1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Suspend support specific for i386/x86-64. 4 * 5 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl> 6 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz> 7 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org> 8 */ 9 10 #include <linux/suspend.h> 11 #include <linux/export.h> 12 #include <linux/smp.h> 13 #include <linux/perf_event.h> 14 #include <linux/tboot.h> 15 16 #include <asm/pgtable.h> 17 #include <asm/proto.h> 18 #include <asm/mtrr.h> 19 #include <asm/page.h> 20 #include <asm/mce.h> 21 #include <asm/suspend.h> 22 #include <asm/fpu/internal.h> 23 #include <asm/debugreg.h> 24 #include <asm/cpu.h> 25 #include <asm/mmu_context.h> 26 #include <linux/dmi.h> 27 28 #ifdef CONFIG_X86_32 29 __visible unsigned long saved_context_ebx; 30 __visible unsigned long saved_context_esp, saved_context_ebp; 31 __visible unsigned long saved_context_esi, saved_context_edi; 32 __visible unsigned long saved_context_eflags; 33 #endif 34 struct saved_context saved_context; 35 36 static void msr_save_context(struct saved_context *ctxt) 37 { 38 struct saved_msr *msr = ctxt->saved_msrs.array; 39 struct saved_msr *end = msr + ctxt->saved_msrs.num; 40 41 while (msr < end) { 42 msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q); 43 msr++; 44 } 45 } 46 47 static void msr_restore_context(struct saved_context *ctxt) 48 { 49 struct saved_msr *msr = ctxt->saved_msrs.array; 50 struct saved_msr *end = msr + ctxt->saved_msrs.num; 51 52 while (msr < end) { 53 if (msr->valid) 54 wrmsrl(msr->info.msr_no, msr->info.reg.q); 55 msr++; 56 } 57 } 58 59 /** 60 * __save_processor_state - save CPU registers before creating a 61 * hibernation image and before restoring the memory state from it 62 * @ctxt - structure to store the registers contents in 63 * 64 * NOTE: If there is a CPU register the modification of which by the 65 * boot kernel (ie. the kernel used for loading the hibernation image) 66 * might affect the operations of the restored target kernel (ie. the one 67 * saved in the hibernation image), then its contents must be saved by this 68 * function. In other words, if kernel A is hibernated and different 69 * kernel B is used for loading the hibernation image into memory, the 70 * kernel A's __save_processor_state() function must save all registers 71 * needed by kernel A, so that it can operate correctly after the resume 72 * regardless of what kernel B does in the meantime. 73 */ 74 static void __save_processor_state(struct saved_context *ctxt) 75 { 76 #ifdef CONFIG_X86_32 77 mtrr_save_fixed_ranges(NULL); 78 #endif 79 kernel_fpu_begin(); 80 81 /* 82 * descriptor tables 83 */ 84 store_idt(&ctxt->idt); 85 86 /* 87 * We save it here, but restore it only in the hibernate case. 88 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit 89 * mode in "secondary_startup_64". In 32-bit mode it is done via 90 * 'pmode_gdt' in wakeup_start. 91 */ 92 ctxt->gdt_desc.size = GDT_SIZE - 1; 93 ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id()); 94 95 store_tr(ctxt->tr); 96 97 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */ 98 /* 99 * segment registers 100 */ 101 #ifdef CONFIG_X86_32_LAZY_GS 102 savesegment(gs, ctxt->gs); 103 #endif 104 #ifdef CONFIG_X86_64 105 savesegment(gs, ctxt->gs); 106 savesegment(fs, ctxt->fs); 107 savesegment(ds, ctxt->ds); 108 savesegment(es, ctxt->es); 109 110 rdmsrl(MSR_FS_BASE, ctxt->fs_base); 111 rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base); 112 rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); 113 mtrr_save_fixed_ranges(NULL); 114 115 rdmsrl(MSR_EFER, ctxt->efer); 116 #endif 117 118 /* 119 * control registers 120 */ 121 ctxt->cr0 = read_cr0(); 122 ctxt->cr2 = read_cr2(); 123 ctxt->cr3 = __read_cr3(); 124 ctxt->cr4 = __read_cr4(); 125 #ifdef CONFIG_X86_64 126 ctxt->cr8 = read_cr8(); 127 #endif 128 ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE, 129 &ctxt->misc_enable); 130 msr_save_context(ctxt); 131 } 132 133 /* Needed by apm.c */ 134 void save_processor_state(void) 135 { 136 __save_processor_state(&saved_context); 137 x86_platform.save_sched_clock_state(); 138 } 139 #ifdef CONFIG_X86_32 140 EXPORT_SYMBOL(save_processor_state); 141 #endif 142 143 static void do_fpu_end(void) 144 { 145 /* 146 * Restore FPU regs if necessary. 147 */ 148 kernel_fpu_end(); 149 } 150 151 static void fix_processor_context(void) 152 { 153 int cpu = smp_processor_id(); 154 #ifdef CONFIG_X86_64 155 struct desc_struct *desc = get_cpu_gdt_rw(cpu); 156 tss_desc tss; 157 #endif 158 159 /* 160 * We need to reload TR, which requires that we change the 161 * GDT entry to indicate "available" first. 162 * 163 * XXX: This could probably all be replaced by a call to 164 * force_reload_TR(). 165 */ 166 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss); 167 168 #ifdef CONFIG_X86_64 169 memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc)); 170 tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */ 171 write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS); 172 173 syscall_init(); /* This sets MSR_*STAR and related */ 174 #else 175 if (boot_cpu_has(X86_FEATURE_SEP)) 176 enable_sep_cpu(); 177 #endif 178 load_TR_desc(); /* This does ltr */ 179 load_mm_ldt(current->active_mm); /* This does lldt */ 180 initialize_tlbstate_and_flush(); 181 182 fpu__resume_cpu(); 183 184 /* The processor is back on the direct GDT, load back the fixmap */ 185 load_fixmap_gdt(cpu); 186 } 187 188 /** 189 * __restore_processor_state - restore the contents of CPU registers saved 190 * by __save_processor_state() 191 * @ctxt - structure to load the registers contents from 192 * 193 * The asm code that gets us here will have restored a usable GDT, although 194 * it will be pointing to the wrong alias. 195 */ 196 static void notrace __restore_processor_state(struct saved_context *ctxt) 197 { 198 if (ctxt->misc_enable_saved) 199 wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable); 200 /* 201 * control registers 202 */ 203 /* cr4 was introduced in the Pentium CPU */ 204 #ifdef CONFIG_X86_32 205 if (ctxt->cr4) 206 __write_cr4(ctxt->cr4); 207 #else 208 /* CONFIG X86_64 */ 209 wrmsrl(MSR_EFER, ctxt->efer); 210 write_cr8(ctxt->cr8); 211 __write_cr4(ctxt->cr4); 212 #endif 213 write_cr3(ctxt->cr3); 214 write_cr2(ctxt->cr2); 215 write_cr0(ctxt->cr0); 216 217 /* Restore the IDT. */ 218 load_idt(&ctxt->idt); 219 220 /* 221 * Just in case the asm code got us here with the SS, DS, or ES 222 * out of sync with the GDT, update them. 223 */ 224 loadsegment(ss, __KERNEL_DS); 225 loadsegment(ds, __USER_DS); 226 loadsegment(es, __USER_DS); 227 228 /* 229 * Restore percpu access. Percpu access can happen in exception 230 * handlers or in complicated helpers like load_gs_index(). 231 */ 232 #ifdef CONFIG_X86_64 233 wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base); 234 #else 235 loadsegment(fs, __KERNEL_PERCPU); 236 loadsegment(gs, __KERNEL_STACK_CANARY); 237 #endif 238 239 /* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */ 240 fix_processor_context(); 241 242 /* 243 * Now that we have descriptor tables fully restored and working 244 * exception handling, restore the usermode segments. 245 */ 246 #ifdef CONFIG_X86_64 247 loadsegment(ds, ctxt->es); 248 loadsegment(es, ctxt->es); 249 loadsegment(fs, ctxt->fs); 250 load_gs_index(ctxt->gs); 251 252 /* 253 * Restore FSBASE and GSBASE after restoring the selectors, since 254 * restoring the selectors clobbers the bases. Keep in mind 255 * that MSR_KERNEL_GS_BASE is horribly misnamed. 256 */ 257 wrmsrl(MSR_FS_BASE, ctxt->fs_base); 258 wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); 259 #elif defined(CONFIG_X86_32_LAZY_GS) 260 loadsegment(gs, ctxt->gs); 261 #endif 262 263 do_fpu_end(); 264 tsc_verify_tsc_adjust(true); 265 x86_platform.restore_sched_clock_state(); 266 mtrr_bp_restore(); 267 perf_restore_debug_store(); 268 msr_restore_context(ctxt); 269 } 270 271 /* Needed by apm.c */ 272 void notrace restore_processor_state(void) 273 { 274 __restore_processor_state(&saved_context); 275 } 276 #ifdef CONFIG_X86_32 277 EXPORT_SYMBOL(restore_processor_state); 278 #endif 279 280 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU) 281 static void resume_play_dead(void) 282 { 283 play_dead_common(); 284 tboot_shutdown(TB_SHUTDOWN_WFS); 285 hlt_play_dead(); 286 } 287 288 int hibernate_resume_nonboot_cpu_disable(void) 289 { 290 void (*play_dead)(void) = smp_ops.play_dead; 291 int ret; 292 293 /* 294 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop 295 * during hibernate image restoration, because it is likely that the 296 * monitored address will be actually written to at that time and then 297 * the "dead" CPU will attempt to execute instructions again, but the 298 * address in its instruction pointer may not be possible to resolve 299 * any more at that point (the page tables used by it previously may 300 * have been overwritten by hibernate image data). 301 * 302 * First, make sure that we wake up all the potentially disabled SMT 303 * threads which have been initially brought up and then put into 304 * mwait/cpuidle sleep. 305 * Those will be put to proper (not interfering with hibernation 306 * resume) sleep afterwards, and the resumed kernel will decide itself 307 * what to do with them. 308 */ 309 ret = cpuhp_smt_enable(); 310 if (ret) 311 return ret; 312 smp_ops.play_dead = resume_play_dead; 313 ret = disable_nonboot_cpus(); 314 smp_ops.play_dead = play_dead; 315 return ret; 316 } 317 #endif 318 319 /* 320 * When bsp_check() is called in hibernate and suspend, cpu hotplug 321 * is disabled already. So it's unnessary to handle race condition between 322 * cpumask query and cpu hotplug. 323 */ 324 static int bsp_check(void) 325 { 326 if (cpumask_first(cpu_online_mask) != 0) { 327 pr_warn("CPU0 is offline.\n"); 328 return -ENODEV; 329 } 330 331 return 0; 332 } 333 334 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action, 335 void *ptr) 336 { 337 int ret = 0; 338 339 switch (action) { 340 case PM_SUSPEND_PREPARE: 341 case PM_HIBERNATION_PREPARE: 342 ret = bsp_check(); 343 break; 344 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0 345 case PM_RESTORE_PREPARE: 346 /* 347 * When system resumes from hibernation, online CPU0 because 348 * 1. it's required for resume and 349 * 2. the CPU was online before hibernation 350 */ 351 if (!cpu_online(0)) 352 _debug_hotplug_cpu(0, 1); 353 break; 354 case PM_POST_RESTORE: 355 /* 356 * When a resume really happens, this code won't be called. 357 * 358 * This code is called only when user space hibernation software 359 * prepares for snapshot device during boot time. So we just 360 * call _debug_hotplug_cpu() to restore to CPU0's state prior to 361 * preparing the snapshot device. 362 * 363 * This works for normal boot case in our CPU0 hotplug debug 364 * mode, i.e. CPU0 is offline and user mode hibernation 365 * software initializes during boot time. 366 * 367 * If CPU0 is online and user application accesses snapshot 368 * device after boot time, this will offline CPU0 and user may 369 * see different CPU0 state before and after accessing 370 * the snapshot device. But hopefully this is not a case when 371 * user debugging CPU0 hotplug. Even if users hit this case, 372 * they can easily online CPU0 back. 373 * 374 * To simplify this debug code, we only consider normal boot 375 * case. Otherwise we need to remember CPU0's state and restore 376 * to that state and resolve racy conditions etc. 377 */ 378 _debug_hotplug_cpu(0, 0); 379 break; 380 #endif 381 default: 382 break; 383 } 384 return notifier_from_errno(ret); 385 } 386 387 static int __init bsp_pm_check_init(void) 388 { 389 /* 390 * Set this bsp_pm_callback as lower priority than 391 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called 392 * earlier to disable cpu hotplug before bsp online check. 393 */ 394 pm_notifier(bsp_pm_callback, -INT_MAX); 395 return 0; 396 } 397 398 core_initcall(bsp_pm_check_init); 399 400 static int msr_init_context(const u32 *msr_id, const int total_num) 401 { 402 int i = 0; 403 struct saved_msr *msr_array; 404 405 if (saved_context.saved_msrs.array || saved_context.saved_msrs.num > 0) { 406 pr_err("x86/pm: MSR quirk already applied, please check your DMI match table.\n"); 407 return -EINVAL; 408 } 409 410 msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL); 411 if (!msr_array) { 412 pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n"); 413 return -ENOMEM; 414 } 415 416 for (i = 0; i < total_num; i++) { 417 msr_array[i].info.msr_no = msr_id[i]; 418 msr_array[i].valid = false; 419 msr_array[i].info.reg.q = 0; 420 } 421 saved_context.saved_msrs.num = total_num; 422 saved_context.saved_msrs.array = msr_array; 423 424 return 0; 425 } 426 427 /* 428 * The following section is a quirk framework for problematic BIOSen: 429 * Sometimes MSRs are modified by the BIOSen after suspended to 430 * RAM, this might cause unexpected behavior after wakeup. 431 * Thus we save/restore these specified MSRs across suspend/resume 432 * in order to work around it. 433 * 434 * For any further problematic BIOSen/platforms, 435 * please add your own function similar to msr_initialize_bdw. 436 */ 437 static int msr_initialize_bdw(const struct dmi_system_id *d) 438 { 439 /* Add any extra MSR ids into this array. */ 440 u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL }; 441 442 pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident); 443 return msr_init_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id)); 444 } 445 446 static const struct dmi_system_id msr_save_dmi_table[] = { 447 { 448 .callback = msr_initialize_bdw, 449 .ident = "BROADWELL BDX_EP", 450 .matches = { 451 DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"), 452 DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"), 453 }, 454 }, 455 {} 456 }; 457 458 static int pm_check_save_msr(void) 459 { 460 dmi_check_system(msr_save_dmi_table); 461 return 0; 462 } 463 464 device_initcall(pm_check_save_msr); 465