1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Suspend support specific for i386/x86-64. 4 * 5 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl> 6 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz> 7 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org> 8 */ 9 10 #include <linux/suspend.h> 11 #include <linux/export.h> 12 #include <linux/smp.h> 13 #include <linux/perf_event.h> 14 #include <linux/tboot.h> 15 #include <linux/dmi.h> 16 17 #include <asm/pgtable.h> 18 #include <asm/proto.h> 19 #include <asm/mtrr.h> 20 #include <asm/page.h> 21 #include <asm/mce.h> 22 #include <asm/suspend.h> 23 #include <asm/fpu/internal.h> 24 #include <asm/debugreg.h> 25 #include <asm/cpu.h> 26 #include <asm/mmu_context.h> 27 #include <asm/cpu_device_id.h> 28 29 #ifdef CONFIG_X86_32 30 __visible unsigned long saved_context_ebx; 31 __visible unsigned long saved_context_esp, saved_context_ebp; 32 __visible unsigned long saved_context_esi, saved_context_edi; 33 __visible unsigned long saved_context_eflags; 34 #endif 35 struct saved_context saved_context; 36 37 static void msr_save_context(struct saved_context *ctxt) 38 { 39 struct saved_msr *msr = ctxt->saved_msrs.array; 40 struct saved_msr *end = msr + ctxt->saved_msrs.num; 41 42 while (msr < end) { 43 msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q); 44 msr++; 45 } 46 } 47 48 static void msr_restore_context(struct saved_context *ctxt) 49 { 50 struct saved_msr *msr = ctxt->saved_msrs.array; 51 struct saved_msr *end = msr + ctxt->saved_msrs.num; 52 53 while (msr < end) { 54 if (msr->valid) 55 wrmsrl(msr->info.msr_no, msr->info.reg.q); 56 msr++; 57 } 58 } 59 60 /** 61 * __save_processor_state - save CPU registers before creating a 62 * hibernation image and before restoring the memory state from it 63 * @ctxt - structure to store the registers contents in 64 * 65 * NOTE: If there is a CPU register the modification of which by the 66 * boot kernel (ie. the kernel used for loading the hibernation image) 67 * might affect the operations of the restored target kernel (ie. the one 68 * saved in the hibernation image), then its contents must be saved by this 69 * function. In other words, if kernel A is hibernated and different 70 * kernel B is used for loading the hibernation image into memory, the 71 * kernel A's __save_processor_state() function must save all registers 72 * needed by kernel A, so that it can operate correctly after the resume 73 * regardless of what kernel B does in the meantime. 74 */ 75 static void __save_processor_state(struct saved_context *ctxt) 76 { 77 #ifdef CONFIG_X86_32 78 mtrr_save_fixed_ranges(NULL); 79 #endif 80 kernel_fpu_begin(); 81 82 /* 83 * descriptor tables 84 */ 85 store_idt(&ctxt->idt); 86 87 /* 88 * We save it here, but restore it only in the hibernate case. 89 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit 90 * mode in "secondary_startup_64". In 32-bit mode it is done via 91 * 'pmode_gdt' in wakeup_start. 92 */ 93 ctxt->gdt_desc.size = GDT_SIZE - 1; 94 ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id()); 95 96 store_tr(ctxt->tr); 97 98 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */ 99 /* 100 * segment registers 101 */ 102 #ifdef CONFIG_X86_32_LAZY_GS 103 savesegment(gs, ctxt->gs); 104 #endif 105 #ifdef CONFIG_X86_64 106 savesegment(gs, ctxt->gs); 107 savesegment(fs, ctxt->fs); 108 savesegment(ds, ctxt->ds); 109 savesegment(es, ctxt->es); 110 111 rdmsrl(MSR_FS_BASE, ctxt->fs_base); 112 rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base); 113 rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); 114 mtrr_save_fixed_ranges(NULL); 115 116 rdmsrl(MSR_EFER, ctxt->efer); 117 #endif 118 119 /* 120 * control registers 121 */ 122 ctxt->cr0 = read_cr0(); 123 ctxt->cr2 = read_cr2(); 124 ctxt->cr3 = __read_cr3(); 125 ctxt->cr4 = __read_cr4(); 126 ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE, 127 &ctxt->misc_enable); 128 msr_save_context(ctxt); 129 } 130 131 /* Needed by apm.c */ 132 void save_processor_state(void) 133 { 134 __save_processor_state(&saved_context); 135 x86_platform.save_sched_clock_state(); 136 } 137 #ifdef CONFIG_X86_32 138 EXPORT_SYMBOL(save_processor_state); 139 #endif 140 141 static void do_fpu_end(void) 142 { 143 /* 144 * Restore FPU regs if necessary. 145 */ 146 kernel_fpu_end(); 147 } 148 149 static void fix_processor_context(void) 150 { 151 int cpu = smp_processor_id(); 152 #ifdef CONFIG_X86_64 153 struct desc_struct *desc = get_cpu_gdt_rw(cpu); 154 tss_desc tss; 155 #endif 156 157 /* 158 * We need to reload TR, which requires that we change the 159 * GDT entry to indicate "available" first. 160 * 161 * XXX: This could probably all be replaced by a call to 162 * force_reload_TR(). 163 */ 164 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss); 165 166 #ifdef CONFIG_X86_64 167 memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc)); 168 tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */ 169 write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS); 170 171 syscall_init(); /* This sets MSR_*STAR and related */ 172 #else 173 if (boot_cpu_has(X86_FEATURE_SEP)) 174 enable_sep_cpu(); 175 #endif 176 load_TR_desc(); /* This does ltr */ 177 load_mm_ldt(current->active_mm); /* This does lldt */ 178 initialize_tlbstate_and_flush(); 179 180 fpu__resume_cpu(); 181 182 /* The processor is back on the direct GDT, load back the fixmap */ 183 load_fixmap_gdt(cpu); 184 } 185 186 /** 187 * __restore_processor_state - restore the contents of CPU registers saved 188 * by __save_processor_state() 189 * @ctxt - structure to load the registers contents from 190 * 191 * The asm code that gets us here will have restored a usable GDT, although 192 * it will be pointing to the wrong alias. 193 */ 194 static void notrace __restore_processor_state(struct saved_context *ctxt) 195 { 196 if (ctxt->misc_enable_saved) 197 wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable); 198 /* 199 * control registers 200 */ 201 /* cr4 was introduced in the Pentium CPU */ 202 #ifdef CONFIG_X86_32 203 if (ctxt->cr4) 204 __write_cr4(ctxt->cr4); 205 #else 206 /* CONFIG X86_64 */ 207 wrmsrl(MSR_EFER, ctxt->efer); 208 __write_cr4(ctxt->cr4); 209 #endif 210 write_cr3(ctxt->cr3); 211 write_cr2(ctxt->cr2); 212 write_cr0(ctxt->cr0); 213 214 /* Restore the IDT. */ 215 load_idt(&ctxt->idt); 216 217 /* 218 * Just in case the asm code got us here with the SS, DS, or ES 219 * out of sync with the GDT, update them. 220 */ 221 loadsegment(ss, __KERNEL_DS); 222 loadsegment(ds, __USER_DS); 223 loadsegment(es, __USER_DS); 224 225 /* 226 * Restore percpu access. Percpu access can happen in exception 227 * handlers or in complicated helpers like load_gs_index(). 228 */ 229 #ifdef CONFIG_X86_64 230 wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base); 231 #else 232 loadsegment(fs, __KERNEL_PERCPU); 233 loadsegment(gs, __KERNEL_STACK_CANARY); 234 #endif 235 236 /* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */ 237 fix_processor_context(); 238 239 /* 240 * Now that we have descriptor tables fully restored and working 241 * exception handling, restore the usermode segments. 242 */ 243 #ifdef CONFIG_X86_64 244 loadsegment(ds, ctxt->es); 245 loadsegment(es, ctxt->es); 246 loadsegment(fs, ctxt->fs); 247 load_gs_index(ctxt->gs); 248 249 /* 250 * Restore FSBASE and GSBASE after restoring the selectors, since 251 * restoring the selectors clobbers the bases. Keep in mind 252 * that MSR_KERNEL_GS_BASE is horribly misnamed. 253 */ 254 wrmsrl(MSR_FS_BASE, ctxt->fs_base); 255 wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); 256 #elif defined(CONFIG_X86_32_LAZY_GS) 257 loadsegment(gs, ctxt->gs); 258 #endif 259 260 do_fpu_end(); 261 tsc_verify_tsc_adjust(true); 262 x86_platform.restore_sched_clock_state(); 263 mtrr_bp_restore(); 264 perf_restore_debug_store(); 265 msr_restore_context(ctxt); 266 } 267 268 /* Needed by apm.c */ 269 void notrace restore_processor_state(void) 270 { 271 __restore_processor_state(&saved_context); 272 } 273 #ifdef CONFIG_X86_32 274 EXPORT_SYMBOL(restore_processor_state); 275 #endif 276 277 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU) 278 static void resume_play_dead(void) 279 { 280 play_dead_common(); 281 tboot_shutdown(TB_SHUTDOWN_WFS); 282 hlt_play_dead(); 283 } 284 285 int hibernate_resume_nonboot_cpu_disable(void) 286 { 287 void (*play_dead)(void) = smp_ops.play_dead; 288 int ret; 289 290 /* 291 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop 292 * during hibernate image restoration, because it is likely that the 293 * monitored address will be actually written to at that time and then 294 * the "dead" CPU will attempt to execute instructions again, but the 295 * address in its instruction pointer may not be possible to resolve 296 * any more at that point (the page tables used by it previously may 297 * have been overwritten by hibernate image data). 298 * 299 * First, make sure that we wake up all the potentially disabled SMT 300 * threads which have been initially brought up and then put into 301 * mwait/cpuidle sleep. 302 * Those will be put to proper (not interfering with hibernation 303 * resume) sleep afterwards, and the resumed kernel will decide itself 304 * what to do with them. 305 */ 306 ret = cpuhp_smt_enable(); 307 if (ret) 308 return ret; 309 smp_ops.play_dead = resume_play_dead; 310 ret = disable_nonboot_cpus(); 311 smp_ops.play_dead = play_dead; 312 return ret; 313 } 314 #endif 315 316 /* 317 * When bsp_check() is called in hibernate and suspend, cpu hotplug 318 * is disabled already. So it's unnessary to handle race condition between 319 * cpumask query and cpu hotplug. 320 */ 321 static int bsp_check(void) 322 { 323 if (cpumask_first(cpu_online_mask) != 0) { 324 pr_warn("CPU0 is offline.\n"); 325 return -ENODEV; 326 } 327 328 return 0; 329 } 330 331 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action, 332 void *ptr) 333 { 334 int ret = 0; 335 336 switch (action) { 337 case PM_SUSPEND_PREPARE: 338 case PM_HIBERNATION_PREPARE: 339 ret = bsp_check(); 340 break; 341 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0 342 case PM_RESTORE_PREPARE: 343 /* 344 * When system resumes from hibernation, online CPU0 because 345 * 1. it's required for resume and 346 * 2. the CPU was online before hibernation 347 */ 348 if (!cpu_online(0)) 349 _debug_hotplug_cpu(0, 1); 350 break; 351 case PM_POST_RESTORE: 352 /* 353 * When a resume really happens, this code won't be called. 354 * 355 * This code is called only when user space hibernation software 356 * prepares for snapshot device during boot time. So we just 357 * call _debug_hotplug_cpu() to restore to CPU0's state prior to 358 * preparing the snapshot device. 359 * 360 * This works for normal boot case in our CPU0 hotplug debug 361 * mode, i.e. CPU0 is offline and user mode hibernation 362 * software initializes during boot time. 363 * 364 * If CPU0 is online and user application accesses snapshot 365 * device after boot time, this will offline CPU0 and user may 366 * see different CPU0 state before and after accessing 367 * the snapshot device. But hopefully this is not a case when 368 * user debugging CPU0 hotplug. Even if users hit this case, 369 * they can easily online CPU0 back. 370 * 371 * To simplify this debug code, we only consider normal boot 372 * case. Otherwise we need to remember CPU0's state and restore 373 * to that state and resolve racy conditions etc. 374 */ 375 _debug_hotplug_cpu(0, 0); 376 break; 377 #endif 378 default: 379 break; 380 } 381 return notifier_from_errno(ret); 382 } 383 384 static int __init bsp_pm_check_init(void) 385 { 386 /* 387 * Set this bsp_pm_callback as lower priority than 388 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called 389 * earlier to disable cpu hotplug before bsp online check. 390 */ 391 pm_notifier(bsp_pm_callback, -INT_MAX); 392 return 0; 393 } 394 395 core_initcall(bsp_pm_check_init); 396 397 static int msr_build_context(const u32 *msr_id, const int num) 398 { 399 struct saved_msrs *saved_msrs = &saved_context.saved_msrs; 400 struct saved_msr *msr_array; 401 int total_num; 402 int i, j; 403 404 total_num = saved_msrs->num + num; 405 406 msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL); 407 if (!msr_array) { 408 pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n"); 409 return -ENOMEM; 410 } 411 412 if (saved_msrs->array) { 413 /* 414 * Multiple callbacks can invoke this function, so copy any 415 * MSR save requests from previous invocations. 416 */ 417 memcpy(msr_array, saved_msrs->array, 418 sizeof(struct saved_msr) * saved_msrs->num); 419 420 kfree(saved_msrs->array); 421 } 422 423 for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) { 424 msr_array[i].info.msr_no = msr_id[j]; 425 msr_array[i].valid = false; 426 msr_array[i].info.reg.q = 0; 427 } 428 saved_msrs->num = total_num; 429 saved_msrs->array = msr_array; 430 431 return 0; 432 } 433 434 /* 435 * The following sections are a quirk framework for problematic BIOSen: 436 * Sometimes MSRs are modified by the BIOSen after suspended to 437 * RAM, this might cause unexpected behavior after wakeup. 438 * Thus we save/restore these specified MSRs across suspend/resume 439 * in order to work around it. 440 * 441 * For any further problematic BIOSen/platforms, 442 * please add your own function similar to msr_initialize_bdw. 443 */ 444 static int msr_initialize_bdw(const struct dmi_system_id *d) 445 { 446 /* Add any extra MSR ids into this array. */ 447 u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL }; 448 449 pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident); 450 return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id)); 451 } 452 453 static const struct dmi_system_id msr_save_dmi_table[] = { 454 { 455 .callback = msr_initialize_bdw, 456 .ident = "BROADWELL BDX_EP", 457 .matches = { 458 DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"), 459 DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"), 460 }, 461 }, 462 {} 463 }; 464 465 static int msr_save_cpuid_features(const struct x86_cpu_id *c) 466 { 467 u32 cpuid_msr_id[] = { 468 MSR_AMD64_CPUID_FN_1, 469 }; 470 471 pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n", 472 c->family); 473 474 return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id)); 475 } 476 477 static const struct x86_cpu_id msr_save_cpu_table[] = { 478 { 479 .vendor = X86_VENDOR_AMD, 480 .family = 0x15, 481 .model = X86_MODEL_ANY, 482 .feature = X86_FEATURE_ANY, 483 .driver_data = (kernel_ulong_t)msr_save_cpuid_features, 484 }, 485 { 486 .vendor = X86_VENDOR_AMD, 487 .family = 0x16, 488 .model = X86_MODEL_ANY, 489 .feature = X86_FEATURE_ANY, 490 .driver_data = (kernel_ulong_t)msr_save_cpuid_features, 491 }, 492 {} 493 }; 494 495 typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *); 496 static int pm_cpu_check(const struct x86_cpu_id *c) 497 { 498 const struct x86_cpu_id *m; 499 int ret = 0; 500 501 m = x86_match_cpu(msr_save_cpu_table); 502 if (m) { 503 pm_cpu_match_t fn; 504 505 fn = (pm_cpu_match_t)m->driver_data; 506 ret = fn(m); 507 } 508 509 return ret; 510 } 511 512 static int pm_check_save_msr(void) 513 { 514 dmi_check_system(msr_save_dmi_table); 515 pm_cpu_check(msr_save_cpu_table); 516 517 return 0; 518 } 519 520 device_initcall(pm_check_save_msr); 521