1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Suspend support specific for i386/x86-64. 4 * 5 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl> 6 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz> 7 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org> 8 */ 9 10 #include <linux/suspend.h> 11 #include <linux/export.h> 12 #include <linux/smp.h> 13 #include <linux/perf_event.h> 14 #include <linux/tboot.h> 15 #include <linux/dmi.h> 16 #include <linux/pgtable.h> 17 18 #include <asm/proto.h> 19 #include <asm/mtrr.h> 20 #include <asm/page.h> 21 #include <asm/mce.h> 22 #include <asm/suspend.h> 23 #include <asm/fpu/api.h> 24 #include <asm/debugreg.h> 25 #include <asm/cpu.h> 26 #include <asm/mmu_context.h> 27 #include <asm/cpu_device_id.h> 28 29 #ifdef CONFIG_X86_32 30 __visible unsigned long saved_context_ebx; 31 __visible unsigned long saved_context_esp, saved_context_ebp; 32 __visible unsigned long saved_context_esi, saved_context_edi; 33 __visible unsigned long saved_context_eflags; 34 #endif 35 struct saved_context saved_context; 36 37 static void msr_save_context(struct saved_context *ctxt) 38 { 39 struct saved_msr *msr = ctxt->saved_msrs.array; 40 struct saved_msr *end = msr + ctxt->saved_msrs.num; 41 42 while (msr < end) { 43 if (msr->valid) 44 rdmsrl(msr->info.msr_no, msr->info.reg.q); 45 msr++; 46 } 47 } 48 49 static void msr_restore_context(struct saved_context *ctxt) 50 { 51 struct saved_msr *msr = ctxt->saved_msrs.array; 52 struct saved_msr *end = msr + ctxt->saved_msrs.num; 53 54 while (msr < end) { 55 if (msr->valid) 56 wrmsrl(msr->info.msr_no, msr->info.reg.q); 57 msr++; 58 } 59 } 60 61 /** 62 * __save_processor_state() - Save CPU registers before creating a 63 * hibernation image and before restoring 64 * the memory state from it 65 * @ctxt: Structure to store the registers contents in. 66 * 67 * NOTE: If there is a CPU register the modification of which by the 68 * boot kernel (ie. the kernel used for loading the hibernation image) 69 * might affect the operations of the restored target kernel (ie. the one 70 * saved in the hibernation image), then its contents must be saved by this 71 * function. In other words, if kernel A is hibernated and different 72 * kernel B is used for loading the hibernation image into memory, the 73 * kernel A's __save_processor_state() function must save all registers 74 * needed by kernel A, so that it can operate correctly after the resume 75 * regardless of what kernel B does in the meantime. 76 */ 77 static void __save_processor_state(struct saved_context *ctxt) 78 { 79 #ifdef CONFIG_X86_32 80 mtrr_save_fixed_ranges(NULL); 81 #endif 82 kernel_fpu_begin(); 83 84 /* 85 * descriptor tables 86 */ 87 store_idt(&ctxt->idt); 88 89 /* 90 * We save it here, but restore it only in the hibernate case. 91 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit 92 * mode in "secondary_startup_64". In 32-bit mode it is done via 93 * 'pmode_gdt' in wakeup_start. 94 */ 95 ctxt->gdt_desc.size = GDT_SIZE - 1; 96 ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id()); 97 98 store_tr(ctxt->tr); 99 100 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */ 101 /* 102 * segment registers 103 */ 104 savesegment(gs, ctxt->gs); 105 #ifdef CONFIG_X86_64 106 savesegment(fs, ctxt->fs); 107 savesegment(ds, ctxt->ds); 108 savesegment(es, ctxt->es); 109 110 rdmsrl(MSR_FS_BASE, ctxt->fs_base); 111 rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base); 112 rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); 113 mtrr_save_fixed_ranges(NULL); 114 115 rdmsrl(MSR_EFER, ctxt->efer); 116 #endif 117 118 /* 119 * control registers 120 */ 121 ctxt->cr0 = read_cr0(); 122 ctxt->cr2 = read_cr2(); 123 ctxt->cr3 = __read_cr3(); 124 ctxt->cr4 = __read_cr4(); 125 ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE, 126 &ctxt->misc_enable); 127 msr_save_context(ctxt); 128 } 129 130 /* Needed by apm.c */ 131 void save_processor_state(void) 132 { 133 __save_processor_state(&saved_context); 134 x86_platform.save_sched_clock_state(); 135 } 136 #ifdef CONFIG_X86_32 137 EXPORT_SYMBOL(save_processor_state); 138 #endif 139 140 static void do_fpu_end(void) 141 { 142 /* 143 * Restore FPU regs if necessary. 144 */ 145 kernel_fpu_end(); 146 } 147 148 static void fix_processor_context(void) 149 { 150 int cpu = smp_processor_id(); 151 #ifdef CONFIG_X86_64 152 struct desc_struct *desc = get_cpu_gdt_rw(cpu); 153 tss_desc tss; 154 #endif 155 156 /* 157 * We need to reload TR, which requires that we change the 158 * GDT entry to indicate "available" first. 159 * 160 * XXX: This could probably all be replaced by a call to 161 * force_reload_TR(). 162 */ 163 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss); 164 165 #ifdef CONFIG_X86_64 166 memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc)); 167 tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */ 168 write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS); 169 170 syscall_init(); /* This sets MSR_*STAR and related */ 171 #else 172 if (boot_cpu_has(X86_FEATURE_SEP)) 173 enable_sep_cpu(); 174 #endif 175 load_TR_desc(); /* This does ltr */ 176 load_mm_ldt(current->active_mm); /* This does lldt */ 177 initialize_tlbstate_and_flush(); 178 179 fpu__resume_cpu(); 180 181 /* The processor is back on the direct GDT, load back the fixmap */ 182 load_fixmap_gdt(cpu); 183 } 184 185 /** 186 * __restore_processor_state() - Restore the contents of CPU registers saved 187 * by __save_processor_state() 188 * @ctxt: Structure to load the registers contents from. 189 * 190 * The asm code that gets us here will have restored a usable GDT, although 191 * it will be pointing to the wrong alias. 192 */ 193 static void notrace __restore_processor_state(struct saved_context *ctxt) 194 { 195 struct cpuinfo_x86 *c; 196 197 if (ctxt->misc_enable_saved) 198 wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable); 199 /* 200 * control registers 201 */ 202 /* cr4 was introduced in the Pentium CPU */ 203 #ifdef CONFIG_X86_32 204 if (ctxt->cr4) 205 __write_cr4(ctxt->cr4); 206 #else 207 /* CONFIG X86_64 */ 208 wrmsrl(MSR_EFER, ctxt->efer); 209 __write_cr4(ctxt->cr4); 210 #endif 211 write_cr3(ctxt->cr3); 212 write_cr2(ctxt->cr2); 213 write_cr0(ctxt->cr0); 214 215 /* Restore the IDT. */ 216 load_idt(&ctxt->idt); 217 218 /* 219 * Just in case the asm code got us here with the SS, DS, or ES 220 * out of sync with the GDT, update them. 221 */ 222 loadsegment(ss, __KERNEL_DS); 223 loadsegment(ds, __USER_DS); 224 loadsegment(es, __USER_DS); 225 226 /* 227 * Restore percpu access. Percpu access can happen in exception 228 * handlers or in complicated helpers like load_gs_index(). 229 */ 230 #ifdef CONFIG_X86_64 231 wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base); 232 #else 233 loadsegment(fs, __KERNEL_PERCPU); 234 #endif 235 236 /* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */ 237 fix_processor_context(); 238 239 /* 240 * Now that we have descriptor tables fully restored and working 241 * exception handling, restore the usermode segments. 242 */ 243 #ifdef CONFIG_X86_64 244 loadsegment(ds, ctxt->es); 245 loadsegment(es, ctxt->es); 246 loadsegment(fs, ctxt->fs); 247 load_gs_index(ctxt->gs); 248 249 /* 250 * Restore FSBASE and GSBASE after restoring the selectors, since 251 * restoring the selectors clobbers the bases. Keep in mind 252 * that MSR_KERNEL_GS_BASE is horribly misnamed. 253 */ 254 wrmsrl(MSR_FS_BASE, ctxt->fs_base); 255 wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); 256 #else 257 loadsegment(gs, ctxt->gs); 258 #endif 259 260 do_fpu_end(); 261 tsc_verify_tsc_adjust(true); 262 x86_platform.restore_sched_clock_state(); 263 mtrr_bp_restore(); 264 perf_restore_debug_store(); 265 msr_restore_context(ctxt); 266 267 c = &cpu_data(smp_processor_id()); 268 if (cpu_has(c, X86_FEATURE_MSR_IA32_FEAT_CTL)) 269 init_ia32_feat_ctl(c); 270 } 271 272 /* Needed by apm.c */ 273 void notrace restore_processor_state(void) 274 { 275 __restore_processor_state(&saved_context); 276 } 277 #ifdef CONFIG_X86_32 278 EXPORT_SYMBOL(restore_processor_state); 279 #endif 280 281 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU) 282 static void resume_play_dead(void) 283 { 284 play_dead_common(); 285 tboot_shutdown(TB_SHUTDOWN_WFS); 286 hlt_play_dead(); 287 } 288 289 int hibernate_resume_nonboot_cpu_disable(void) 290 { 291 void (*play_dead)(void) = smp_ops.play_dead; 292 int ret; 293 294 /* 295 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop 296 * during hibernate image restoration, because it is likely that the 297 * monitored address will be actually written to at that time and then 298 * the "dead" CPU will attempt to execute instructions again, but the 299 * address in its instruction pointer may not be possible to resolve 300 * any more at that point (the page tables used by it previously may 301 * have been overwritten by hibernate image data). 302 * 303 * First, make sure that we wake up all the potentially disabled SMT 304 * threads which have been initially brought up and then put into 305 * mwait/cpuidle sleep. 306 * Those will be put to proper (not interfering with hibernation 307 * resume) sleep afterwards, and the resumed kernel will decide itself 308 * what to do with them. 309 */ 310 ret = cpuhp_smt_enable(); 311 if (ret) 312 return ret; 313 smp_ops.play_dead = resume_play_dead; 314 ret = freeze_secondary_cpus(0); 315 smp_ops.play_dead = play_dead; 316 return ret; 317 } 318 #endif 319 320 /* 321 * When bsp_check() is called in hibernate and suspend, cpu hotplug 322 * is disabled already. So it's unnecessary to handle race condition between 323 * cpumask query and cpu hotplug. 324 */ 325 static int bsp_check(void) 326 { 327 if (cpumask_first(cpu_online_mask) != 0) { 328 pr_warn("CPU0 is offline.\n"); 329 return -ENODEV; 330 } 331 332 return 0; 333 } 334 335 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action, 336 void *ptr) 337 { 338 int ret = 0; 339 340 switch (action) { 341 case PM_SUSPEND_PREPARE: 342 case PM_HIBERNATION_PREPARE: 343 ret = bsp_check(); 344 break; 345 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0 346 case PM_RESTORE_PREPARE: 347 /* 348 * When system resumes from hibernation, online CPU0 because 349 * 1. it's required for resume and 350 * 2. the CPU was online before hibernation 351 */ 352 if (!cpu_online(0)) 353 _debug_hotplug_cpu(0, 1); 354 break; 355 case PM_POST_RESTORE: 356 /* 357 * When a resume really happens, this code won't be called. 358 * 359 * This code is called only when user space hibernation software 360 * prepares for snapshot device during boot time. So we just 361 * call _debug_hotplug_cpu() to restore to CPU0's state prior to 362 * preparing the snapshot device. 363 * 364 * This works for normal boot case in our CPU0 hotplug debug 365 * mode, i.e. CPU0 is offline and user mode hibernation 366 * software initializes during boot time. 367 * 368 * If CPU0 is online and user application accesses snapshot 369 * device after boot time, this will offline CPU0 and user may 370 * see different CPU0 state before and after accessing 371 * the snapshot device. But hopefully this is not a case when 372 * user debugging CPU0 hotplug. Even if users hit this case, 373 * they can easily online CPU0 back. 374 * 375 * To simplify this debug code, we only consider normal boot 376 * case. Otherwise we need to remember CPU0's state and restore 377 * to that state and resolve racy conditions etc. 378 */ 379 _debug_hotplug_cpu(0, 0); 380 break; 381 #endif 382 default: 383 break; 384 } 385 return notifier_from_errno(ret); 386 } 387 388 static int __init bsp_pm_check_init(void) 389 { 390 /* 391 * Set this bsp_pm_callback as lower priority than 392 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called 393 * earlier to disable cpu hotplug before bsp online check. 394 */ 395 pm_notifier(bsp_pm_callback, -INT_MAX); 396 return 0; 397 } 398 399 core_initcall(bsp_pm_check_init); 400 401 static int msr_build_context(const u32 *msr_id, const int num) 402 { 403 struct saved_msrs *saved_msrs = &saved_context.saved_msrs; 404 struct saved_msr *msr_array; 405 int total_num; 406 int i, j; 407 408 total_num = saved_msrs->num + num; 409 410 msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL); 411 if (!msr_array) { 412 pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n"); 413 return -ENOMEM; 414 } 415 416 if (saved_msrs->array) { 417 /* 418 * Multiple callbacks can invoke this function, so copy any 419 * MSR save requests from previous invocations. 420 */ 421 memcpy(msr_array, saved_msrs->array, 422 sizeof(struct saved_msr) * saved_msrs->num); 423 424 kfree(saved_msrs->array); 425 } 426 427 for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) { 428 u64 dummy; 429 430 msr_array[i].info.msr_no = msr_id[j]; 431 msr_array[i].valid = !rdmsrl_safe(msr_id[j], &dummy); 432 msr_array[i].info.reg.q = 0; 433 } 434 saved_msrs->num = total_num; 435 saved_msrs->array = msr_array; 436 437 return 0; 438 } 439 440 /* 441 * The following sections are a quirk framework for problematic BIOSen: 442 * Sometimes MSRs are modified by the BIOSen after suspended to 443 * RAM, this might cause unexpected behavior after wakeup. 444 * Thus we save/restore these specified MSRs across suspend/resume 445 * in order to work around it. 446 * 447 * For any further problematic BIOSen/platforms, 448 * please add your own function similar to msr_initialize_bdw. 449 */ 450 static int msr_initialize_bdw(const struct dmi_system_id *d) 451 { 452 /* Add any extra MSR ids into this array. */ 453 u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL }; 454 455 pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident); 456 return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id)); 457 } 458 459 static const struct dmi_system_id msr_save_dmi_table[] = { 460 { 461 .callback = msr_initialize_bdw, 462 .ident = "BROADWELL BDX_EP", 463 .matches = { 464 DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"), 465 DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"), 466 }, 467 }, 468 {} 469 }; 470 471 static int msr_save_cpuid_features(const struct x86_cpu_id *c) 472 { 473 u32 cpuid_msr_id[] = { 474 MSR_AMD64_CPUID_FN_1, 475 }; 476 477 pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n", 478 c->family); 479 480 return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id)); 481 } 482 483 static const struct x86_cpu_id msr_save_cpu_table[] = { 484 X86_MATCH_VENDOR_FAM(AMD, 0x15, &msr_save_cpuid_features), 485 X86_MATCH_VENDOR_FAM(AMD, 0x16, &msr_save_cpuid_features), 486 {} 487 }; 488 489 typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *); 490 static int pm_cpu_check(const struct x86_cpu_id *c) 491 { 492 const struct x86_cpu_id *m; 493 int ret = 0; 494 495 m = x86_match_cpu(msr_save_cpu_table); 496 if (m) { 497 pm_cpu_match_t fn; 498 499 fn = (pm_cpu_match_t)m->driver_data; 500 ret = fn(m); 501 } 502 503 return ret; 504 } 505 506 static void pm_save_spec_msr(void) 507 { 508 u32 spec_msr_id[] = { 509 MSR_IA32_SPEC_CTRL, 510 MSR_IA32_TSX_CTRL, 511 MSR_TSX_FORCE_ABORT, 512 MSR_IA32_MCU_OPT_CTRL, 513 MSR_AMD64_LS_CFG, 514 }; 515 516 msr_build_context(spec_msr_id, ARRAY_SIZE(spec_msr_id)); 517 } 518 519 static int pm_check_save_msr(void) 520 { 521 dmi_check_system(msr_save_dmi_table); 522 pm_cpu_check(msr_save_cpu_table); 523 pm_save_spec_msr(); 524 525 return 0; 526 } 527 528 device_initcall(pm_check_save_msr); 529