1 /* 2 * Suspend support specific for i386/x86-64. 3 * 4 * Distribute under GPLv2 5 * 6 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl> 7 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz> 8 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org> 9 */ 10 11 #include <linux/suspend.h> 12 #include <linux/export.h> 13 #include <linux/smp.h> 14 #include <linux/perf_event.h> 15 #include <linux/tboot.h> 16 17 #include <asm/pgtable.h> 18 #include <asm/proto.h> 19 #include <asm/mtrr.h> 20 #include <asm/page.h> 21 #include <asm/mce.h> 22 #include <asm/suspend.h> 23 #include <asm/fpu/internal.h> 24 #include <asm/debugreg.h> 25 #include <asm/cpu.h> 26 #include <asm/mmu_context.h> 27 #include <linux/dmi.h> 28 29 #ifdef CONFIG_X86_32 30 __visible unsigned long saved_context_ebx; 31 __visible unsigned long saved_context_esp, saved_context_ebp; 32 __visible unsigned long saved_context_esi, saved_context_edi; 33 __visible unsigned long saved_context_eflags; 34 #endif 35 struct saved_context saved_context; 36 37 static void msr_save_context(struct saved_context *ctxt) 38 { 39 struct saved_msr *msr = ctxt->saved_msrs.array; 40 struct saved_msr *end = msr + ctxt->saved_msrs.num; 41 42 while (msr < end) { 43 msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q); 44 msr++; 45 } 46 } 47 48 static void msr_restore_context(struct saved_context *ctxt) 49 { 50 struct saved_msr *msr = ctxt->saved_msrs.array; 51 struct saved_msr *end = msr + ctxt->saved_msrs.num; 52 53 while (msr < end) { 54 if (msr->valid) 55 wrmsrl(msr->info.msr_no, msr->info.reg.q); 56 msr++; 57 } 58 } 59 60 /** 61 * __save_processor_state - save CPU registers before creating a 62 * hibernation image and before restoring the memory state from it 63 * @ctxt - structure to store the registers contents in 64 * 65 * NOTE: If there is a CPU register the modification of which by the 66 * boot kernel (ie. the kernel used for loading the hibernation image) 67 * might affect the operations of the restored target kernel (ie. the one 68 * saved in the hibernation image), then its contents must be saved by this 69 * function. In other words, if kernel A is hibernated and different 70 * kernel B is used for loading the hibernation image into memory, the 71 * kernel A's __save_processor_state() function must save all registers 72 * needed by kernel A, so that it can operate correctly after the resume 73 * regardless of what kernel B does in the meantime. 74 */ 75 static void __save_processor_state(struct saved_context *ctxt) 76 { 77 #ifdef CONFIG_X86_32 78 mtrr_save_fixed_ranges(NULL); 79 #endif 80 kernel_fpu_begin(); 81 82 /* 83 * descriptor tables 84 */ 85 #ifdef CONFIG_X86_32 86 store_idt(&ctxt->idt); 87 #else 88 /* CONFIG_X86_64 */ 89 store_idt((struct desc_ptr *)&ctxt->idt_limit); 90 #endif 91 /* 92 * We save it here, but restore it only in the hibernate case. 93 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit 94 * mode in "secondary_startup_64". In 32-bit mode it is done via 95 * 'pmode_gdt' in wakeup_start. 96 */ 97 ctxt->gdt_desc.size = GDT_SIZE - 1; 98 ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_table(smp_processor_id()); 99 100 store_tr(ctxt->tr); 101 102 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */ 103 /* 104 * segment registers 105 */ 106 #ifdef CONFIG_X86_32 107 savesegment(es, ctxt->es); 108 savesegment(fs, ctxt->fs); 109 savesegment(gs, ctxt->gs); 110 savesegment(ss, ctxt->ss); 111 #else 112 /* CONFIG_X86_64 */ 113 asm volatile ("movw %%ds, %0" : "=m" (ctxt->ds)); 114 asm volatile ("movw %%es, %0" : "=m" (ctxt->es)); 115 asm volatile ("movw %%fs, %0" : "=m" (ctxt->fs)); 116 asm volatile ("movw %%gs, %0" : "=m" (ctxt->gs)); 117 asm volatile ("movw %%ss, %0" : "=m" (ctxt->ss)); 118 119 rdmsrl(MSR_FS_BASE, ctxt->fs_base); 120 rdmsrl(MSR_GS_BASE, ctxt->gs_base); 121 rdmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base); 122 mtrr_save_fixed_ranges(NULL); 123 124 rdmsrl(MSR_EFER, ctxt->efer); 125 #endif 126 127 /* 128 * control registers 129 */ 130 ctxt->cr0 = read_cr0(); 131 ctxt->cr2 = read_cr2(); 132 ctxt->cr3 = read_cr3(); 133 ctxt->cr4 = __read_cr4(); 134 #ifdef CONFIG_X86_64 135 ctxt->cr8 = read_cr8(); 136 #endif 137 ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE, 138 &ctxt->misc_enable); 139 msr_save_context(ctxt); 140 } 141 142 /* Needed by apm.c */ 143 void save_processor_state(void) 144 { 145 __save_processor_state(&saved_context); 146 x86_platform.save_sched_clock_state(); 147 } 148 #ifdef CONFIG_X86_32 149 EXPORT_SYMBOL(save_processor_state); 150 #endif 151 152 static void do_fpu_end(void) 153 { 154 /* 155 * Restore FPU regs if necessary. 156 */ 157 kernel_fpu_end(); 158 } 159 160 static void fix_processor_context(void) 161 { 162 int cpu = smp_processor_id(); 163 struct tss_struct *t = &per_cpu(cpu_tss, cpu); 164 #ifdef CONFIG_X86_64 165 struct desc_struct *desc = get_cpu_gdt_table(cpu); 166 tss_desc tss; 167 #endif 168 set_tss_desc(cpu, t); /* 169 * This just modifies memory; should not be 170 * necessary. But... This is necessary, because 171 * 386 hardware has concept of busy TSS or some 172 * similar stupidity. 173 */ 174 175 #ifdef CONFIG_X86_64 176 memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc)); 177 tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */ 178 write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS); 179 180 syscall_init(); /* This sets MSR_*STAR and related */ 181 #endif 182 load_TR_desc(); /* This does ltr */ 183 load_mm_ldt(current->active_mm); /* This does lldt */ 184 185 fpu__resume_cpu(); 186 } 187 188 /** 189 * __restore_processor_state - restore the contents of CPU registers saved 190 * by __save_processor_state() 191 * @ctxt - structure to load the registers contents from 192 */ 193 static void notrace __restore_processor_state(struct saved_context *ctxt) 194 { 195 if (ctxt->misc_enable_saved) 196 wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable); 197 /* 198 * control registers 199 */ 200 /* cr4 was introduced in the Pentium CPU */ 201 #ifdef CONFIG_X86_32 202 if (ctxt->cr4) 203 __write_cr4(ctxt->cr4); 204 #else 205 /* CONFIG X86_64 */ 206 wrmsrl(MSR_EFER, ctxt->efer); 207 write_cr8(ctxt->cr8); 208 __write_cr4(ctxt->cr4); 209 #endif 210 write_cr3(ctxt->cr3); 211 write_cr2(ctxt->cr2); 212 write_cr0(ctxt->cr0); 213 214 /* 215 * now restore the descriptor tables to their proper values 216 * ltr is done i fix_processor_context(). 217 */ 218 #ifdef CONFIG_X86_32 219 load_idt(&ctxt->idt); 220 #else 221 /* CONFIG_X86_64 */ 222 load_idt((const struct desc_ptr *)&ctxt->idt_limit); 223 #endif 224 225 /* 226 * segment registers 227 */ 228 #ifdef CONFIG_X86_32 229 loadsegment(es, ctxt->es); 230 loadsegment(fs, ctxt->fs); 231 loadsegment(gs, ctxt->gs); 232 loadsegment(ss, ctxt->ss); 233 234 /* 235 * sysenter MSRs 236 */ 237 if (boot_cpu_has(X86_FEATURE_SEP)) 238 enable_sep_cpu(); 239 #else 240 /* CONFIG_X86_64 */ 241 asm volatile ("movw %0, %%ds" :: "r" (ctxt->ds)); 242 asm volatile ("movw %0, %%es" :: "r" (ctxt->es)); 243 asm volatile ("movw %0, %%fs" :: "r" (ctxt->fs)); 244 load_gs_index(ctxt->gs); 245 asm volatile ("movw %0, %%ss" :: "r" (ctxt->ss)); 246 247 wrmsrl(MSR_FS_BASE, ctxt->fs_base); 248 wrmsrl(MSR_GS_BASE, ctxt->gs_base); 249 wrmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base); 250 #endif 251 252 fix_processor_context(); 253 254 do_fpu_end(); 255 tsc_verify_tsc_adjust(true); 256 x86_platform.restore_sched_clock_state(); 257 mtrr_bp_restore(); 258 perf_restore_debug_store(); 259 msr_restore_context(ctxt); 260 } 261 262 /* Needed by apm.c */ 263 void notrace restore_processor_state(void) 264 { 265 __restore_processor_state(&saved_context); 266 } 267 #ifdef CONFIG_X86_32 268 EXPORT_SYMBOL(restore_processor_state); 269 #endif 270 271 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU) 272 static void resume_play_dead(void) 273 { 274 play_dead_common(); 275 tboot_shutdown(TB_SHUTDOWN_WFS); 276 hlt_play_dead(); 277 } 278 279 int hibernate_resume_nonboot_cpu_disable(void) 280 { 281 void (*play_dead)(void) = smp_ops.play_dead; 282 int ret; 283 284 /* 285 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop 286 * during hibernate image restoration, because it is likely that the 287 * monitored address will be actually written to at that time and then 288 * the "dead" CPU will attempt to execute instructions again, but the 289 * address in its instruction pointer may not be possible to resolve 290 * any more at that point (the page tables used by it previously may 291 * have been overwritten by hibernate image data). 292 */ 293 smp_ops.play_dead = resume_play_dead; 294 ret = disable_nonboot_cpus(); 295 smp_ops.play_dead = play_dead; 296 return ret; 297 } 298 #endif 299 300 /* 301 * When bsp_check() is called in hibernate and suspend, cpu hotplug 302 * is disabled already. So it's unnessary to handle race condition between 303 * cpumask query and cpu hotplug. 304 */ 305 static int bsp_check(void) 306 { 307 if (cpumask_first(cpu_online_mask) != 0) { 308 pr_warn("CPU0 is offline.\n"); 309 return -ENODEV; 310 } 311 312 return 0; 313 } 314 315 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action, 316 void *ptr) 317 { 318 int ret = 0; 319 320 switch (action) { 321 case PM_SUSPEND_PREPARE: 322 case PM_HIBERNATION_PREPARE: 323 ret = bsp_check(); 324 break; 325 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0 326 case PM_RESTORE_PREPARE: 327 /* 328 * When system resumes from hibernation, online CPU0 because 329 * 1. it's required for resume and 330 * 2. the CPU was online before hibernation 331 */ 332 if (!cpu_online(0)) 333 _debug_hotplug_cpu(0, 1); 334 break; 335 case PM_POST_RESTORE: 336 /* 337 * When a resume really happens, this code won't be called. 338 * 339 * This code is called only when user space hibernation software 340 * prepares for snapshot device during boot time. So we just 341 * call _debug_hotplug_cpu() to restore to CPU0's state prior to 342 * preparing the snapshot device. 343 * 344 * This works for normal boot case in our CPU0 hotplug debug 345 * mode, i.e. CPU0 is offline and user mode hibernation 346 * software initializes during boot time. 347 * 348 * If CPU0 is online and user application accesses snapshot 349 * device after boot time, this will offline CPU0 and user may 350 * see different CPU0 state before and after accessing 351 * the snapshot device. But hopefully this is not a case when 352 * user debugging CPU0 hotplug. Even if users hit this case, 353 * they can easily online CPU0 back. 354 * 355 * To simplify this debug code, we only consider normal boot 356 * case. Otherwise we need to remember CPU0's state and restore 357 * to that state and resolve racy conditions etc. 358 */ 359 _debug_hotplug_cpu(0, 0); 360 break; 361 #endif 362 default: 363 break; 364 } 365 return notifier_from_errno(ret); 366 } 367 368 static int __init bsp_pm_check_init(void) 369 { 370 /* 371 * Set this bsp_pm_callback as lower priority than 372 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called 373 * earlier to disable cpu hotplug before bsp online check. 374 */ 375 pm_notifier(bsp_pm_callback, -INT_MAX); 376 return 0; 377 } 378 379 core_initcall(bsp_pm_check_init); 380 381 static int msr_init_context(const u32 *msr_id, const int total_num) 382 { 383 int i = 0; 384 struct saved_msr *msr_array; 385 386 if (saved_context.saved_msrs.array || saved_context.saved_msrs.num > 0) { 387 pr_err("x86/pm: MSR quirk already applied, please check your DMI match table.\n"); 388 return -EINVAL; 389 } 390 391 msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL); 392 if (!msr_array) { 393 pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n"); 394 return -ENOMEM; 395 } 396 397 for (i = 0; i < total_num; i++) { 398 msr_array[i].info.msr_no = msr_id[i]; 399 msr_array[i].valid = false; 400 msr_array[i].info.reg.q = 0; 401 } 402 saved_context.saved_msrs.num = total_num; 403 saved_context.saved_msrs.array = msr_array; 404 405 return 0; 406 } 407 408 /* 409 * The following section is a quirk framework for problematic BIOSen: 410 * Sometimes MSRs are modified by the BIOSen after suspended to 411 * RAM, this might cause unexpected behavior after wakeup. 412 * Thus we save/restore these specified MSRs across suspend/resume 413 * in order to work around it. 414 * 415 * For any further problematic BIOSen/platforms, 416 * please add your own function similar to msr_initialize_bdw. 417 */ 418 static int msr_initialize_bdw(const struct dmi_system_id *d) 419 { 420 /* Add any extra MSR ids into this array. */ 421 u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL }; 422 423 pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident); 424 return msr_init_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id)); 425 } 426 427 static struct dmi_system_id msr_save_dmi_table[] = { 428 { 429 .callback = msr_initialize_bdw, 430 .ident = "BROADWELL BDX_EP", 431 .matches = { 432 DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"), 433 DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"), 434 }, 435 }, 436 {} 437 }; 438 439 static int pm_check_save_msr(void) 440 { 441 dmi_check_system(msr_save_dmi_table); 442 return 0; 443 } 444 445 device_initcall(pm_check_save_msr); 446