xref: /openbmc/linux/arch/x86/power/cpu.c (revision c4ee0af3)
1 /*
2  * Suspend support specific for i386/x86-64.
3  *
4  * Distribute under GPLv2
5  *
6  * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
7  * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
8  * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
9  */
10 
11 #include <linux/suspend.h>
12 #include <linux/export.h>
13 #include <linux/smp.h>
14 #include <linux/perf_event.h>
15 
16 #include <asm/pgtable.h>
17 #include <asm/proto.h>
18 #include <asm/mtrr.h>
19 #include <asm/page.h>
20 #include <asm/mce.h>
21 #include <asm/xcr.h>
22 #include <asm/suspend.h>
23 #include <asm/debugreg.h>
24 #include <asm/fpu-internal.h> /* pcntxt_mask */
25 #include <asm/cpu.h>
26 
27 #ifdef CONFIG_X86_32
28 __visible unsigned long saved_context_ebx;
29 __visible unsigned long saved_context_esp, saved_context_ebp;
30 __visible unsigned long saved_context_esi, saved_context_edi;
31 __visible unsigned long saved_context_eflags;
32 #endif
33 struct saved_context saved_context;
34 
35 /**
36  *	__save_processor_state - save CPU registers before creating a
37  *		hibernation image and before restoring the memory state from it
38  *	@ctxt - structure to store the registers contents in
39  *
40  *	NOTE: If there is a CPU register the modification of which by the
41  *	boot kernel (ie. the kernel used for loading the hibernation image)
42  *	might affect the operations of the restored target kernel (ie. the one
43  *	saved in the hibernation image), then its contents must be saved by this
44  *	function.  In other words, if kernel A is hibernated and different
45  *	kernel B is used for loading the hibernation image into memory, the
46  *	kernel A's __save_processor_state() function must save all registers
47  *	needed by kernel A, so that it can operate correctly after the resume
48  *	regardless of what kernel B does in the meantime.
49  */
50 static void __save_processor_state(struct saved_context *ctxt)
51 {
52 #ifdef CONFIG_X86_32
53 	mtrr_save_fixed_ranges(NULL);
54 #endif
55 	kernel_fpu_begin();
56 
57 	/*
58 	 * descriptor tables
59 	 */
60 #ifdef CONFIG_X86_32
61 	store_idt(&ctxt->idt);
62 #else
63 /* CONFIG_X86_64 */
64 	store_idt((struct desc_ptr *)&ctxt->idt_limit);
65 #endif
66 	/*
67 	 * We save it here, but restore it only in the hibernate case.
68 	 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
69 	 * mode in "secondary_startup_64". In 32-bit mode it is done via
70 	 * 'pmode_gdt' in wakeup_start.
71 	 */
72 	ctxt->gdt_desc.size = GDT_SIZE - 1;
73 	ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_table(smp_processor_id());
74 
75 	store_tr(ctxt->tr);
76 
77 	/* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
78 	/*
79 	 * segment registers
80 	 */
81 #ifdef CONFIG_X86_32
82 	savesegment(es, ctxt->es);
83 	savesegment(fs, ctxt->fs);
84 	savesegment(gs, ctxt->gs);
85 	savesegment(ss, ctxt->ss);
86 #else
87 /* CONFIG_X86_64 */
88 	asm volatile ("movw %%ds, %0" : "=m" (ctxt->ds));
89 	asm volatile ("movw %%es, %0" : "=m" (ctxt->es));
90 	asm volatile ("movw %%fs, %0" : "=m" (ctxt->fs));
91 	asm volatile ("movw %%gs, %0" : "=m" (ctxt->gs));
92 	asm volatile ("movw %%ss, %0" : "=m" (ctxt->ss));
93 
94 	rdmsrl(MSR_FS_BASE, ctxt->fs_base);
95 	rdmsrl(MSR_GS_BASE, ctxt->gs_base);
96 	rdmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
97 	mtrr_save_fixed_ranges(NULL);
98 
99 	rdmsrl(MSR_EFER, ctxt->efer);
100 #endif
101 
102 	/*
103 	 * control registers
104 	 */
105 	ctxt->cr0 = read_cr0();
106 	ctxt->cr2 = read_cr2();
107 	ctxt->cr3 = read_cr3();
108 #ifdef CONFIG_X86_32
109 	ctxt->cr4 = read_cr4_safe();
110 #else
111 /* CONFIG_X86_64 */
112 	ctxt->cr4 = read_cr4();
113 	ctxt->cr8 = read_cr8();
114 #endif
115 	ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
116 					       &ctxt->misc_enable);
117 }
118 
119 /* Needed by apm.c */
120 void save_processor_state(void)
121 {
122 	__save_processor_state(&saved_context);
123 	x86_platform.save_sched_clock_state();
124 }
125 #ifdef CONFIG_X86_32
126 EXPORT_SYMBOL(save_processor_state);
127 #endif
128 
129 static void do_fpu_end(void)
130 {
131 	/*
132 	 * Restore FPU regs if necessary.
133 	 */
134 	kernel_fpu_end();
135 }
136 
137 static void fix_processor_context(void)
138 {
139 	int cpu = smp_processor_id();
140 	struct tss_struct *t = &per_cpu(init_tss, cpu);
141 #ifdef CONFIG_X86_64
142 	struct desc_struct *desc = get_cpu_gdt_table(cpu);
143 	tss_desc tss;
144 #endif
145 	set_tss_desc(cpu, t);	/*
146 				 * This just modifies memory; should not be
147 				 * necessary. But... This is necessary, because
148 				 * 386 hardware has concept of busy TSS or some
149 				 * similar stupidity.
150 				 */
151 
152 #ifdef CONFIG_X86_64
153 	memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
154 	tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
155 	write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
156 
157 	syscall_init();				/* This sets MSR_*STAR and related */
158 #endif
159 	load_TR_desc();				/* This does ltr */
160 	load_LDT(&current->active_mm->context);	/* This does lldt */
161 }
162 
163 /**
164  *	__restore_processor_state - restore the contents of CPU registers saved
165  *		by __save_processor_state()
166  *	@ctxt - structure to load the registers contents from
167  */
168 static void __restore_processor_state(struct saved_context *ctxt)
169 {
170 	if (ctxt->misc_enable_saved)
171 		wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
172 	/*
173 	 * control registers
174 	 */
175 	/* cr4 was introduced in the Pentium CPU */
176 #ifdef CONFIG_X86_32
177 	if (ctxt->cr4)
178 		write_cr4(ctxt->cr4);
179 #else
180 /* CONFIG X86_64 */
181 	wrmsrl(MSR_EFER, ctxt->efer);
182 	write_cr8(ctxt->cr8);
183 	write_cr4(ctxt->cr4);
184 #endif
185 	write_cr3(ctxt->cr3);
186 	write_cr2(ctxt->cr2);
187 	write_cr0(ctxt->cr0);
188 
189 	/*
190 	 * now restore the descriptor tables to their proper values
191 	 * ltr is done i fix_processor_context().
192 	 */
193 #ifdef CONFIG_X86_32
194 	load_idt(&ctxt->idt);
195 #else
196 /* CONFIG_X86_64 */
197 	load_idt((const struct desc_ptr *)&ctxt->idt_limit);
198 #endif
199 
200 	/*
201 	 * segment registers
202 	 */
203 #ifdef CONFIG_X86_32
204 	loadsegment(es, ctxt->es);
205 	loadsegment(fs, ctxt->fs);
206 	loadsegment(gs, ctxt->gs);
207 	loadsegment(ss, ctxt->ss);
208 
209 	/*
210 	 * sysenter MSRs
211 	 */
212 	if (boot_cpu_has(X86_FEATURE_SEP))
213 		enable_sep_cpu();
214 #else
215 /* CONFIG_X86_64 */
216 	asm volatile ("movw %0, %%ds" :: "r" (ctxt->ds));
217 	asm volatile ("movw %0, %%es" :: "r" (ctxt->es));
218 	asm volatile ("movw %0, %%fs" :: "r" (ctxt->fs));
219 	load_gs_index(ctxt->gs);
220 	asm volatile ("movw %0, %%ss" :: "r" (ctxt->ss));
221 
222 	wrmsrl(MSR_FS_BASE, ctxt->fs_base);
223 	wrmsrl(MSR_GS_BASE, ctxt->gs_base);
224 	wrmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
225 #endif
226 
227 	/*
228 	 * restore XCR0 for xsave capable cpu's.
229 	 */
230 	if (cpu_has_xsave)
231 		xsetbv(XCR_XFEATURE_ENABLED_MASK, pcntxt_mask);
232 
233 	fix_processor_context();
234 
235 	do_fpu_end();
236 	x86_platform.restore_sched_clock_state();
237 	mtrr_bp_restore();
238 	perf_restore_debug_store();
239 }
240 
241 /* Needed by apm.c */
242 void restore_processor_state(void)
243 {
244 	__restore_processor_state(&saved_context);
245 }
246 #ifdef CONFIG_X86_32
247 EXPORT_SYMBOL(restore_processor_state);
248 #endif
249 
250 /*
251  * When bsp_check() is called in hibernate and suspend, cpu hotplug
252  * is disabled already. So it's unnessary to handle race condition between
253  * cpumask query and cpu hotplug.
254  */
255 static int bsp_check(void)
256 {
257 	if (cpumask_first(cpu_online_mask) != 0) {
258 		pr_warn("CPU0 is offline.\n");
259 		return -ENODEV;
260 	}
261 
262 	return 0;
263 }
264 
265 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
266 			   void *ptr)
267 {
268 	int ret = 0;
269 
270 	switch (action) {
271 	case PM_SUSPEND_PREPARE:
272 	case PM_HIBERNATION_PREPARE:
273 		ret = bsp_check();
274 		break;
275 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0
276 	case PM_RESTORE_PREPARE:
277 		/*
278 		 * When system resumes from hibernation, online CPU0 because
279 		 * 1. it's required for resume and
280 		 * 2. the CPU was online before hibernation
281 		 */
282 		if (!cpu_online(0))
283 			_debug_hotplug_cpu(0, 1);
284 		break;
285 	case PM_POST_RESTORE:
286 		/*
287 		 * When a resume really happens, this code won't be called.
288 		 *
289 		 * This code is called only when user space hibernation software
290 		 * prepares for snapshot device during boot time. So we just
291 		 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
292 		 * preparing the snapshot device.
293 		 *
294 		 * This works for normal boot case in our CPU0 hotplug debug
295 		 * mode, i.e. CPU0 is offline and user mode hibernation
296 		 * software initializes during boot time.
297 		 *
298 		 * If CPU0 is online and user application accesses snapshot
299 		 * device after boot time, this will offline CPU0 and user may
300 		 * see different CPU0 state before and after accessing
301 		 * the snapshot device. But hopefully this is not a case when
302 		 * user debugging CPU0 hotplug. Even if users hit this case,
303 		 * they can easily online CPU0 back.
304 		 *
305 		 * To simplify this debug code, we only consider normal boot
306 		 * case. Otherwise we need to remember CPU0's state and restore
307 		 * to that state and resolve racy conditions etc.
308 		 */
309 		_debug_hotplug_cpu(0, 0);
310 		break;
311 #endif
312 	default:
313 		break;
314 	}
315 	return notifier_from_errno(ret);
316 }
317 
318 static int __init bsp_pm_check_init(void)
319 {
320 	/*
321 	 * Set this bsp_pm_callback as lower priority than
322 	 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
323 	 * earlier to disable cpu hotplug before bsp online check.
324 	 */
325 	pm_notifier(bsp_pm_callback, -INT_MAX);
326 	return 0;
327 }
328 
329 core_initcall(bsp_pm_check_init);
330