xref: /openbmc/linux/arch/x86/power/cpu.c (revision ecfb9f40)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Suspend support specific for i386/x86-64.
4  *
5  * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
6  * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
7  * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
8  */
9 
10 #include <linux/suspend.h>
11 #include <linux/export.h>
12 #include <linux/smp.h>
13 #include <linux/perf_event.h>
14 #include <linux/tboot.h>
15 #include <linux/dmi.h>
16 #include <linux/pgtable.h>
17 
18 #include <asm/proto.h>
19 #include <asm/mtrr.h>
20 #include <asm/page.h>
21 #include <asm/mce.h>
22 #include <asm/suspend.h>
23 #include <asm/fpu/api.h>
24 #include <asm/debugreg.h>
25 #include <asm/cpu.h>
26 #include <asm/cacheinfo.h>
27 #include <asm/mmu_context.h>
28 #include <asm/cpu_device_id.h>
29 #include <asm/microcode.h>
30 
31 #ifdef CONFIG_X86_32
32 __visible unsigned long saved_context_ebx;
33 __visible unsigned long saved_context_esp, saved_context_ebp;
34 __visible unsigned long saved_context_esi, saved_context_edi;
35 __visible unsigned long saved_context_eflags;
36 #endif
37 struct saved_context saved_context;
38 
39 static void msr_save_context(struct saved_context *ctxt)
40 {
41 	struct saved_msr *msr = ctxt->saved_msrs.array;
42 	struct saved_msr *end = msr + ctxt->saved_msrs.num;
43 
44 	while (msr < end) {
45 		if (msr->valid)
46 			rdmsrl(msr->info.msr_no, msr->info.reg.q);
47 		msr++;
48 	}
49 }
50 
51 static void msr_restore_context(struct saved_context *ctxt)
52 {
53 	struct saved_msr *msr = ctxt->saved_msrs.array;
54 	struct saved_msr *end = msr + ctxt->saved_msrs.num;
55 
56 	while (msr < end) {
57 		if (msr->valid)
58 			wrmsrl(msr->info.msr_no, msr->info.reg.q);
59 		msr++;
60 	}
61 }
62 
63 /**
64  * __save_processor_state() - Save CPU registers before creating a
65  *                             hibernation image and before restoring
66  *                             the memory state from it
67  * @ctxt: Structure to store the registers contents in.
68  *
69  * NOTE: If there is a CPU register the modification of which by the
70  * boot kernel (ie. the kernel used for loading the hibernation image)
71  * might affect the operations of the restored target kernel (ie. the one
72  * saved in the hibernation image), then its contents must be saved by this
73  * function.  In other words, if kernel A is hibernated and different
74  * kernel B is used for loading the hibernation image into memory, the
75  * kernel A's __save_processor_state() function must save all registers
76  * needed by kernel A, so that it can operate correctly after the resume
77  * regardless of what kernel B does in the meantime.
78  */
79 static void __save_processor_state(struct saved_context *ctxt)
80 {
81 #ifdef CONFIG_X86_32
82 	mtrr_save_fixed_ranges(NULL);
83 #endif
84 	kernel_fpu_begin();
85 
86 	/*
87 	 * descriptor tables
88 	 */
89 	store_idt(&ctxt->idt);
90 
91 	/*
92 	 * We save it here, but restore it only in the hibernate case.
93 	 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
94 	 * mode in "secondary_startup_64". In 32-bit mode it is done via
95 	 * 'pmode_gdt' in wakeup_start.
96 	 */
97 	ctxt->gdt_desc.size = GDT_SIZE - 1;
98 	ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
99 
100 	store_tr(ctxt->tr);
101 
102 	/* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
103 	/*
104 	 * segment registers
105 	 */
106 	savesegment(gs, ctxt->gs);
107 #ifdef CONFIG_X86_64
108 	savesegment(fs, ctxt->fs);
109 	savesegment(ds, ctxt->ds);
110 	savesegment(es, ctxt->es);
111 
112 	rdmsrl(MSR_FS_BASE, ctxt->fs_base);
113 	rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
114 	rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
115 	mtrr_save_fixed_ranges(NULL);
116 
117 	rdmsrl(MSR_EFER, ctxt->efer);
118 #endif
119 
120 	/*
121 	 * control registers
122 	 */
123 	ctxt->cr0 = read_cr0();
124 	ctxt->cr2 = read_cr2();
125 	ctxt->cr3 = __read_cr3();
126 	ctxt->cr4 = __read_cr4();
127 	ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
128 					       &ctxt->misc_enable);
129 	msr_save_context(ctxt);
130 }
131 
132 /* Needed by apm.c */
133 void save_processor_state(void)
134 {
135 	__save_processor_state(&saved_context);
136 	x86_platform.save_sched_clock_state();
137 }
138 #ifdef CONFIG_X86_32
139 EXPORT_SYMBOL(save_processor_state);
140 #endif
141 
142 static void do_fpu_end(void)
143 {
144 	/*
145 	 * Restore FPU regs if necessary.
146 	 */
147 	kernel_fpu_end();
148 }
149 
150 static void fix_processor_context(void)
151 {
152 	int cpu = smp_processor_id();
153 #ifdef CONFIG_X86_64
154 	struct desc_struct *desc = get_cpu_gdt_rw(cpu);
155 	tss_desc tss;
156 #endif
157 
158 	/*
159 	 * We need to reload TR, which requires that we change the
160 	 * GDT entry to indicate "available" first.
161 	 *
162 	 * XXX: This could probably all be replaced by a call to
163 	 * force_reload_TR().
164 	 */
165 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
166 
167 #ifdef CONFIG_X86_64
168 	memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
169 	tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
170 	write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
171 
172 	syscall_init();				/* This sets MSR_*STAR and related */
173 #else
174 	if (boot_cpu_has(X86_FEATURE_SEP))
175 		enable_sep_cpu();
176 #endif
177 	load_TR_desc();				/* This does ltr */
178 	load_mm_ldt(current->active_mm);	/* This does lldt */
179 	initialize_tlbstate_and_flush();
180 
181 	fpu__resume_cpu();
182 
183 	/* The processor is back on the direct GDT, load back the fixmap */
184 	load_fixmap_gdt(cpu);
185 }
186 
187 /**
188  * __restore_processor_state() - Restore the contents of CPU registers saved
189  *                               by __save_processor_state()
190  * @ctxt: Structure to load the registers contents from.
191  *
192  * The asm code that gets us here will have restored a usable GDT, although
193  * it will be pointing to the wrong alias.
194  */
195 static void notrace __restore_processor_state(struct saved_context *ctxt)
196 {
197 	struct cpuinfo_x86 *c;
198 
199 	if (ctxt->misc_enable_saved)
200 		wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
201 	/*
202 	 * control registers
203 	 */
204 	/* cr4 was introduced in the Pentium CPU */
205 #ifdef CONFIG_X86_32
206 	if (ctxt->cr4)
207 		__write_cr4(ctxt->cr4);
208 #else
209 /* CONFIG X86_64 */
210 	wrmsrl(MSR_EFER, ctxt->efer);
211 	__write_cr4(ctxt->cr4);
212 #endif
213 	write_cr3(ctxt->cr3);
214 	write_cr2(ctxt->cr2);
215 	write_cr0(ctxt->cr0);
216 
217 	/* Restore the IDT. */
218 	load_idt(&ctxt->idt);
219 
220 	/*
221 	 * Just in case the asm code got us here with the SS, DS, or ES
222 	 * out of sync with the GDT, update them.
223 	 */
224 	loadsegment(ss, __KERNEL_DS);
225 	loadsegment(ds, __USER_DS);
226 	loadsegment(es, __USER_DS);
227 
228 	/*
229 	 * Restore percpu access.  Percpu access can happen in exception
230 	 * handlers or in complicated helpers like load_gs_index().
231 	 */
232 #ifdef CONFIG_X86_64
233 	wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
234 #else
235 	loadsegment(fs, __KERNEL_PERCPU);
236 #endif
237 
238 	/* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */
239 	fix_processor_context();
240 
241 	/*
242 	 * Now that we have descriptor tables fully restored and working
243 	 * exception handling, restore the usermode segments.
244 	 */
245 #ifdef CONFIG_X86_64
246 	loadsegment(ds, ctxt->es);
247 	loadsegment(es, ctxt->es);
248 	loadsegment(fs, ctxt->fs);
249 	load_gs_index(ctxt->gs);
250 
251 	/*
252 	 * Restore FSBASE and GSBASE after restoring the selectors, since
253 	 * restoring the selectors clobbers the bases.  Keep in mind
254 	 * that MSR_KERNEL_GS_BASE is horribly misnamed.
255 	 */
256 	wrmsrl(MSR_FS_BASE, ctxt->fs_base);
257 	wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
258 #else
259 	loadsegment(gs, ctxt->gs);
260 #endif
261 
262 	do_fpu_end();
263 	tsc_verify_tsc_adjust(true);
264 	x86_platform.restore_sched_clock_state();
265 	cache_bp_restore();
266 	perf_restore_debug_store();
267 
268 	c = &cpu_data(smp_processor_id());
269 	if (cpu_has(c, X86_FEATURE_MSR_IA32_FEAT_CTL))
270 		init_ia32_feat_ctl(c);
271 
272 	microcode_bsp_resume();
273 
274 	/*
275 	 * This needs to happen after the microcode has been updated upon resume
276 	 * because some of the MSRs are "emulated" in microcode.
277 	 */
278 	msr_restore_context(ctxt);
279 }
280 
281 /* Needed by apm.c */
282 void notrace restore_processor_state(void)
283 {
284 	__restore_processor_state(&saved_context);
285 }
286 #ifdef CONFIG_X86_32
287 EXPORT_SYMBOL(restore_processor_state);
288 #endif
289 
290 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
291 static void resume_play_dead(void)
292 {
293 	play_dead_common();
294 	tboot_shutdown(TB_SHUTDOWN_WFS);
295 	hlt_play_dead();
296 }
297 
298 int hibernate_resume_nonboot_cpu_disable(void)
299 {
300 	void (*play_dead)(void) = smp_ops.play_dead;
301 	int ret;
302 
303 	/*
304 	 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
305 	 * during hibernate image restoration, because it is likely that the
306 	 * monitored address will be actually written to at that time and then
307 	 * the "dead" CPU will attempt to execute instructions again, but the
308 	 * address in its instruction pointer may not be possible to resolve
309 	 * any more at that point (the page tables used by it previously may
310 	 * have been overwritten by hibernate image data).
311 	 *
312 	 * First, make sure that we wake up all the potentially disabled SMT
313 	 * threads which have been initially brought up and then put into
314 	 * mwait/cpuidle sleep.
315 	 * Those will be put to proper (not interfering with hibernation
316 	 * resume) sleep afterwards, and the resumed kernel will decide itself
317 	 * what to do with them.
318 	 */
319 	ret = cpuhp_smt_enable();
320 	if (ret)
321 		return ret;
322 	smp_ops.play_dead = resume_play_dead;
323 	ret = freeze_secondary_cpus(0);
324 	smp_ops.play_dead = play_dead;
325 	return ret;
326 }
327 #endif
328 
329 /*
330  * When bsp_check() is called in hibernate and suspend, cpu hotplug
331  * is disabled already. So it's unnecessary to handle race condition between
332  * cpumask query and cpu hotplug.
333  */
334 static int bsp_check(void)
335 {
336 	if (cpumask_first(cpu_online_mask) != 0) {
337 		pr_warn("CPU0 is offline.\n");
338 		return -ENODEV;
339 	}
340 
341 	return 0;
342 }
343 
344 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
345 			   void *ptr)
346 {
347 	int ret = 0;
348 
349 	switch (action) {
350 	case PM_SUSPEND_PREPARE:
351 	case PM_HIBERNATION_PREPARE:
352 		ret = bsp_check();
353 		break;
354 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0
355 	case PM_RESTORE_PREPARE:
356 		/*
357 		 * When system resumes from hibernation, online CPU0 because
358 		 * 1. it's required for resume and
359 		 * 2. the CPU was online before hibernation
360 		 */
361 		if (!cpu_online(0))
362 			_debug_hotplug_cpu(0, 1);
363 		break;
364 	case PM_POST_RESTORE:
365 		/*
366 		 * When a resume really happens, this code won't be called.
367 		 *
368 		 * This code is called only when user space hibernation software
369 		 * prepares for snapshot device during boot time. So we just
370 		 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
371 		 * preparing the snapshot device.
372 		 *
373 		 * This works for normal boot case in our CPU0 hotplug debug
374 		 * mode, i.e. CPU0 is offline and user mode hibernation
375 		 * software initializes during boot time.
376 		 *
377 		 * If CPU0 is online and user application accesses snapshot
378 		 * device after boot time, this will offline CPU0 and user may
379 		 * see different CPU0 state before and after accessing
380 		 * the snapshot device. But hopefully this is not a case when
381 		 * user debugging CPU0 hotplug. Even if users hit this case,
382 		 * they can easily online CPU0 back.
383 		 *
384 		 * To simplify this debug code, we only consider normal boot
385 		 * case. Otherwise we need to remember CPU0's state and restore
386 		 * to that state and resolve racy conditions etc.
387 		 */
388 		_debug_hotplug_cpu(0, 0);
389 		break;
390 #endif
391 	default:
392 		break;
393 	}
394 	return notifier_from_errno(ret);
395 }
396 
397 static int __init bsp_pm_check_init(void)
398 {
399 	/*
400 	 * Set this bsp_pm_callback as lower priority than
401 	 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
402 	 * earlier to disable cpu hotplug before bsp online check.
403 	 */
404 	pm_notifier(bsp_pm_callback, -INT_MAX);
405 	return 0;
406 }
407 
408 core_initcall(bsp_pm_check_init);
409 
410 static int msr_build_context(const u32 *msr_id, const int num)
411 {
412 	struct saved_msrs *saved_msrs = &saved_context.saved_msrs;
413 	struct saved_msr *msr_array;
414 	int total_num;
415 	int i, j;
416 
417 	total_num = saved_msrs->num + num;
418 
419 	msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
420 	if (!msr_array) {
421 		pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
422 		return -ENOMEM;
423 	}
424 
425 	if (saved_msrs->array) {
426 		/*
427 		 * Multiple callbacks can invoke this function, so copy any
428 		 * MSR save requests from previous invocations.
429 		 */
430 		memcpy(msr_array, saved_msrs->array,
431 		       sizeof(struct saved_msr) * saved_msrs->num);
432 
433 		kfree(saved_msrs->array);
434 	}
435 
436 	for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) {
437 		u64 dummy;
438 
439 		msr_array[i].info.msr_no	= msr_id[j];
440 		msr_array[i].valid		= !rdmsrl_safe(msr_id[j], &dummy);
441 		msr_array[i].info.reg.q		= 0;
442 	}
443 	saved_msrs->num   = total_num;
444 	saved_msrs->array = msr_array;
445 
446 	return 0;
447 }
448 
449 /*
450  * The following sections are a quirk framework for problematic BIOSen:
451  * Sometimes MSRs are modified by the BIOSen after suspended to
452  * RAM, this might cause unexpected behavior after wakeup.
453  * Thus we save/restore these specified MSRs across suspend/resume
454  * in order to work around it.
455  *
456  * For any further problematic BIOSen/platforms,
457  * please add your own function similar to msr_initialize_bdw.
458  */
459 static int msr_initialize_bdw(const struct dmi_system_id *d)
460 {
461 	/* Add any extra MSR ids into this array. */
462 	u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
463 
464 	pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
465 	return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
466 }
467 
468 static const struct dmi_system_id msr_save_dmi_table[] = {
469 	{
470 	 .callback = msr_initialize_bdw,
471 	 .ident = "BROADWELL BDX_EP",
472 	 .matches = {
473 		DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
474 		DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
475 		},
476 	},
477 	{}
478 };
479 
480 static int msr_save_cpuid_features(const struct x86_cpu_id *c)
481 {
482 	u32 cpuid_msr_id[] = {
483 		MSR_AMD64_CPUID_FN_1,
484 	};
485 
486 	pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n",
487 		c->family);
488 
489 	return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id));
490 }
491 
492 static const struct x86_cpu_id msr_save_cpu_table[] = {
493 	X86_MATCH_VENDOR_FAM(AMD, 0x15, &msr_save_cpuid_features),
494 	X86_MATCH_VENDOR_FAM(AMD, 0x16, &msr_save_cpuid_features),
495 	{}
496 };
497 
498 typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *);
499 static int pm_cpu_check(const struct x86_cpu_id *c)
500 {
501 	const struct x86_cpu_id *m;
502 	int ret = 0;
503 
504 	m = x86_match_cpu(msr_save_cpu_table);
505 	if (m) {
506 		pm_cpu_match_t fn;
507 
508 		fn = (pm_cpu_match_t)m->driver_data;
509 		ret = fn(m);
510 	}
511 
512 	return ret;
513 }
514 
515 static void pm_save_spec_msr(void)
516 {
517 	struct msr_enumeration {
518 		u32 msr_no;
519 		u32 feature;
520 	} msr_enum[] = {
521 		{ MSR_IA32_SPEC_CTRL,	 X86_FEATURE_MSR_SPEC_CTRL },
522 		{ MSR_IA32_TSX_CTRL,	 X86_FEATURE_MSR_TSX_CTRL },
523 		{ MSR_TSX_FORCE_ABORT,	 X86_FEATURE_TSX_FORCE_ABORT },
524 		{ MSR_IA32_MCU_OPT_CTRL, X86_FEATURE_SRBDS_CTRL },
525 		{ MSR_AMD64_LS_CFG,	 X86_FEATURE_LS_CFG_SSBD },
526 		{ MSR_AMD64_DE_CFG,	 X86_FEATURE_LFENCE_RDTSC },
527 	};
528 	int i;
529 
530 	for (i = 0; i < ARRAY_SIZE(msr_enum); i++) {
531 		if (boot_cpu_has(msr_enum[i].feature))
532 			msr_build_context(&msr_enum[i].msr_no, 1);
533 	}
534 }
535 
536 static int pm_check_save_msr(void)
537 {
538 	dmi_check_system(msr_save_dmi_table);
539 	pm_cpu_check(msr_save_cpu_table);
540 	pm_save_spec_msr();
541 
542 	return 0;
543 }
544 
545 device_initcall(pm_check_save_msr);
546