xref: /openbmc/linux/arch/x86/power/cpu.c (revision c93db682)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Suspend support specific for i386/x86-64.
4  *
5  * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
6  * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
7  * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
8  */
9 
10 #include <linux/suspend.h>
11 #include <linux/export.h>
12 #include <linux/smp.h>
13 #include <linux/perf_event.h>
14 #include <linux/tboot.h>
15 #include <linux/dmi.h>
16 #include <linux/pgtable.h>
17 
18 #include <asm/proto.h>
19 #include <asm/mtrr.h>
20 #include <asm/page.h>
21 #include <asm/mce.h>
22 #include <asm/suspend.h>
23 #include <asm/fpu/internal.h>
24 #include <asm/debugreg.h>
25 #include <asm/cpu.h>
26 #include <asm/mmu_context.h>
27 #include <asm/cpu_device_id.h>
28 
29 #ifdef CONFIG_X86_32
30 __visible unsigned long saved_context_ebx;
31 __visible unsigned long saved_context_esp, saved_context_ebp;
32 __visible unsigned long saved_context_esi, saved_context_edi;
33 __visible unsigned long saved_context_eflags;
34 #endif
35 struct saved_context saved_context;
36 
37 static void msr_save_context(struct saved_context *ctxt)
38 {
39 	struct saved_msr *msr = ctxt->saved_msrs.array;
40 	struct saved_msr *end = msr + ctxt->saved_msrs.num;
41 
42 	while (msr < end) {
43 		msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q);
44 		msr++;
45 	}
46 }
47 
48 static void msr_restore_context(struct saved_context *ctxt)
49 {
50 	struct saved_msr *msr = ctxt->saved_msrs.array;
51 	struct saved_msr *end = msr + ctxt->saved_msrs.num;
52 
53 	while (msr < end) {
54 		if (msr->valid)
55 			wrmsrl(msr->info.msr_no, msr->info.reg.q);
56 		msr++;
57 	}
58 }
59 
60 /**
61  *	__save_processor_state - save CPU registers before creating a
62  *		hibernation image and before restoring the memory state from it
63  *	@ctxt - structure to store the registers contents in
64  *
65  *	NOTE: If there is a CPU register the modification of which by the
66  *	boot kernel (ie. the kernel used for loading the hibernation image)
67  *	might affect the operations of the restored target kernel (ie. the one
68  *	saved in the hibernation image), then its contents must be saved by this
69  *	function.  In other words, if kernel A is hibernated and different
70  *	kernel B is used for loading the hibernation image into memory, the
71  *	kernel A's __save_processor_state() function must save all registers
72  *	needed by kernel A, so that it can operate correctly after the resume
73  *	regardless of what kernel B does in the meantime.
74  */
75 static void __save_processor_state(struct saved_context *ctxt)
76 {
77 #ifdef CONFIG_X86_32
78 	mtrr_save_fixed_ranges(NULL);
79 #endif
80 	kernel_fpu_begin();
81 
82 	/*
83 	 * descriptor tables
84 	 */
85 	store_idt(&ctxt->idt);
86 
87 	/*
88 	 * We save it here, but restore it only in the hibernate case.
89 	 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
90 	 * mode in "secondary_startup_64". In 32-bit mode it is done via
91 	 * 'pmode_gdt' in wakeup_start.
92 	 */
93 	ctxt->gdt_desc.size = GDT_SIZE - 1;
94 	ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
95 
96 	store_tr(ctxt->tr);
97 
98 	/* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
99 	/*
100 	 * segment registers
101 	 */
102 	savesegment(gs, ctxt->gs);
103 #ifdef CONFIG_X86_64
104 	savesegment(fs, ctxt->fs);
105 	savesegment(ds, ctxt->ds);
106 	savesegment(es, ctxt->es);
107 
108 	rdmsrl(MSR_FS_BASE, ctxt->fs_base);
109 	rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
110 	rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
111 	mtrr_save_fixed_ranges(NULL);
112 
113 	rdmsrl(MSR_EFER, ctxt->efer);
114 #endif
115 
116 	/*
117 	 * control registers
118 	 */
119 	ctxt->cr0 = read_cr0();
120 	ctxt->cr2 = read_cr2();
121 	ctxt->cr3 = __read_cr3();
122 	ctxt->cr4 = __read_cr4();
123 	ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
124 					       &ctxt->misc_enable);
125 	msr_save_context(ctxt);
126 }
127 
128 /* Needed by apm.c */
129 void save_processor_state(void)
130 {
131 	__save_processor_state(&saved_context);
132 	x86_platform.save_sched_clock_state();
133 }
134 #ifdef CONFIG_X86_32
135 EXPORT_SYMBOL(save_processor_state);
136 #endif
137 
138 static void do_fpu_end(void)
139 {
140 	/*
141 	 * Restore FPU regs if necessary.
142 	 */
143 	kernel_fpu_end();
144 }
145 
146 static void fix_processor_context(void)
147 {
148 	int cpu = smp_processor_id();
149 #ifdef CONFIG_X86_64
150 	struct desc_struct *desc = get_cpu_gdt_rw(cpu);
151 	tss_desc tss;
152 #endif
153 
154 	/*
155 	 * We need to reload TR, which requires that we change the
156 	 * GDT entry to indicate "available" first.
157 	 *
158 	 * XXX: This could probably all be replaced by a call to
159 	 * force_reload_TR().
160 	 */
161 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
162 
163 #ifdef CONFIG_X86_64
164 	memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
165 	tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
166 	write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
167 
168 	syscall_init();				/* This sets MSR_*STAR and related */
169 #else
170 	if (boot_cpu_has(X86_FEATURE_SEP))
171 		enable_sep_cpu();
172 #endif
173 	load_TR_desc();				/* This does ltr */
174 	load_mm_ldt(current->active_mm);	/* This does lldt */
175 	initialize_tlbstate_and_flush();
176 
177 	fpu__resume_cpu();
178 
179 	/* The processor is back on the direct GDT, load back the fixmap */
180 	load_fixmap_gdt(cpu);
181 }
182 
183 /**
184  * __restore_processor_state - restore the contents of CPU registers saved
185  *                             by __save_processor_state()
186  * @ctxt - structure to load the registers contents from
187  *
188  * The asm code that gets us here will have restored a usable GDT, although
189  * it will be pointing to the wrong alias.
190  */
191 static void notrace __restore_processor_state(struct saved_context *ctxt)
192 {
193 	struct cpuinfo_x86 *c;
194 
195 	if (ctxt->misc_enable_saved)
196 		wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
197 	/*
198 	 * control registers
199 	 */
200 	/* cr4 was introduced in the Pentium CPU */
201 #ifdef CONFIG_X86_32
202 	if (ctxt->cr4)
203 		__write_cr4(ctxt->cr4);
204 #else
205 /* CONFIG X86_64 */
206 	wrmsrl(MSR_EFER, ctxt->efer);
207 	__write_cr4(ctxt->cr4);
208 #endif
209 	write_cr3(ctxt->cr3);
210 	write_cr2(ctxt->cr2);
211 	write_cr0(ctxt->cr0);
212 
213 	/* Restore the IDT. */
214 	load_idt(&ctxt->idt);
215 
216 	/*
217 	 * Just in case the asm code got us here with the SS, DS, or ES
218 	 * out of sync with the GDT, update them.
219 	 */
220 	loadsegment(ss, __KERNEL_DS);
221 	loadsegment(ds, __USER_DS);
222 	loadsegment(es, __USER_DS);
223 
224 	/*
225 	 * Restore percpu access.  Percpu access can happen in exception
226 	 * handlers or in complicated helpers like load_gs_index().
227 	 */
228 #ifdef CONFIG_X86_64
229 	wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
230 #else
231 	loadsegment(fs, __KERNEL_PERCPU);
232 #endif
233 
234 	/* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */
235 	fix_processor_context();
236 
237 	/*
238 	 * Now that we have descriptor tables fully restored and working
239 	 * exception handling, restore the usermode segments.
240 	 */
241 #ifdef CONFIG_X86_64
242 	loadsegment(ds, ctxt->es);
243 	loadsegment(es, ctxt->es);
244 	loadsegment(fs, ctxt->fs);
245 	load_gs_index(ctxt->gs);
246 
247 	/*
248 	 * Restore FSBASE and GSBASE after restoring the selectors, since
249 	 * restoring the selectors clobbers the bases.  Keep in mind
250 	 * that MSR_KERNEL_GS_BASE is horribly misnamed.
251 	 */
252 	wrmsrl(MSR_FS_BASE, ctxt->fs_base);
253 	wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
254 #else
255 	loadsegment(gs, ctxt->gs);
256 #endif
257 
258 	do_fpu_end();
259 	tsc_verify_tsc_adjust(true);
260 	x86_platform.restore_sched_clock_state();
261 	mtrr_bp_restore();
262 	perf_restore_debug_store();
263 	msr_restore_context(ctxt);
264 
265 	c = &cpu_data(smp_processor_id());
266 	if (cpu_has(c, X86_FEATURE_MSR_IA32_FEAT_CTL))
267 		init_ia32_feat_ctl(c);
268 }
269 
270 /* Needed by apm.c */
271 void notrace restore_processor_state(void)
272 {
273 	__restore_processor_state(&saved_context);
274 }
275 #ifdef CONFIG_X86_32
276 EXPORT_SYMBOL(restore_processor_state);
277 #endif
278 
279 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
280 static void resume_play_dead(void)
281 {
282 	play_dead_common();
283 	tboot_shutdown(TB_SHUTDOWN_WFS);
284 	hlt_play_dead();
285 }
286 
287 int hibernate_resume_nonboot_cpu_disable(void)
288 {
289 	void (*play_dead)(void) = smp_ops.play_dead;
290 	int ret;
291 
292 	/*
293 	 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
294 	 * during hibernate image restoration, because it is likely that the
295 	 * monitored address will be actually written to at that time and then
296 	 * the "dead" CPU will attempt to execute instructions again, but the
297 	 * address in its instruction pointer may not be possible to resolve
298 	 * any more at that point (the page tables used by it previously may
299 	 * have been overwritten by hibernate image data).
300 	 *
301 	 * First, make sure that we wake up all the potentially disabled SMT
302 	 * threads which have been initially brought up and then put into
303 	 * mwait/cpuidle sleep.
304 	 * Those will be put to proper (not interfering with hibernation
305 	 * resume) sleep afterwards, and the resumed kernel will decide itself
306 	 * what to do with them.
307 	 */
308 	ret = cpuhp_smt_enable();
309 	if (ret)
310 		return ret;
311 	smp_ops.play_dead = resume_play_dead;
312 	ret = freeze_secondary_cpus(0);
313 	smp_ops.play_dead = play_dead;
314 	return ret;
315 }
316 #endif
317 
318 /*
319  * When bsp_check() is called in hibernate and suspend, cpu hotplug
320  * is disabled already. So it's unnecessary to handle race condition between
321  * cpumask query and cpu hotplug.
322  */
323 static int bsp_check(void)
324 {
325 	if (cpumask_first(cpu_online_mask) != 0) {
326 		pr_warn("CPU0 is offline.\n");
327 		return -ENODEV;
328 	}
329 
330 	return 0;
331 }
332 
333 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
334 			   void *ptr)
335 {
336 	int ret = 0;
337 
338 	switch (action) {
339 	case PM_SUSPEND_PREPARE:
340 	case PM_HIBERNATION_PREPARE:
341 		ret = bsp_check();
342 		break;
343 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0
344 	case PM_RESTORE_PREPARE:
345 		/*
346 		 * When system resumes from hibernation, online CPU0 because
347 		 * 1. it's required for resume and
348 		 * 2. the CPU was online before hibernation
349 		 */
350 		if (!cpu_online(0))
351 			_debug_hotplug_cpu(0, 1);
352 		break;
353 	case PM_POST_RESTORE:
354 		/*
355 		 * When a resume really happens, this code won't be called.
356 		 *
357 		 * This code is called only when user space hibernation software
358 		 * prepares for snapshot device during boot time. So we just
359 		 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
360 		 * preparing the snapshot device.
361 		 *
362 		 * This works for normal boot case in our CPU0 hotplug debug
363 		 * mode, i.e. CPU0 is offline and user mode hibernation
364 		 * software initializes during boot time.
365 		 *
366 		 * If CPU0 is online and user application accesses snapshot
367 		 * device after boot time, this will offline CPU0 and user may
368 		 * see different CPU0 state before and after accessing
369 		 * the snapshot device. But hopefully this is not a case when
370 		 * user debugging CPU0 hotplug. Even if users hit this case,
371 		 * they can easily online CPU0 back.
372 		 *
373 		 * To simplify this debug code, we only consider normal boot
374 		 * case. Otherwise we need to remember CPU0's state and restore
375 		 * to that state and resolve racy conditions etc.
376 		 */
377 		_debug_hotplug_cpu(0, 0);
378 		break;
379 #endif
380 	default:
381 		break;
382 	}
383 	return notifier_from_errno(ret);
384 }
385 
386 static int __init bsp_pm_check_init(void)
387 {
388 	/*
389 	 * Set this bsp_pm_callback as lower priority than
390 	 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
391 	 * earlier to disable cpu hotplug before bsp online check.
392 	 */
393 	pm_notifier(bsp_pm_callback, -INT_MAX);
394 	return 0;
395 }
396 
397 core_initcall(bsp_pm_check_init);
398 
399 static int msr_build_context(const u32 *msr_id, const int num)
400 {
401 	struct saved_msrs *saved_msrs = &saved_context.saved_msrs;
402 	struct saved_msr *msr_array;
403 	int total_num;
404 	int i, j;
405 
406 	total_num = saved_msrs->num + num;
407 
408 	msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
409 	if (!msr_array) {
410 		pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
411 		return -ENOMEM;
412 	}
413 
414 	if (saved_msrs->array) {
415 		/*
416 		 * Multiple callbacks can invoke this function, so copy any
417 		 * MSR save requests from previous invocations.
418 		 */
419 		memcpy(msr_array, saved_msrs->array,
420 		       sizeof(struct saved_msr) * saved_msrs->num);
421 
422 		kfree(saved_msrs->array);
423 	}
424 
425 	for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) {
426 		msr_array[i].info.msr_no	= msr_id[j];
427 		msr_array[i].valid		= false;
428 		msr_array[i].info.reg.q		= 0;
429 	}
430 	saved_msrs->num   = total_num;
431 	saved_msrs->array = msr_array;
432 
433 	return 0;
434 }
435 
436 /*
437  * The following sections are a quirk framework for problematic BIOSen:
438  * Sometimes MSRs are modified by the BIOSen after suspended to
439  * RAM, this might cause unexpected behavior after wakeup.
440  * Thus we save/restore these specified MSRs across suspend/resume
441  * in order to work around it.
442  *
443  * For any further problematic BIOSen/platforms,
444  * please add your own function similar to msr_initialize_bdw.
445  */
446 static int msr_initialize_bdw(const struct dmi_system_id *d)
447 {
448 	/* Add any extra MSR ids into this array. */
449 	u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
450 
451 	pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
452 	return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
453 }
454 
455 static const struct dmi_system_id msr_save_dmi_table[] = {
456 	{
457 	 .callback = msr_initialize_bdw,
458 	 .ident = "BROADWELL BDX_EP",
459 	 .matches = {
460 		DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
461 		DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
462 		},
463 	},
464 	{}
465 };
466 
467 static int msr_save_cpuid_features(const struct x86_cpu_id *c)
468 {
469 	u32 cpuid_msr_id[] = {
470 		MSR_AMD64_CPUID_FN_1,
471 	};
472 
473 	pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n",
474 		c->family);
475 
476 	return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id));
477 }
478 
479 static const struct x86_cpu_id msr_save_cpu_table[] = {
480 	X86_MATCH_VENDOR_FAM(AMD, 0x15, &msr_save_cpuid_features),
481 	X86_MATCH_VENDOR_FAM(AMD, 0x16, &msr_save_cpuid_features),
482 	{}
483 };
484 
485 typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *);
486 static int pm_cpu_check(const struct x86_cpu_id *c)
487 {
488 	const struct x86_cpu_id *m;
489 	int ret = 0;
490 
491 	m = x86_match_cpu(msr_save_cpu_table);
492 	if (m) {
493 		pm_cpu_match_t fn;
494 
495 		fn = (pm_cpu_match_t)m->driver_data;
496 		ret = fn(m);
497 	}
498 
499 	return ret;
500 }
501 
502 static int pm_check_save_msr(void)
503 {
504 	dmi_check_system(msr_save_dmi_table);
505 	pm_cpu_check(msr_save_cpu_table);
506 
507 	return 0;
508 }
509 
510 device_initcall(pm_check_save_msr);
511