xref: /openbmc/linux/arch/x86/power/cpu.c (revision d40605b6d088b20827e442903022c65f0f165c84)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Suspend support specific for i386/x86-64.
4  *
5  * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
6  * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
7  * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
8  */
9 
10 #include <linux/suspend.h>
11 #include <linux/export.h>
12 #include <linux/smp.h>
13 #include <linux/perf_event.h>
14 #include <linux/tboot.h>
15 
16 #include <asm/pgtable.h>
17 #include <asm/proto.h>
18 #include <asm/mtrr.h>
19 #include <asm/page.h>
20 #include <asm/mce.h>
21 #include <asm/suspend.h>
22 #include <asm/fpu/internal.h>
23 #include <asm/debugreg.h>
24 #include <asm/cpu.h>
25 #include <asm/mmu_context.h>
26 #include <linux/dmi.h>
27 
28 #ifdef CONFIG_X86_32
29 __visible unsigned long saved_context_ebx;
30 __visible unsigned long saved_context_esp, saved_context_ebp;
31 __visible unsigned long saved_context_esi, saved_context_edi;
32 __visible unsigned long saved_context_eflags;
33 #endif
34 struct saved_context saved_context;
35 
36 static void msr_save_context(struct saved_context *ctxt)
37 {
38 	struct saved_msr *msr = ctxt->saved_msrs.array;
39 	struct saved_msr *end = msr + ctxt->saved_msrs.num;
40 
41 	while (msr < end) {
42 		msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q);
43 		msr++;
44 	}
45 }
46 
47 static void msr_restore_context(struct saved_context *ctxt)
48 {
49 	struct saved_msr *msr = ctxt->saved_msrs.array;
50 	struct saved_msr *end = msr + ctxt->saved_msrs.num;
51 
52 	while (msr < end) {
53 		if (msr->valid)
54 			wrmsrl(msr->info.msr_no, msr->info.reg.q);
55 		msr++;
56 	}
57 }
58 
59 /**
60  *	__save_processor_state - save CPU registers before creating a
61  *		hibernation image and before restoring the memory state from it
62  *	@ctxt - structure to store the registers contents in
63  *
64  *	NOTE: If there is a CPU register the modification of which by the
65  *	boot kernel (ie. the kernel used for loading the hibernation image)
66  *	might affect the operations of the restored target kernel (ie. the one
67  *	saved in the hibernation image), then its contents must be saved by this
68  *	function.  In other words, if kernel A is hibernated and different
69  *	kernel B is used for loading the hibernation image into memory, the
70  *	kernel A's __save_processor_state() function must save all registers
71  *	needed by kernel A, so that it can operate correctly after the resume
72  *	regardless of what kernel B does in the meantime.
73  */
74 static void __save_processor_state(struct saved_context *ctxt)
75 {
76 #ifdef CONFIG_X86_32
77 	mtrr_save_fixed_ranges(NULL);
78 #endif
79 	kernel_fpu_begin();
80 
81 	/*
82 	 * descriptor tables
83 	 */
84 	store_idt(&ctxt->idt);
85 
86 	/*
87 	 * We save it here, but restore it only in the hibernate case.
88 	 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
89 	 * mode in "secondary_startup_64". In 32-bit mode it is done via
90 	 * 'pmode_gdt' in wakeup_start.
91 	 */
92 	ctxt->gdt_desc.size = GDT_SIZE - 1;
93 	ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
94 
95 	store_tr(ctxt->tr);
96 
97 	/* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
98 	/*
99 	 * segment registers
100 	 */
101 #ifdef CONFIG_X86_32_LAZY_GS
102 	savesegment(gs, ctxt->gs);
103 #endif
104 #ifdef CONFIG_X86_64
105 	savesegment(gs, ctxt->gs);
106 	savesegment(fs, ctxt->fs);
107 	savesegment(ds, ctxt->ds);
108 	savesegment(es, ctxt->es);
109 
110 	rdmsrl(MSR_FS_BASE, ctxt->fs_base);
111 	rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
112 	rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
113 	mtrr_save_fixed_ranges(NULL);
114 
115 	rdmsrl(MSR_EFER, ctxt->efer);
116 #endif
117 
118 	/*
119 	 * control registers
120 	 */
121 	ctxt->cr0 = read_cr0();
122 	ctxt->cr2 = read_cr2();
123 	ctxt->cr3 = __read_cr3();
124 	ctxt->cr4 = __read_cr4();
125 #ifdef CONFIG_X86_64
126 	ctxt->cr8 = read_cr8();
127 #endif
128 	ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
129 					       &ctxt->misc_enable);
130 	msr_save_context(ctxt);
131 }
132 
133 /* Needed by apm.c */
134 void save_processor_state(void)
135 {
136 	__save_processor_state(&saved_context);
137 	x86_platform.save_sched_clock_state();
138 }
139 #ifdef CONFIG_X86_32
140 EXPORT_SYMBOL(save_processor_state);
141 #endif
142 
143 static void do_fpu_end(void)
144 {
145 	/*
146 	 * Restore FPU regs if necessary.
147 	 */
148 	kernel_fpu_end();
149 }
150 
151 static void fix_processor_context(void)
152 {
153 	int cpu = smp_processor_id();
154 #ifdef CONFIG_X86_64
155 	struct desc_struct *desc = get_cpu_gdt_rw(cpu);
156 	tss_desc tss;
157 #endif
158 
159 	/*
160 	 * We need to reload TR, which requires that we change the
161 	 * GDT entry to indicate "available" first.
162 	 *
163 	 * XXX: This could probably all be replaced by a call to
164 	 * force_reload_TR().
165 	 */
166 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
167 
168 #ifdef CONFIG_X86_64
169 	memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
170 	tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
171 	write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
172 
173 	syscall_init();				/* This sets MSR_*STAR and related */
174 #else
175 	if (boot_cpu_has(X86_FEATURE_SEP))
176 		enable_sep_cpu();
177 #endif
178 	load_TR_desc();				/* This does ltr */
179 	load_mm_ldt(current->active_mm);	/* This does lldt */
180 	initialize_tlbstate_and_flush();
181 
182 	fpu__resume_cpu();
183 
184 	/* The processor is back on the direct GDT, load back the fixmap */
185 	load_fixmap_gdt(cpu);
186 }
187 
188 /**
189  * __restore_processor_state - restore the contents of CPU registers saved
190  *                             by __save_processor_state()
191  * @ctxt - structure to load the registers contents from
192  *
193  * The asm code that gets us here will have restored a usable GDT, although
194  * it will be pointing to the wrong alias.
195  */
196 static void notrace __restore_processor_state(struct saved_context *ctxt)
197 {
198 	if (ctxt->misc_enable_saved)
199 		wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
200 	/*
201 	 * control registers
202 	 */
203 	/* cr4 was introduced in the Pentium CPU */
204 #ifdef CONFIG_X86_32
205 	if (ctxt->cr4)
206 		__write_cr4(ctxt->cr4);
207 #else
208 /* CONFIG X86_64 */
209 	wrmsrl(MSR_EFER, ctxt->efer);
210 	write_cr8(ctxt->cr8);
211 	__write_cr4(ctxt->cr4);
212 #endif
213 	write_cr3(ctxt->cr3);
214 	write_cr2(ctxt->cr2);
215 	write_cr0(ctxt->cr0);
216 
217 	/* Restore the IDT. */
218 	load_idt(&ctxt->idt);
219 
220 	/*
221 	 * Just in case the asm code got us here with the SS, DS, or ES
222 	 * out of sync with the GDT, update them.
223 	 */
224 	loadsegment(ss, __KERNEL_DS);
225 	loadsegment(ds, __USER_DS);
226 	loadsegment(es, __USER_DS);
227 
228 	/*
229 	 * Restore percpu access.  Percpu access can happen in exception
230 	 * handlers or in complicated helpers like load_gs_index().
231 	 */
232 #ifdef CONFIG_X86_64
233 	wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
234 #else
235 	loadsegment(fs, __KERNEL_PERCPU);
236 	loadsegment(gs, __KERNEL_STACK_CANARY);
237 #endif
238 
239 	/* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */
240 	fix_processor_context();
241 
242 	/*
243 	 * Now that we have descriptor tables fully restored and working
244 	 * exception handling, restore the usermode segments.
245 	 */
246 #ifdef CONFIG_X86_64
247 	loadsegment(ds, ctxt->es);
248 	loadsegment(es, ctxt->es);
249 	loadsegment(fs, ctxt->fs);
250 	load_gs_index(ctxt->gs);
251 
252 	/*
253 	 * Restore FSBASE and GSBASE after restoring the selectors, since
254 	 * restoring the selectors clobbers the bases.  Keep in mind
255 	 * that MSR_KERNEL_GS_BASE is horribly misnamed.
256 	 */
257 	wrmsrl(MSR_FS_BASE, ctxt->fs_base);
258 	wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
259 #elif defined(CONFIG_X86_32_LAZY_GS)
260 	loadsegment(gs, ctxt->gs);
261 #endif
262 
263 	do_fpu_end();
264 	tsc_verify_tsc_adjust(true);
265 	x86_platform.restore_sched_clock_state();
266 	mtrr_bp_restore();
267 	perf_restore_debug_store();
268 	msr_restore_context(ctxt);
269 }
270 
271 /* Needed by apm.c */
272 void notrace restore_processor_state(void)
273 {
274 	__restore_processor_state(&saved_context);
275 }
276 #ifdef CONFIG_X86_32
277 EXPORT_SYMBOL(restore_processor_state);
278 #endif
279 
280 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
281 static void resume_play_dead(void)
282 {
283 	play_dead_common();
284 	tboot_shutdown(TB_SHUTDOWN_WFS);
285 	hlt_play_dead();
286 }
287 
288 int hibernate_resume_nonboot_cpu_disable(void)
289 {
290 	void (*play_dead)(void) = smp_ops.play_dead;
291 	int ret;
292 
293 	/*
294 	 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
295 	 * during hibernate image restoration, because it is likely that the
296 	 * monitored address will be actually written to at that time and then
297 	 * the "dead" CPU will attempt to execute instructions again, but the
298 	 * address in its instruction pointer may not be possible to resolve
299 	 * any more at that point (the page tables used by it previously may
300 	 * have been overwritten by hibernate image data).
301 	 *
302 	 * First, make sure that we wake up all the potentially disabled SMT
303 	 * threads which have been initially brought up and then put into
304 	 * mwait/cpuidle sleep.
305 	 * Those will be put to proper (not interfering with hibernation
306 	 * resume) sleep afterwards, and the resumed kernel will decide itself
307 	 * what to do with them.
308 	 */
309 	ret = cpuhp_smt_enable();
310 	if (ret)
311 		return ret;
312 	smp_ops.play_dead = resume_play_dead;
313 	ret = disable_nonboot_cpus();
314 	smp_ops.play_dead = play_dead;
315 	return ret;
316 }
317 #endif
318 
319 /*
320  * When bsp_check() is called in hibernate and suspend, cpu hotplug
321  * is disabled already. So it's unnessary to handle race condition between
322  * cpumask query and cpu hotplug.
323  */
324 static int bsp_check(void)
325 {
326 	if (cpumask_first(cpu_online_mask) != 0) {
327 		pr_warn("CPU0 is offline.\n");
328 		return -ENODEV;
329 	}
330 
331 	return 0;
332 }
333 
334 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
335 			   void *ptr)
336 {
337 	int ret = 0;
338 
339 	switch (action) {
340 	case PM_SUSPEND_PREPARE:
341 	case PM_HIBERNATION_PREPARE:
342 		ret = bsp_check();
343 		break;
344 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0
345 	case PM_RESTORE_PREPARE:
346 		/*
347 		 * When system resumes from hibernation, online CPU0 because
348 		 * 1. it's required for resume and
349 		 * 2. the CPU was online before hibernation
350 		 */
351 		if (!cpu_online(0))
352 			_debug_hotplug_cpu(0, 1);
353 		break;
354 	case PM_POST_RESTORE:
355 		/*
356 		 * When a resume really happens, this code won't be called.
357 		 *
358 		 * This code is called only when user space hibernation software
359 		 * prepares for snapshot device during boot time. So we just
360 		 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
361 		 * preparing the snapshot device.
362 		 *
363 		 * This works for normal boot case in our CPU0 hotplug debug
364 		 * mode, i.e. CPU0 is offline and user mode hibernation
365 		 * software initializes during boot time.
366 		 *
367 		 * If CPU0 is online and user application accesses snapshot
368 		 * device after boot time, this will offline CPU0 and user may
369 		 * see different CPU0 state before and after accessing
370 		 * the snapshot device. But hopefully this is not a case when
371 		 * user debugging CPU0 hotplug. Even if users hit this case,
372 		 * they can easily online CPU0 back.
373 		 *
374 		 * To simplify this debug code, we only consider normal boot
375 		 * case. Otherwise we need to remember CPU0's state and restore
376 		 * to that state and resolve racy conditions etc.
377 		 */
378 		_debug_hotplug_cpu(0, 0);
379 		break;
380 #endif
381 	default:
382 		break;
383 	}
384 	return notifier_from_errno(ret);
385 }
386 
387 static int __init bsp_pm_check_init(void)
388 {
389 	/*
390 	 * Set this bsp_pm_callback as lower priority than
391 	 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
392 	 * earlier to disable cpu hotplug before bsp online check.
393 	 */
394 	pm_notifier(bsp_pm_callback, -INT_MAX);
395 	return 0;
396 }
397 
398 core_initcall(bsp_pm_check_init);
399 
400 static int msr_init_context(const u32 *msr_id, const int total_num)
401 {
402 	int i = 0;
403 	struct saved_msr *msr_array;
404 
405 	if (saved_context.saved_msrs.array || saved_context.saved_msrs.num > 0) {
406 		pr_err("x86/pm: MSR quirk already applied, please check your DMI match table.\n");
407 		return -EINVAL;
408 	}
409 
410 	msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
411 	if (!msr_array) {
412 		pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
413 		return -ENOMEM;
414 	}
415 
416 	for (i = 0; i < total_num; i++) {
417 		msr_array[i].info.msr_no	= msr_id[i];
418 		msr_array[i].valid		= false;
419 		msr_array[i].info.reg.q		= 0;
420 	}
421 	saved_context.saved_msrs.num	= total_num;
422 	saved_context.saved_msrs.array	= msr_array;
423 
424 	return 0;
425 }
426 
427 /*
428  * The following section is a quirk framework for problematic BIOSen:
429  * Sometimes MSRs are modified by the BIOSen after suspended to
430  * RAM, this might cause unexpected behavior after wakeup.
431  * Thus we save/restore these specified MSRs across suspend/resume
432  * in order to work around it.
433  *
434  * For any further problematic BIOSen/platforms,
435  * please add your own function similar to msr_initialize_bdw.
436  */
437 static int msr_initialize_bdw(const struct dmi_system_id *d)
438 {
439 	/* Add any extra MSR ids into this array. */
440 	u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
441 
442 	pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
443 	return msr_init_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
444 }
445 
446 static const struct dmi_system_id msr_save_dmi_table[] = {
447 	{
448 	 .callback = msr_initialize_bdw,
449 	 .ident = "BROADWELL BDX_EP",
450 	 .matches = {
451 		DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
452 		DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
453 		},
454 	},
455 	{}
456 };
457 
458 static int pm_check_save_msr(void)
459 {
460 	dmi_check_system(msr_save_dmi_table);
461 	return 0;
462 }
463 
464 device_initcall(pm_check_save_msr);
465