1 /* 2 * Suspend support specific for i386/x86-64. 3 * 4 * Distribute under GPLv2 5 * 6 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl> 7 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz> 8 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org> 9 */ 10 11 #include <linux/suspend.h> 12 #include <linux/export.h> 13 #include <linux/smp.h> 14 #include <linux/perf_event.h> 15 #include <linux/tboot.h> 16 17 #include <asm/pgtable.h> 18 #include <asm/proto.h> 19 #include <asm/mtrr.h> 20 #include <asm/page.h> 21 #include <asm/mce.h> 22 #include <asm/suspend.h> 23 #include <asm/fpu/internal.h> 24 #include <asm/debugreg.h> 25 #include <asm/cpu.h> 26 #include <asm/mmu_context.h> 27 #include <linux/dmi.h> 28 29 #ifdef CONFIG_X86_32 30 __visible unsigned long saved_context_ebx; 31 __visible unsigned long saved_context_esp, saved_context_ebp; 32 __visible unsigned long saved_context_esi, saved_context_edi; 33 __visible unsigned long saved_context_eflags; 34 #endif 35 struct saved_context saved_context; 36 37 static void msr_save_context(struct saved_context *ctxt) 38 { 39 struct saved_msr *msr = ctxt->saved_msrs.array; 40 struct saved_msr *end = msr + ctxt->saved_msrs.num; 41 42 while (msr < end) { 43 msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q); 44 msr++; 45 } 46 } 47 48 static void msr_restore_context(struct saved_context *ctxt) 49 { 50 struct saved_msr *msr = ctxt->saved_msrs.array; 51 struct saved_msr *end = msr + ctxt->saved_msrs.num; 52 53 while (msr < end) { 54 if (msr->valid) 55 wrmsrl(msr->info.msr_no, msr->info.reg.q); 56 msr++; 57 } 58 } 59 60 /** 61 * __save_processor_state - save CPU registers before creating a 62 * hibernation image and before restoring the memory state from it 63 * @ctxt - structure to store the registers contents in 64 * 65 * NOTE: If there is a CPU register the modification of which by the 66 * boot kernel (ie. the kernel used for loading the hibernation image) 67 * might affect the operations of the restored target kernel (ie. the one 68 * saved in the hibernation image), then its contents must be saved by this 69 * function. In other words, if kernel A is hibernated and different 70 * kernel B is used for loading the hibernation image into memory, the 71 * kernel A's __save_processor_state() function must save all registers 72 * needed by kernel A, so that it can operate correctly after the resume 73 * regardless of what kernel B does in the meantime. 74 */ 75 static void __save_processor_state(struct saved_context *ctxt) 76 { 77 #ifdef CONFIG_X86_32 78 mtrr_save_fixed_ranges(NULL); 79 #endif 80 kernel_fpu_begin(); 81 82 /* 83 * descriptor tables 84 */ 85 store_idt(&ctxt->idt); 86 87 /* 88 * We save it here, but restore it only in the hibernate case. 89 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit 90 * mode in "secondary_startup_64". In 32-bit mode it is done via 91 * 'pmode_gdt' in wakeup_start. 92 */ 93 ctxt->gdt_desc.size = GDT_SIZE - 1; 94 ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id()); 95 96 store_tr(ctxt->tr); 97 98 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */ 99 /* 100 * segment registers 101 */ 102 #ifdef CONFIG_X86_32_LAZY_GS 103 savesegment(gs, ctxt->gs); 104 #endif 105 #ifdef CONFIG_X86_64 106 savesegment(gs, ctxt->gs); 107 savesegment(fs, ctxt->fs); 108 savesegment(ds, ctxt->ds); 109 savesegment(es, ctxt->es); 110 111 rdmsrl(MSR_FS_BASE, ctxt->fs_base); 112 rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base); 113 rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); 114 mtrr_save_fixed_ranges(NULL); 115 116 rdmsrl(MSR_EFER, ctxt->efer); 117 #endif 118 119 /* 120 * control registers 121 */ 122 ctxt->cr0 = read_cr0(); 123 ctxt->cr2 = read_cr2(); 124 ctxt->cr3 = __read_cr3(); 125 ctxt->cr4 = __read_cr4(); 126 #ifdef CONFIG_X86_64 127 ctxt->cr8 = read_cr8(); 128 #endif 129 ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE, 130 &ctxt->misc_enable); 131 msr_save_context(ctxt); 132 } 133 134 /* Needed by apm.c */ 135 void save_processor_state(void) 136 { 137 __save_processor_state(&saved_context); 138 x86_platform.save_sched_clock_state(); 139 } 140 #ifdef CONFIG_X86_32 141 EXPORT_SYMBOL(save_processor_state); 142 #endif 143 144 static void do_fpu_end(void) 145 { 146 /* 147 * Restore FPU regs if necessary. 148 */ 149 kernel_fpu_end(); 150 } 151 152 static void fix_processor_context(void) 153 { 154 int cpu = smp_processor_id(); 155 struct tss_struct *t = &per_cpu(cpu_tss, cpu); 156 #ifdef CONFIG_X86_64 157 struct desc_struct *desc = get_cpu_gdt_rw(cpu); 158 tss_desc tss; 159 #endif 160 set_tss_desc(cpu, t); /* 161 * This just modifies memory; should not be 162 * necessary. But... This is necessary, because 163 * 386 hardware has concept of busy TSS or some 164 * similar stupidity. 165 */ 166 167 #ifdef CONFIG_X86_64 168 memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc)); 169 tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */ 170 write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS); 171 172 syscall_init(); /* This sets MSR_*STAR and related */ 173 #else 174 if (boot_cpu_has(X86_FEATURE_SEP)) 175 enable_sep_cpu(); 176 #endif 177 load_TR_desc(); /* This does ltr */ 178 load_mm_ldt(current->active_mm); /* This does lldt */ 179 initialize_tlbstate_and_flush(); 180 181 fpu__resume_cpu(); 182 183 /* The processor is back on the direct GDT, load back the fixmap */ 184 load_fixmap_gdt(cpu); 185 } 186 187 /** 188 * __restore_processor_state - restore the contents of CPU registers saved 189 * by __save_processor_state() 190 * @ctxt - structure to load the registers contents from 191 * 192 * The asm code that gets us here will have restored a usable GDT, although 193 * it will be pointing to the wrong alias. 194 */ 195 static void notrace __restore_processor_state(struct saved_context *ctxt) 196 { 197 if (ctxt->misc_enable_saved) 198 wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable); 199 /* 200 * control registers 201 */ 202 /* cr4 was introduced in the Pentium CPU */ 203 #ifdef CONFIG_X86_32 204 if (ctxt->cr4) 205 __write_cr4(ctxt->cr4); 206 #else 207 /* CONFIG X86_64 */ 208 wrmsrl(MSR_EFER, ctxt->efer); 209 write_cr8(ctxt->cr8); 210 __write_cr4(ctxt->cr4); 211 #endif 212 write_cr3(ctxt->cr3); 213 write_cr2(ctxt->cr2); 214 write_cr0(ctxt->cr0); 215 216 /* Restore the IDT. */ 217 load_idt(&ctxt->idt); 218 219 /* 220 * Just in case the asm code got us here with the SS, DS, or ES 221 * out of sync with the GDT, update them. 222 */ 223 loadsegment(ss, __KERNEL_DS); 224 loadsegment(ds, __USER_DS); 225 loadsegment(es, __USER_DS); 226 227 /* 228 * Restore percpu access. Percpu access can happen in exception 229 * handlers or in complicated helpers like load_gs_index(). 230 */ 231 #ifdef CONFIG_X86_64 232 wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base); 233 #else 234 loadsegment(fs, __KERNEL_PERCPU); 235 loadsegment(gs, __KERNEL_STACK_CANARY); 236 #endif 237 238 /* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */ 239 fix_processor_context(); 240 241 /* 242 * Now that we have descriptor tables fully restored and working 243 * exception handling, restore the usermode segments. 244 */ 245 #ifdef CONFIG_X86_64 246 loadsegment(ds, ctxt->es); 247 loadsegment(es, ctxt->es); 248 loadsegment(fs, ctxt->fs); 249 load_gs_index(ctxt->gs); 250 251 /* 252 * Restore FSBASE and GSBASE after restoring the selectors, since 253 * restoring the selectors clobbers the bases. Keep in mind 254 * that MSR_KERNEL_GS_BASE is horribly misnamed. 255 */ 256 wrmsrl(MSR_FS_BASE, ctxt->fs_base); 257 wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); 258 #elif defined(CONFIG_X86_32_LAZY_GS) 259 loadsegment(gs, ctxt->gs); 260 #endif 261 262 do_fpu_end(); 263 tsc_verify_tsc_adjust(true); 264 x86_platform.restore_sched_clock_state(); 265 mtrr_bp_restore(); 266 perf_restore_debug_store(); 267 msr_restore_context(ctxt); 268 } 269 270 /* Needed by apm.c */ 271 void notrace restore_processor_state(void) 272 { 273 __restore_processor_state(&saved_context); 274 } 275 #ifdef CONFIG_X86_32 276 EXPORT_SYMBOL(restore_processor_state); 277 #endif 278 279 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU) 280 static void resume_play_dead(void) 281 { 282 play_dead_common(); 283 tboot_shutdown(TB_SHUTDOWN_WFS); 284 hlt_play_dead(); 285 } 286 287 int hibernate_resume_nonboot_cpu_disable(void) 288 { 289 void (*play_dead)(void) = smp_ops.play_dead; 290 int ret; 291 292 /* 293 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop 294 * during hibernate image restoration, because it is likely that the 295 * monitored address will be actually written to at that time and then 296 * the "dead" CPU will attempt to execute instructions again, but the 297 * address in its instruction pointer may not be possible to resolve 298 * any more at that point (the page tables used by it previously may 299 * have been overwritten by hibernate image data). 300 */ 301 smp_ops.play_dead = resume_play_dead; 302 ret = disable_nonboot_cpus(); 303 smp_ops.play_dead = play_dead; 304 return ret; 305 } 306 #endif 307 308 /* 309 * When bsp_check() is called in hibernate and suspend, cpu hotplug 310 * is disabled already. So it's unnessary to handle race condition between 311 * cpumask query and cpu hotplug. 312 */ 313 static int bsp_check(void) 314 { 315 if (cpumask_first(cpu_online_mask) != 0) { 316 pr_warn("CPU0 is offline.\n"); 317 return -ENODEV; 318 } 319 320 return 0; 321 } 322 323 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action, 324 void *ptr) 325 { 326 int ret = 0; 327 328 switch (action) { 329 case PM_SUSPEND_PREPARE: 330 case PM_HIBERNATION_PREPARE: 331 ret = bsp_check(); 332 break; 333 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0 334 case PM_RESTORE_PREPARE: 335 /* 336 * When system resumes from hibernation, online CPU0 because 337 * 1. it's required for resume and 338 * 2. the CPU was online before hibernation 339 */ 340 if (!cpu_online(0)) 341 _debug_hotplug_cpu(0, 1); 342 break; 343 case PM_POST_RESTORE: 344 /* 345 * When a resume really happens, this code won't be called. 346 * 347 * This code is called only when user space hibernation software 348 * prepares for snapshot device during boot time. So we just 349 * call _debug_hotplug_cpu() to restore to CPU0's state prior to 350 * preparing the snapshot device. 351 * 352 * This works for normal boot case in our CPU0 hotplug debug 353 * mode, i.e. CPU0 is offline and user mode hibernation 354 * software initializes during boot time. 355 * 356 * If CPU0 is online and user application accesses snapshot 357 * device after boot time, this will offline CPU0 and user may 358 * see different CPU0 state before and after accessing 359 * the snapshot device. But hopefully this is not a case when 360 * user debugging CPU0 hotplug. Even if users hit this case, 361 * they can easily online CPU0 back. 362 * 363 * To simplify this debug code, we only consider normal boot 364 * case. Otherwise we need to remember CPU0's state and restore 365 * to that state and resolve racy conditions etc. 366 */ 367 _debug_hotplug_cpu(0, 0); 368 break; 369 #endif 370 default: 371 break; 372 } 373 return notifier_from_errno(ret); 374 } 375 376 static int __init bsp_pm_check_init(void) 377 { 378 /* 379 * Set this bsp_pm_callback as lower priority than 380 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called 381 * earlier to disable cpu hotplug before bsp online check. 382 */ 383 pm_notifier(bsp_pm_callback, -INT_MAX); 384 return 0; 385 } 386 387 core_initcall(bsp_pm_check_init); 388 389 static int msr_init_context(const u32 *msr_id, const int total_num) 390 { 391 int i = 0; 392 struct saved_msr *msr_array; 393 394 if (saved_context.saved_msrs.array || saved_context.saved_msrs.num > 0) { 395 pr_err("x86/pm: MSR quirk already applied, please check your DMI match table.\n"); 396 return -EINVAL; 397 } 398 399 msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL); 400 if (!msr_array) { 401 pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n"); 402 return -ENOMEM; 403 } 404 405 for (i = 0; i < total_num; i++) { 406 msr_array[i].info.msr_no = msr_id[i]; 407 msr_array[i].valid = false; 408 msr_array[i].info.reg.q = 0; 409 } 410 saved_context.saved_msrs.num = total_num; 411 saved_context.saved_msrs.array = msr_array; 412 413 return 0; 414 } 415 416 /* 417 * The following section is a quirk framework for problematic BIOSen: 418 * Sometimes MSRs are modified by the BIOSen after suspended to 419 * RAM, this might cause unexpected behavior after wakeup. 420 * Thus we save/restore these specified MSRs across suspend/resume 421 * in order to work around it. 422 * 423 * For any further problematic BIOSen/platforms, 424 * please add your own function similar to msr_initialize_bdw. 425 */ 426 static int msr_initialize_bdw(const struct dmi_system_id *d) 427 { 428 /* Add any extra MSR ids into this array. */ 429 u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL }; 430 431 pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident); 432 return msr_init_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id)); 433 } 434 435 static const struct dmi_system_id msr_save_dmi_table[] = { 436 { 437 .callback = msr_initialize_bdw, 438 .ident = "BROADWELL BDX_EP", 439 .matches = { 440 DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"), 441 DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"), 442 }, 443 }, 444 {} 445 }; 446 447 static int pm_check_save_msr(void) 448 { 449 dmi_check_system(msr_save_dmi_table); 450 return 0; 451 } 452 453 device_initcall(pm_check_save_msr); 454