1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Suspend support specific for i386/x86-64. 4 * 5 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl> 6 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz> 7 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org> 8 */ 9 10 #include <linux/suspend.h> 11 #include <linux/export.h> 12 #include <linux/smp.h> 13 #include <linux/perf_event.h> 14 #include <linux/tboot.h> 15 #include <linux/dmi.h> 16 #include <linux/pgtable.h> 17 18 #include <asm/proto.h> 19 #include <asm/mtrr.h> 20 #include <asm/page.h> 21 #include <asm/mce.h> 22 #include <asm/suspend.h> 23 #include <asm/fpu/internal.h> 24 #include <asm/debugreg.h> 25 #include <asm/cpu.h> 26 #include <asm/mmu_context.h> 27 #include <asm/cpu_device_id.h> 28 29 #ifdef CONFIG_X86_32 30 __visible unsigned long saved_context_ebx; 31 __visible unsigned long saved_context_esp, saved_context_ebp; 32 __visible unsigned long saved_context_esi, saved_context_edi; 33 __visible unsigned long saved_context_eflags; 34 #endif 35 struct saved_context saved_context; 36 37 static void msr_save_context(struct saved_context *ctxt) 38 { 39 struct saved_msr *msr = ctxt->saved_msrs.array; 40 struct saved_msr *end = msr + ctxt->saved_msrs.num; 41 42 while (msr < end) { 43 msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q); 44 msr++; 45 } 46 } 47 48 static void msr_restore_context(struct saved_context *ctxt) 49 { 50 struct saved_msr *msr = ctxt->saved_msrs.array; 51 struct saved_msr *end = msr + ctxt->saved_msrs.num; 52 53 while (msr < end) { 54 if (msr->valid) 55 wrmsrl(msr->info.msr_no, msr->info.reg.q); 56 msr++; 57 } 58 } 59 60 /** 61 * __save_processor_state - save CPU registers before creating a 62 * hibernation image and before restoring the memory state from it 63 * @ctxt - structure to store the registers contents in 64 * 65 * NOTE: If there is a CPU register the modification of which by the 66 * boot kernel (ie. the kernel used for loading the hibernation image) 67 * might affect the operations of the restored target kernel (ie. the one 68 * saved in the hibernation image), then its contents must be saved by this 69 * function. In other words, if kernel A is hibernated and different 70 * kernel B is used for loading the hibernation image into memory, the 71 * kernel A's __save_processor_state() function must save all registers 72 * needed by kernel A, so that it can operate correctly after the resume 73 * regardless of what kernel B does in the meantime. 74 */ 75 static void __save_processor_state(struct saved_context *ctxt) 76 { 77 #ifdef CONFIG_X86_32 78 mtrr_save_fixed_ranges(NULL); 79 #endif 80 kernel_fpu_begin(); 81 82 /* 83 * descriptor tables 84 */ 85 store_idt(&ctxt->idt); 86 87 /* 88 * We save it here, but restore it only in the hibernate case. 89 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit 90 * mode in "secondary_startup_64". In 32-bit mode it is done via 91 * 'pmode_gdt' in wakeup_start. 92 */ 93 ctxt->gdt_desc.size = GDT_SIZE - 1; 94 ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id()); 95 96 store_tr(ctxt->tr); 97 98 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */ 99 /* 100 * segment registers 101 */ 102 #ifdef CONFIG_X86_32_LAZY_GS 103 savesegment(gs, ctxt->gs); 104 #endif 105 #ifdef CONFIG_X86_64 106 savesegment(gs, ctxt->gs); 107 savesegment(fs, ctxt->fs); 108 savesegment(ds, ctxt->ds); 109 savesegment(es, ctxt->es); 110 111 rdmsrl(MSR_FS_BASE, ctxt->fs_base); 112 rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base); 113 rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); 114 mtrr_save_fixed_ranges(NULL); 115 116 rdmsrl(MSR_EFER, ctxt->efer); 117 #endif 118 119 /* 120 * control registers 121 */ 122 ctxt->cr0 = read_cr0(); 123 ctxt->cr2 = read_cr2(); 124 ctxt->cr3 = __read_cr3(); 125 ctxt->cr4 = __read_cr4(); 126 ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE, 127 &ctxt->misc_enable); 128 msr_save_context(ctxt); 129 } 130 131 /* Needed by apm.c */ 132 void save_processor_state(void) 133 { 134 __save_processor_state(&saved_context); 135 x86_platform.save_sched_clock_state(); 136 } 137 #ifdef CONFIG_X86_32 138 EXPORT_SYMBOL(save_processor_state); 139 #endif 140 141 static void do_fpu_end(void) 142 { 143 /* 144 * Restore FPU regs if necessary. 145 */ 146 kernel_fpu_end(); 147 } 148 149 static void fix_processor_context(void) 150 { 151 int cpu = smp_processor_id(); 152 #ifdef CONFIG_X86_64 153 struct desc_struct *desc = get_cpu_gdt_rw(cpu); 154 tss_desc tss; 155 #endif 156 157 /* 158 * We need to reload TR, which requires that we change the 159 * GDT entry to indicate "available" first. 160 * 161 * XXX: This could probably all be replaced by a call to 162 * force_reload_TR(). 163 */ 164 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss); 165 166 #ifdef CONFIG_X86_64 167 memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc)); 168 tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */ 169 write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS); 170 171 syscall_init(); /* This sets MSR_*STAR and related */ 172 #else 173 if (boot_cpu_has(X86_FEATURE_SEP)) 174 enable_sep_cpu(); 175 #endif 176 load_TR_desc(); /* This does ltr */ 177 load_mm_ldt(current->active_mm); /* This does lldt */ 178 initialize_tlbstate_and_flush(); 179 180 fpu__resume_cpu(); 181 182 /* The processor is back on the direct GDT, load back the fixmap */ 183 load_fixmap_gdt(cpu); 184 } 185 186 /** 187 * __restore_processor_state - restore the contents of CPU registers saved 188 * by __save_processor_state() 189 * @ctxt - structure to load the registers contents from 190 * 191 * The asm code that gets us here will have restored a usable GDT, although 192 * it will be pointing to the wrong alias. 193 */ 194 static void notrace __restore_processor_state(struct saved_context *ctxt) 195 { 196 struct cpuinfo_x86 *c; 197 198 if (ctxt->misc_enable_saved) 199 wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable); 200 /* 201 * control registers 202 */ 203 /* cr4 was introduced in the Pentium CPU */ 204 #ifdef CONFIG_X86_32 205 if (ctxt->cr4) 206 __write_cr4(ctxt->cr4); 207 #else 208 /* CONFIG X86_64 */ 209 wrmsrl(MSR_EFER, ctxt->efer); 210 __write_cr4(ctxt->cr4); 211 #endif 212 write_cr3(ctxt->cr3); 213 write_cr2(ctxt->cr2); 214 write_cr0(ctxt->cr0); 215 216 /* Restore the IDT. */ 217 load_idt(&ctxt->idt); 218 219 /* 220 * Just in case the asm code got us here with the SS, DS, or ES 221 * out of sync with the GDT, update them. 222 */ 223 loadsegment(ss, __KERNEL_DS); 224 loadsegment(ds, __USER_DS); 225 loadsegment(es, __USER_DS); 226 227 /* 228 * Restore percpu access. Percpu access can happen in exception 229 * handlers or in complicated helpers like load_gs_index(). 230 */ 231 #ifdef CONFIG_X86_64 232 wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base); 233 #else 234 loadsegment(fs, __KERNEL_PERCPU); 235 loadsegment(gs, __KERNEL_STACK_CANARY); 236 #endif 237 238 /* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */ 239 fix_processor_context(); 240 241 /* 242 * Now that we have descriptor tables fully restored and working 243 * exception handling, restore the usermode segments. 244 */ 245 #ifdef CONFIG_X86_64 246 loadsegment(ds, ctxt->es); 247 loadsegment(es, ctxt->es); 248 loadsegment(fs, ctxt->fs); 249 load_gs_index(ctxt->gs); 250 251 /* 252 * Restore FSBASE and GSBASE after restoring the selectors, since 253 * restoring the selectors clobbers the bases. Keep in mind 254 * that MSR_KERNEL_GS_BASE is horribly misnamed. 255 */ 256 wrmsrl(MSR_FS_BASE, ctxt->fs_base); 257 wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); 258 #elif defined(CONFIG_X86_32_LAZY_GS) 259 loadsegment(gs, ctxt->gs); 260 #endif 261 262 do_fpu_end(); 263 tsc_verify_tsc_adjust(true); 264 x86_platform.restore_sched_clock_state(); 265 mtrr_bp_restore(); 266 perf_restore_debug_store(); 267 msr_restore_context(ctxt); 268 269 c = &cpu_data(smp_processor_id()); 270 if (cpu_has(c, X86_FEATURE_MSR_IA32_FEAT_CTL)) 271 init_ia32_feat_ctl(c); 272 } 273 274 /* Needed by apm.c */ 275 void notrace restore_processor_state(void) 276 { 277 __restore_processor_state(&saved_context); 278 } 279 #ifdef CONFIG_X86_32 280 EXPORT_SYMBOL(restore_processor_state); 281 #endif 282 283 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU) 284 static void resume_play_dead(void) 285 { 286 play_dead_common(); 287 tboot_shutdown(TB_SHUTDOWN_WFS); 288 hlt_play_dead(); 289 } 290 291 int hibernate_resume_nonboot_cpu_disable(void) 292 { 293 void (*play_dead)(void) = smp_ops.play_dead; 294 int ret; 295 296 /* 297 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop 298 * during hibernate image restoration, because it is likely that the 299 * monitored address will be actually written to at that time and then 300 * the "dead" CPU will attempt to execute instructions again, but the 301 * address in its instruction pointer may not be possible to resolve 302 * any more at that point (the page tables used by it previously may 303 * have been overwritten by hibernate image data). 304 * 305 * First, make sure that we wake up all the potentially disabled SMT 306 * threads which have been initially brought up and then put into 307 * mwait/cpuidle sleep. 308 * Those will be put to proper (not interfering with hibernation 309 * resume) sleep afterwards, and the resumed kernel will decide itself 310 * what to do with them. 311 */ 312 ret = cpuhp_smt_enable(); 313 if (ret) 314 return ret; 315 smp_ops.play_dead = resume_play_dead; 316 ret = freeze_secondary_cpus(0); 317 smp_ops.play_dead = play_dead; 318 return ret; 319 } 320 #endif 321 322 /* 323 * When bsp_check() is called in hibernate and suspend, cpu hotplug 324 * is disabled already. So it's unnessary to handle race condition between 325 * cpumask query and cpu hotplug. 326 */ 327 static int bsp_check(void) 328 { 329 if (cpumask_first(cpu_online_mask) != 0) { 330 pr_warn("CPU0 is offline.\n"); 331 return -ENODEV; 332 } 333 334 return 0; 335 } 336 337 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action, 338 void *ptr) 339 { 340 int ret = 0; 341 342 switch (action) { 343 case PM_SUSPEND_PREPARE: 344 case PM_HIBERNATION_PREPARE: 345 ret = bsp_check(); 346 break; 347 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0 348 case PM_RESTORE_PREPARE: 349 /* 350 * When system resumes from hibernation, online CPU0 because 351 * 1. it's required for resume and 352 * 2. the CPU was online before hibernation 353 */ 354 if (!cpu_online(0)) 355 _debug_hotplug_cpu(0, 1); 356 break; 357 case PM_POST_RESTORE: 358 /* 359 * When a resume really happens, this code won't be called. 360 * 361 * This code is called only when user space hibernation software 362 * prepares for snapshot device during boot time. So we just 363 * call _debug_hotplug_cpu() to restore to CPU0's state prior to 364 * preparing the snapshot device. 365 * 366 * This works for normal boot case in our CPU0 hotplug debug 367 * mode, i.e. CPU0 is offline and user mode hibernation 368 * software initializes during boot time. 369 * 370 * If CPU0 is online and user application accesses snapshot 371 * device after boot time, this will offline CPU0 and user may 372 * see different CPU0 state before and after accessing 373 * the snapshot device. But hopefully this is not a case when 374 * user debugging CPU0 hotplug. Even if users hit this case, 375 * they can easily online CPU0 back. 376 * 377 * To simplify this debug code, we only consider normal boot 378 * case. Otherwise we need to remember CPU0's state and restore 379 * to that state and resolve racy conditions etc. 380 */ 381 _debug_hotplug_cpu(0, 0); 382 break; 383 #endif 384 default: 385 break; 386 } 387 return notifier_from_errno(ret); 388 } 389 390 static int __init bsp_pm_check_init(void) 391 { 392 /* 393 * Set this bsp_pm_callback as lower priority than 394 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called 395 * earlier to disable cpu hotplug before bsp online check. 396 */ 397 pm_notifier(bsp_pm_callback, -INT_MAX); 398 return 0; 399 } 400 401 core_initcall(bsp_pm_check_init); 402 403 static int msr_build_context(const u32 *msr_id, const int num) 404 { 405 struct saved_msrs *saved_msrs = &saved_context.saved_msrs; 406 struct saved_msr *msr_array; 407 int total_num; 408 int i, j; 409 410 total_num = saved_msrs->num + num; 411 412 msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL); 413 if (!msr_array) { 414 pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n"); 415 return -ENOMEM; 416 } 417 418 if (saved_msrs->array) { 419 /* 420 * Multiple callbacks can invoke this function, so copy any 421 * MSR save requests from previous invocations. 422 */ 423 memcpy(msr_array, saved_msrs->array, 424 sizeof(struct saved_msr) * saved_msrs->num); 425 426 kfree(saved_msrs->array); 427 } 428 429 for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) { 430 msr_array[i].info.msr_no = msr_id[j]; 431 msr_array[i].valid = false; 432 msr_array[i].info.reg.q = 0; 433 } 434 saved_msrs->num = total_num; 435 saved_msrs->array = msr_array; 436 437 return 0; 438 } 439 440 /* 441 * The following sections are a quirk framework for problematic BIOSen: 442 * Sometimes MSRs are modified by the BIOSen after suspended to 443 * RAM, this might cause unexpected behavior after wakeup. 444 * Thus we save/restore these specified MSRs across suspend/resume 445 * in order to work around it. 446 * 447 * For any further problematic BIOSen/platforms, 448 * please add your own function similar to msr_initialize_bdw. 449 */ 450 static int msr_initialize_bdw(const struct dmi_system_id *d) 451 { 452 /* Add any extra MSR ids into this array. */ 453 u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL }; 454 455 pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident); 456 return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id)); 457 } 458 459 static const struct dmi_system_id msr_save_dmi_table[] = { 460 { 461 .callback = msr_initialize_bdw, 462 .ident = "BROADWELL BDX_EP", 463 .matches = { 464 DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"), 465 DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"), 466 }, 467 }, 468 {} 469 }; 470 471 static int msr_save_cpuid_features(const struct x86_cpu_id *c) 472 { 473 u32 cpuid_msr_id[] = { 474 MSR_AMD64_CPUID_FN_1, 475 }; 476 477 pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n", 478 c->family); 479 480 return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id)); 481 } 482 483 static const struct x86_cpu_id msr_save_cpu_table[] = { 484 X86_MATCH_VENDOR_FAM(AMD, 0x15, &msr_save_cpuid_features), 485 X86_MATCH_VENDOR_FAM(AMD, 0x16, &msr_save_cpuid_features), 486 {} 487 }; 488 489 typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *); 490 static int pm_cpu_check(const struct x86_cpu_id *c) 491 { 492 const struct x86_cpu_id *m; 493 int ret = 0; 494 495 m = x86_match_cpu(msr_save_cpu_table); 496 if (m) { 497 pm_cpu_match_t fn; 498 499 fn = (pm_cpu_match_t)m->driver_data; 500 ret = fn(m); 501 } 502 503 return ret; 504 } 505 506 static int pm_check_save_msr(void) 507 { 508 dmi_check_system(msr_save_dmi_table); 509 pm_cpu_check(msr_save_cpu_table); 510 511 return 0; 512 } 513 514 device_initcall(pm_check_save_msr); 515