h>
13 #include <linux/perf_event.h>
14 #include <linux/tboot.h>
15 #include <linux/dmi.h>
16 #include <linux/pgtable.h>
17 
18 #include <asm/proto.h>
19 #include <asm/mtrr.h>
20 #include <asm/page.h>
21 #include <asm/mce.h>
22 #include <asm/suspend.h>
23 #include <asm/fpu/internal.h>
24 #include <asm/debugreg.h>
25 #include <asm/cpu.h>
26 #include <asm/mmu_context.h>
27 #include <asm/cpu_device_id.h>
28 
29 #ifdef CONFIG_X86_32
30 __visible unsigned long saved_context_ebx;
31 __visible unsigned long saved_context_esp, saved_context_ebp;
32 __visible unsigned long saved_context_esi, saved_context_edi;
33 __visible unsigned long saved_context_eflags;
34 #endif
35 struct saved_context saved_context;
36 
37 static void msr_save_context(struct saved_context *ctxt)
38 {
39 	struct saved_msr *msr = ctxt->saved_msrs.array;
40 	struct saved_msr *end = msr + ctxt->saved_msrs.num;
41 
42 	while (msr < end) {
43 		msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q);
44 		msr++;
45 	}
46 }
47 
48 static void msr_restore_context(struct saved_context *ctxt)
49 {
50 	struct saved_msr *msr = ctxt->saved_msrs.array;
51 	struct saved_msr *end = msr + ctxt->saved_msrs.num;
52 
53 	while (msr < end) {
54 		if (msr->valid)
55 			wrmsrl(msr->info.msr_no, msr->info.reg.q);
56 		msr++;
57 	}
58 }
59 
60 /**
61  * __save_processor_state() - Save CPU registers before creating a
62  *                             hibernation image and before restoring
63  *                             the memory state from it
64  * @ctxt: Structure to store the registers contents in.
65  *
66  * NOTE: If there is a CPU register the modification of which by the
67  * boot kernel (ie. the kernel used for loading the hibernation image)
68  * might affect the operations of the restored target kernel (ie. the one
69  * saved in the hibernation image), then its contents must be saved by this
70  * function.  In other words, if kernel A is hibernated and different
71  * kernel B is used for loading the hibernation image into memory, the
72  * kernel A's __save_processor_state() function must save all registers
73  * needed by kernel A, so that it can operate correctly after the resume
74  * regardless of what kernel B does in the meantime.
75  */
76 static void __save_processor_state(struct saved_context *ctxt)
77 {
78 #ifdef CONFIG_X86_32
79 	mtrr_save_fixed_ranges(NULL);
80 #endif
81 	kernel_fpu_begin();
82 
83 	/*
84 	 * descriptor tables
85 	 */
86 	store_idt(&ctxt->idt);
87 
88 	/*
89 	 * We save it here, but restore it only in the hibernate case.
90 	 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
91 	 * mode in "secondary_startup_64". In 32-bit mode it is done via
92 	 * 'pmode_gdt' in wakeup_start.
93 	 */
94 	ctxt->gdt_desc.size = GDT_SIZE - 1;
95 	ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
96 
97 	store_tr(ctxt->tr);
98 
99 	/* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
100 	/*
101 	 * segment registers
102 	 */
103 	savesegment(gs, ctxt->gs);
104 #ifdef CONFIG_X86_64
105 	savesegment(fs, ctxt->fs);
106 	savesegment(ds, ctxt->ds);
107 	savesegment(es, ctxt->es);
108 
109 	rdmsrl(MSR_FS_BASE, ctxt->fs_base);
110 	rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
111 	rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
112 	mtrr_save_fixed_ranges(NULL);
113 
114 	rdmsrl(MSR_EFER, ctxt->efer);
115 #endif
116 
117 	/*
118 	 * control registers
119 	 */
120 	ctxt->cr0 = read_cr0();
121 	ctxt->cr2 = read_cr2();
122 	ctxt->cr3 = __read_cr3();
123 	ctxt->cr4 = __read_cr4();
124 	ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
125 					       &ctxt->misc_enable);
126 	msr_save_context(ctxt);
127 }
128 
129 /* Needed by apm.c */
130 void save_processor_state(void)
131 {
132 	__save_processor_state(&saved_context);
133 	x86_platform.save_sched_clock_state();
134 }
135 #ifdef CONFIG_X86_32
136 EXPORT_SYMBOL(save_processor_state);
137 #endif
138 
139 static void do_fpu_end(void)
140 {
141 	/*
142 	 * Restore FPU regs if necessary.
143 	 */
144 	kernel_fpu_end();
145 }
146 
147 static void fix_processor_context(void)
148 {
149 	int cpu = smp_processor_id();
150 #ifdef CONFIG_X86_64
151 	struct desc_struct *desc = get_cpu_gdt_rw(cpu);
152 	tss_desc tss;
153 #endif
154 
155 	/*
156 	 * We need to reload TR, which requires that we change the
157 	 * GDT entry to indicate "available" first.
158 	 *
159 	 * XXX: This could probably all be replaced by a call to
160 	 * force_reload_TR().
161 	 */
162 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
163 
164 #ifdef CONFIG_X86_64
165 	memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
166 	tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
167 	write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
168 
169 	syscall_init();				/* This sets MSR_*STAR and related */
170 #else
171 	if (boot_cpu_has(X86_FEATURE_SEP))
172 		enable_sep_cpu();
173 #endif
174 	load_TR_desc();				/* This does ltr */
175 	load_mm_ldt(current->active_mm);	/* This does lldt */
176 	initialize_tlbstate_and_flush();
177 
178 	fpu__resume_cpu();
179 
180 	/* The processor is back on the direct GDT, load back the fixmap */
181 	load_fixmap_gdt(cpu);
182 }
183 
184 /**
185  * __restore_processor_state() - Restore the contents of CPU registers saved
186  *                               by __save_processor_state()
187  * @ctxt: Structure to load the registers contents from.
188  *
189  * The asm code that gets us here will have restored a usable GDT, although
190  * it will be pointing to the wrong alias.
191  */
192 static void notrace __restore_processor_state(struct saved_context *ctxt)
193 {
194 	struct cpuinfo_x86 *c;
195 
196 	if (ctxt->misc_enable_saved)
197 		wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
198 	/*
199 	 * control registers
200 	 */
201 	/* cr4 was introduced in the Pentium CPU */
202 #ifdef CONFIG_X86_32
203 	if (ctxt->cr4)
204 		__write_cr4(ctxt->cr4);
205 #else
206 /* CONFIG X86_64 */
207 	wrmsrl(MSR_EFER, ctxt->efer);
208 	__write_cr4(ctxt->cr4);
209 #endif
210 	write_cr3(ctxt->cr3);
211 	write_cr2(ctxt->cr2);
212 	write_cr0(ctxt->cr0);
213 
214 	/* Restore the IDT. */
215 	load_idt(&ctxt->idt);
216 
217 	/*
218 	 * Just in case the asm code got us here with the SS, DS, or ES
219 	 * out of sync with the GDT, update them.
220 	 */
221 	loadsegment(ss, __KERNEL_DS);
222 	loadsegment(ds, __USER_DS);
223 	loadsegment(es, __USER_DS);
224 
225 	/*
226 	 * Restore percpu access.  Percpu access can happen in exception
227 	 * handlers or in complicated helpers like load_gs_index().
228 	 */
229 #ifdef CONFIG_X86_64
230 	wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
231 #else
232 	loadsegment(fs, __KERNEL_PERCPU);
233 #endif
234 
235 	/* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */
236 	fix_processor_context();
237 
238 	/*
239 	 * Now that we have descriptor tables fully restored and working
240 	 * exception handling, restore the usermode segments.
241 	 */
242 #ifdef CONFIG_X86_64
243 	loadsegment(ds, ctxt->es);
244 	loadsegment(es, ctxt->es);
245 	loadsegment(fs, ctxt->fs);
246 	load_gs_index(ctxt->gs);
247 
248 	/*
249 	 * Restore FSBASE and GSBASE after restoring the selectors, since
250 	 * restoring the selectors clobbers the bases.  Keep in mind
251 	 * that MSR_KERNEL_GS_BASE is horribly misnamed.
252 	 */
253 	wrmsrl(MSR_FS_BASE, ctxt->fs_base);
254 	wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
255 #else
256 	loadsegment(gs, ctxt->gs);
257 #endif
258 
259 	do_fpu_end();
260 	tsc_verify_tsc_adjust(true);
261 	x86_platform.restore_sched_clock_state();
262 	mtrr_bp_restore();
263 	perf_restore_debug_store();
264 	msr_restore_context(ctxt);
265 
266 	c = &cpu_data(smp_processor_id());
267 	if (cpu_has(c, X86_FEATURE_MSR_IA32_FEAT_CTL))
268 		init_ia32_feat_ctl(c);
269 }
270 
271 /* Needed by apm.c */
272 void notrace restore_processor_state(void)
273 {
274 	__restore_processor_state(&saved_context);
275 }
276 #ifdef CONFIG_X86_32
277 EXPORT_SYMBOL(restore_processor_state);
278 #endif
279 
280 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
281 static void resume_play_dead(void)
282 {
283 	play_dead_common();
284 	tboot_shutdown(TB_SHUTDOWN_WFS);
285 	hlt_play_dead();
286 }
287 
288 int hibernate_resume_nonboot_cpu_disable(void)
289 {
290 	void (*play_dead)(void) = smp_ops.play_dead;
291 	int ret;
292 
293 	/*
294 	 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
295 	 * during hibernate image restoration, because it is likely that the
296 	 * monitored address will be actually written to at that time and then
297 	 * the "dead" CPU will attempt to execute instructions again, but the
298 	 * address in its instruction pointer may not be possible to resolve
299 	 * any more at that point (the page tables used by it previously may
300 	 * have been overwritten by hibernate image data).
301 	 *
302 	 * First, make sure that we wake up all the potentially disabled SMT
303 	 * threads which have been initially brought up and then put into
304 	 * mwait/cpuidle sleep.
305 	 * Those will be put to proper (not interfering with hibernation
306 	 * resume) sleep afterwards, and the resumed kernel will decide itself
307 	 * what to do with them.
308 	 */
309 	ret = cpuhp_smt_enable();
310 	if (ret)
311 		return ret;
312 	smp_ops.play_dead = resume_play_dead;
313 	ret = freeze_secondary_cpus(0);
314 	smp_ops.play_dead = play_dead;
315 	return ret;
316 }
317 #endif
318 
319 /*
320  * When bsp_check() is called in hibernate and suspend, cpu hotplug
321  * is disabled already. So it's unnecessary to handle race condition between
322  * cpumask query and cpu hotplug.
323  */
324 static int bsp_check(void)
325 {
326 	if (cpumask_first(cpu_online_mask) != 0) {
327 		pr_warn("CPU0 is offline.\n");
328 		return -ENODEV;
329 	}
330 
331 	return 0;
332 }
333 
334 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
335 			   void *ptr)
336 {
337 	int ret = 0;
338 
339 	switch (action) {
340 	case PM_SUSPEND_PREPARE:
341 	case PM_HIBERNATION_PREPARE:
342 		ret = bsp_check();
343 		break;
344 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0
345 	case PM_RESTORE_PREPARE:
346 		/*
347 		 * When system resumes from hibernation, online CPU0 because
348 		 * 1. it's required for resume and
349 		 * 2. the CPU was online before hibernation
350 		 */
351 		if (!cpu_online(0))
352 			_debug_hotplug_cpu(0, 1);
353 		break;
354 	case PM_POST_RESTORE:
355 		/*
356 		 * When a resume really happens, this code won't be called.
357 		 *
358 		 * This code is called only when user space hibernation software
359 		 * prepares for snapshot device during boot time. So we just
360 		 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
361 		 * preparing the snapshot device.
362 		 *
363 		 * This works for normal boot case in our CPU0 hotplug debug
364 		 * mode, i.e. CPU0 is offline and user mode hibernation
365 		 * software initializes during boot time.
366 		 *
367 		 * If CPU0 is online and user application accesses snapshot
368 		 * device after boot time, this will offline CPU0 and user may
369 		 * see different CPU0 state before and after accessing
370 		 * the snapshot device. But hopefully this is not a case when
371 		 * user debugging CPU0 hotplug. Even if users hit this case,
372 		 * they can easily online CPU0 back.
373 		 *
374 		 * To simplify this debug code, we only consider normal boot
375 		 * case. Otherwise we need to remember CPU0's state and restore
376 		 * to that state and resolve racy conditions etc.
377 		 */
378 		_debug_hotplug_cpu(0, 0);
379 		break;
380 #endif
381 	default:
382 		break;
383 	}
384 	return notifier_from_errno(ret);
385 }
386 
387 static int __init bsp_pm_check_init(void)
388 {
389 	/*
390 	 * Set this bsp_pm_callback as lower priority than
391 	 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
392 	 * earlier to disable cpu hotplug before bsp online check.
393 	 */
394 	pm_notifier(bsp_pm_callback, -INT_MAX);
395 	return 0;
396 }
397 
398 core_initcall(bsp_pm_check_init);
399 
400 static int msr_build_context(const u32 *msr_id, const int num)
401 {
402 	struct saved_msrs *saved_msrs = &saved_context.saved_msrs;
403 	struct saved_msr *msr_array;
404 	int total_num;
405 	int i, j;
406 
407 	total_num = saved_msrs->num + num;
408 
409 	msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
410 	if (!msr_array) {
411 		pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
412 		return -ENOMEM;
413 	}
414 
415 	if (saved_msrs->array) {
416 		/*
417 		 * Multiple callbacks can invoke this function, so copy any
418 		 * MSR save requests from previous invocations.
419 		 */
420 		memcpy(msr_array, saved_msrs->array,
421 		       sizeof(struct saved_msr) * saved_msrs->num);
422 
423 		kfree(saved_msrs->array);
424 	}
425 
426 	for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) {
427 		msr_array[i].info.msr_no	= msr_id[j];
428 		msr_array[i].valid		= false;
429 		msr_array[i].info.reg.q		= 0;
430 	}
431 	saved_msrs->num   = total_num;
432 	saved_msrs->array = msr_array;
433 
434 	return 0;
435 }
436 
437 /*
438  * The following sections are a quirk framework for problematic BIOSen:
439  * Sometimes MSRs are modified by the BIOSen after suspended to
440  * RAM, this might cause unexpected behavior after wakeup.
441  * Thus we save/restore these specified MSRs across suspend/resume
442  * in order to work around it.
443  *
444  * For any further problematic BIOSen/platforms,
445  * please add your own function similar to msr_initialize_bdw.
446  */
447 static int msr_initialize_bdw(const struct dmi_system_id *d)
448 {
449 	/* Add any extra MSR ids into this array. */
450 	u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
451 
452 	pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
453 	return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
454 }
455 
456 static const struct dmi_system_id msr_save_dmi_table[] = {
457 	{
458 	 .callback = msr_initialize_bdw,
459 	 .ident = "BROADWELL BDX_EP",
460 	 .matches = {
461 		DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
462 		DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
463 		},
464 	},
465 	{}
466 };
467 
468 static int msr_save_cpuid_features(const struct x86_cpu_id *c)
469 {
470 	u32 cpuid_msr_id[] = {
471 		MSR_AMD64_CPUID_FN_1,
472 	};
473 
474 	pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n",
475 		c->family);
476 
477 	return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id));
478 }
479 
480 static const struct x86_cpu_id msr_save_cpu_table[] = {
481 	X86_MATCH_VENDOR_FAM(AMD, 0x15, &msr_save_cpuid_features),
482 	X86_MATCH_VENDOR_FAM(AMD, 0x16, &msr_save_cpuid_features),
483 	{}
484 };
485 
486 typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *);
487 static int pm_cpu_check(const struct x86_cpu_id *c)
488 {
489 	const struct x86_cpu_id *m;
490 	int ret = 0;
491 
492 	m = x86_match_cpu(msr_save_cpu_table);
493 	if (m) {
494 		pm_cpu_match_t fn;
495 
496 		fn = (pm_cpu_match_t)m->driver_data;
497 		ret = fn(m);
498 	}
499 
500 	return ret;
501 }
502 
503 static int pm_check_save_msr(void)
504 {
505 	dmi_check_system(msr_save_dmi_table);
506 	pm_cpu_check(msr_save_cpu_table);
507 
508 	return 0;
509 }
510 
511 device_initcall(pm_check_save_msr);
512