1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Suspend support specific for i386/x86-64. 4 * 5 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl> 6 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz> 7 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org> 8 */ 9 10 #include <linux/suspend.h> 11 #include <linux/export.h> 12 #include <linux/smp.h> 13 #include <linux/perf_event.h> 14 #include <linux/tboot.h> 15 #include <linux/dmi.h> 16 #include <linux/pgtable.h> 17 18 #include <asm/proto.h> 19 #include <asm/mtrr.h> 20 #include <asm/page.h> 21 #include <asm/mce.h> 22 #include <asm/suspend.h> 23 #include <asm/fpu/api.h> 24 #include <asm/debugreg.h> 25 #include <asm/cpu.h> 26 #include <asm/mmu_context.h> 27 #include <asm/cpu_device_id.h> 28 #include <asm/microcode.h> 29 30 #ifdef CONFIG_X86_32 31 __visible unsigned long saved_context_ebx; 32 __visible unsigned long saved_context_esp, saved_context_ebp; 33 __visible unsigned long saved_context_esi, saved_context_edi; 34 __visible unsigned long saved_context_eflags; 35 #endif 36 struct saved_context saved_context; 37 38 static void msr_save_context(struct saved_context *ctxt) 39 { 40 struct saved_msr *msr = ctxt->saved_msrs.array; 41 struct saved_msr *end = msr + ctxt->saved_msrs.num; 42 43 while (msr < end) { 44 if (msr->valid) 45 rdmsrl(msr->info.msr_no, msr->info.reg.q); 46 msr++; 47 } 48 } 49 50 static void msr_restore_context(struct saved_context *ctxt) 51 { 52 struct saved_msr *msr = ctxt->saved_msrs.array; 53 struct saved_msr *end = msr + ctxt->saved_msrs.num; 54 55 while (msr < end) { 56 if (msr->valid) 57 wrmsrl(msr->info.msr_no, msr->info.reg.q); 58 msr++; 59 } 60 } 61 62 /** 63 * __save_processor_state() - Save CPU registers before creating a 64 * hibernation image and before restoring 65 * the memory state from it 66 * @ctxt: Structure to store the registers contents in. 67 * 68 * NOTE: If there is a CPU register the modification of which by the 69 * boot kernel (ie. the kernel used for loading the hibernation image) 70 * might affect the operations of the restored target kernel (ie. the one 71 * saved in the hibernation image), then its contents must be saved by this 72 * function. In other words, if kernel A is hibernated and different 73 * kernel B is used for loading the hibernation image into memory, the 74 * kernel A's __save_processor_state() function must save all registers 75 * needed by kernel A, so that it can operate correctly after the resume 76 * regardless of what kernel B does in the meantime. 77 */ 78 static void __save_processor_state(struct saved_context *ctxt) 79 { 80 #ifdef CONFIG_X86_32 81 mtrr_save_fixed_ranges(NULL); 82 #endif 83 kernel_fpu_begin(); 84 85 /* 86 * descriptor tables 87 */ 88 store_idt(&ctxt->idt); 89 90 /* 91 * We save it here, but restore it only in the hibernate case. 92 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit 93 * mode in "secondary_startup_64". In 32-bit mode it is done via 94 * 'pmode_gdt' in wakeup_start. 95 */ 96 ctxt->gdt_desc.size = GDT_SIZE - 1; 97 ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id()); 98 99 store_tr(ctxt->tr); 100 101 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */ 102 /* 103 * segment registers 104 */ 105 savesegment(gs, ctxt->gs); 106 #ifdef CONFIG_X86_64 107 savesegment(fs, ctxt->fs); 108 savesegment(ds, ctxt->ds); 109 savesegment(es, ctxt->es); 110 111 rdmsrl(MSR_FS_BASE, ctxt->fs_base); 112 rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base); 113 rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); 114 mtrr_save_fixed_ranges(NULL); 115 116 rdmsrl(MSR_EFER, ctxt->efer); 117 #endif 118 119 /* 120 * control registers 121 */ 122 ctxt->cr0 = read_cr0(); 123 ctxt->cr2 = read_cr2(); 124 ctxt->cr3 = __read_cr3(); 125 ctxt->cr4 = __read_cr4(); 126 ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE, 127 &ctxt->misc_enable); 128 msr_save_context(ctxt); 129 } 130 131 /* Needed by apm.c */ 132 void save_processor_state(void) 133 { 134 __save_processor_state(&saved_context); 135 x86_platform.save_sched_clock_state(); 136 } 137 #ifdef CONFIG_X86_32 138 EXPORT_SYMBOL(save_processor_state); 139 #endif 140 141 static void do_fpu_end(void) 142 { 143 /* 144 * Restore FPU regs if necessary. 145 */ 146 kernel_fpu_end(); 147 } 148 149 static void fix_processor_context(void) 150 { 151 int cpu = smp_processor_id(); 152 #ifdef CONFIG_X86_64 153 struct desc_struct *desc = get_cpu_gdt_rw(cpu); 154 tss_desc tss; 155 #endif 156 157 /* 158 * We need to reload TR, which requires that we change the 159 * GDT entry to indicate "available" first. 160 * 161 * XXX: This could probably all be replaced by a call to 162 * force_reload_TR(). 163 */ 164 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss); 165 166 #ifdef CONFIG_X86_64 167 memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc)); 168 tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */ 169 write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS); 170 171 syscall_init(); /* This sets MSR_*STAR and related */ 172 #else 173 if (boot_cpu_has(X86_FEATURE_SEP)) 174 enable_sep_cpu(); 175 #endif 176 load_TR_desc(); /* This does ltr */ 177 load_mm_ldt(current->active_mm); /* This does lldt */ 178 initialize_tlbstate_and_flush(); 179 180 fpu__resume_cpu(); 181 182 /* The processor is back on the direct GDT, load back the fixmap */ 183 load_fixmap_gdt(cpu); 184 } 185 186 /** 187 * __restore_processor_state() - Restore the contents of CPU registers saved 188 * by __save_processor_state() 189 * @ctxt: Structure to load the registers contents from. 190 * 191 * The asm code that gets us here will have restored a usable GDT, although 192 * it will be pointing to the wrong alias. 193 */ 194 static void notrace __restore_processor_state(struct saved_context *ctxt) 195 { 196 struct cpuinfo_x86 *c; 197 198 if (ctxt->misc_enable_saved) 199 wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable); 200 /* 201 * control registers 202 */ 203 /* cr4 was introduced in the Pentium CPU */ 204 #ifdef CONFIG_X86_32 205 if (ctxt->cr4) 206 __write_cr4(ctxt->cr4); 207 #else 208 /* CONFIG X86_64 */ 209 wrmsrl(MSR_EFER, ctxt->efer); 210 __write_cr4(ctxt->cr4); 211 #endif 212 write_cr3(ctxt->cr3); 213 write_cr2(ctxt->cr2); 214 write_cr0(ctxt->cr0); 215 216 /* Restore the IDT. */ 217 load_idt(&ctxt->idt); 218 219 /* 220 * Just in case the asm code got us here with the SS, DS, or ES 221 * out of sync with the GDT, update them. 222 */ 223 loadsegment(ss, __KERNEL_DS); 224 loadsegment(ds, __USER_DS); 225 loadsegment(es, __USER_DS); 226 227 /* 228 * Restore percpu access. Percpu access can happen in exception 229 * handlers or in complicated helpers like load_gs_index(). 230 */ 231 #ifdef CONFIG_X86_64 232 wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base); 233 #else 234 loadsegment(fs, __KERNEL_PERCPU); 235 #endif 236 237 /* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */ 238 fix_processor_context(); 239 240 /* 241 * Now that we have descriptor tables fully restored and working 242 * exception handling, restore the usermode segments. 243 */ 244 #ifdef CONFIG_X86_64 245 loadsegment(ds, ctxt->es); 246 loadsegment(es, ctxt->es); 247 loadsegment(fs, ctxt->fs); 248 load_gs_index(ctxt->gs); 249 250 /* 251 * Restore FSBASE and GSBASE after restoring the selectors, since 252 * restoring the selectors clobbers the bases. Keep in mind 253 * that MSR_KERNEL_GS_BASE is horribly misnamed. 254 */ 255 wrmsrl(MSR_FS_BASE, ctxt->fs_base); 256 wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); 257 #else 258 loadsegment(gs, ctxt->gs); 259 #endif 260 261 do_fpu_end(); 262 tsc_verify_tsc_adjust(true); 263 x86_platform.restore_sched_clock_state(); 264 mtrr_bp_restore(); 265 perf_restore_debug_store(); 266 267 c = &cpu_data(smp_processor_id()); 268 if (cpu_has(c, X86_FEATURE_MSR_IA32_FEAT_CTL)) 269 init_ia32_feat_ctl(c); 270 271 microcode_bsp_resume(); 272 273 /* 274 * This needs to happen after the microcode has been updated upon resume 275 * because some of the MSRs are "emulated" in microcode. 276 */ 277 msr_restore_context(ctxt); 278 } 279 280 /* Needed by apm.c */ 281 void notrace restore_processor_state(void) 282 { 283 __restore_processor_state(&saved_context); 284 } 285 #ifdef CONFIG_X86_32 286 EXPORT_SYMBOL(restore_processor_state); 287 #endif 288 289 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU) 290 static void resume_play_dead(void) 291 { 292 play_dead_common(); 293 tboot_shutdown(TB_SHUTDOWN_WFS); 294 hlt_play_dead(); 295 } 296 297 int hibernate_resume_nonboot_cpu_disable(void) 298 { 299 void (*play_dead)(void) = smp_ops.play_dead; 300 int ret; 301 302 /* 303 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop 304 * during hibernate image restoration, because it is likely that the 305 * monitored address will be actually written to at that time and then 306 * the "dead" CPU will attempt to execute instructions again, but the 307 * address in its instruction pointer may not be possible to resolve 308 * any more at that point (the page tables used by it previously may 309 * have been overwritten by hibernate image data). 310 * 311 * First, make sure that we wake up all the potentially disabled SMT 312 * threads which have been initially brought up and then put into 313 * mwait/cpuidle sleep. 314 * Those will be put to proper (not interfering with hibernation 315 * resume) sleep afterwards, and the resumed kernel will decide itself 316 * what to do with them. 317 */ 318 ret = cpuhp_smt_enable(); 319 if (ret) 320 return ret; 321 smp_ops.play_dead = resume_play_dead; 322 ret = freeze_secondary_cpus(0); 323 smp_ops.play_dead = play_dead; 324 return ret; 325 } 326 #endif 327 328 /* 329 * When bsp_check() is called in hibernate and suspend, cpu hotplug 330 * is disabled already. So it's unnecessary to handle race condition between 331 * cpumask query and cpu hotplug. 332 */ 333 static int bsp_check(void) 334 { 335 if (cpumask_first(cpu_online_mask) != 0) { 336 pr_warn("CPU0 is offline.\n"); 337 return -ENODEV; 338 } 339 340 return 0; 341 } 342 343 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action, 344 void *ptr) 345 { 346 int ret = 0; 347 348 switch (action) { 349 case PM_SUSPEND_PREPARE: 350 case PM_HIBERNATION_PREPARE: 351 ret = bsp_check(); 352 break; 353 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0 354 case PM_RESTORE_PREPARE: 355 /* 356 * When system resumes from hibernation, online CPU0 because 357 * 1. it's required for resume and 358 * 2. the CPU was online before hibernation 359 */ 360 if (!cpu_online(0)) 361 _debug_hotplug_cpu(0, 1); 362 break; 363 case PM_POST_RESTORE: 364 /* 365 * When a resume really happens, this code won't be called. 366 * 367 * This code is called only when user space hibernation software 368 * prepares for snapshot device during boot time. So we just 369 * call _debug_hotplug_cpu() to restore to CPU0's state prior to 370 * preparing the snapshot device. 371 * 372 * This works for normal boot case in our CPU0 hotplug debug 373 * mode, i.e. CPU0 is offline and user mode hibernation 374 * software initializes during boot time. 375 * 376 * If CPU0 is online and user application accesses snapshot 377 * device after boot time, this will offline CPU0 and user may 378 * see different CPU0 state before and after accessing 379 * the snapshot device. But hopefully this is not a case when 380 * user debugging CPU0 hotplug. Even if users hit this case, 381 * they can easily online CPU0 back. 382 * 383 * To simplify this debug code, we only consider normal boot 384 * case. Otherwise we need to remember CPU0's state and restore 385 * to that state and resolve racy conditions etc. 386 */ 387 _debug_hotplug_cpu(0, 0); 388 break; 389 #endif 390 default: 391 break; 392 } 393 return notifier_from_errno(ret); 394 } 395 396 static int __init bsp_pm_check_init(void) 397 { 398 /* 399 * Set this bsp_pm_callback as lower priority than 400 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called 401 * earlier to disable cpu hotplug before bsp online check. 402 */ 403 pm_notifier(bsp_pm_callback, -INT_MAX); 404 return 0; 405 } 406 407 core_initcall(bsp_pm_check_init); 408 409 static int msr_build_context(const u32 *msr_id, const int num) 410 { 411 struct saved_msrs *saved_msrs = &saved_context.saved_msrs; 412 struct saved_msr *msr_array; 413 int total_num; 414 int i, j; 415 416 total_num = saved_msrs->num + num; 417 418 msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL); 419 if (!msr_array) { 420 pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n"); 421 return -ENOMEM; 422 } 423 424 if (saved_msrs->array) { 425 /* 426 * Multiple callbacks can invoke this function, so copy any 427 * MSR save requests from previous invocations. 428 */ 429 memcpy(msr_array, saved_msrs->array, 430 sizeof(struct saved_msr) * saved_msrs->num); 431 432 kfree(saved_msrs->array); 433 } 434 435 for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) { 436 u64 dummy; 437 438 msr_array[i].info.msr_no = msr_id[j]; 439 msr_array[i].valid = !rdmsrl_safe(msr_id[j], &dummy); 440 msr_array[i].info.reg.q = 0; 441 } 442 saved_msrs->num = total_num; 443 saved_msrs->array = msr_array; 444 445 return 0; 446 } 447 448 /* 449 * The following sections are a quirk framework for problematic BIOSen: 450 * Sometimes MSRs are modified by the BIOSen after suspended to 451 * RAM, this might cause unexpected behavior after wakeup. 452 * Thus we save/restore these specified MSRs across suspend/resume 453 * in order to work around it. 454 * 455 * For any further problematic BIOSen/platforms, 456 * please add your own function similar to msr_initialize_bdw. 457 */ 458 static int msr_initialize_bdw(const struct dmi_system_id *d) 459 { 460 /* Add any extra MSR ids into this array. */ 461 u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL }; 462 463 pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident); 464 return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id)); 465 } 466 467 static const struct dmi_system_id msr_save_dmi_table[] = { 468 { 469 .callback = msr_initialize_bdw, 470 .ident = "BROADWELL BDX_EP", 471 .matches = { 472 DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"), 473 DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"), 474 }, 475 }, 476 {} 477 }; 478 479 static int msr_save_cpuid_features(const struct x86_cpu_id *c) 480 { 481 u32 cpuid_msr_id[] = { 482 MSR_AMD64_CPUID_FN_1, 483 }; 484 485 pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n", 486 c->family); 487 488 return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id)); 489 } 490 491 static const struct x86_cpu_id msr_save_cpu_table[] = { 492 X86_MATCH_VENDOR_FAM(AMD, 0x15, &msr_save_cpuid_features), 493 X86_MATCH_VENDOR_FAM(AMD, 0x16, &msr_save_cpuid_features), 494 {} 495 }; 496 497 typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *); 498 static int pm_cpu_check(const struct x86_cpu_id *c) 499 { 500 const struct x86_cpu_id *m; 501 int ret = 0; 502 503 m = x86_match_cpu(msr_save_cpu_table); 504 if (m) { 505 pm_cpu_match_t fn; 506 507 fn = (pm_cpu_match_t)m->driver_data; 508 ret = fn(m); 509 } 510 511 return ret; 512 } 513 514 static void pm_save_spec_msr(void) 515 { 516 u32 spec_msr_id[] = { 517 MSR_IA32_SPEC_CTRL, 518 MSR_IA32_TSX_CTRL, 519 MSR_TSX_FORCE_ABORT, 520 MSR_IA32_MCU_OPT_CTRL, 521 MSR_AMD64_LS_CFG, 522 }; 523 524 msr_build_context(spec_msr_id, ARRAY_SIZE(spec_msr_id)); 525 } 526 527 static int pm_check_save_msr(void) 528 { 529 dmi_check_system(msr_save_dmi_table); 530 pm_cpu_check(msr_save_cpu_table); 531 pm_save_spec_msr(); 532 533 return 0; 534 } 535 536 device_initcall(pm_check_save_msr); 537